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Abstract—For any channel, the existence of a unique Augustin mean is established for any
positive order and probability mass function on the input set. The Augustin mean is shown
to be the unique fixed point of an operator defined in terms of the order and the input dis-
tribution. The Augustin information is shown to be continuously differentiable in the order.
For any channel and convex constraint set with finite Augustin capacity, the existence of a
unique Augustin center and the associated van Erven–Harremoës bound are established. The
Augustin–Legendre (A-L) information, capacity, center, and radius are introduced, and the lat-
ter three are proved to be equal to the corresponding Rényi–Gallager quantities. The equality
of the A-L capacity to the A-L radius for arbitrary channels and the existence of a unique
A-L center for channels with finite A-L capacity are established. For all interior points of the
feasible set of cost constraints, the cost constrained Augustin capacity and center are expressed
in terms of the A-L capacity and center. Certain shift-invariant families of probabilities and
certain Gaussian channels are analyzed as examples.
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1. INTRODUCTION

The mutual information, which is sometimes called the Shannon information, is a pivotal quan-
tity in the analysis of various information transmission problems. It is defined without referring to
an optimization problem, but it satisfies the following two identities given in terms of the Kullback–
Leibler divergence:

I(p;W ) = inf
q∈P(Y)

D(p�W ‖p ⊗ q) (1)

= inf
q∈P(Y)

∑

x

p(x)D(W (x)‖q), (2)

where P(Y) is the set of all probability measures on the output space (Y ,Y), p is a probability mass
function that is positive only on a finite subset of the input set X , and W is a function of the form
W : X → P(Y). Either of the expressions on the right-hand side can be taken as the definition
of the mutual information. One can define the order α Rényi information via these expressions by
replacing the Kullback–Leibler divergence with the order α Rényi divergence. Since the order one
Rényi divergence is the Kullback–Leibler divergence, the order one Rényi information is equal to
the mutual information for both definitions. For other orders, however, these two definitions are
not equivalent to the definition of the mutual information or to one another, as was pointed out
by Csiszár [2]. The generalization associated with the expression in (1) is called the order α Rényi
information and denoted by Igα(p;W ). The generalization associated with the expression in (2) is
called the order α Augustin information and denoted by Iα(p;W ). Following the convention for the
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constrained Shannon capacity, the order α Augustin capacity for the constraint set A is defined as
sup
p∈A

Iα(p;W ).

For constant composition codes on memoryless classical-quantum channels, the Augustin infor-
mation for orders less than one arises in the expression for the sphere packing exponent and the
Augustin information for orders greater than one arises in the expression for the strong converse
exponent, as was recently pointed out by Dalai [3] and by Mosonyi and Ogawa [4], respectively.
For the constant composition codes on the discrete stationary product channels, these observa-
tions were made implicitly by Csiszár and Körner in [5, p. 172] and by Csiszár in [2]. For the
cost constrained codes on (possibly nonstationary) product channels with additive cost functions,
the cost constrained Augustin capacity plays an analogous role in the expressions for the sphere
packing exponent and the strong converse exponent. The observations about the sphere packing
exponent were also reported by Augustin in [6, Remark 36.7(i) and Section 36] for quite general
channel models. Therefore, Augustin’s information measures do have operational significance, at
the very least for the channel coding problem. Our main aim in the current manuscript, however, is
to analyze the Augustin information and capacity as measure theoretic concepts. Throughout the
manuscript, we will refrain from referring to the channel coding problem or the operational signif-
icance of Augustin’s information measures, because we believe that the Augustin information and
capacity can and should be understood as measure theoretic concepts first. The operational sig-
nificance of the Augustin information and capacity can be established afterward using information
theoretic techniques together with the results of the measure theoretic analysis, as we do in [7].

All of the previous works on the Augustin information or capacity, except Augustin’s [6], assume
the output set Y of the channel W to be finite [2, 3, 8–11]. This, however, is a major drawback,
because the finite output set assumption is violated by certain analytically interesting models that
are also important because of their prominence in engineering applications, such as the Gaussian
and Poisson channel models. We pursue our analysis on a more general model and assume1 the
output space (Y ,Y) to be a measurable space composed of an output set Y and a σ-algebra of
its subsets Y. Our analysis of the Augustin information and capacity in this general framework is
built around two fundamental concepts: the Augustin mean and the Augustin center.

Recall that the mutual information is defined as I(p;W ) � ∑
x
p(x)D(W (x)‖q1,p), where q1,p =

∑
x
p(x)W (x). Hence, the infimum in (2) is achieved by q1,p. Furthermore, one can confirm by

substitution that
∑

x

p(x)D(W (x)‖q) = I(p;W ) +D(q1,p ‖q), ∀q ∈ P(Y).

Thus, q1,p is the only probability measure achieving the infimum in (2), because the Kullback–
Leibler divergence is positive for distinct probability measures. A similar relation holds for other
orders, as well: for any α in R+ there exists a unique probability measure qα,p satisfying Iα(p;W ) =∑
x
p(x)Dα(W (x)‖qα,p). We call the probability measure qα,p the order α Augustin mean. In [6,

Lemma 34.2], Augustin established the existence of a unique qα,p for α’s in (0, 1] and derived
certain important characteristics of qα,p, which are corner stones of the analysis of the Augustin
information and capacity. We establish analogous relations for orders greater than one in Section 3;
see Lemma 13(d).

In [12], Kemperman proved the equality of the (unconstrained) Shannon capacity to the Shannon
radius2 for any channel of the form W : X → P(Y) and the existence of a unique Shannon center

1 We have additional hypotheses in Section 5.4, but those assumptions are satisfied by essentially all models
of interest, as well.

2 The Shannon radius is defined as inf
q∈P(Y)

sup
x∈X

D(W (x)‖ q).
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for channels with finite Shannon capacity. Using ideas that are already present in Kemperman’s
proof, one can establish a similar result for the constrained Shannon capacity provided that the
constrained set is convex; see [13, Theorem 2]: For any channel W of the form W : X → P(Y) and
convex constraint set A ,

sup
p∈A

I(p;W ) = inf
q∈P(Y)

sup
p∈A

∑

x

p(x)D(W (x)‖q). (3)

Considering (2), one can interpret (3) as a minimax theorem. Furthermore, if the Shannon capacity
for the constraint set A is finite, then there exists a unique probability measure q1,W,A , called the
Shannon center for the constraint set A , such that

sup
p∈A

I(p;W ) = sup
p∈A

∑

x

p(x)D(W (x)‖q1,W,A ).

The name center is reminiscent of the name of the corresponding quantity in the unconstrained
case, which is discussed in [12]. Augustin proved an analogous result for Iα(p;W ) assuming α to be
an order in (0, 1] and A to be a constraint set determined by cost constraints; see [6, Lemma 34.7].
We prove an analogous proposition for Iα(p;W ) for any α in R+ and convex constraint set A
in Section 4; see Theorem 1. We call the corresponding probability measure qα,W,A the order α
Augustin center for the constraint set A .

Constraint sets determined by cost constraints are frequently encountered while employing the
Augustin capacity to analyze channel coding problems. One can apply the convex conjugation
techniques to provide an alternative characterization of the cost constrained Augustin capacity
and center. Augustin did so in [6, Section 35], relying on a quantity that was previously em-
ployed in discrete channels by Gallager [14, pp. 13–15; 15, Section 7.3] and in various Gaussian
channel models3 [14, pp. 15 and 16; 15, Sections 7.4 and 7.5; 16; 17]. We call this quantity the
Rényi–Gallager information and analyze it in Section 5.3. Compared to the application of convex
conjugation techniques to the cost constrained Shannon capacity provided by Csiszár and Körner
in [5, ch. 8], Augustin’s analysis in [6, Section 35], relying on the Rényi–Gallager information, is
rather convoluted. In Section 5.2, we adhere to a more standard approach and provide an analysis,
which can be seen as a generalization of [5, ch. 8], relying on a new quantity, which we call the
Augustin–Legendre information. We show the equivalence of these two approaches using minimax
theorems similar to the one described above for the constrained Augustin capacity.

Some of the most important observations presented in this paper have already been derived
previously in [6, Sections 33–35; 10; 18; 19]. In order to delineate our main contributions in the
context of these works, we provide a tally in Section 1.3. Before doing that, we describe our
notational conventions in Section 1.1 and our model in Section 1.2.

1.1. Notational Conventions

The inner product of any two vectors μ and q in R
�, i.e.,

�∑
i=1

μiqi, is denoted by μ · q. The

�-dimensional vector whose all entries are one is denoted by 1 for any � ∈ Z+, the dimension � will
be clear from the context. We denote the closure, interior, and convex hull of a set S by clS ,
intS , and chS , respectively; the relevant topology or vector space structure will be evident from
the context.

For any set Y , we denote the set of all subsets of Y (i.e., the power set of Y ) by 2Y , the set of
all probability measures on finite subsets of Y by P(Y ), and the set of all nonzero finite measures

3 Augustin assumed neither a specific noise model nor the finiteness of the output set. Nevertheless, Gaussian
channels are not subsumed by Augustin’s model in [6, Section 35], because Augustin assumed a bounded
cost function.
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with the same property by M+(Y ). For any p in M+(Y ), we call the set of all y’s satisfying
p(y) > 0 the support of p and denote it by supp p.

On a measurable space (Y ,Y), we denote the set of all finite signed measures by M(Y), the set
of all finite measures by M+

0 (Y), the set of all nonzero finite measures by M+(Y), and the set of
all probability measures by P(Y). Let μ and q be two measures on the measurable space (Y ,Y).
Then μ is absolutely continuous with respect to q, i.e., μ ≺ q, whenever μ(E ) = 0 for any E ∈ Y
such that q(E ) = 0; μ and q are equivalent, i.e., μ ∼ q, whenever μ ≺ q and q ≺ μ; μ and q are
singular, i.e., μ ⊥ q, whenever ∃E ∈ Y such that μ(E ) = q(Y \ E ) = 0. Furthermore, a set of
measures W on (Y ,Y) is absolutely continuous with respect to q, i.e., W ≺ q, whenever w ≺ q
for all w ∈ W and uniformly absolutely continuous with respect to q, i.e., W ≺uni q, whenever for
every ε > 0 there exists a δ > 0 such that w(E ) < ε for all w ∈ W provided that q(E ) < δ.

We denote the integral of a measurable function f with respect to the measure μ by
∫
fμ(dy) or∫

f(y)μ(dy). If the integral is on the real line and if it is with respect to the Lebesgue measure, we
denote it by

∫
fdy or

∫
f(y)dy, as well. If μ is a probability measure, then we also call the integral

of f with respect to μ the expectation of f or the expected value of f and denote it by Eμ[f ] or
Eμ[f(y)].

Our notation will be overloaded for certain symbols; however, the relations represented by these
symbols will be clear from the context. We use �(·) to denote both the Shannon entropy and

the binary entropy: �(p) � ∑
y
p(y) ln

1

p(y)
for all p ∈ P(Y ) and �(z) � z ln

1

z
+ (1 − z) ln

1

1− z

for all z ∈ [0, 1]. We denote the product of topologies [20, p. 38], σ-algebras [20, p. 118], and
measures [20, Theorem 4.4.4] by ⊗. We denote the Cartesian product of sets [20, p. 38] by ×.
We use the shorthand notation X n

1 for the Cartesian product of sets X1, . . . ,Xn and Yn
1 for the

product of the σ-algebras Y1, . . . ,Yn. We use | · | to denote the absolute value of real numbers and
the size of sets. The sign ≤ stands for the usual less than or equal to relation for real numbers and
the corresponding pointwise inequality for functions and vectors. For two measures μ and q on the
measurable space (Y ,Y), μ ≤ q whenever μ(E ) ≤ q(E ) for all E ∈ Y.

For a, b ∈ R, a∧ b is the minimum of a and b. For f : Y → R and g : Y → R, the function f ∧ g
is the pointwise minimum of f and g. For μ, q ∈ M(Y), μ ∧ q is the unique measure satisfying
dμ ∧ q

dν
=

dμ

dν
∧ dq

dν
ν-a.e. for any ν satisfying μ ≺ ν and q ≺ ν. For a collection F of real valued

functions
∧

f∈F
f is the pointwise infimum of f ’s in F , which is an extended real valued function.

For a collection of measures U ⊂ M(Y) satisfying w ≤ u for all u ∈ U for some w ∈ P(Y),∧
u∈U

u is the infimum of U with respect to the partial order ≤. There exists a unique infimum

measure by [21, Theorem 4.7.5]. We use the symbol ∨ analogously to ∧ but we represent maxima
and suprema with it, rather than minima and infima.

1.2. Channel Model

A channel W is a function from the input set X to the set of all probability measures on the
output space (Y ,Y):

W : X → P(Y). (4)

Y is called the output set, and Y is called the σ-algebra of the output events. We denote the set of
all channels from the input set X to the output space (Y ,Y) by P(Y |X ). For any p ∈ P(X )
and W ∈ P(Y |X ), the probability measure whose marginal on X is p and whose conditional
distribution given x is W (x) is denoted by p � W . Until Section 5.4, we confine our discussion
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to the input distributions in P(X ) and avoid the subtleties related to measurability. The more
general case of input distributions in P(X ) is considered4 in Section 5.4.

A channel W is called a discrete channel if both X and Y are finite sets. For any n ∈ Z+ and
channels Wt : Xt → P(Yt) for t ∈ {1, . . . , n}, the length n product channel W[1,n] : X n

1 → P(Yn
1 ) is

defined via the following relation:

W[1,n](x
n
1 ) =

n⊗

t=1

Wt(xt), ∀xn1 ∈ X n
1 .

A product channel is stationary whenever Wt = W for all t ∈ {1, . . . , n} for some W : X → P(Y).
For any � ∈ Z+, an �-dimensional cost function ρ is a function from the input set to R

� that is
bounded from below, i.e., that is of the form ρ : X → R

�
≥z for some z ∈ R. We assume without

loss of generality that5

inf
x∈X

ρi(x) ≥ 0, ∀i ∈ {1, . . . , �}.

We denote the set of all cost constraints that can be satisfied by some member of X by Γex
ρ and

the set of all cost constraints that can be satisfied by some member of P(X ) by Γρ:

Γex
ρ �

{
	 ∈ R

�
≥0 : ∃x ∈ X such that ρ(x) ≤ 	

}
(5)

Γρ �
{
	 ∈ R

�
≥0 : ∃p ∈ P(X ) such that

∑

x

p(x)ρ(x) ≤ 	
}
. (6)

Then both Γex
ρ and Γρ have nonempty interiors and Γρ is the convex hull of Γex

ρ , i.e., Γρ = ch Γex
ρ .

A cost function on a product channel is said to be additive whenever it can be written as the sum
of cost functions defined on the component channels. Given Wt : Xt → P(Yt) and ρt : Xt → R

�
≥0

for t ∈ {1, . . . , n}, we denote the resulting additive cost function on X n
1 for the channel W[1,n]

by ρ[1,n], i.e.,

ρ[1,n](x
n
1 ) =

n∑

t=1

ρt(xt), ∀xn1 ∈ X n
1 .

1.3. Previous Work and Main Contributions

The following is a list of our contributions that are important for a thorough understanding of
the Augustin information measures and related results that have been reported before.

I. For all α in (0, 1), [6, Lemma 34.2] of Augustin asserts the existence of a unique probability
measure qα,p satisfying Iα(p;W ) = Dα(W ‖qα,p |p) and characterizes qα,p in terms of the operator6

Tα,p(·) as follows:
• Tα,p(qα,p) = qα,p and qα,p ∼ q1,p.
• If q1,p ≺ q and Tα,p(q) = q, then qα,p = q.
• lim

j→∞
‖qα,p − Tj

α,p(q1,p)‖ = 0.

4 The structure described in (4) is not sufficient on its own to ensure the existence of a unique p�W with
the desired properties for all p in P(X ). The existence of such a unique p � W is guaranteed for all p
in P(X ) if W is a transition probability from (X ,X ) to (Y ,Y), i.e., a member of P(Y |X ) rather than
P(Y |X ).

5 Augustin [6, Section 33] has an additional hypothesis,
∨

x∈X

ρ(x) ≤ 1. This hypothesis, however, excludes

certain important cases, such as the Gaussian channels.
6 The operator Tα,p(·), defined in (28), is determined uniquely by α and p and well-defined for all q with
finite Dα(W ‖ q |p).
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• Dα(W ‖q |p) ≥ Iα(p;W ) +Dα(qα,p ‖q) for7 all q ∈ P(Y).
We cannot verify the correctness of the proof of [6, Lemma 34.2]; we discuss our reservations
in [22, Appendix C]. Lemma 13(c) is proved8 relying on the ideas employed in Augustin’s proof
of [6, Lemma 34.2]. Lemma 13(c) implies all assertions of [6, Lemma 34.2] except for lim

j→∞
‖qα,p −

Tj
α,p(q1,p)‖ = 0; Lemma 13(c) establishes lim

j→∞
‖qα,p − Tj

α,p(q
g
α,p)‖ = 0 instead—see (37) and [22,

Remark 6]. Unlike [6, Lemma 34.2], Lemma 13(c) also bounds Dα(W ‖q |p) from above. This
bound is new to the best of our knowledge. The following inequality summarizes the upper and
lower bounds on Dα(W ‖q |p) established in Lemma 13(c),(d):

D1∨α(qα,p ‖q) ≥ Dα(W ‖q |p)− Iα(p;W ) ≥ D1∧α(qα,p ‖q), ∀q ∈ P(Y). (7)

For the finite Y case, the existence of a q in P(Y ) satisfying both q ∼ q1,p and Tα,p(q) = q has
been discussed by other authors. We make a brief digression to point out the discussion of the
aforementioned existence result in these works.

• While deriving the sphere packing bound for the constant composition codes on discrete sta-
tionary product channels, Fano implicitly asserts the existence of a fixed point that is equivalent
to q1,p for each α in (0, 1); see [23, Section 9.2, equation (9.24) and p. 292]. Fano, however, does
not explain why such a fixed point must exist and does not elaborate on its uniqueness or on
its relation to qα,p in [23, Section 9.2].

• While establishing the equivalence of his expression for the sphere packing exponent in the
finite Y case to the one provided by Fano in [23], Haroutunian proved the existence of a fixed
point that is equivalent to q1,p for each α in (0, 1); see [18, equations (16)–(19)].

