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Errors-and-Erasures Decoding for Block
Codes With Feedback

Barış Nakiboğlu and Lizhong Zheng

Abstract—Inner and outer bounds are derived on the optimal
performance of fixed-length block codes on discrete memoryless
channels with feedback and errors-and-erasures decoding. First,
an inner bound is derived using a two-phase encoding scheme with
communication and control phases together with the optimal de-
coding rule for the given encoding scheme, among decoding rules
that can be represented in terms of pairwise comparisons between
the messages. Then, an outer bound is derived using a generaliza-
tion of the straight-line bound to errors-and-erasures decoders and
the optimal error-exponent tradeoff of a feedback encoder with
two messages. In addition, upper and lower bounds are derived,
for the optimal erasure exponent of error-free block codes in terms
of the rate. Finally, a proof is provided for the fact that the optimal
tradeoff between error exponents of a two-message code does not
improve with feedback on discrete memoryless channels (DMCs).

Index Terms—Decision feedback, discrete memoryless channels
(DMCs), error exponent, errors-and-erasures decoding, feedback,
feedback encoding schemes, soft decoding, two-phase encoding
schemes, variable-length coding.

I. INTRODUCTION

S HANNON showed in [29] that the capacity of discrete
memoryless channels (DMCs) does not increase even

when a noiseless and delay-free feedback link is available
from the receiver to the transmitter. On symmetric DMCs,
the sphere packing exponent bounds the error exponent of
fixed-length block codes from above, as shown by Dobrushin1

in [11]. Thus, relaxations like errors-and-erasures decoding or
variable-length coding are needed for feedback to increase the
error exponent of block codes at rates larger than the critical
rate on symmetric DMCs. In this work, we investigate one
such relaxation, namely, errors-and-erasures decoding, and
find inner and outer bounds to the optimal error-exponent/era-
sure-exponent tradeoff.
Finding the optimal encoding and decoding schemes, and

hence finding optimal performance by characterizing the sur-
face of achievable error-exponent/erasure-exponent pairs, is an
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1Later, Haroutunian [17] established an upper bound on the error exponent
of block codes with feedback. This upper bound is equal to the sphere packing
exponent for symmetric channels but it is strictly larger than the sphere packing
exponent for nonsymmetric channels.

important motivation for the investigation of errors-and-era-
sures decoding. Note, however, that finding the optimal
performance with erasures will implicitly solve the problem of
finding the optimal feedback encoder and determining the error
exponent for the erasure-free fixed-length block codes with
feedback which is a long standing open problem. Finding the
optimal performance, however, is far from being the only im-
portant aspect of the problem. Determining the performance of
feedback encoding schemes that are easier to implement, more
robust to the degradations of the feedback link, and bounding
the loss in the performance compared to the more complicated
encoding schemes are both important tasks practically and
interesting ones intellectually. This will be our aim in this
paper. We will first analyze the performance of a two-phase
encoding scheme inspired by the optimal encoding schemes
for variable-length block codes and derive inner bounds to the
optimal performance. Then, we will derive outer bounds to
the performance of general feedback encoding schemes with
erasures and quantify the loss of performance by restricting
ourselves to the above mentioned two-phase schemes. This
analysis complements the research on two related block coding
schemes: variable-length block coding and errors-and-erasures
decoding for block codes without feedback. We start with a
very brief overview of the previous work on these problems to
motivate our investigation further.
Burnashev [3]–[5] was the first one to consider vari-

able-length block codes with feedback, instead of fixed-length
ones. He obtained the exact expression for the error expo-
nent at all rates. Later, Yamamoto and Itoh [33] suggested
a coding scheme which achieves the best error exponent
for variable-length block codes with feedback by using a
fixed-length block code with an errors-and-erasures decoding
and repeating the same codeword until a nonerasure decoding
occurs.2 In fact, any fixed-length block code with erasures
can be used in this repetitive fashion, like it was done in [33],
to get a variable-length block code with essentially the same
error exponent as the original fixed-length block code. Thus,
[3] can be reinterpreted to give an upper bound to the error
exponent achievable by fixed-length block codes with erasures.
Furthermore, this upper bound is achieved by the fixed-length
block codes with erasures described in [33], when erasure
probability is decaying to zero subexponentially with block
length. However, the techniques used in this line of work are
insufficient for deriving proper inner or outer bounds for the
situation when erasure probability is decaying exponentially
with block length. As explained in the following paragraph, the

2Including erasures will not increase the exponent for variable-length block
codes with feedback.
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case with strictly positive erasure exponent is important both
for engineering applications and for a better understanding of
soft decoding with feedback. Our investigation provides proper
tools for such an analysis, results in inner and outer bounds to
the tradeoff between error-and-erasure exponents, and recovers
all previously known results for the zero erasure-exponent case.
When considered together with higher layers, the codes in

the physical layer are part of a variable-length/delay communi-
cation scheme with feedback. However, in the physical layer it-
self, fixed-length block codes are used instead of variable-length
ones because of their amenability to modular design and robust-
ness against the noise in the feedback link. In such an architec-
ture, retransmissions affect the performance of higher layers.
The average transmission time is only a first-order measure of
this effect: as long as the erasure probability is vanishing with
increasing block length, average transmission time will essen-
tially be equal to the block length of the fixed-length block
code. Thus, with an analysis like the one in [33], the cost of
retransmissions is ignored as long as the erasure probability
goes to zero with increasing block length. In a communication
system with multiple layers, however, retransmissions usually
have costs beyond their effect on average transmission time,
which are described by constraints on the probability distribu-
tion of the decoding time. Knowledge of error erasure-expo-
nent tradeoff is useful in coming up with designs to meet those
constraints. An example of this phenomenon is variable-length
block coding schemes with hard deadlines for decoding time,
which has already been investigated by Gopala et al. [16] for
block codes without feedback. They have used a block coding
scheme with erasures and resent the message whenever an era-
sure occurred. But because of the hard deadline, they employed
this scheme only for some fixed number of trials. If all those
trials failed, i.e., led to an erasure, they used a nonerasure block
code. Using the error-exponent/erasure-exponent tradeoff they
were able to obtain the best over all error performance for the
given architecture.
This brings us to the second line of research we comple-

ment with our investigation: errors-and-erasures decoding for
block codes without feedback. Forney [14] was the first one
to consider errors-and-erasures decoding without feedback.
He obtained an achievable tradeoff between the exponents of
error-and-erasure probabilities. Then, Csiszár and Körner [10]
achieved the same performance using universal coding and
decoding algorithms. Later, Telatar and Gallager [32] intro-
duced a strict improvement on certain channels over the results
presented in [14] and [10]. Recently, there has been a revived
interest in the errors-and-erasures decoding for universally
achievable performances [21], [22], for alternative methods of
analysis [20], for extensions to the channels with side infor-
mation [26], and implementation with linear block codes [18].
The encoding schemes in these codes do not have access to
any feedback. However, if the transmitter can learn whether
the decoded message was an erasure, it can resend the message
whenever it is erased. Because of this block retransmission
variant, these problems are sometimes called decision feedback
problems.
We complement the results on the error-exponent/era-

sure-exponent tradeoff without feedback and the results about

error exponent of variable-length block codes with feedback, by
finding inner and outer bounds to the error-exponent/erasure-ex-
ponent tradeoff of fixed-length block codes with feedback. We
first introduce our model and notation in Section II. Then, in
Section III, we derive a lower bound using a two-phase coding
algorithm similar to the one described by Yamamoto and Ito
[33] and decoding rule and analysis techniques, inspired by
Telatar [31] for the nonfeedback case. Note that the analysis
and the decoding rule in [31] are tailored for a single-phase
scheme and without feedback and the two-phase scheme of [33]
is tuned specifically to zero-erasure exponent; coming up with
framework in which both of the ideas can be used efficiently is
the main technical challenge here. In Section IV, we first extend
the straight-line bound idea introduced by Shannon et al. [30]
to block codes with erasures. Then, we use it together with
the outer bound on the error-exponent tradeoff between two
codewords with feedback to establish an outer bound for the
error exponent of fixed-length block codes with feedback and
erasures. In Section V, we first introduce error-free block codes
with erasures and discuss their relation to the fixed-length block
codes with errors-and-erasures decoding, and then we present
inner and outer bounds to the erasure exponent of error-free
block codes and point out its relation to the error-exponent/era-
sure-exponent tradeoff.
Before presenting our analysis, let us make a brief digression