• While discussing the random coding bounds for discrete stationary product channels, Poltyrev
makes an observation that is equivalent to asserting for each α in [1/2, 1) the existence of a fixed
point that is equivalent to q1,p; see [19, equations (3.15) and (3.16) and Theorem 3.2]. Poltyrev,
however, does not formulate his observations as a fixed point property.

In our understanding, the main conceptual contribution of [6, Lemma 34.2] is the characterization
of the Augustin mean as a fixed point of Tα,p(·) that is equivalent to q1,p. Bounds such as the one
given in (7) follow from this observation via Jensen’s inequality.

II. For α ∈ (1,∞), Lemma 13(d) establishes the existence of a unique Augustin mean qα,p and
proves that it satisfies (7) as well as the following two assertions:

• Tα,p(qα,p) = qα,p and qα,p ∼ q1,p.
• If Tα,p(q) = q, then qα,p = q.

Lemma 13(d) is new to the best of our knowledge. For the α ∈ (1,∞) case, neither the characteri-
zation of qα,p in terms of Tα,p(·), nor the inequalities given in (7) have been reported before, even
for the finite Y case.

III. Iα(p;W ) is a continuously differentiable function of α from R+ to [0, �(p)] by Lemma 17(e).

IV. The following minimax identity is established in Theorem 1 for any convex constraint set A :

sup
p∈A

inf
q∈P(Y)

Dα(W ‖q |p) = inf
q∈P(Y)

sup
p∈A

Dα(W ‖q |p).

Theorem 1 establishes the existence of a unique Augustin center, qα,W,A , for any convex A with
finite Augustin capacity and the convergence of {qα,p(i)}i∈Z+

to qα,W,A in total variation topology

7 To be precise, [6, Lemma 34.2] asserts the inequality Dα(W ‖ q |p) ≥ Iα(p;W ) + α
2 ‖qα,p − q‖2 rather

than the one given above. But Augustin proves the inequality given above first and then uses Pinsker’s
inequality to establish the one given in [6, Lemma 34.2].

8 One can prove Lemma 13(c) using the ideas employed in the proof of Lemma 13(d), as well.
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for any {p(i)}i∈Z+
⊂ A satisfying lim

i→∞
Iα(p

(i);W ) = Cα,W,A . Augustin proved this result only for

α’s in (0, 1] and the constraint sets determined by cost constraints; see [6, Lemma 34.7]. For the
A = P(X ) case, similar results were proved by Csiszár [2, Proposition 1] assuming both X and Y
to be finite sets and by van Erven and Harremoës [8, Theorem 34] assuming Y to be a finite set.

V. The following bound in terms of the Augustin capacity and center established in Lemma 21
is new to the best of our knowledge:

sup
p∈A

Dα(W ‖q |p) ≥ Cα,W,A +Dα∧1(qα,W,A ‖q), ∀q ∈ P(Y).

A similar bound has been conjectured by van Erven and Harremoës in [8]. For the Rényi capacity
and center, we have proved that conjecture and extended it to the constrained case elsewhere;
see [13, Lemmas 19 and 25].

VI. The Augustin–Legendre information Iλα(p;W ), defined as Iα(p;W )−λ ·Ep[ρ], as well as the
resulting capacity, center, and radius are new concepts that have not been studied before, except
for the α = 1 case. Thus, formally speaking, all of the propositions in Section 5.2 are new. The
analysis presented in Section 5.2 is a standard application of the convex conjugation techniques to
characterize the cost constrained Augustin capacity and center. A similar analysis for the α = 1
case is provided by Csiszár and Körner in [5, ch. 8] for discrete channels with a single cost constraint.
The most important conclusions of the analysis presented in Section 5.2 are the following:

• Cλ
α,W , defined as sup

p∈P(X )
Iλα(p;W ), satisfies Cλ

α,W = sup
�≥0

Cα,W,� − λ · 	 for all λ ∈ R
�
≥0 by (76).

• Cα,W,� = inf
λ≥0

Cλ
α,W + λ · 	 for all 	 ∈ int Γρ and the set of λ’s achieving this infimum form a

nonempty convex compact set whenever Cα,W,� is finite by Lemma 29.
• Cλ

α,W = Sλ
α,W where Sλ

α,W is defined as inf
q∈P(Y)

sup
x∈X

Dα(W (x)‖q) − λ · ρ(x) by Theorem 2.

• If Cλ
α,W < ∞, then there exists a unique A-L center qλα,W satisfying

Cλ
α,W = sup

x∈X
Dα

(
W (x)‖qλα,W

)
− λ · ρ(x).

Furthermore, lim
i→∞

‖qα,p − qλα,W‖ = 0 for all {p(i)}i∈Z+
⊂ P(X ) satisfying lim

i→∞
Iλα(p

(i);W ) =

Cλ
α,W by Theorem 2.

• If Cα,W,� = Cλ
α,W + λ · 	 < ∞ for a λ ∈ R

�
≥0, then qα,W,� = qλα,W by Lemma 31.

• If W[1,n] is a product channel with an additive cost function, then Cλ
α,W[1,n]

=
n∑

t=1
Cλ
α,Wt

for all

λ ∈ R
�
≥0 and α ∈ R+, and whenever either of them exists, qλα,W[1,n]

is equal to
n⊗

t=1
qλα,Wt

by
Lemma 32.

VII. The Rényi–Gallager information Igλα (p;W ) is a generalization of the Rényi information
Igα(p;W ) with a Lagrange multiplier, because Ig0α (p;W ) = Igα(p;W ). This quantity was first em-
ployed by Gallager in [14] by a different parametrization and scaling; later considered in [24, Sec-
tion IV; 6; 16; 17; 25–27] with various parametrizations, scalings, and names. We chose the scaling
and the parametrization so as to be compatible with the ones for Augustin–Legendre information.
The most important conclusions of our analysis in Section 5.3 are the following:

• Cgλ
α,W = Sλ

α,W by Theorem 3, where Cgλ
α,W is defined as sup

p∈P(X )
Igλα (p;W ).

• If Cλ
α,W < ∞ and lim

i→∞
Igα

(
p(i);W

)
= Cλ

α,W , then lim
i→∞

‖qgλα,p − qλα,W‖ = 0 by Theorem 3.

• sup
x∈X

Dα(W (x)‖q) − λ · ρ(x) ≥ Cλ
α,W +Dα

(
qλα,W ‖q

)
for all q ∈ P(Y) by Lemma 35.
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Lemma 35 is new to the best of our knowledge. For the case where both α ∈ (0, 1) and
∨

x∈X
ρ(x) ≤ 1,

Theorem 3 is implied by [6, Lemma 35.2].

While pursuing a similar analysis in [6, Section 35], Augustin assumed the cost function to be
bounded. This hypothesis, however, excludes certain important and interesting cases such as the
Gaussian channels. The issue here is not a matter of rescaling: certain conclusions of Augustin’s
analysis, e.g., [6, Lemma 35.3(a)], are not correct when the cost function is unbounded. We do
not assume the cost function to be bounded. Thus, our model subsumes not only Augustin’s
model in [6, Section 35] but also other previously considered models, which were either discrete [14,
pp. 13–15; 15, Section 7.3; 24, Section IV; 26; 27] or Gaussian [14, pp. 15 and 16; 15, Sections 7.4
and 7.5; 16; 17; 25].

VIII. For channels with uncountable input sets, the Shannon information and capacity is often
defined via the probability measures on the input space (X ,X ) rather than the probability mass
functions on the input set X . In Section 5.4, we discuss how and under which conditions one can
make such a generalization for Augustin’s information measures. The most important conclusions
of our analysis are the following:
• If W is a transition probability (X ,X ) to (Y ,Y)—i.e., W ∈ P(Y |X )—and Y is countably
generated, then
– Iα(p;W ) is well defined for all α ∈ R+ and p ∈ P(X ) by (112), (113), and Lemma 37.

– Iλα(p;W ) is well defined for all α ∈ R+, p ∈ P(X ), and λ ∈ R
�
≥0 by (114) provided that ρ is

X -measurable.
• If W ∈ P(Y |X ), X is countably separated, Y is countably generated, and ρ is X -measurable,
then
– Cλ

α,W = sup
p∈Aλ

Iλα(p;W ) for all λ in R
�
≥0 by Theorem 4 where Aλ is defined as {p ∈ P(X ) :

λ ·Ep[ρ] < ∞}.
– If Cλ

α,W < ∞ for a λ in R
�
≥0, then Cλ

α,W = sup
p∈Aλ

Dα

(
W ‖qλα,W |p

)
− λ · Ep[ρ] by Theorem 4.

– Cα,W,� = sup
p∈A(�)

Iα(p;W ) for all 	 in int Γρ by Theorem 5 where A(	) is defined as {p ∈ P(X ) :

Ep[ρ] ≤ 	}.
– If Cα,W,� < ∞ for a 	 in int Γρ, then Cα,W,� = sup

p∈A(�)
Dα(W ‖qα,W,� |p) by Theorem 5.

Thus, the A-L capacity and center as well as the cost constrained Augustin capacity and center
defined via probability mass functions are equal to the corresponding quantities that might be
defined via probability measures on (X ,X ), provided that X is countably separated and Y is
countably generated.

2. PRELIMINARIES

2.1. The Rényi Divergence

Definition 1. For any α ∈ R+ and w, q ∈ M+(Y), the order α Rényi divergence between w
and q is

Dα(w ‖q) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

α− 1
ln

∫ (
dw

dν

)α (
dq

dν

)1−α

ν(dy) for α �= 1,

∫
dw

dν

[
ln

dw

dν
− ln

dq

dν

]
ν(dy) for α = 1,

(8)

where ν is any measure satisfying w ≺ ν and q ≺ ν.

Customarily, the Rényi divergence is defined for pairs of probability measures—see [8, 28] for
example—rather than pairs of nonzero finite measures. We adopt this slightly more general def-
inition, because it allows us to use the Rényi divergence to express certain observations more
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succinctly; see Lemma 1 in the following and Section 5.3. For pairs of probability measures Defi-
nition 1 is equivalent to usual definition employed in [8] by [8, Theorem 5].

Lemma 1 [13, Lemma 8]. Let α be a positive real number and w, q, v be nonzero finite measures
on (Y ,Y).
• If v ≤ q, then Dα(w ‖q) ≤ Dα(w ‖v).
• If q = γv for some γ ∈ R+ and either w is a probability measure or α �= 1, then Dα(w ‖q) =
Dα(w ‖v) − ln γ.

If both arguments of the Rényi divergence are probability measures, then it is positive unless
the arguments are equal to one another by Lemma 2.

Lemma 2 [8, Theorems 3 and 31]. For any α ∈ R+ and probability measures w and q on
(Y ,Y),

Dα(w ‖q) ≥ 1 ∧ α

2
‖w − q‖2.

For orders in (0, 1], this inequality is called Pinsker’s inequality [29, 30]. For orders in (0, 1) it
is possible to bound the Rényi divergence from above in terms of the total variation distance. For
the α = 1/2 case, [31, equation (21), p. 364] asserts

D1/2(w ‖q) ≤ 2 ln
2

2− ‖w − q‖ . (9)

As a function of its arguments, the order α Rényi divergence is continuous for the total variation
topology provided that α ∈ (0, 1). For arbitrary orders we only have lower semicontinuity, but that
holds even for the topology of setwise convergence.

Lemma 3 [8, Theorem 15]. For any α ∈ R+, Dα(w ‖q) is a lower semicontinuous function of
the pair of probability measures (w, q) in the topology of setwise convergence.

Lemma 4 [8, Theorem 17]. For any α ∈ (0, 1), Dα(w ‖q) is a uniformly continuous function
of the pair of probability measures (w, q) in the total variation topology.

The Rényi divergence is convex in its second argument for all positive orders, jointly convex
in its arguments for positive orders that are not greater than one, and jointly quasi-convex in its
arguments for all positive orders.

Lemma 5 [8, Theorem 12]. For all α ∈ R+, w, q0, q1 ∈ P(Y), β ∈ (0, 1), and ν satisfying
(q0 + q1) ≺ ν,

Dα(w ‖βq1 + (1− β)q0) ≤ βDα(w ‖q1) + (1− β)Dα(w ‖q0).

Furthermore, the equality holds if and only if
dq1
dν

=
dq0
dν

w-almost surely.

Lemma 6 [8, Theorem 11]. For all α ∈ (0, 1], w0, w1, q0, q1 ∈ P(Y), β ∈ (0, 1), and ν satisfying
(w0 +w1 + q0 + q1) ≺ ν,

Dα(βw1 + (1− β)w0 ‖βq1 + (1− β)q0) ≤ βDα(w1 ‖q1) + (1− β)Dα(w0 ‖q0). (10)

Furthermore, for α = 1 the equality holds if and only if
dw0

dν

dq1
dν

=
dw1

dν

dq0
dν

, and for α ∈ (0, 1) the

equality holds if and only if
dw0

dν

dq1
dν

=
dw1

dν

dq0
dν

and Dα(w1 ‖q1) = Dα(w0 ‖q0).

Lemma 7 [8, Theorem 13]. For all α ∈ R+, w0, w1, q0, q1 ∈ P(Y), and β ∈ (0, 1),

Dα(βw1 + (1− β)w0 ‖βq1 + (1− β)q0) ≤ Dα(w1 ‖q1) ∨Dα(w0 ‖q0).
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Lemma 8 [8, Theorems 3 and 7]. For all w, q ∈ P(Y), Dα(w ‖q) is a nondecreasing and lower
semicontinuous function of α on R+ that is continuous on (0, (1 ∨ χw,q)] where χw,q � sup{α :
Dα(w ‖q) < ∞}.

Since Dα(w ‖q) = α

1− α
D1−α(q ‖w) for all α ∈ (0, 1), Lemma 8 and (9) imply

Dα(w ‖q) ≤

⎧
⎪⎨

⎪⎩

D1/2(w ‖q) if α ∈ (0, 1/2],
α

1− α
D1/2(w ‖q) if α ∈ (1/2, 1)

≤ 2

1− α
ln

2

2− ‖w − q‖ , ∀α ∈ (0, 1). (11)

For a slightly tighter bound, see [31, equation (24), p. 365].

If G is a sub-σ-algebra of Y, then for any w and q in P(Y) the identities w|G(E ) = w(E ) for
all E ∈ G and q|G(E ) = q(E ) for all E ∈ G uniquely define probability measures w|G and q|G on
(Y ,G). We denote Dα

(
w|G ‖q|G

)
by DG

α(w ‖q).
Lemma 9 [8, Theorem 21]. Let Y1 ⊂ Y2 ⊂ . . . ⊂ Y be an increasing family of σ-algebras, and

let Y∞ = σ
( ∞⋃
i=1

Yi

)
be the smallest σ-algebra containing them. Then for any order α ∈ R+,

lim
i→∞

DYi
α (w ‖q) = DY∞

α (w ‖q).

2.2. Tilted Probability Measure

Definition 2. For any α ∈ R+ and w, q ∈ P(Y) satisfying Dα(w ‖q) < ∞, the order α tilted
probability measure wq

α is

dwq
α

dν
� e(1−α)Dα(w‖q)

(
dw

dν

)α (
dq

dν

)1−α

.

Note that wq
1 = w for any q satisfying D1(w ‖q) < ∞. For other orders one can confirm

the following identity by substitution: if Dα(w ‖q) < ∞, then for any v ∈ P(Y) satisfying both
D1(v ‖w) < ∞ and D1(v ‖q) < ∞ also satisfies

1

1− α
D1

(
v ‖wq

α

)
+Dα(w ‖q) = α

1− α
D1(v ‖w) +D1(v ‖q).

This identity is used to derive the following variational characterization of the Rényi divergence for
orders other than one.

Lemma 10 [8, Theorem 30]. For any w, q ∈ P(Y)

Dα(w ‖q) =

⎧
⎪⎪⎨

⎪⎪⎩

inf
v∈P(Y)

α

1− α
D1(v ‖w) +D1(v ‖q) for α ∈ (0, 1),

sup
v∈P(Y)

α

1− α
D1(v ‖w) +D1(v ‖q) for α ∈ (1,∞),

where
α

1− α
D1(v ‖w) +D1(v ‖q) stands for −∞ when α ∈ (1,∞) and D1(v ‖w) = D1(v ‖q) = ∞.

Furthermore, if Dα(w ‖q) is finite and either α ∈ (0, 1) or D1

(
wq
α ‖w

)
< ∞, then

Dα(w ‖q) = α

1− α
D1

(
wq
α ‖w

)
+D1

(
wq
α ‖q

)
. (12)

We have observed in Lemma 8 that Dα(w ‖q) is continuous in α on the closure of the interval
where it is finite. Lemma 11, in the following, establishes the analyticity of Dα(w ‖q) in α on the
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interior of the interval where Dα(w ‖q) is finite. Lemma 11 also establishes the analyticity—and
hence the finiteness—of D1

(
wq
α ‖w

)
and D1

(
wq
α ‖q

)
on the same interval. This allows us to assert

the validity of (12) on the same interval:

Dα(w ‖q) = α

1− α
D1

(
wq
α ‖w

)
+D1

(
wq
α ‖q

)
, ∀α ∈ (0, χw,q).

Lemma 11. For any w, q ∈ P(Y) satisfying χw,q > 0, for χw,q � sup{α : Dα(w ‖q) < ∞},
Dα(w ‖q), D1

(
wq
α ‖w

)
, and D1

(
wq
α ‖q

)
are analytic functions of α on (0, χw,q). Furthermore,

∂κDα(w ‖q)
∂ακ

∣∣∣∣
α=φ

=

⎧
⎪⎨

⎪⎩

κ!
κ∑

t=0

(−1)κ−t

(φ− 1)κ−t+1
Gt

w,q(φ) for φ �= 1,

κ!Gκ+1
w,q (1) for φ = 1,

(13)

where Gt
w,q(φ) is defined in terms of the set Jt as follows:

Jt � {(j1, j2, . . . , jt) : ji ∈ Z≥0 ∀i and 1j1 + 2j2 + . . .+ tjt = t}, (14)

Gt
w,q(φ) �

⎧
⎪⎪⎨

⎪⎪⎩

(φ− 1)Dφ(w ‖q) for t = 0,

∑

Jt

−(j1 + j2 + . . .+ jt − 1)!

j1! j2! . . . jt!

t∏

i=1

(
(−1)

i!
Ewq

φ

[(
ln

dw

dν
− ln

dq

dν

)i])ji

for t ∈ Z+.
(15)

Lemma 11 is new to the best of our knowledge; it is proved in [22, Appendix A] using standard
results on the continuity and differentiability of parametric integrals and Faà di Bruno formula for
derivatives of compositions of smooth functions.

Note that J1 = {(1)}, J2 = {(2, 0), (0, 1)}, and J3 = {(3, 0, 0), (1, 1, 0), (0, 0, 1)}. Thus, one
can confirm using (15) by substitution that

G1
w,q(φ) = Ewq

φ
[ξ]

G2
w,q(φ) =

1

2

(
Ewq

φ
[ξ2]−Ewq

φ
[ξ]2

)

=
1

2
Ewq

φ

[(
ξ −Ewq

φ
[ξ]

)2]

G3
w,q(φ) =

1

3!
Ewq

φ
[ξ3]− 1

2
Ewq

φ
[ξ2]Ewq

φ
[ξ] +

1

3
Ewq

φ
[ξ]3

=
1

3!
Ewq

φ

[(
ξ −Ewq

φ
[ξ]

)3]

where ξ = ln
dw

dν
− ln

dq

dν
. If we substitute these expressions for G1

w,q(φ), G
2
w,q(φ), and G3

w,q(φ)

in (13) and use the identity ξ =
1

φ− 1

(
ln

dwq
φ

dw
+ G0

w,q(φ)
)
which holds wq

φ-almost surely for φ ∈
(0, χw,q)\{1}, we get the following more succinct expressions for the first two derivatives ofDα(w ‖q)
with respect to α:

∂

∂α
Dα(w ‖q)

∣∣∣∣
α=φ

=

⎧
⎪⎪⎨

⎪⎪⎩

1

(φ− 1)2
D1

(
wq
φ ‖w

)
for φ �= 1,

1

2
Ew

[(
ln

dw

dq
−D1(w ‖q)

)2]
for φ = 1,

(16)

∂2

∂α2
Dα(w ‖q)

∣∣∣∣∣
α=φ

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

(φ− 1)3

(
Ewq

φ

[(
ln

dwq
φ

dw

)2
]
− 2D1

(
wq
φ ‖w

)
−

[
D1

(
wq
φ ‖w

)]2
)

for φ �= 1,

1

3
Ew

[(
ln

dw

dq
−D1(w ‖q)

)3]
for φ = 1.

(17)
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Analyticity of Dα(w ‖q) on (0, χw,q) implies that for any φ ∈ (0, χw,q) there exists an open
interval containing φ on which Dα(w ‖q) is equal to the power series determined by the derivatives
of Dα(w ‖q) at α = φ. If we have a finite collection of pairs of probability measures {(wi, qi)}i∈I ,
then for any φ that is in (0, χwi,qi) for all i ∈ I there exists an open interval containing φ on which
each Dα(wi ‖qi) is equal to the power series determined by the derivatives of Dα(wi ‖qi) at α = φ.
When the collection of pairs of probability measures is infinite, then there might not be an open
interval containing φ that is contained in all (0, χwi,qi)’s. Lemma 12, in the following, asserts the
existence of such an interval when Dβ(wi ‖qi) is uniformly bounded for a β > φ for all i ∈ I . In
addition, Lemma 12 asserts uniform approximation error terms, over all i ∈ I , for the power series
on that interval.

Lemma 12. For any γ, φ, β ∈ R+ satisfying φ ∈ (0, β) and w, q ∈ P(Y) satisfying Dβ(w ‖q)≤ γ,

∣∣∣∣∣
∂κDα(w ‖q)

∂ακ

∣∣∣∣
α=φ

∣∣∣∣∣ ≤
{
κ! τκ+1κ for φ �= 1,

κ! τκ+1 for φ = 1,
(18)

∣∣∣∣∣∣
Dη(w ‖q) −

κ−1∑

i=0

(η − φ)i

i!

∂iDα(w ‖q)
∂αi

∣∣∣∣∣
α=φ

∣∣∣∣∣∣

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τκ+1|η − φ|κ
1− |η − φ|τ

[
κ− 1 +

1

1− |η − φ|τ

]
for φ �= 1,

τκ+1|η − φ|κ
1− |η − φ|τ for φ = 1,

∀η : |η − φ| ≤ 1

τ
(19)

where

τ �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

|φ− 1| ∨
[
1 + e(1∨β)γ

φ ∧ (β − φ)
+ γ

]
for φ �= 1,

1 + eβγ

1 ∧ (β − 1)
for φ = 1.

(20)

Lemma 12 is new to the best of our knowledge; it is proved in [22, Appendix A] using (13)
together with the elementary properties of the real analytic functions and power series.

2.3. The Conditional Rényi Divergence and Tilted Channel

The conditional Rényi divergence and the tilted channel allows us to write certain frequently
used expressions more succinctly.

Definition 3. For any α ∈ R+, W : X → P(Y), Q : X → P(Y), and p ∈ P(X ) the order α
conditional Rényi divergence for the input distribution p is

Dα(W ‖Q |p) �
∑

x∈X

p(x)Dα(W (x)‖Q(x)). (21)

If ∃q ∈ P(Y) such that Q(x) = q for all x ∈ X , then we denote Dα(W ‖Q |p) by Dα(W ‖q |p).
Remark 1. In [11, 32], Dα(W ‖Q |p) stands for Dα(p � W ‖p � Q). For the α = 1 case, the

convention used in [11, 32] is equivalent to ours; for the α �= 1 case, however, it is not. If either
α = 1 orDα(W (x)‖Q(x)) has the same value for all x’s with positive p(x), thenDα(p�W ‖p�Q) =∑
x
p(x)Dα(W (x)‖Q(x)); otherwise, Dα(p � W ‖p � Q) <

∑
x
p(x)Dα(W (x)‖Q(x)) for α ∈ (0, 1)

and Dα(p � W ‖p � Q) >
∑
x
p(x)Dα(W (x)‖Q(x)) for α ∈ (1,∞). The inequalities follow from

Jensen’s inequality and the strict concavity of the natural logarithm function.
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Definition 4. For any α ∈ R+, W : X → P(Y) and Q : X → P(Y), the order α tilted channel
WQ

α is a function from {x : Dα(W (x)‖Q(x)) < ∞} to P(Y) given by

dWQ
α (x)

dν
� e(1−α)Dα(W (x)‖Q(x))

[
dW (x)

dν

]α [
dQ(x)

dν

]1−α

. (22)

If ∃q ∈ P(Y) such that Q(x) = q for all x ∈ X , then we denote WQ
α by W q

α.

3. THE AUGUSTIN INFORMATION

The main aim of this section is to introduce the concepts of Augustin information and mean.
We define the order α Augustin information for the input distribution p and establish the existence
of a unique Augustin mean for any input distribution p and positive finite order α in Section 3.1.
After that we analyze the Augustin information, first as a function of the input distribution for
a given order in Section 3.2 and then as a function of the order for a given input distribution in
Section 3.3. We conclude our discussion by comparing the Augustin information with the Rényi
information and characterizing each quantity in terms of the other in Section 3.4. Some of the most
important observations about the Augustin information and mean were first reported by Augustin
in [6, Section 34] for orders not exceeding one. This is why we suggest naming these concepts after
him. Proof of the lemmas presented in this section are presented in [22, Appendix B].

3.1. Existence of a Unique Augustin Mean

Definition 5. For any α ∈ R+, W : X → P(Y), and p ∈ P(X ) the order α Augustin infor-
mation for the input distribution p is

Iα(p;W ) � inf
q∈P(Y)

Dα(W ‖q |p). (23)

One can confirm by substitution that

D1(W ‖q |p) = D1(W ‖q1,p |p) +D1(q1,p ‖q), ∀q ∈ P(Y), (24)

where
q1,p �

∑

x

p(x)W (x). (25)

Then Lemma 2 and (23) imply
I1(p;W ) = D1(W ‖q1,p |p).

Thus, the order one Augustin information has a closed form expression, which is equal to the
mutual information. For other orders, however, Augustin information does not have a closed form
expression. Nonetheless, Lemma 13, presented in the following, establishes the existence of a unique
probability measure qα,p satisfying Iα(p;W ) = Dα(W ‖qα,p |p) for9 any positive order α and input
distribution p. Furthermore, parts (c) and (d) of Lemma 13 present an alternative characterization
of qα,p by showing that qα,p is the unique fixed point of the operator Tα,p(·) satisfying q1,p ≺ qα,p.
Lemma 13(e) provides an alternative characterization of the Augustin information for orders other
than one.10

9 This is rather easy to prove when Y is a finite set. The uniqueness of qα,p follows from the strict
convexity of the Rényi divergence in its second argument described in Lemma 5. If Y is finite, then
P(Y) is compact and the existence of qα,p follows from the lower semicontinuity of the Rényi divergence
in its second argument—which follows from Lemma 3—and the extreme value theorem for the lower
semicontinuous functions [33, ch. 3, Section 12.2]. For channels with arbitrary output spaces, however,
P(Y) is not compact; thus, we cannot invoke the extreme value theorem to establish the existence of qα,p.

10 This alternative characterization is employed to prove the equivalence of two definitions of the sphere
packing exponent and the strong converse exponent.
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Definition 6. Let α be a positive real number and W be a channel of the form W : X → P(Y).
• For any p ∈ M+(X ), the order α mean measure for the input distribution p is given by

dμα,p

dν
�

[
∑

x

p(x)

(
dW (x)

dν

)α
] 1

α

(26)

where ν is any measure for which
(∑

x
p(x)W (x)

)
≺ ν.

• For any p ∈ P(X ), the order α Rényi mean for the input distribution p is given by

qgα,p �
μα,p

‖μα,p‖
. (27)

• For any p ∈ P(X ), the order α Augustin operator for the input distribution p, Tα,p(·) : Qα,p →
P(Y), is given by

Tα,p(q) �
∑

x

p(x)W q
α(x), ∀q ∈ Qα,p, (28)

where Qα,p � {q ∈ P(Y) : Dα(W ‖q |p) < ∞} and the tilted channel W q
α is defined in (22).

Furthermore, T0
α,p(q) = q and Ti+1

α,p (q) � Tα,p
(
Ti
α,p(q)

)
for any nonnegative integer i.

Lemma 13. Let W be a channel of the form W : X → P(Y) and p be an input distribution in
P(X ).

(a) Iα(p;W ) ≤ Dα(W ‖q1,p |p) ≤ �(p) < ∞ for all α ∈ R+ where q1,p is defined in (25).
(b) I1(p;W ) = D1(W ‖q1,p |p). Furthermore,

D1(W ‖q |p)− I1(p;W ) = D1(q1,p ‖q), ∀q ∈ P(Y). (29)

(c) If α ∈ (0, 1), then ∃! qα,p such that Iα(p;W ) = Dα(W ‖qα,p |p). Furthermore,

Tα,p(qα,p) = qα,p, (30)

lim
j→∞

‖qα,p − Tj
α,p(q

g
α,p)‖ = 0, (31)

D1(qα,p ‖q) ≥ Dα(W ‖q |p)− Iα(p;W ) ≥ Dα(qα,p ‖q), ∀q ∈ P(Y), (32)

and qα,p ∼ q1,p. In addition,11 if q1,p ≺ q and Tα,p(q) = q, then qα,p = q.
(d) If α ∈ (1,∞), then ∃! qα,p such that Iα(p;W ) = Dα(W ‖qα,p |p). Furthermore,

Tα,p(qα,p) = qα,p, (33)

Dα(qα,p ‖q) ≥ Dα(W ‖q |p)− Iα(p;W ) ≥ D1(qα,p ‖q), ∀q ∈ P(Y), (34)

and qα,p ∼ q1,p. In addition, if Tα,p(q) = q, then qα,p = q.
(e) If α ∈ R+ \ {1}, then

Iα(p;W ) =
α

1− α
D1

(
W qα,p

α ‖W |p
)
+ I1

(
p;W qα,p

α

)
(35)

=

⎧
⎪⎪⎨

⎪⎪⎩

inf
V ∈P(Y |X )

α

1− α
D1(V ‖W |p) + I1(p;V ), α ∈ (0, 1),

sup
V ∈P(Y |X )

α

1− α
D1(V ‖W |p) + I1(p;V ), α ∈ (1,∞),

(36)

=
α

1− α
inf

V ∈P(Y |X )

(
D1(V ‖W |p) + 1− α

α
I1(p;V )

)
.

11 Note that Tα,p(q) = q, on its own, does not imply qα,p = q for α’s in (0, 1). Consider for example a binary
symmetric channel and let q be the probability measure that puts all its probability to one of the output
letters. Then Tα,p(q) = q, but qα,p �= q, for all p ∈ P(X ) and α ∈ (0, 1).
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The convergence described in (31) holds not just for the Rényi mean qgα,p but also for certain
other probability measures, as well. [22, Remark 6 in Appendix B] describes how one can establish
the following more general convergence result for any α ∈ (0, 1) and p ∈ P(X ):

lim
j→∞

∥∥qα,p − Tj
α,p(q)

∥∥ = 0 if q ∼ q1,p and ess supq1,p

∣∣∣∣ln
dq

dq1,p

∣∣∣∣ < ∞. (37)

Part (a) is proved using Lemma 1; Iα(p;W ) ≤ �(p) was proved by Csiszár through a different
argument in [2, equation (24)]. Part (b), which is well known, is proved by substitution. Part (c)
is due to12 Augustin [6, Lemma 34.2]. Part (d) is new to the best our knowledge. Part (e) was
proved for the finite Y case by Csiszár [2, equations (A24) and (A27)].

Definition 7. For any α ∈ R+, W : X → P(Y), p ∈ P(X ) the unique probability measure
qα,p on (Y ,Y) satisfying Iα(p;W ) = Dα(W ‖qα,p |p) is called the order α Augustin mean for the
input distribution p.

Lemma 2 and equations (29), (32), and (34) imply the following bound, which is analogous
to [34, Theorem 3.1] of Csiszár:

√

2
Dα(W ‖q |p)− Iα(p;W )

α ∧ 1
≥ ‖qα,p − q‖, ∀q ∈ P(Y), ∀α ∈ R+.

The Augustin information and mean have closed form expressions only for α = 1; for other orders
they do not have closed form expressions. However, the fixed point property Tα,p(qα,p) = qα,p
established in Lemma 13(c),(d) and the definition of Tα,p(·) given in (28) imply the following
identity for the Augustin mean:

dqα,p
dν

=

[
∑

x

p(x)

(
dW (x)

dν

)α

e(1−α)Dα(W (x)‖qα,p)

] 1
α

, ∀ν : q1,p ≺ ν. (38)

In Section 3.3, we use this identity in lieu of a closed form expression while analyzing Iα(p;W ) and
qα,p as a function of α.

Lemma 14. For any length n product channel W[1,n] : X n
1 → P(Yn

1 ) and input distribution
p ∈ P(X n

1 ) we have

Iα
(
p;W[1,n]

)
≤

n∑

t=1

Iα(pt;Wt) (39)

for all α ∈ R+, where pt ∈ P(Xt) is the marginal of p on Xt. Furthermore, the inequality in (39)
is an equality for an α ∈ R+ if and only if qα,p satisfies

qα,p =
n⊗

t=1

qα,pt. (40)

If p =
n⊗

t=1
pt, then (40) holds for all α ∈ R+ and consequently (39) holds as an equality for all

α ∈ R+.

3.2. Augustin Information as a Function of the Input Distribution

The order α Augustin information for the input distribution p is defined as the infimum of a
family of conditional Rényi divergences, which are linear in p. Then the Augustin information is

12 To be precise, [6, Lemma 34.2] does not include the assertion D1(qα,p ‖ q) ≥ Dα(W ‖ q |p)− Iα(p;W ) and
claims (31) for q1,p instead of qgα,p. We cannot verify the correctness of Augustin’s proof of [6, Lemma 34.2];
see [22, Appendix C] for a more detailed discussion.
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concave in p, because pointwise infimum of a family of concave functions is concave. Lemma 15
strengthens this observation using Lemma 13.

Lemma 15. For any α ∈ R+ and W : X → P(Y), Iα(p;W ) is a concave function of p satis-
fying

Iα(pβ;W )

≥ βIα(p1;W ) + (1− β)Iα(p0;W ) + βDα∧1
(
qα,p1 ‖qα,pβ

)
+ (1− β)Dα∧1

(
qα,p0 ‖qα,pβ

)
, (41)

Iα(pβ;W )

≤ βIα(p1;W ) + (1− β)Iα(p0;W ) + βDα∨1
(
qα,p1 ‖qα,pβ

)
+ (1− β)Dα∨1

(
qα,p0 ‖qα,pβ

)
, (42)

Iα(pβ;W )

≤ βIα(p1;W ) + (1− β)Iα(p0;W ) + �(β) −Dα∧1
(
qα,pβ ‖βqα,p1 + (1− β)qα,p0

)
, (43)

where pβ = βp1 + (1− β)p0 for all p0, p1 ∈ P(X ) and β ∈ [0, 1].

Lemma 15 implies that for any positive order α and channelW , the order α Augustin information
Iα(p;W ) is a continuous function of the input distribution p if and only if sup

p∈P(X )
Iα(p;W ) is

finite.13 Furthermore, if sup
p∈P(X )

Iη(p;W ) is finite for an η ∈ R+, then {Iα(p;W )}α∈(0,η] is uniformly

equicontinuous in p on P(X ).

In order to see why the finiteness of sup
p∈P(X )

Iα(p;W ) is necessary for the continuity, note that

the nonnegativity of the Rényi divergence for probability measures and (41) imply that

Iα(pβ;W )− Iα(p0;W )

≥ β(Iα(p1;W )− Iα(p0;W )) + βDα∧1
(
qα,p1 ‖qα,pβ

)
+ (1− β)Dα∧1

(
qα,p0 ‖qα,pβ

)

≥ β(Iα(p1;W )− Iα(p0;W )).

On the other hand ‖pβ − p0‖ ≤ 2β. Thus, if there exists a {pi}i∈Z+
⊂ P(X ) such that

lim
i↑∞

Iα(pi;W ) = ∞, then Iα(p;W ) is discontinuous at every p in P(X ).

The converse statement, i.e., the sufficiency, can be established together with the equicontinuity.
For any p0, p1 ∈ P(X ) such that p0 �= p1 let s∧, s1, and s0 be

s∧ =
p1 ∧ p0
‖p1 ∧ p0‖

, s1 =
p1 − p1 ∧ p0
1− ‖p1 ∧ p0‖

, s0 =
p0 − p1 ∧ p0
1− ‖p1 ∧ p0‖

.

Then s∧, s1, s0 ∈ P(X ) and s1 ⊥ s0. On the other hand ‖p1 − p0‖ = 2− 2‖p1 ∧ p0‖. Therefore,

p1 =

(
2− ‖p1 − p0‖

2

)
s∧ +

‖p1 − p0‖
2

s1,

p0 =

(
2− ‖p1 − p0‖

2

)
s∧ +

‖p1 − p0‖
2

s0.

Thus, as a result of Lemmas 2 and 15 we have

Iα(p0;W )− Iα(p1;W ) ≤ �

(‖p1 − p0‖
2

)
+

‖p1 − p0‖
2

(
Iα(s0;W )− Iα(s1;W )

)

≤ �

(‖p1 − p0‖
2

)
+

‖p1 − p0‖
2

Iα(s0;W ), ∀p1, p0 ∈ P(X ), α ∈ R+. (44)

13 The Rényi information, discussed in Section 3.4, has already shown to satisfy analogous relations; see [13,
Lemma 16(d),(e)]. The only substantial subtlety is that for orders in (0, 1) the Rényi information is
a continuous function of p even when the corresponding capacity expression is infinite, because the Rényi
information is quasi-concave rather than concave in p for orders in (0, 1); see [13, Lemma 6(a)].
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Thus,

|Iα(p0;W )− Iα(p1;W )|

≤ �

(‖p1 − p0‖
2

)
+

‖p1 − p0‖
2

sup
p∈P(X )

Iη(p;W ), ∀p1, p0 ∈ P(X ), α ∈ (0, η].

3.3. Augustin Information as a Function of the Order

The main goal of this subsection is to characterize the behavior of the Augustin information as
a function of the order for a given input distribution. Lemma 16 presents preliminary observations
that facilitate the analysis of Augustin information as a function of the order; results of this analysis
are presented in Lemma 17.

Lemma 16. For any channel W of the form W : X → P(Y) and input distribution p ∈ P(X ),

(a) Dα(W (x)‖qα,p) ≤ ln
1

p(x)
.

(b) [p(x)]
1

α∧1W (x) ≤ qα,p.

(c)

∣∣∣∣ln
dqα,p
dq1,p

∣∣∣∣ ≤
|α− 1|

α
ln

1

min
x: p(x)>0

p(x)
.

Bounds given in Lemma 16 follow from (38) via elementary manipulations.

Lemma 17. For any channel W of the form W : X → P(Y) and input distribution p ∈ P(X ),

(a) Either (α−1)Iα(p;W ) is a strictly convex function of α from R+ to [−�(p),∞) or Iα(p;W ) =
∑
x
p(x) ln γ(x) for some γ : X → [1,∞) satisfying

dW (x)

dq1,p
= γ(x) W (x)-a.s. for all x ∈ suppp

and qα,p = q1,p for all α ∈ R+.

(b)
1− α

α
Iα(p;W ) is a nonincreasing and continuous function of α from R+ to R.

(c) Iα(p;W ) is a nondecreasing and continuous function of α from R+ to [0, �(p)].

(d)
{
ln

dqα,p
dq1,p

}

y∈Y
is an equicontinuous family of functions of α on R+.

(e) Iα(p;W ) is a continuously differentiable function of α from R+ to [0, �(p)] such that

∂

∂α
Iα(p;W )

∣∣∣∣
α=φ

=
∂

∂α
Dα(W ‖qφ,p |p)

∣∣∣∣
α=φ

(45)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

(φ− 1)2
D1

(
W

qφ,p
φ ‖W |p

)
for φ �= 1,

∑

x

p(x)

2
EW (x)

⎡

⎣
(
ln

dW (x)

dq1,p
−D1(W (x)‖q1,p)

)2
⎤

⎦ for φ = 1.
(46)

(f) If (α−1)Iα(p;W ) is strictly convex in α, then I1
(
p;W

qα,p
α

)
, i.e., D1

(
W

qα,p
α ‖qα,p |p

)
, is a mono-

tonically increasing continuous function of α on R+; otherwise, I1
(
p;W

qα,p
α

)
=

∑
x
p(x) ln γ(x)

(i.e., D1

(
W

qα,p
α ‖qα,p |p

)
=

∑
x
p(x) ln γ(x)) for some γ : X → [1,∞) satisfying

dW (x)

dq1,p
= γ(x)

W (x)-a.s. for all x ∈ supp p and qα,p = q1,p for all α ∈ R+.

(g) lim
α↓0

I1
(
p;W

qα,p
α

)
= lim

α↓0
Iα(p;W ).

The (strict) convexity of (α − 1)Iα(p;W ) in α on R+ is equivalent to the (strict) concavity of
the function sI 1

1+s
(p;W ) in s on (−1,∞); for a proof, see the proof of part (f). The concavity of

the function sI 1
1+s

(p;W ) in s on (−1,∞) and parts (b) and (c) of Lemma 17 have been reported by

Augustin in [6, Lemma 34.3] for orders between zero and one. Parts (a) and (d)–(g) of Lemma 17
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are new to the best of our knowledge. Lemma 17 is primarily about the Augustin information
as a function of the order for a given input distribution. Part (d), i.e., the equicontinuity of{
ln

dqα,p
dq1,p

}

y∈Y
as a family of functions of the order α, is derived as a necessary tool for establishing

the continuity of the derivative of the Augustin information, i.e., part (e). Note that Lemma 16(c)
has already established this equicontinuity at α = 1.

3.4. Augustin Information vs Rényi Information

The Augustin information is not the only information that has been defined in terms of the
Rényi divergence; there are others. The Rényi information, defined first by Gallager14 [14] and
then by Sibson [35], is arguably the most prominent one among them because of its operational
significance established by Gallager [14].

Definition 8. For any α ∈ R+, W : X → P(Y), and p ∈ P(X ) the order α Rényi information
for the input distribution p is

Igα(p;W ) � inf
q∈P(Y)

Dα(p�W ‖p ⊗ q). (47)

As was noted by Sibson [35], one can confirm by substitution that

Dα(p �W ‖p ⊗ q) = Dα

(
p�W ‖p ⊗ qgα,p

)
+Dα

(
qgα,p ‖q

)
, ∀p ∈ P(X ), q ∈ P(Y), α ∈ R+

where qgα,p is the Rényi mean defined in (27). Then using Lemma 2 we can conclude that

Igα(p;W ) = Dα
(
p�W ‖p ⊗ qgα,p

)
, ∀p ∈ P(X ), α ∈ R+, (48)

Dα(p�W ‖p ⊗ q) = Igα(p;W ) +Dα
(
qgα,p ‖q

)
, ∀p ∈ P(X ), q ∈ P(Y), α ∈ R+. (49)

For orders other than one the closed form expression given in (48) is equal to the following expres-
sion, which is sometimes taken as the definition of the Rényi information:

Igα(p;W ) =
α

α− 1
ln ‖μα,p‖, α ∈ R+ \ {1}.

Note that unlike the order α Augustin mean, the order α Rényi mean has a closed form expression
for orders other than one, as well. Furthermore, the inequalities given in equations (29), (32),
and (34) of Lemma 13 are replaced by the equality given in (49). A discussion of the Rényi
information similar to the one we have presented in this section for the Augustin information can
be found in [13].

The order one Rényi information is equal to the order one Augustin information for all input
distributions. For other orders such an equality does not hold for arbitrary input distributions.
However, it is possible to characterize the Augustin information and the Rényi information in terms
of one another through appropriate variational forms. Characterizing the Augustin information in
a variational form in terms of the Rényi information is especially useful, because the Augustin
information does not have a closed form expression whereas the Rényi information does. This
characterization also implies another variational characterization of the Augustin information.

Lemma 18. Let W be a channel of the form W : X → P(Y) and p be an input distribution
in P(X ).

14 Gallager uses a different parametrization and confines his discussion to the α ∈ (0, 1) case.
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(a) Let uα,p ∈ P(X ) be uα,p(x) =
p(x)e(1−α)Dα(W (x)‖qα,p)

∑
x̃

p(x̃)e(1−α)Dα(W (x̃)‖qα,p)
for all x; then

Iα(p;W ) = Igα(uα,p;W ) +
1

α− 1
D1(p‖uα,p) (50)

=

⎧
⎪⎪⎨

⎪⎪⎩

sup
u∈P(X )

Igα(u;W ) +
1

α− 1
D1(p‖u) for α ∈ (0, 1),

inf
u∈P(X )

Igα(u;W ) +
1

α− 1
D1(p‖u) for α ∈ (1,∞).

(51)

(b) Let aα,p ∈ P(X ) be aα,p(x) =
p(x)e(α−1)Dα(W (x)‖qgα,p)

∑
x̃

p(x̃)e(α−1)Dα(W (x̃)‖qgα,p)
for all x; then

Igα(p;W ) = Iα(aα,p;W )− 1

α− 1
D1(aα,p ‖p) (52)

=

⎧
⎪⎪⎨

⎪⎪⎩

inf
a∈P(X )

Iα(a;W )− 1

α− 1
D1(a‖p) for α ∈ (0, 1),

sup
a∈P(X )

Iα(a;W )− 1

α− 1
D1(a‖p) for α ∈ (1,∞).

(53)

(c) Let fα,p : X → R be fα,p(x) = [Dα(W (x)‖qα,p)− Iα(p;W )]1p(x)>0 for all x; then

Iα(p;W ) =
α

α− 1
lnEν

⎡

⎣
(
∑

x

p(x)e(1−α)fα,p(x)
[
dW (x)

dν

]α)1/α
⎤

⎦ (54)

=
α

α− 1
ln inf

f :Ep[f ]=0
Eν

⎡

⎣
(
∑

x

p(x)e(1−α)f(x)
[
dW (x)

dν

]α)1/α
⎤

⎦ . (55)

Lemma 18(a) was first proved by Poltyrev, [19, Theorem 3.4], in a slightly different form for
the α ∈ [1/2, 1) case assuming that Y is finite. Equation (53) of Lemma 18(b) was first proved by
Shayevitz, [10, Theorem 1], for the finite Y case. Shayevitz, however, neither gave the expression
for the optimal aα,p, nor asserted its existence in [10]. Lemma 18(c) was first proved by Augustin,
[6, Lemma 35.7], for orders less than one.15

The following inequalities are implied by both u = p point in the variational characterization
given in Lemma 18(a) and a = p point in the variational characterization given in Lemma 18(b):

Iα(p;W ) ≥ Igα(p;W ) for α ∈ (0, 1], (56)

Iα(p;W ) ≤ Igα(p;W ) for α ∈ [1,∞). (57)

These inequalities can also be obtained using Jensen’s inequality and the concavity of the natural
logarithm function.

4. THE AUGUSTIN CAPACITY

In the previous section we have defined and analyzed the Augustin information and mean; our
main aim in this section is doing the same for the Augustin capacity and center. In Section 4.1, we
establish the existence of a unique Augustin center for all convex constraint sets with finite Augustin
capacity and investigate the implications of the existence of an Augustin center for a given order
and constraint set. In Section 4.2, we analyze the Augustin capacity and center as a function of the

15 [6, Lemma 35.7(d)] is implied by the stronger inequalities established using (32) and Lemma 18(c).
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order for a given constraint set. In Section 4.3, we bound the Augustin capacity of the convex hull
of a collection of constraint sets on a given channel in terms of the Augustin capacities of individual
constraint sets and determine the Augustin capacity of products of constraint sets on the product
channels. Proofs of the propositions presented in this section can be found in [22, Appendix D].

Augustin provided a presentation similar to the current section in [6, Sections 33 and 34] and
derived many of the key results—such as the existence of unique Augustin center and its continuity
as a function of order; see [6, Lemmas 34.6–34.8]—for orders not exceeding one. Augustin, however,
defines capacity and center only for the subsets of P(X ) defined through cost constraints. We
investigate that important special case more closely in Section 5.

4.1. Existence of a Unique Augustin Center

Definition 9. For any α ∈ R+, W : X → P(Y), and A ⊂ P(X ), the order α Augustin
capacity of W for constraint set A is

Cα,W,A � sup
p∈A

Iα(p;W ).

When the constraint set A is the whole P(X ), we denote the order α Augustin capacity by Cα,W ,
i.e., Cα,W � Cα,W,P(X ).

Using the definition of the Augustin information Iα(p;W ) given in (23) we get the following
expression for Cα,W,A :

Cα,W,A = sup
p∈A

inf
q∈P(Y)

Dα(W ‖q |p). (58)

Theorem 1 in the following demonstrates that at least for convex A ’s one can exchange the order
of the supremum and infimum without changing the value in the above expression.

Theorem 1. For any order α ∈ R+, channel W of the form W : X → P(Y), and convex
constraint set A ⊂ P(X ),

sup
p∈A

inf
q∈P(Y)

Dα(W ‖q |p) = inf
q∈P(Y)

sup
p∈A

Dα(W ‖q |p). (59)

If the expression on the left-hand side of (59) is finite, i.e., if Cα,W,A ∈ R≥0, then ∃! qα,W,A ∈ P(Y),
called the order α Augustin center of W for the constraint set A , satisfying

Cα,W,A = sup
p∈A

Dα(W ‖qα,W,A |p). (60)

Furthermore, for every sequence of input distributions {p(i)}i∈Z+
⊂ A satisfying lim

i→∞
Iα(p

(i);W ) =

Cα,W,A , the corresponding sequence of order α Augustin means {qα,p(i)}i∈Z+
is a Cauchy sequence

for the total variation metric on P(Y) and qα,W,A is the unique limit point of that Cauchy sequence.

In order to prove Theorem 1, we follow the program put forward by Kemperman [12] for estab-
lishing a similar result for the α = 1 and A = P(X ) case. We first state and prove Theorem 1
assuming that the input set is finite. Then we generalize the result to the case with arbitrary input
sets. In the case where X is a finite set, we can also assert the existence of an optimal input
distribution for which the Augustin information is equal to the Augustin capacity.

Lemma 19. For any order α ∈ R+, channel W of the form W : X → P(Y) with a finite input
set X , and closed convex constraint set A ⊂ P(X ), there exists p̃ ∈ A such that Iα(p̃;W ) =
Cα,W,A and ∃! qα,W,A ∈ P(Y) satisfying

Dα(W ‖qα,W,A |p) ≤ Cα,W,A , ∀p ∈ A . (61)

Furthermore, qα,p̃ = qα,W,A for all p̃ ∈ A such that Iα(p̃;W ) = Cα,W,A .
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If A is P(X ), then the expression on the right-hand side of (60) is equal to the Rényi radius
Sα,W defined in the following. Thus, Theorem 1 implies Cα,W = Sα,W .

Definition 10. For any α ∈ R+ and W : X → P(Y), the order α Rényi radius of W is

Sα,W � inf
q∈P(Y)

sup
x∈X

Dα(W (x)‖q).

Theorem 1 asserts the existence of a unique order α Augustin center for convex constraint
sets with finite Augustin capacity. However, a probability measure qα,W,A satisfying (60), i.e., an
order α Augustin center, can in principle exist even for nonconvex constraint sets.

Definition 11. A constraint set A for the channel W : X → P(Y) has an order α Augustin
center if and only if ∃q ∈ P(Y) such that

sup
p∈A

Dα(W ‖q |p) = Cα,W,A . (62)

If Cα,W,A is infinite, then all probability measures on the output space satisfy (62) as a result
of (58) and the max-min inequality. Thus, for constraint sets with infinite order α Augustin
capacity, all probability measures on the output space are order α Augustin centers. On the other
hand, some constraint sets do not have any order α Augustin center. Consider for example p1 and p2
satisfying qα,p1 �= qα,p2 and Iα(p1;W ) = Iα(p2;W ). Then (62) is not satisfied by any probability
measure for A = {p1, p2} and A does not have an order α Augustin center. Lemma 20 asserts
that if Augustin center exists for a constraint set with finite Augustin capacity, then the Augustin
center is unique.

Lemma 20. Let A ⊂ P(X ) be a constraint set satisfying Cα,W,A ∈ R≥0, and qα,W,A be a
probability measure satisfying (62). Then for every {p(i)}i∈Z+

⊂ A satisfying lim
i→∞

Iα(p
(i);W ) =

Cα,W,A the sequence of order α Augustin means {qα,p(i)}i∈Z+
is a Cauchy sequence with the limit

point qα,W,A and the order α Augustin center qα,W,A is unique.

For any A that has an order α Augustin center and a finite Cα,W,A , Lemmas 13(b)–(d) and 20
imply that

Cα,W,A − Iα(p;W ) ≥ Dα∧1(qα,p ‖qα,W,A ), ∀p ∈ A .

Lemmas 13(b)–(d) and 20 can also be used establish a lower bound on sup
p∈A

Dα(W ‖q |p) in terms
of the Augustin capacity and center.

Lemma 21. For any constraint set A that has an order α Augustin center and a finite Cα,W,A

we have

sup
p∈A

Dα(W ‖q |p) ≥ Cα,W,A +Dα∧1(qα,W,A ‖q), ∀q ∈ P(Y). (63)

Note that the form of the lower bound given in (63) is, in a sense, analogous to the ones given
in (29), (32), and (34). The bound given in (63) is a van Erven–Harremoës bound16 for α ∈ (0, 1],
but it is not a van Erven–Harremoës bound for α ∈ (1,∞), because we have a D1(qα,W,A ‖q) term
rather than a Dα(qα,W,A ‖q) term for α ∈ (1,∞).

16 In [8] van Erven and Harremoës have conjectured that the inequality sup
x∈X

Dα(W (x)‖ q) ≥ Cα,W +

Dα(qα,W ‖ q) holds for all q ∈ P(Y). Van Erven and Harremoës have also proved the bound for the
case where α = ∞, assuming that Y is countable [8, Theorem 37]. We have confirmed the van Erven–
Harremoës conjecture in [13, Lemma 19] and generalized it to the convex constrained case for the Rényi
capacity and center in [13, Lemma 25]. See Section 4.4 for a brief discussion of the Rényi capacity and
center; a more comprehensive discussion can be found in [13].
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For orders other than one, using Csiszár’s form for the Augustin information given in (36) and
the definition of the Augustin capacity, we obtain the following expressions:

Cα,W,A =

⎧
⎪⎪⎨

⎪⎪⎩

sup
p∈A

inf
V ∈P(Y |X )

α

1− α
D1(V ‖W |p) + I1(p;V ) for α ∈ (0, 1),

sup
p∈A

sup
V ∈P(Y |X )

α

1− α
D1(V ‖W |p) + I1(p;V ) for α ∈ (1,∞).

(64)

Then
Cα,W,A = sup

V ∈P(Y |X )
sup
p∈A

α

1− α
D1(V ‖W |p) + I1(p;V ), ∀α ∈ (1,∞).

For α ∈ (0, 1), if the constraint set A has an order α Augustin center, e.g., when A is convex,
then one can exchange the order of the supremum and the infimum and replace the infimum with
a minimum whenever the Augustin capacity is finite by Lemma 22, given in the following.

Lemma 22. For any α ∈ (0, 1), if the constraint set A for the channel W : X → P(Y) has
an order α Augustin center, then

Cα,W,A = inf
V ∈P(Y |X )

sup
p∈A

α

1− α
D1(V ‖W |p) + I1(p;V ). (65)

If Cα,W,A is finite, then W
qα,W,A
α satisfies

Cα,W,A = sup
p∈A

α

1− α
D1

(
W

qα,W,A
α ‖W |p

)
+ I1

(
p;W

qα,W,A
α

)
. (66)

Lemma 22 is proved using Csiszár’s form for the Augustin information, given in Lemma 13(e),
and Lemma 20. In [36], Blahut proved a similar result assuming both X and Y are finite sets
and A = P(X ). Even under those assumptions Blahut’s result [36, Theorem 16] imply (65)
and (66) for all orders in (0, 1) only when Cα,W is a differentiable function of the order α. Blahut
was motivated by the expression for the sphere packing exponent; consequently, [36, Theorem 16]
is stated in terms of an optimal input distribution at a given rate R ∈ (C0,W , C1,W ) and the
corresponding optimal order α∗(R).

4.2. Augustin Capacity and Center as a Function of the Order

Lemma 23. For any channel W of the form W : X → P(Y) and constraint set A ⊂ P(X ),

(a) Cα,W,A is a nondecreasing and lower semicontinuous function of α on R+;

(b)
1− α

α
Cα,W,A is a nonincreasing and continuous function of α on17 (0, 1);

(c) (α− 1)Cα,W,A is a convex function of α on (1,∞);
(d) Cα,W,A is nondecreasing and continuous in α on (0, 1] and (1, χW,A ], where χW,A � sup{φ :

Cφ,W,A ∈ R≥0};
(e) If sup

p∈A
Igφ(p;W ) ∈ R≥0 for a φ > 1, then Cα,W,A is nondecreasing and continuous in α on

(0, (1 ∨ χW,A )].

The continuity results presented in parts (d) and (e) are somewhat unsatisfactory. One would
like to either establish the continuity of Cα,W,A from the right at α = 1 whenever Cφ,W,A is finite
for a φ > 1 or provide a channel W and a constraint set A for which Cφ,W,A is finite for a φ > 1
and lim

α↓1
Cα,W,A > C1,W,A . We could not do either. Instead we establish the continuity of Cα,W,A

from the right at α = 1 assuming that sup
p∈A

Igφ(p;W ) is finite for a φ > 1.

17 We exclude the α = 1 case, because we do not want to assume C1,W,A to be finite.
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Since Cφ,W = Sφ,W by Theorem 1 and Igφ(p;W ) ≤ Sφ,W for all p ∈ P(X ) by (47), sup
p∈A

Igφ(p;W )

is finite for all A ⊂ P(X ) whenever Cφ,W is finite. Thus, Cα,W,A is nondecreasing and continuous
in α on (0, χW,A ] for all A ⊂ P(X ), provided that Cφ,W is finite for a φ > 1.

Lemma 21 allows us to use the continuity of Cα,W,A in α and Lemma 2 to establish the continuity
of qα,W,A in α for the total variation topology on P(Y).

Lemma 24. For any η ∈ R+, W : X → P(Y), and convex A ⊂ P(X ) such that Cη,W,A ∈ R+,

Dα∧1(qα,W,A ‖qφ,W,A ) ≤ Cφ,W,A − Cα,W,A , ∀α, φ such that 0 < α < φ ≤ η. (67)

Consequently, if Cα,W,A is continuous in α on I for some I ⊂ (0, η], then qα,W,A : I → P(Y) is
continuous in α on I for the total variation topology on P(Y).

4.3. Convex Hulls of Constraints and Product Constraints

In the following we consider two kinds of frequently encountered constraint sets that are de-
scribed in terms of simpler constraint sets. Lemma 25 considers convex hull of a family of constraint
sets and bounds the Augustin capacity for the convex hull in terms of the Augustin capacities of the
individual constraint sets. Lemma 26 considers a product channel for the constraint set that is the
product of convex hulls of the constraint sets on the component channels that have Augustin centers
and shows that Augustin capacity has an additive form and Augustin center has a product form.

Lemma 25. Let α be a positive real, W be a channel of the form W : X → P(Y), and A (i) be
a constraint set that has an order α Augustin center and a finite Cα,W,A (i) for all i ∈ T . Then

sup
i∈T

Cα,W,A (i) ≤ Cα,W,A ≤ ln
∑

i∈T

e
C

α,W,A (i)

where A is the convex hull of the union, i.e., A = ch
( ⋃
i∈T

A (i)
)
. Furthermore,

• Cα,W,A (i) = Cα,W,A < ∞ ⇔ sup
p∈A

Dα(W ‖qα,W,A (i) |p) ≤ Cα,W,A (i) ⇒ qα,W,A = qα,W,A (i) ;

• Cα,W,A = ln
∑
i∈T

e
C

α,W,A (i) < ∞ ⇔ qα,W,A (i) ⊥ qα,W,A (j) ∀i �= j and |T | < ∞ ⇒ qα,W,A =

∑
i∈T

e
C

α,W,A(i)

eCα,W,A
qα,W,A (i) .

Note that if A (i) is convex and Cα,W,A (i) is finite, then A (i) has a unique order α Augustin
center by Theorem 1.

Lemma 26. For any α ∈ R+, length n product channel W[1,n] : X n
1 → P(Yn

1 ), and constraint
sets At ⊂ P(Xt) that have order α Augustin centers

Cα,W[1,n],A = Cα,W[1,n],A
n
1
=

n∑

t=1

Cα,Wt,At

where A =
{
p ∈ P(X n

1 ) : pt ∈ chAt ∀t ∈ {1, . . . , n}
}
, i.e., a p ∈ P(X n

1 ) is in A if and only if
for all t ∈ {1, . . . , n} its Xt marginal pt is in the convex hull of At. Furthermore, if Cα,Wt,At is

finite for all t ∈ {1, . . . , n}, then qα,W[1,n],A = qα,W[1,n],A
n
1
=

n⊗
t=1

qα,Wt,At.

Remark 2. Note that the convex hull of any subset of A is a subset of A , because A is convex by

definition. In particular, A n
1 ⊂ chA n

1 ⊂ A . Then Cα,W[1,n],chA n
1
=

n∑
t=1

Cα,Wt,At by Lemma 26. Fur-

thermore, if Cα,Wt,At is finite for all t ∈ {1, . . . , n}, then qα,W[1,n],chA n
1
=

n⊗
t=1

qα,Wt,At by Lemma 25.
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Remark 3. The constraint set A n
1 described in Lemma 26 may not be convex, yet A n

1 is guar-
anteed to have an order α Augustin center.

4.4. Augustin Capacity vs Rényi Capacity

Using the Rényi information instead of the Augustin information, one can define the Rényi
capacity, as follows.

Definition 12. For any α ∈ R+, W : X → P(Y), and A ⊂ P(X ) the order α Rényi capacity
of W for constraint set A is

Cg
α,W,A � sup

p∈A
Igα(p;W ).

When the constraint set A is the whole P(X ), we denote the order α Rényi capacity by Cg
α,W ,

i.e., Cg
α,W � Cg

α,W,P(X ).

Since I1(p;W ) = Ig1 (p;W ), Cg
1,W,A = C1,W,A by definition. We cannot say the same for other

orders; by (56) and (57) we have

Cg
α,W,A ≤ Cα,W,A for α ∈ (0, 1],

Cg
α,W,A ≥ Cα,W,A for α ∈ [1,∞).

As a result of definitions of the Rényi information and capacity, we have

Cg
α,W,A = sup

p∈A
inf

q∈P(Y)
Dα(p�W ‖p ⊗ q).

The Rényi capacity satisfies a minimax theorem, [13, Theorem 2], similar to Theorem 1: For any
convex constraint set A ⊂ P(X ),

sup
p∈A

inf
q∈P(Y)

Dα(p�W ‖p ⊗ q) = inf
q∈P(Y)

sup
p∈A

Dα(p�W ‖p ⊗ q).

If Cg
α,W,A is finite, then ∃! qgα,W,A ∈ P(Y), the order α Rényi center of W for the constraint set A ,

satisfying
Cg
α,W,A = sup

p∈A
Dα

(
p�W ‖p⊗ qgα,W,A

)
.

Consequently, the Rényi capacity equals to the Rényi radius provided that A = P(X ). Hence,
Cg
α,W = Cα,W and qgα,W = qα,W by Theorem 1. The other observations presented in this section

have their counter parts for the Rényi capacity and center; compare, for example, Lemma 21
and [13, Lemma 25].

5. THE COST CONSTRAINED PROBLEM

In the previous section, we have defined the Augustin capacity for arbitrary constraint sets and
proved the existence of a unique Augustin center for any convex constraint set with finite Augustin
capacity. The convex constraint sets of interest are often defined via the cost constraints; the main
aim of this section is to investigate this important special case more closely. In Section 5.1 we
investigate the immediate consequences of the definition of the cost constrained Augustin capacity
and ramifications of the analysis presented in the previous section. In Section 5.2 we define and
analyze the Augustin–Legendre (A-L) information, capacity, radius, and center. The discussion in
Section 5.2 is a generalization of certain parts of the analysis presented by Csiszár and Körner in
[5, ch. 8] for the supremum of the mutual information for discrete channels with single cost con-
straint, i.e., the α = 1, |X | < ∞, |Y | < ∞, � = 1 case. In Section 5.3 we define and analyze
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the Rényi–Gallager (R-G) information, mean, capacity, radius, and center. The most important
conclusion of our analysis in Section 5.3 is the equality of the A-L capacity and center to the R-G
capacity and center. In Section 5.4, we demonstrate how the results presented in Sections 5.1–5.3
can be used to determine the Augustin capacity and center of a transition probability with cost con-
straints. Proofs of the propositions presented in Sections 5.1–5.3 can be found in [22, Appendix E].

Augustin presented a discussion of the cost constrained capacity Cα,W,� in [6, Section 34] for the
case where the cost function ρ is a bounded function of the form ρ : X → [0, 1]� and the order α is
in (0, 1]. In [6, Section 35], Augustin also analyzed quantities closely related to the R-G information
and capacity. The quantities analyzed by Augustin in [6, Section 35] have first appeared in Gal-
lager’s error exponents analysis for cost constrained channels [14, Section 6; 15, Sections 7.3–7.5].
Unlike Augustin, Gallager did not assume ρ to be bounded; but Gallager confined his analysis to the
case where there is a single cost constraint, i.e., the � = 1 case, and refrained from defining the R-G
capacity as a quantity that is of interest on its own right. Other authors studying cost constrained
problems, [24, Section IV; 25–27], have considered the R-G information and capacity, as well. Yet
to the best of our knowledge for orders other than one the A-L information measures, which are
obtained through a more direct application of convex conjugation, have not been studied before.

5.1. The Cost Constrained Augustin Capacity and Center

We denote the set of all probability mass functions satisfying a cost constraint 	 by A (	), i.e.,

A (	) � {p ∈ P(X ) : Ep[ρ] ≤ 	}.

A (	) �= ∅ if and only if 	 ∈ Γρ where Γρ is defined in (6) as the set of all feasible cost constraints
for the cost function ρ. A (	) is nondecreasing in 	, i.e., 	1 ≤ 	2 implies A (	1) ⊂ A (	2). We define
the order α Augustin capacity of W for the cost constraint 	 as

Cα,W,� �

⎧
⎪⎨

⎪⎩

sup
p∈A (�)

Iα(p;W ) if 	 ∈ Γρ,

−∞ if 	 ∈ R
�
≥0 \ Γρ,

∀α ∈ R+. (68)

We defined Cα,W,� for 	’s that are not feasible in order to be able to use standard results without
modifications. Since A (	) is a convex set, Theorem 1 holds for A (	). We denote18 the order α
Augustin center of W for the cost constraint 	 by qα,W,�.

For a given order α, the Augustin capacity Cα,W,� is a concave function of the cost constraint 	.
Hence, if it is finite at an interior point of Γρ, then it is a continuous function of the cost constraint 	
that lies below its tangent planes drawn at interior points of Γρ. Lemma 27 below summarizes these
observations.

Lemma 27. Let W be a channel of the form W : X → P(Y) with the cost function ρ of the
form ρ : X → R

�
≥0.

(a) For any α ∈ R+, Cα,W,� is a nondecreasing and concave function of 	 on R
�
≥0, which is either

infinite on every point in int Γρ or finite and continuous on int Γρ.
(b) If Cα,W,� is finite on int Γρ for an α ∈ R+, then for every 	 ∈ int Γρ there exists a λα,W,� ∈ R

�
≥0

such that
Cα,W,� + λα,W,� · (	̃− 	) ≥ Cα,W,�̃, ∀	̃ ∈ R

�
≥0. (69)

Furthermore, the set of all such λα,W,� is convex and compact.
(c) Either Cα,W,� = ∞ for all (α, 	) ∈ (0, 1) × int Γρ or Cα,W,� and qα,W,� are continuous in (α, 	)

on (0, 1) × int Γρ for the total variation topology on P(Y).

18 This slight abuse of notation—which can be avoided by using Cα,W,A (�) and qα,W,A (�) instead of Cα,W,�

and qα,W,�—provides brevity without leading to any notational ambiguity.
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If the cost function for a product channel is additive, then the cost constrained Augustin capacity
of the product channel is equal to the supremum of the sum of the cost constrained Augustin
capacities of the component channels over all feasible cost allocations. Furthermore, if there exists
an optimal cost allocation, then the Augustin center of the product channel is a product measure.
Lemma 28, given below, states these observations formally.

Lemma 28. For any length n product channel W[1,n] : X n
1 → P(Yn

1 ) and additive cost function

ρ[1,n] : X n
1 → R

�
≥0 we have19

Cα,W[1,n],� = sup

{
n∑

t=1

Cα,Wt,�t :
n∑

t=1

	t ≤ 	, 	t ∈ R
�
≥0

}
, ∀	 ∈ R

�
≥0, α ∈ R+. (70)

If Cα,W[1,n],� ∈ R≥0 for an α ∈ R+ and ∃(	1, . . . , 	n) such that Cα,W[1,n],� =
n∑

t=1
Cα,Wt,�t , then

qα,W[1,n],� =
n⊗

t=1
qα,Wt,�t.

Since the Augustin capacity is concave in the cost constraint by Lemma 27(a), Cα,W[1,n],� =
n∑

t=1
Cα,Wt,�/n whenever W[1,n] is stationary and ρt = ρ1 for all t ∈ {1, . . . , n}. Alternatively, if Γρt ’s

are closed and Cα,Wt,�’s are upper semicontinuous functions of 	 on Γρt ’s, then we can use the
extreme value theorem20 for the upper semicontinuous functions to establish the existence of a

(	1, . . . , 	n) satisfying both Cα,W[1,n],� =
n∑

t=1
Cα,Wt,�t and

n∑
t=1

	t ≤ 	. However, such an existence

assertion does not hold in general; see Example 3.

5.2. The Augustin–Legendre Information Measures

The cost constrained Augustin capacity Cα,W,� and center qα,W,� can be characterized using
convex conjugation, as well. In this part of the paper, we introduce and analyze the concepts
of the Augustin–Legendre information, capacity, center, and radius in order to obtain a more
complete understanding of this characterization. The current method seems to us to be the standard
application of the convex conjugation technique to characterize the cost constrained Augustin
capacity. Yet, it is not the customary method. Starting with the seminal work of Gallager [14],
a more ad hoc method based on the Rényi information became the customary way to apply Lagrange
multipliers techniques to characterize the Augustin capacity; see [6, Section 35; 25; 26]. We discuss
that approach in Section 5.3. Theorem 2 presented in the following and Theorem 3 presented in
Section 5.3 establish the equivalence of these two approaches by establishing the equality of the
Augustin–Legendre capacity and center to the Rényi–Gallager capacity and center.

Definition 13. For any α ∈ R+, channel W of the form W : X → P(Y) with a cost function
ρ : X → R

�
≥0, p ∈ P(X ), and λ ∈ R

�
≥0, the order α Augustin–Legendre information for the input

distribution p and the Lagrange multiplier λ is

Iλα(p;W ) � Iα(p;W )− λ · Ep[ρ]. (71)

Note that as an immediate consequence of the definition of the A-L information we have

inf
λ≥0

Iλα(p;W ) + λ · 	 = ξα,p(	) (72)

19 If Cα,Wt,�t = −∞ for any t ∈ {1, . . . , n}, then
n∑

t=1
Cα,Wt,�t stands for −∞; even if one or more of other

Cα,Wt,�t ’s are equal to ∞.
20 Consider the function f(	1, . . . , 	n) which is equal to

n∑
t=1

Cα,Wt,�t if
n∑

t=1
	t ≤ 	 and 	t ∈ Γρt for all

t ∈ {1, . . . , n} and to −∞ otherwise. We choose a large enough but bounded set using the vector 	 to
obtain a compact set for the supremum.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 55 No. 4 2019



THE AUGUSTIN CAPACITY AND CENTER 325

where ξα,p(·) : R�
≥0 → [−∞,∞) is defined as

ξα,p(	) �
{
Iα(p;W ) if 	 ≥ Ep[ρ],

−∞ otherwise.
(73)

Then the Augustin–Legendre information Iλα(p;W ) can also be expressed as

Iλα(p;W ) = sup
�≥0

ξα,p(	)− λ · 	. (74)

Remark 4. Note that if f : R�
≥0 → (−∞,∞] and f∗ : (−∞, 0]� → R are defined as f(	) �

−ξα,p(	) and f∗(γ) � I−γ
α (p;W ), then f∗ is the convex conjugate, i.e., Legendre transform, of the

convex function f . This is why we call Iλα(p;W ) the Augustin–Legendre information.

Definition 14. For any α ∈ R+, channel W of the form W : X → P(Y) with a cost function
ρ : X → R

�
≥0, and λ ∈ R

�
≥0 the order α Augustin–Legendre (A-L) capacity for the Lagrange

multiplier λ is
Cλ
α,W � sup

p∈P(X )
Iλα(p;W ). (75)

Then as a result of (73) and (74) we have

Cλ
α,W = sup

�≥0
Cα,W,� − λ · 	, ∀λ ∈ R

�
≥0. (76)

Hence, using (72) and the max-min inequality we can conclude that

Cα,W,� ≤ inf
λ≥0

Cλ
α,W + λ · 	, ∀	 ∈ R

�
≥0. (77)

Then Cα,W,� < ∞ for all 	 ∈ R
�
≥0 provided that Cλ

α,W < ∞ for a λ ∈ R≥0. But Cλ
α,W = ∞ might

hold for λ small enough even when Cα,W,� < ∞ for all 	 ∈ R
�
≥0; see Example 1.

Remark 5. In [6, Sections 33–35], Augustin considered the case where the cost function ρ is a
bounded function of the form ρ : X → [0, 1]�. In that case Cλ

α,W < ∞ for all λ ∈ R
�
≥0 provided

that Cα,W,� < ∞ for a 	 ∈ int Γρ, because Cα,W,1 < ∞ by Lemma 27(b) and Cα,W,1 = Cα,W and
Cλ
α,W ≤ C0

α,W = Cα,W for all λ ∈ R
�
≥0 by definition.

The inequality given in (77) is an equality for many cases of interest as demonstrated by the
following lemma. However, the inequality given in (77) is not an equality in general; see Example 2.

Lemma 29. Let α ∈ R+ and W be a channel of the form W : X → P(Y) with a cost function
ρ : X → R

�
≥0. Then

(a) Cλ
α,W is convex, nonincreasing, and lower semicontinuous in λ on R

�
≥0 and continuous in λ on

{
λ : ∃ε > 0 such that Cλ−ε1

α,W < ∞
}
.

(b) If X is a finite set, then Cα,W,� = inf
λ≥0

Cλ
α,W + λ · 	.

(c) If 	 ∈ int Γρ, then Cα,W,� = inf
λ≥0

Cλ
α,W + λ · 	. If in addition Cα,W,� < ∞, then there exists a

nonempty convex, compact set of λα,W,�’s satisfying both (69) and Cα,W,� = C
λα,W,�

α,W +λα,W,� ·	.
(d) If Cα,W,� is finite and Cα,W,� = Cλ

α,W + λ · 	 for some 	 ∈ Γρ and λ ∈ R
�
≥0, then we have

lim
i→∞

Iλα(p
(i);W ) = Cλ

α,W for all {p(i)}i∈Z+
∈ A (	) such that lim

i→∞
Iα(p

(i);W ) = Cα,W,�.

Using the definitions of Iα(p;W ), Iλα(p;W ), and Cλ
α,W given in (23), (71), and (75), we get the

following expression for Cλ
α,W :

Cλ
α,W = sup

p∈P(X )
inf

q∈P(Y)
Dα(W ‖q |p)− λ ·Ep[ρ]. (78)
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The A-L capacity satisfies a minimax theorem similar to the one satisfied by the Augustin
capacity, which allows us to assert the existence of a unique A-L center whenever the A-L capacity
is finite.

Theorem 2. For any α ∈ R+, channel W : X → P(Y) with a cost function ρ : X → R
�
≥0,

and Lagrange multiplier λ ∈ R
�
≥0,

sup
p∈P(X )

inf
q∈P(Y)

Dα(W ‖q |p)− λ · Ep[ρ] = inf
q∈P(Y)

sup
p∈P(X )

Dα(W ‖q |p)− λ ·Ep[ρ] (79)

= inf
q∈P(Y)

sup
x∈X

Dα(W (x)‖q) − λ · ρ(x). (80)

If the expression on the left-hand side of (79) is finite, i.e., if Cλ
α,W < ∞, then ∃! qλα,W ∈ P(Y),

called the order α Augustin–Legendre center of W for the Lagrange multiplier λ, satisfying

Cλ
α,W = sup

p∈P(X )
Dα

(
W ‖qλα,W |p

)
− λ · Ep[ρ] (81)

= sup
x∈X

Dα
(
W (x)‖qλα,W

)
− λ · ρ(x). (82)

Furthermore, for every sequence of input distributions {p(i)}i∈Z+
⊂ P(X ) with lim

i→∞
Iλα(p

(i);W ) =

Cλ
α,W , the corresponding sequence of order α Augustin means {qα,p(i)}i∈Z+

is a Cauchy sequence

for the total variation metric on P(Y) and qλα,W is the unique limit point of that Cauchy sequence.

Note that Theorem 2 for λ = 0 is nothing but Theorem 1 for A = P(X ). The proof of
Theorem 2 is very similar to that of Theorem 1, as well; it employs Lemma 30, presented in the
following, instead of Lemma 19. Note that, Lemma 30 for λ = 0 is nothing but Lemma 19 for
A = P(X ), as well.

Lemma 30. For any α ∈ R+, channel W : X → P(Y) with a cost function ρ : X → R
�
≥0

for a finite input set X , and Lagrange multiplier λ ∈ R
�
≥0, there exists a p̃ ∈ P(X ) such that

Iλα(p̃;W ) = Cλ
α,W and ∃! qλα,W ∈ P(Y) satisfying

Dα
(
W ‖qλα,W |p

)
− λ · Ep[ρ] ≤ Cλ

α,W , ∀p ∈ P(X ). (83)

Furthermore, qα,p̃ = qλα,W for all p̃ ∈ P(X ) such that Iλα(p̃;W ) = Cλ
α,W .

Note that the expression on the left-hand side of equation (79) is nothing but the A-L capacity.
Thus, Theorem 2 is establishes the equality of the A-L capacity to the A-L radius defined in the
following.

Definition 15. For any α ∈ R+, channel W : X → P(Y) with a cost function ρ : X → R
�
≥0,

and λ ∈ R
�
≥0, the order α Augustin–Legendre radius of W for the Lagrange multiplier λ is

Sλ
α,W � inf

q∈P(Y)
sup
x∈X

Dα(W (x)‖q) − λ · ρ(x). (84)

If Cλ
α,W is finite, then Lemma 13(b)–(d), Theorem 2, and the definition of Iλα(p;W ) given in (71)

imply that
Cλ
α,W − Iλα(p;W ) ≥ Dα∧1

(
qα,p ‖qλα,W

)
, ∀p ∈ P(X ).

Using Lemma 13 and Theorem 2, one can also establish a bound similar to the one given in
Lemma 21. However, we will not do so here, because one can obtain a slightly stronger results
using the characterization of the A-L capacity and center via R-G capacity and center presented
in Section 5.3; see Lemma 35 and the ensuing discussion.
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As a result of Lemma 29(c), we know that if Cα,W,� is finite for a 	 ∈ int Γρ, then there exists at

least one λα,W,� for which Cα,W,� = C
λα,W,�

α,W + λα,W,� · 	 holds. Lemma 31, given in the following,
asserts that for any such Lagrange multiplier the corresponding order α A-L center should be
equal to the order α Augustin center for the cost constraint 	. Thus, if there are multiple λα,W,�’s

satisfying Cα,W,� = C
λα,W,�

α,W + λα,W,� · 	, then they all have the same order α A-L center.

Lemma 31. For any α ∈ R+, channel W : X → P(Y) with a cost function ρ : X → R
�
≥0,

and a cost constraint 	 ∈ Γρ such that Cα,W,� < ∞, if Cα,W,� = Cλ
α,W + λ · 	 for a λ ∈ R

�
≥0, then

qα,W,� = qλα,W .

For product constraints on product channels, the Augustin capacity has an additive form and the
Augustin center has a multiplicative form—whenever it exists—by Lemma 26. The cost constraints
for additive cost functions, however, are not product constraints. In order to calculate the cost con-
strained Augustin capacity for product channels with additive cost functions, we need to optimize
over the feasible allocations of the cost over the component channels by Lemma 28. In addition,
we can express the cost constrained Augustin center of the product channel as the product of the
cost constrained Augustin centers of the components channels—using Lemma 28—only when there
exists a feasible allocation of the cost that achieves the optimum value. For the A-L capacity and
center, on the other hand, we have a considerably neater picture: For product channels with additive
cost functions the A-L capacity is additive and the A-L center is multiplicative, whenever it exists.

Lemma 32. For any length n product channel W[1,n] : X n
1 → P(Yn

1 ) and additive cost function

ρ[1,n] : X n
1 → R

�
≥0 we have

Cλ
α,W[1,n]

=
n∑

t=1

Cλ
α,Wt

, ∀λ ∈ R
�
≥0, α ∈ R+. (85)

Furthermore, if Cλ
α,W[1,n]

< ∞, then qλα,W[1,n]
=

n⊗
t=1

qλα,Wt
.

The additivity of the cost function ρ[1,n] implies for any p in P(X n
1 )

Ep[ρ[1,n]] =
n∑

t=1

Ept[ρt]

where pt ∈ P(Xt) is the Xt marginal of p. Thus, Lemma 14 and the definition of the A-L
information imply

Iλα
(
p;W[1,n]

)
≤ Iλα

(
p1 ⊗ . . . ⊗ pn;W[1,n]

)

=
n∑

t=1

Iλα(pt;Wt). (86)

Lemma 32 is proved using (86) together with Theorem 2.

5.3. The Rényi–Gallager Information Measures

In Section 5.2, we have characterized the cost constrained Augustin capacity and center in terms
of the A-L capacity and center. The A-L capacity is defined as the supremum of the A-L informa-
tion. Gallager—implicitly—proposed another information with a Lagrange multiplier in [14, (103)
and (116)]. Augustin characterized the cost constrained Augustin capacity in terms of the supre-
mum of this information, assuming that the cost function is bounded, in [6, Lemmas 35.4(b)
and 35.8(b)]. We call this supremum the R-G capacity. The main aim of this subsection is es-
tablishing the equality of the A-L capacity and center to the R-G capacity and center. We will
also derive a van Erven–Harremoës bound for the A-L capacity and center and use it to derive the
continuity of the A-L center as a function of the Lagrange multiplier λ.
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Definition 16. For any α ∈ R+, channelW : X → P(Y) with a cost function ρ : X → R
�
≥0, p ∈

P(X ), and λ ∈ R
�
≥0, the order α Rényi–Gallager (R-G) information for the input distribution p

and the Lagrange multiplier λ is

Igλα (p;W ) �

⎧
⎪⎨

⎪⎩

inf
q∈P(Y)

Dα
(
p�We

1−α
α

λ·ρ ‖p ⊗ q
)

for α ∈ R+ \ {1},

inf
q∈P(Y)

D1(p�W ‖p ⊗ q)− λ · Ep[ρ] for α = 1.
(87)

If λ is a vector of zeros, then the R-G information is the Rényi information. Similar to the
Rényi information, the R-G information has a closed form expression, described in terms of the
probability measure achieving the infimum in its definition.

Definition 17. For any α ∈ R+, channel W : X → P(Y) with a cost function ρ : X → R
�
≥0,

p ∈ P(X ), and λ ∈ R
�
≥0, the order α mean measure for the input distribution p and the Lagrange

multiplier λ is

dμλ
α,p

dν
�

[
∑

x

p(x)e(1−α)λ·ρ(x)
(
dW (x)

dν

)α
] 1

α

. (88)

The order α Rényi–Gallager (R-G) mean for the input distribution p and the Lagrange multi-
plier λ is

qgλα,p �
μλ
α,p

‖μλ
α,p‖

. (89)

Both μλ
α,p and qgλα,p depend on the Lagrange multiplier λ for α ∈ R+ \{1}. Furthermore, one can

confirm by substitution that

Dα

(
p�We

1−α
α

λ·ρ ‖p ⊗ q
)
= Dα

(
p�We

1−α
α

λ·ρ ‖p⊗ qgλα,p
)
+Dα

(
qgλα,p ‖q

)
, α ∈ R+ \ {1}. (90)

Then, as a result of Lemma 2, we have

Igλα (p;W ) = Dα

(
p�We

1−α
α

λ·ρ ‖p ⊗ qgλα,p
)

(91)

=
α

α− 1
ln ‖μλ

α,p‖ for α ∈ R+ \ {1}. (92)

Neither μλ
1,p, nor qgλ1,p depends on the Lagrange multiplier λ. In addition, one can confirm by

substitution that

D1(p �W ‖p ⊗ q)− λ ·Ep[ρ] = D1
(
p�W ‖p ⊗ qgλ1,p

)
− λ · Ep[ρ] +D1

(
qgλ1,p ‖q

)
. (93)

Then as a result of Lemma 2, we have

Igλ1 (p;W ) = D1
(
p�W ‖p ⊗ qgλ1,p

)
− λ · Ep[ρ]. (94)

Using the definitions of the A-L information and the R-G information given in (71) and (87)
together with Jensen’s inequality and the concavity of the natural logarithm function we get

Iλα(p;W ) ≥ Igλα (p;W ) for α ∈ (0, 1],

Iλα(p;W ) ≤ Igλα (p;W ) for α ∈ [1,∞).

It is possible to strengthen these relations by expressing the A-L information and the R-G infor-
mation in terms of one another as follows.

Lemma 33. Let W be a channel of the form W : X → P(Y) with a cost function ρ : X → R
�
≥0,

p be an input distribution in P(X ), and λ be a Lagrange multiplier in R
�
≥0.
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(a) Let uλα,p ∈ P(X ) be uλα,p(x) =
p(x)e(1−α)Dα(W (x)‖qα,p)+(α−1)λ·ρ(x)

∑
x̃

p(x̃)e(1−α)Dα(W (x̃)‖qα,p)+(α−1)λ·ρ(x) for all x; then

Iλα(p;W ) = Igλα (uα,p;W ) +
1

α− 1
D1(p‖uα,p) (95)

=

⎧
⎪⎪⎨

⎪⎪⎩

sup
u∈P(X )

Igλα (u;W ) +
1

α− 1
D1(p‖u) for α ∈ (0, 1),

inf
u∈P(X )

Igλα (u;W ) +
1

α− 1
D1(p‖u) for α ∈ (1,∞).

(96)

(b) Let aλα,p ∈ P(X ) be aλα,p(x) =
p(x)e(α−1)Dα(W (x)‖qgλα,p)+(1−α)λ·ρ(x)

∑
x̃

p(x̃)e(α−1)Dα(W (x̃)‖qgλα,p)+(1−α)λ·ρ(x) for all x; then

Igλα (p;W ) = Iλα
(
aλα,p;W

)
− 1

α− 1
D1

(
aλα,p ‖p

)
(97)

=

⎧
⎪⎪⎨

⎪⎪⎩

inf
a∈P(X )

Iλα(a;W )− 1

α− 1
D1(a‖p) for α ∈ (0, 1),

sup
a∈P(X )

Iλα(a;W )− 1

α− 1
D1(a‖p) for α ∈ (1,∞).

(98)

(c) Let fλ
α,p : X → R be fλ

α,p(x) = [Dα(W (x)‖qα,p)− λ · ρ(x)− Iλα(p;W )]1p(x)>0 for all x; then

Iλα(p;W ) =
α

α− 1
lnEν

⎡

⎣
(
∑

x

p(x)e(1−α)(fλ
α,p(x)+λ·ρ(x))

[
dW (x)

dν

]α)1/α
⎤

⎦ (99)

=
α

α− 1
ln inf

f :Ep[f ]=0
Eν

⎡

⎣
(
∑

x

p(x)e(1−α)(f(x)+λ·ρ(x))
[
dW (x)

dν

]α)1/α
⎤

⎦ . (100)

Lemma 33 for λ = 0 is Lemma 18, which was previously discussed by Poltyrev [19], Shayevitz [10],
and Augustin [6].

Definition 18. For any α ∈ R+, channel W : X → P(Y) with a cost function ρ : X → R
�
≥0,

and λ ∈ R
�
≥0, the order α Rényi–Gallager (R-G) capacity for the Lagrange multiplier λ is

Cgλ
α,W � sup

p∈P(X )
Igλα (p;W ).

Using the definition of Igλα (p;W ), given in (87), we get the following expression for Cgλ
α,W :

Cgλ
α,W =

⎧
⎪⎪⎨

⎪⎪⎩

sup
p∈P(X )

inf
q∈P(Y)

Dα
(
p�We

1−α
α

λ·ρ ‖p⊗ q
)

for α ∈ R+ \ {1},

sup
p∈P(X )

inf
q∈P(Y)

Dα(p�W ‖p ⊗ q)− λ · Ep[ρ] for α = 1.
(101)

The R-G capacity satisfies a minimax theorem similar to the one satisfied by the A-L capacity, i.e.,
Theorem 2. Since both the statement and the proof of the minimax theorems are identical for the
order one A-L capacity and the order one R-G capacity, we state the minimax theorem for the R-G
capacity only for finite positive orders other than one.

Theorem 3. For any α ∈ R+\{1}, channel W : X → P(Y) with a cost function ρ : X → R
�
≥0,

and Lagrange multiplier λ ∈ R
�
≥0,

sup
p∈P(X )

inf
q∈P(Y)

Dα
(
p�We

1−α
α

λ·ρ ‖p⊗ q
)
= inf

q∈P(Y)
sup

p∈P(X )
Dα

(
p�We

1−α
α

λ·ρ ‖p ⊗ q
)

(102)

= inf
q∈P(Y)

sup
x∈X

Dα(W (x)‖q) − λ · ρ(x). (103)
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If the expression on the left-hand side of (102) is finite, i.e., if Cgλ
α,W < ∞, then ∃! qgλα,W ∈ P(Y),

called the order α Rényi–Gallager center of W for the Lagrange multiplier λ, satisfying

Cgλ
α,W = sup

p∈P(X )
Dα

(
p�We

1−α
α

λ·ρ ‖p⊗ qgλα,W
)

(104)

= sup
x∈X

Dα
(
W (x)‖qgλα,W

)
− λ · ρ(x). (105)

Furthermore, for every sequence of input distributions {p(i)}i∈Z+
⊂ P(X ) with lim

i→∞
Igλα (p(i);W ) =

Cgλ
α,W , the corresponding sequence of the order α Rényi–Gallager means

{
qgλ
α,p(i)

}
i∈Z+

is a Cauchy

sequence for the total variation metric on P(Y) and qgλα,W is the unique limit point of that Cauchy
sequence.

The proof of Theorem 3 is very similar to the proofs of Theorem 1 and Theorem 2. It relies on
Lemma 34, given in the following, instead of Lemma 19 or Lemma 30.

Lemma 34. For any α ∈ R+ \ {1}, channel W : X → P(Y) with cost function ρ : X → R
�
≥0

for a finite input set X , and Lagrange multiplier λ ∈ R
�
≥0, there exists a p̃ ∈ P(X ) such that

Iλα(p̃;W ) = Cλ
α,W and ∃! qλα,W ∈ P(Y) satisfying

Dα
(
p�We

1−α
α

λ·ρ ‖p ⊗ qgλα,W
)
≤ Cgλ

α,W , ∀p ∈ P(X ). (106)

Furthermore, qgλ
α,p̃

= qgλα,W for all p̃ ∈ P(X ) such that Igλα (p̃;W ) = Cgλ
α,W .

The expression on the left-hand side of (102) is the R-G capacity, whereas the expression in (103)
is the A-L radius defined in (84). Thus, Theorems 2 and 3 imply that

Cλ
α,W = Sλ

α,W = Cgλ
α,W , ∀α ∈ R+, λ ∈ R

�
≥0. (107)

Furthermore, whenever Cλ
α,W is finite the unique A-L center described in (82) is equal to the unique

R-G center described in (105) by Theorems 2 and 3, as well:

qλα,W = qgλα,W , ∀α ∈ R+, λ ∈ R
�
≥0 such that Cλ

α,W < ∞. (108)

In order to avoid using multiple names for the same quantity, we will state our propositions in
terms of the A-L capacity and center in the rest of the paper.

If Cλ
α,W is finite, then (90), (91), and Theorem 3 for α ∈ R+ \{1} and (93), (94), and Theorem 2

for α = 1 imply that

Cλ
α,W − Igλα (p;W ) ≥ Dα

(
qgλα,p ‖qλα,W

)
, ∀p ∈ P(X ).

Using the same observations, we can prove a van Erven–Harremoës bound for the A-L capacity,
as well.

Lemma 35. For any α ∈ R+, channel W : X → P(Y) with a cost function ρ : X → R
�
≥0, and

Lagrange multiplier λ ∈ R
�
≥0 satisfying Cλ

α,W < ∞,

sup
x∈X

Dα(W (x)‖q) − λ · ρ(x) ≥ Cλ
α,W +Dα

(
qλα,W ‖q

)
, ∀q ∈ P(Y). (109)

One can prove a similar, but weaker, result using Lemma 13 and Theorem 2. The right most
term of the resulting bound is Dα∧1

(
qλα,W ‖q

)
rather than Dα

(
qλα,W ‖q

)
.

Lemma 35 and the continuity of the A-L capacity Cλ
α,W as a function of λ, established in

Lemma 29(a), imply the continuity of the A-L center qλα,W in λ for the total variation topology
on P(Y) via Lemma 2.
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Lemma 36. For any α ∈ R+, channel W : X → P(Y) with a cost function ρ : X → R
�
≥0, and

Lagrange multiplier λ0 ∈ R
�
≥0 satisfying Cλ0

α,W < ∞,

Dα
(
qλ2
α,W ‖qλ1

α,W

)
≤ Cλ1

α,W − Cλ2
α,W , ∀λ1, λ2 ∈ R

�
≥0 such that λ0 ≤ λ1 ≤ λ2. (110)

Furthermore, qλα,W is continuous in λ on
{
λ : ∃ε > 0 such that Cλ−ε1

α,W < ∞
}
for the total variation

topology on P(Y).

5.4. Information Measures for Transition Probabilities

We have defined the conditional Rényi divergence, the Augustin information, the A-L informa-
tion, and the R-G information, only for input distributions in P(X ), i.e., for probability mass
functions that are zero in all but finite number of elements of X . In many practically relevant and
analytically interesting models, however, the input set X is an uncountably infinite set equipped
with a σ-algebra X . The Gaussian channels—possibly with multiple input and output antennas
and fading—and the Poisson channels are among the most prominent examples of such models.
For such models, it is often desirable to extend the definitions of the Augustin information and the
A-L information from P(X ) to P(X ). For instance, in the additive Gaussian channels described
in Examples 4 and 5, the equality Iα(p;W ) = Cα,W,� is not satisfied by any probability mass func-
tion p satisfying the cost constraint; but it is satisfied by the zero mean Gaussian distribution with
variance 	.

In the following, we will first show that if Y is a countably generated σ-algebra, then one can
generalize the definitions of the conditional Rényi divergence, the Augustin information, and the
A-L information from P(X ) to P(X ) provided that W and Q are not only functions from X
to P(Y), but also transition probabilities from (X ,X ) to (Y ,Y). After that we will show that if in
addition X is countably separated, then the supremum of A-L information Iλα(p;W ) over P(X ) is
equal to the A-L radius Sλ

α,W ; see Theorem 4. This will imply that the cost constrained Augustin
capacity Cα,W,�—defined in (68)—is equal to the supremum of the Augustin information Iα(p;W )
over members of P(X ) satisfying Ep[ρ] ≤ 	, as well, at least for the cost constraints that are in the
interior of the set of all feasible constraints; see Theorem 5.

Let us first recall the definition of transition probability. We adopt the definition provided by
Bogachev [21, Definition 10.7.1] with a minor modification: we use W (E |x) instead of W (x |E ).

Definition 19. Let (X ,X ) and (Y ,Y) be measurable spaces. Then a function W : Y ×X →
[0, 1] is called a transition probability (a stochastic kernel / a Markov kernel) from (X ,X ) to
(Y ,Y) if it satisfies the following two conditions:

(i) For all x ∈ X , the function W (· |x) : Y → [0, 1] is a probability measure on (Y ,Y).
(ii) For all E ∈ Y, the function W (E | ·) : X → [0, 1] is an (X ,B([0, 1]))-measurable function.

We denote the set of all transition probabilities from (X ,X ) to (Y ,Y) by P(Y |X ) with
the tacit understanding that X and Y will be clear from the context. If W satisfies (i), then
W : X → P(Y) is a channel, i.e., W is a member of P(Y |X ), even if W does not satisfy (ii).
Hence, P(Y |X ) ⊂ P(Y |X ). Inspired by this observation, we denote the probability measure
W (· |x) by W (x) whenever it is notationally convenient and unambiguous.

In order to extend the definition of the conditional Rényi divergence from P(X ) to P(X ),
we ensure the X -measurability of Dα(W (x)‖Q(x)) on X and replace the sum in (21) with an
integral. If (X , τ) is a topological space and X is the associated Borel σ-algebra, then one can
establish the measurability by first establishing the continuity. Such a continuity result holds if

both
dW (x)

dν
and

dQ(x)

dν
are continuous in x for ν-almost every y for some probability measure ν for

which (W (x) +Q(x)) ≺ ν for all x ∈ X . At times this hypothesis on W and Q might not be easy
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to confirm. If, on the other hand, W and Q are transition probabilities from (X ,X ) to (Y ,Y) for
a countably generated Y, then the desired measurability follows from the elementary properties of
the measurable functions and Lemma 9, as we demonstrate in the following.

Lemma 37. For any α ∈ R+, countable generated σ-algebra Y of subsets of Y , and W,Q ∈
P(Y |X ) the function Dα(W (·)‖Q(·)) : X → [0,∞] is X -measurable.

Proof. There exists {Ei}i∈Z+
⊂ Y such that Y = σ({Ei : i ∈ Z+}), because Y is countably

generated σ-algebra. Let Yi be

Yi � σ({E1, . . . ,Ei}), i ∈ Z+.

Then Y1 ⊂ Y2 ⊂ . . . ⊂ Y, Y = σ
( ∞⋃
i=1

Yi

)
, and Lemma 9 implies that

Dα(W (x)‖Q(x)) = lim
i→∞

DYi
α (W (x)‖Q(x)), ∀x ∈ X . (111)

On the other hand Yi is finite set for all i ∈ Z+. Thus, for all i ∈ Z+ there exists a Yi-measurable
finite partition Ei of Y . Thus, as a result of the definition of the Rényi divergence given in (8) we
have

DYi
α (W (x)‖Q(x)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

α− 1
ln

∑

E∈Ei
(W (E |x))α (Q(E |x))1−α for α ∈ R+ \ {1},

∑

E∈Ei
W (E |x) ln W (E |x)

Q(E |x) for α = 1.

Then DYi
α (W (x)‖Q(x)) is an X -measurable function for any i ∈ Z+ by [21, Theorem 2.1.5(i)-(iv)

and Remark 2.1.6], because W (E |x) and Q(E |x) are X -measurable for all E ∈ Ei by the hypothesis
of the lemma. Then Dα(W (x)‖Q(x)) is X -measurable as a result of (111) by [21, Theorem 2.1.5(v)
and Remark 2.1.6]. �

Definition 20. For any α ∈ R+, countable generated σ-algebra Y of subsets of Y , W ∈
P(Y |X ), and p ∈ P(X ) the order α conditional Rényi divergence for the input distribution p is

Dα(W ‖Q |p) �
∫

Dα(W (x)‖Q(x))p(dx). (112)

If ∃q ∈ P(Y) such that Q(x) = q for p-a.s., then we denote Dα(W ‖Q |p) by Dα(W ‖q |p).
Then one can define the Augustin information and the A-L information for all p in P(X ),

provided that W is in P(Y |X ) for a countably generated Y and ρ is an X -measurable function.

Definition 21. For any α ∈ R+, countable generated σ-algebra Y of subsets of Y , W ∈
P(Y |X ), and p ∈ P(X ) the order α Augustin information for the input distribution p is

Iα(p;W ) � inf
q∈P(Y)

Dα(W ‖q |p). (113)

Furthermore, for any X -measurable cost function ρ : X → R
�
≥0 and λ ∈ R

�
≥0 the order α Augustin–

Legendre information for the input distribution p and the Lagrange multiplier λ is defined as

Iλα(p;W ) � Iα(p;W )− λ ·Ep[ρ] (114)

with the understanding that if λ · Ep[ρ] = ∞, then Iλα(p;W ) = −∞.

Although we have included the λ·Ep[ρ] = ∞ case in the formal definition of the A-L information,
we will only be interested in p’s for which λ·Ep[ρ] is finite. We define Aλ to be the set of all such p’s:

Aλ � {p ∈ P(X ) : λ · Ep[ρ] < ∞}. (115)

PROBLEMS OF INFORMATION TRANSMISSION Vol. 55 No. 4 2019



THE AUGUSTIN CAPACITY AND CENTER 333

For an arbitrary σ-algebra X , the singletons (i.e., sets with only one element) are not necessarily
measurable sets; thus, P(X ) is not necessarily a subset ofAλ. If X is countably separated, then the
singletons are in X by [21, Theorem 6.5.7], P(X ) ⊂ Aλ and sup

p∈Aλ

Iλα(p;W ) ≥ Cλ
α,W . The reverse

inequality follows from Theorem 2 and we have sup
p∈Aλ

Iλα(p;W ) = Cλ
α,W . Theorem 4 states these

observations formally together with the ones about the A-L center through a minimax theorem.

Theorem 4. Let X be a countably separated σ-algebra, Y a countably generated σ-algebra, W
a transition probability from (X ,X ) to (Y ,Y), ρ : X → R

�
≥0 an X -measurable cost function, and

α ∈ R+. Then for all λ ∈ R
�
≥0 we have

sup
p∈Aλ

inf
q∈P(Y)

Dα(W ‖q |p)− λ · Ep[ρ] = inf
q∈P(Y)

sup
p∈Aλ

Dα(W ‖q |p)− λ ·Ep[ρ] (116)

= inf
q∈P(Y)

sup
x∈X

Dα(W (x)‖q) − λ · ρ(x) (117)

= Cλ
α,W (118)

where Aλ is defined in (115). If Cλ
α,W is finite, then ∃! qλα,W ∈ P(Y), called the order α Augustin–

Legendre center of W for the Lagrange multiplier λ, satisfying

Cλ
α,W = sup

p∈Aλ

Dα
(
W ‖qλα,W |p

)
− λ ·Ep[ρ] (119)

= sup
x∈X

Dα
(
W (x)‖qλα,W

)
− λ · ρ(x). (120)

Proof. Since P(X ) ⊂ Aλ, the max-min inequality implies

sup
p∈P(X )

inf
q∈P(Y)

Dα(W ‖q |p)− λ · Ep[ρ] ≤ sup
p∈Aλ

inf
q∈P(Y)

Dα(W ‖q |p)− λ · Ep[ρ]

≤ inf
q∈P(Y)

sup
p∈Aλ

Dα(W ‖q |p)− λ · Ep[ρ]

= inf
q∈P(Y)

sup
x∈X

Dα(W (x)‖q) − λ · ρ(x).

Thus, (116) and (117) hold as a result of (79) and (80) of Theorem 2 and (118) follows by (80) of
Theorem 2 and (78).

If Cλ
α,W is finite, then as a result of Theorem 2 there exist a unique qλα,W ∈ P(Y) satisfying

sup
x∈X

Dα
(
W (x)‖qλα,W

)
− λ · ρ(x) = Cλ

α,W .

Then (119) and (120) hold, because sup
p∈Aλ

Dα(W ‖q |p)−λ ·Ep[ρ] = sup
x∈X

Dα(W (x)‖q)−λ · ρ(x) for
any q ∈ P(Y). �

Let A(	) be the subset P(X ) composed of the probability measures satisfying the cost con-
straint 	,

A(	) � {p ∈ P(X ) : Ep[ρ] ≤ 	}.
Then A (	) ⊂ A(	) and sup

p∈A(�)
Iα(p;W ) ≥ Cα,W,� whenever X is countably separated. For the

cost constraints in int Γρ reverse inequality holds as a result of Lemma 29(c) and Theorem 4 and
we have sup

p∈A(�)
Iα(p;W ) = Cα,W,�. Theorem 5 states these observations formally together with the

ones about the Augustin center through a minimax theorem.

Theorem 5. Let X be a countably separated σ-algebra, Y be a countably generated σ-algebra,
W be a transition probability from (X ,X ) to (Y ,Y), ρ : X → R

�
≥0 be an X -measurable cost
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function, and α ∈ R+. For any 	 ∈ int Γρ we have

sup
p∈A(�)

inf
q∈P(Y)

Dα(W ‖q |p) = inf
q∈P(Y)

sup
p∈A(�)

Dα(W ‖q |p) (121)

= Cα,W,�, (122)

where Cα,W,� is defined in (68). If Cα,W,� ∈ R≥0, then ∃! qα,W,� ∈ P(Y), called the order α Augustin
center of W for the cost constraint 	, satisfying

Cα,W,� = sup
p∈A(�)

Dα(W ‖qα,W,� |p) (123)

= sup
p∈A (�)

Dα(W ‖qα,W,� |p). (124)

Furthermore, qα,W,� = qλα,W for all λ ∈ R
�
≥0 satisfying Cα,W,� = Cλ

α,W + λ · 	.
Proof. Since A (	) ⊂ A(	), the max-min inequality implies

sup
p∈A (�)

inf
q∈P(Y)

Dα(W ‖q |p) ≤ sup
p∈A(�)

inf
q∈P(Y)

Dα(W ‖q |p)

≤ inf
q∈P(Y)

sup
p∈A(�)

Dα(W ‖q |p).

Thus, both (121) and (122) hold whenever Cα,W,� = ∞ by (58). On the other hand, as a result of
Theorem 4 for any λ with finite Cλ

α,W there exists a unique qλα,W satisfying (120). Thus, we have

inf
q∈P(Y)

sup
p∈A(�)

Dα(W ‖q |p) ≤ sup
p∈A(�)

Dα
(
W ‖qλα,W |p

)

≤ sup
p∈A(�)

Dα
(
W ‖qλα,W |p

)
− λ · Ep[ρ] + λ · 	

≤ Cλ
α,W + λ · 	.

Furthermore, if Cα,W,� ∈ R, then there exists at least one λ ∈ R
�
≥0 satisfying Cα,W,� = Cλ

α,W+λ·	 by

Lemma 29(c). Then (121) and (122) hold when Cα,W,� ∈ R and (123) holds for qα,W,� = qλα,W pro-

vided that Cα,W,� = Cλ
α,W +λ·	. On the other hand, qα,W,� is a probability measure satisfying (124)

by Theorem 1 and qα,W,� = qλα,W for all λ satisfying Cα,W,� = Cλ
α,W + λ · 	 by Lemma 31. �

The countable separability of X and countable generatedness of Y are fairly mild assumptions
satisfied by most transition probabilities considered in practice. Hence, Theorems 4 and 5 provide
further justification for studying the relatively simple case of probability mass functions, first.

The existence of an input distribution p satisfying both Ep[ρ] ≤ 	 and Iα(p;W ) = Cα,W,� is
immaterial to the existence of a unique qα,W,� or its characterization through qλα,W for λ’s satisfying

Cα,W,� = Cλ
α,W + λ · 	 by Lemma 29(c),(d) and Theorem 5. Although one can prove the existence

of such a p for certain special cases, such an input distribution does not exist in general. Thus, we
believe, it is preferable to separate the issue of the existence of an optimal input distribution from
the discussion of Cα,W,� and qα,W,� and their characterization via Cλ

α,W and qλα,W . That, however,
is not the standard practice, [37, Theorem 1].

We have assumed Y to be countably generated in order to ensure that the conditional Rényi
divergence used in (113) is well-defined. In order to define the Rényi information, however, we do
not need to assume Y to be countably generated; the transition probability structure is sufficient.
Recall that if W ∈ P(Y |X ), then for any p ∈ P(X ) there exists a unique probability measure
p�W on (X × Y ,X ⊗ Y) such that

p�W (Ex × Ey) =

∫

Ex

W (Ey |x)p(dx), ∀Ex ∈ X , Ey ∈ Y,
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by [21, Theorem 10.7.2]. Thus, Igα(p;W ) is well defined for any W ∈ P(Y |X ) and p ∈ P(X ).

Unfortunately, the situation is not nearly as simple for the R-G information. In order to define

the R-G information using a similar approach one first shows that We
1−α
α

λ·ρ is a transition kernel—
rather than a transition probability (i.e., Markov kernel)—and then proceeds with establishing the

existence a unique measure p�We
1−α
α

λ·ρ for all p in P(Y). For orders greater than one, resulting
measure is a sub-probability measure and one can use (87) as the definition of the R-G information.

For orders between zero and one, on the other hand, p�We
1−α
α

λ·ρ is a σ-finite measure for all p’s
in P(X ), but it is not necessarily a finite measure for all p’s in P(X ). Thus, for orders between
zero and one, one can use (87) as the definition of the R-G information, only after extending the
definition of the Rényi divergence to σ-finite measures.

6. EXAMPLES

In this section, we will first demonstrate certain subtleties that we have pointed out in the earlier
sections. After that we will study Gaussian channels and obtain closed form expressions for their
Augustin capacity and center.

6.1. Shift Invariant Families

Example 1 (channel with an affine capacity). Let the channel W : R≥0 → P(B([0, 1))) and the
associated cost function ρ : R≥0 → R≥0 be

dW (x)

dν
= f�x(y − x− �y − x�),

ρ(x) = �x�

where ν is the Lebesgue measure on [0, 1) and fi’s are given by

fi(y) = ei+11y∈[0,e−i−1), ∀i ∈ Z≥0.

Let ui be uniform distribution on [i, i+1); then one can confirm by substitution that Tα,ui(u0) = u0.
Then, using Jensen’s inequality together with the fixed point property, we get21

Dα(W ‖q |ui) ≥ Dα(W ‖u0 |ui) +Dα∧1(u0 ‖q).

Thus, u0 is the unique order α Augustin mean for the input distribution ui, i.e., qα,ui = u0, and
Iα(ui;W ) = Dα(W ‖u0 |ui)—and hence Iα(ui;W ) = i+1—for all i ∈ Z+ and α ∈ R+. Then using
Eui [ρ] = i, we can conclude that Cα,W,� ≥ (	+1) not only for 	 ∈ Z≥0 but also for 	 ∈ R≥0, because
Cα,W,� is concave in 	 by Lemma 27(a). One the other hand, one can confirm by substitution that

Dα(W ‖u0 |p) = Ep[ρ] + 1. (125)

Thus, Iα(p;W ) ≤ (	+ 1) for any p satisfying the cost constraint 	. Hence,

Cα,W,� = 	+ 1,

qα,W,� = u0.

Then as a result of (76) we have

Cλ
α,W =

{
∞ for λ ∈ [0, 1),

1 for λ ∈ [1,∞).

Then using (125) and Theorem 4, we can conclude that qλα,W = u0 for all λ ∈ [1,∞).
21 See the derivation of (32) and (34) of Lemma 13(c),(d) given in [22, Appendix B].
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Example 2 (channel with a non-upper semicontinuous capacity). Let W : R → P(B([0, 1))) and
the associated cost function ρ : R → R≥0 be

dW (x)

dν
= f�x(y − x− �y − x�),

ρ(x) =

{
�x� for x ≥ 0,

2�x for x < 0,

where ν is the Lebesgue measure on [0, 1) and fi : [0, 1) → R≥0 are given by

fi(y) =

⎧
⎪⎪⎨

⎪⎪⎩

2i+11y∈[0,2−i−1) for i > 0,

3/21y∈[0,2/3) for i = 0,

21y∈[0,1/2) for i < 0.

Following an analysis similar to the one described above, we can conclude that

Cα,W,� =

{
(	+ 1) ln 2 for 	 > 0,

ln 3/2 for 	 = 0,

Cλ
α,W =

{
∞ for λ ∈ [0, ln 2),

ln 2 for λ ∈ [ln 2,∞).

Hence, Cα,W,� �= inf
λ≥0

Cλ
α,W + λ · 	 for 	 = 0.

Example 3 (product channel without an optimal cost allocation). Let W1 and W2 be the chan-
nels described in Examples 1 and 2 and ρ1 and ρ2 be the associated cost functions. Let W[1,2] be
the product of these two channels with the additive cost function 	[1,2], i.e.,

W[1,2](x1, x2) = W1(x1)⊗W2(x2),

ρ[1,2](x1, x2) = ρ1(x1) + ρ2(x2).

Then Lemma 28 implies

Cα,W[1,2],� =

⎧
⎨

⎩
	+ 1 + ln 2 for 	 > 0,

1 + ln
3

2
for 	 = 0.

Note that for positive values of 	 there does not exist any (	1, 	2) pair satisfying both Cα,W[1,2],� =
Cα,W1,�1 + Cα,W2,�2 and the cost constraint 	1 + 	2 ≤ 	 at the same time.

6.2. Gaussian Channels

In the following, we denote the zero mean Gaussian probability measure on B(R) with variance σ2

by ϕσ2 . With a slight abuse of notation, we denote the corresponding probability density function
by the same symbol:

ϕσ2(x) =
1√
2πσ

e−
x2

2σ2 , ∀x ∈ R.

We use the Gaussian channels and the corresponding transition probabilities interchangeably; they
have the same cost constrained Augustin capacity and center by Theorems 4 and 5.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 55 No. 4 2019



THE AUGUSTIN CAPACITY AND CENTER 337

Example 4 (scalar Gaussian channel). Let W be the scalar Gaussian channel with noise vari-
ance σ2 and the associated cost function ρ be the quadratic one, i.e.,

W (E |x) =
∫

E

ϕσ2(y − x)dy, ∀E ∈ B(R),

ρ(x) = x2, ∀x ∈ R.

The Augustin capacity and center of this channel are given by the following expressions:

Cα,W,� =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α	

2(αθα,σ,� + (1− α)σ2)
+

1

α− 1
ln

(θα,σ,�)
α/2σ(1−α)

√
αθα,σ,� + (1− α)σ2

for α ∈ R+ \ {1},

1

2
ln

(
1 +

	

σ2

)
for α = 1,

(126)

qα,W,� = ϕθα,σ,�
, (127)

θα,σ,� � σ2 +
	

2
− σ2

2α
+

√

(
	

2
− σ2

2α
)2 + 	σ2. (128)

Furthermore, Cα,W,� is continuously differentiable in 	 and its derivative is a continuous, decreasing,
and bijective function of 	 from R+ to [0, α/2σ2) given by

d

d	
Cα,W,� =

α

2(αθα,σ,� + (1− α)σ2)
(129)

=
α

α	+ σ2 +
√
(α	− σ2)2 + 4	α2σ2

. (130)

In order to prove these, we first demonstrate that the Augustin mean for the zero mean Gaussian
distribution with variance 	 is the zero mean Gaussian distribution with variance θα,σ,�, i.e., qα,ϕ� =
ϕθα,σ,�

. This will imply Iα(ϕ�;W ) = Dα
(
W ‖ϕθα,σ,�

|ϕ�
)
. Dα

(
W ‖ϕθα,σ,�

|ϕ�
)
is equal to the

expression on the right-hand side of (126). In order to establish (126) and (127), we demonstrate
that this value is the greatest value for the Augustin information among all input distributions
satisfying the cost constraint 	. Consequently, we have Cα,W,� = Iα(ϕ�;W ) and qα,W,� = qα,ϕ� .
Then we confirm (129) using an identity, i.e., (133), obtained while establishing qα,ϕ� = ϕθα,σ,�

.

One can confirm by substitution that

Dα(W (x)‖ϕθ) =

⎧
⎪⎪⎨

⎪⎪⎩

αx2

2(αθ + (1− α)σ2)
+

1

α− 1
ln

θα/2σ(1−α)

√
αθ + (1− α)σ2

for α ∈ R+ \ {1},

σ2 + x2 − θ

2θ
+

1

2
ln

θ

σ2
for α = 1.

(131)

Then the order α tilted channel W
ϕ
θ

α , defined in (22), is a Gaussian channel as well:

W
ϕθ
α (E |x) =

∫

E

ϕ σ2θ
αθ+(1−α)σ2

(
y − αθ

αθ + (1− α)σ2
x

)
dy.

Then Tα,p(q) is a zero mean Gaussian probability measure whenever both p and q are so. In
particular,

Tα,ϕ�(ϕθ) = ϕ
( αθ
αθ+(1−α)σ2 )

2
�+ σ2θ

αθ+(1−α)σ2

. (132)

Consequently, if ϕθ is a fixed point of Tα,ϕ�(·), then θ satisfies the following equality:

θ

[
θ2 − θ

(
	+

(
2− 1

α

)
σ2

)
+

(
1− 1

α

)
σ4

]
= 0. (133)
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θα,σ,�, defined in (128), is the only root of the equality given in (133) that is greater than σ2 for
α’s in R+; it is the only positive root for α’s in (0, 1), as well. Furthermore, using (132) one can
confirm that Tα,ϕ�(ϕθ2α,σ,�

) = ϕθα,σ,�
, i.e., ϕθα,σ,�

is a fixed point of Tα,ϕ�(·). Then, using Jensen’s

inequality together with this fixed point property, we get22

Dα(W ‖q |ϕ�) ≥ Dα

(
W ‖ϕθα,σ,�

|ϕ�

)
+D1∧α(ϕθα,σ,�

‖q), ∀q ∈ P(B(R)).

Thus, ϕθα,σ,�
is the order α Augustin mean for the input distribution ϕ�, i.e., qα,ϕ� = ϕθα,σ,�

and

Iα(ϕ�;W ) = Dα

(
W ‖ϕθα,σ,�

|ϕ�

)
. On the other hand, (131) implies

Dα
(
W ‖ϕθα,σ,�

|p
)
=

α(Ep[ρ]− 	)

2(αθα,σ,� + (1− α)σ2)
+ Iα(ϕ�;W ), ∀p ∈ P(B(R)). (134)

Then Iα(p;W ) ≤ Iα(ϕ�;W ) for all p satisfying Ep[ρ] ≤ 	. Consequently, Cα,W,� = Iα(ϕ�;W ) and
qα,W,� = qα,ϕ�.

For the α = 1 case, (129) is evident. In order to establish (129) for the α ∈ R+ \ {1} case,
note that

d

d	
Cα,W,� =

α

2(αθα,σ,� + (1− α)σ2)

+

[
−α2	

2(αθα,σ,� + (1− α)σ2)2
+

α(θα,σ,� − σ2)

2(αθα,σ,� + (1− α)σ2)θα,σ,�

]
d

d	
θα,σ,�

=
α

2(αθα,σ,� + (1− α)σ2)
+

α2

2(αθα,σ,� + (1− α)σ2)2θα,σ,�

×
[
θ2α,σ,� − θα,σ,�

(
	+

(
2− 1

α

)
σ2

)
+

(
1− 1

α

)
σ4

]
d

d	
θα,σ,�.

Then (129) holds for α ∈ R+ \ {1}, because θα,σ,� is a root of the equality in (133).

The A-L capacity and center of this channel are given by the following expressions:

Cλ
α,W =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝ α

α− 1
ln

√
1

α
+

α− 1

α

2σ2λ

α
− ln

√
2σ2λ

α

⎞

⎠1λ∈(0, α
2σ2 )

for α ∈ R+ \ {1},
(
σ2λ− ln

√
2eσ2λ

)
1λ∈(0, 1

2σ2 )
for α = 1,

(135)

qλα,W = ϕθλα,σ
, (136)

θλα,σ � σ2 +

∣∣∣∣∣
1

2λ
− σ2

α

∣∣∣∣∣

+

. (137)

Then Cλ
α,W is a continuously differentiable function of λ and its derivative is a continuous, increas-

ing, and bijective function of λ from R+ to (−∞, 0] given by

d

dλ
Cλ
α,W = − α− 2σ2λ

2λ(α + (α− 1)2σ2λ)
1λ≤ α

2σ2
. (138)

The expressions for the A-L capacity and center given in (135) and (136) are derived using the
expressions for Augustin capacity and center, (76), (129)–(131), and Lemma 31.

• If λ ∈ (0, α/2σ2), then there exists a unique 	λα,W satisfying
d

d	
Cα,W,�

∣∣∣
�=�λα,W

= λ by (130). Fur-

thermore, 	λα,W satisfies Cλ
α,W = Cα,W,�λ

α,W
−λ	λα,W by (76), because

d

d	
Cα,W,� is decreasing in 	.

22 Derivation of this inequality is analogous to the derivation of (32) and (34) of Lemma 13(c),(d), presented
in [22, Appendix B].
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Then (135) follows from (126) and (129). On the other hand, qλα,W = qα,W,�λα,W
by Lemma 31,

because Cα,W,�λα,W
= Cλ

α,W +λ	λα,W . Then (136) follows from (127)–(129) and (137). In addition

one can confirm that 	λα,W = − d

dλ
Cλ
α,W by solving

d

d	
Cα,W,�

∣∣∣
�=�λ

α,W

= λ explicitly for 	λα,W . We,

however, do not need to obtain that explicit solution to confirm (135) and (136).
• If λ ∈ [α/2σ2,∞), then Dα(W ‖ϕσ2 |p) − λEp[	] ≤ 0 by (131). On the other hand, Cλ

α,W ≥ 0,
because A-L information is zero for the probability measure that puts all its probability mass
to x = 0. Hence, Cλ

α,W = 0 and qλα,W = ϕσ2 . Thus, both (135) and (136) hold.

Example 5 (parallel Gaussian channels). Let W[1,n] be the product of scalar Gaussian chan-
nels Wi with noise variance σi for i ∈ {1, . . . , n} and ρ[1,n] be the additive cost function, i.e.,

W[1,n](E |xn1 ) =
∫

E

[
n∏

i=1

ϕσ2
i
(yi − xi)

]
dyn1 , ∀E ∈ B(Rn),

ρ[1,n](x
n
1 ) =

n∑

i=1

x2i , ∀xn1 ∈ R
n.

As a result of Lemma 28, the cost constrained Augustin capacity of W[1,n] satisfies

Cα,W[1,n],� = sup
�1,...,�n:

∑
i

�i≤�

Cα,Wi,�i .

Since Cα,Wi,�i ’s are continuous, strictly concave, and increasing in 	i the supremum is achieved at
a unique (	α,1, . . . , 	α,n). Then qα,W[1,n],� = qα,W1,�α,1 ⊗ . . . ⊗ qα,Wn,�α,n by Lemma 28. Further-
more, since Cα,Wi,�i ’s are continuously differentiable in 	i, the unique point (	α,1, . . . , 	α,n) can

be determined via the derivative test:
d

d	i
Cα,Wi,�i

∣∣∣
�i=�α,i

= λα for all i’s with a positive 	α,i and
d

d	i
Cα,Wi,�i

∣∣∣
�i=�α,i

≤ λα for all i’s with a zero 	α,i for some λα ∈ R+. Thus, using (130), we can

conclude that the optimal cost allocation, i.e., (	α,1, . . . , 	α,n), satisfies

	α,i =
|α− 2σ2

i λα|+
2λα(α+ 2(α− 1)σ2

i λα)
(139)

for some λα that is uniquely determined by constraint
n∑

i=1
	α,i = 	, because the expression on the

right-hand side of (139) is nonincreasing in λα for each i. Consequently,

Cα,W[1,n],� =
n∑

i=1

Cα,Wi,�α,i (140)

qα,W[1,n],� =
n⊗

i=1

ϕθα,σi,�α,i
(141)

where θα,σ,� is defined in (128). Using the constraints for the optimality of a cost allocation we

obtained via the derivative test, i.e.,
d

d	i
Cα,Wi,�i

∣∣∣
�i=�α,i

= λα for all i’s with a positive 	α,i and
d

d	i
Cα,Wi,�i

∣∣∣
�i=�α,i

≤ λα for all i’s with a zero 	α,i, together with (129)—instead of (130)—we

obtain the following alternative characterization of θα,σi,�α,i in terms of σi and λα that does not
depend on 	α,i’s explicitly:

θα,σi,�α,i = σ2
i +

∣∣∣∣∣
1

2λα
− σ2

i

α

∣∣∣∣∣

+

. (142)
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The A-L capacity and center of W[1,n] can be written in terms of the corresponding quantities
for the component channels using Lemma 32 as follows:

Cλ
α,W[1,n]

=
n∑

i=1

Cλ
α,Wi

, qλα,W[1,n]
=

n⊗

i=1

qλα,Wi
.

The cost constrained Augustin capacity and center and A-L capacity and center of vector Gaus-
sian channels with multiple input and output antennas can be analyzed with a similar approach
with the help of singular value decomposition.

7. DISCUSSION

Similar to the Rényi information, the Augustin information is a generalization of the mutual
information defined in terms of the Rényi divergence. Unlike the order α Rényi information,
however, the order α Augustin information does not have a closed form expression, except for the
order one case. This makes it harder to prove certain properties of the Augustin information such
as its continuous differentiability as a function of the order α, the existence of a unique order α
Augustin mean qα,p, or the bounds given in (7). However, once these fundamental properties of the
Augustin information are established, the analysis of the Augustin capacity is rather straightforward
and very similar to the analogous analysis for the Rényi capacity, presented in [13].

Previously, the convex conjugation techniques have been applied to the calculation of the cost
constrained Augustin capacity through the quantity Igλα (p;W ), which we have called the R-G
information. Although such an approach can successfully characterize the cost constrained Augustin
capacity via the R-G capacity, it is nonstandard and somewhat convoluted. A more standard
approach, based on the concept of A-L information Iλα(p;W ), is presented in Section 5.2. The A-L
information has not been used or studied before to the best of our knowledge; nevertheless the
resulting capacity is identical to the one associated with the R-G information. The optimality of
the approach based on the R-G information seems more intuitive, in the light of this observation.

Our analysis of the Augustin information and capacity was primarily motivated by their opera-
tional significance in the channel coding problem, [6]. We investigate that operational significance
more closely and derive sphere packing bounds with polynomial prefactors for two families of mem-
oryless channels —composition constrained and cost constrained—in [7]. Broadly speaking, the
derivation of the sphere packing bound for memoryless channels in [7] is similar to the derivation of
the sphere packing bound for product channels in [38], except for the use of the Augustin capacity
and center instead of the Rényi capacity and center.
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