and discuss two channel models in which the use of feedback
had been investigated for block codes without erasures. First
channel model is the well-known additive white Gaussian
noise channel (AWGNC) model. In AWGNCs, if the power
constraint is on the expected value of the energy spent on a
block , i.e., power constraint is of the form ,
the error probability can be made to decay faster than any
exponential function with block-length . Schalkwijk and
Kailath suggested a coding algorithm [28], which achieves a
doubly exponential decay in error probability for continuous
time AWGNCs, i.e., infinite bandwidth case. Later, Schalkwijk
[27] modified that scheme to achieve the same performance in
discrete time AWGNCs, i.e., finite bandwidth case. Concate-
nating Schalkwijk and Kailath scheme with pulse amplitude
modulation stages gives a multifold exponential decrease in the
error probability [15], [25], [34]. However, this behavior relies
on the absence of any amplitude limit, the particular form of the
power constraint, and the noise-free nature of the feedback link.
First, as observed in [5] and [24], when there is an amplitude
limit, error probability decays only exponentially with block
length. More importantly, if the power constraint restricts the
energy spent in transmission of each message for all noise
realizations, i.e., if the power constraint is an almost sure power
constraint3 of the form , then sphere packing exponent
is still an upper bound to the error exponent for AWGNCs as
shown by Pinsker [25]. Furthermore, if the feedback link is also
an AWGNC and if there is a power constraint4 on the feedback
transmissions, then even in the case when there are only two
messages, error probability decays only exponentially as it has
been recently shown by Kim et al. [19].

3As Kim et al. [19] call it.
4This constraint can be an expected or almost sure constraint.



26 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 1, JANUARY 2012

The second channel model is the DMC model. Although
feedback cannot increase the error exponent for rates over the
critical rate, it can simplify the encoding scheme [13], [34].
Furthermore, for rates below the critical rate, it is possible to
improve the error exponent using feedback. Zigangirov [34]
has established lower bounds to the error exponent for BSCs
using a simple encoding scheme. Zigangirov’s lower bound is
equal to the sphere packing exponent for all rates in the interval

where and Zigangirov’s lower bound
is strictly larger than the corresponding nonfeedback exponent
for rates below . Later, Burnashev [6] introduced an
improvement to Zigangirov’s bound for all positive rates less
than . D’yachkov [13] generalized Zigangirov’s encoding
scheme for general DMCs and established a lower bound to
the error exponent for general binary input channels and -ary
symmetric channels. However, it is still an open problem to find
a constructive technique that can be used for all DMCs which
outperforms the random coding bound. Like AWGNCs, there
has been a revived interest in the effect of a noisy feedback link
and achievable performances with noisy feedback on DMCs.
Burnashev and Yamamoto recently showed that error exponent
of BSC channel increases even with a noisy feedback link [7],
[8]. Furthermore, Draper and Sahai [12] investigated the use of
noisy feedback link in variable-length schemes.

II. MODEL AND NOTATION

The input and output alphabets of the forward channel are
and , respectively. The channel input and output symbols at
time will be denoted by and , respectively. Furthermore,
the sequences of input and output symbols from time to time
are denoted by and . When , we omit and

simply write and instead of and . The forward
channel is a stationary memoryless channel characterized by an
-by- transition probability matrix

(1)

The feedback channel is noiseless and delay free, i.e., the input
of the feedback channel , chosen at the receiver, is observed
at the transmitter before transmission of . In addition, we as-
sume that feedback channel is of infinite capacity thus in-
cludes all of the observation of the receiver at time , i.e.,5

. The random variables are
there to enable randomized encoding and decoding schemes as
we will see shortly. It is assumed that the choice ’s does not
affect the forward channels behavior, i.e., in addition to (1), we
have6

(2)

The message is drawn from the message set with a uni-
form probability distribution and is given to the transmitter at
time zero. At each time the input symbol
is sent. The sequence of functions which
assigns an input symbol for each and
is called the encoding function. Note that the random variables

5For , we have .
6We make a slight abuse of notation and denote by .

enable randomized encoding schemes. After
receiving the receiver draws the final , i.e., , and de-
codes to the message where is the era-
sure symbol. The random variable does not have any effect
on the encoding; it is used only to enable randomized decoding
schemes.
The conditional error-and-erasure probabilities and
and average error-and-erasure probabilities and

are defined as

Since all the messages are equally likely, we have

We use a somewhat abstract but rigorous approach in defining
the rate and achievable exponent pairs. A reliable sequence
is a sequence of codes indexed by their block lengths such that

In other words, reliable sequences are sequences of codes whose
overall error probability, detected and undetected, vanishes and
whose size of message set grows to infinity with block length .

Definition 1: The rate, erasure exponent, and error exponent
of a reliable sequence are given by

Haroutunian [17, Th. 2] has already established a strong con-
verse for erasure-free block codes with feedback which in our
setting implies that for all codes
whose rates are strictly above the capacity, i.e., . Thus,
we consider only rates that are less than or equal to the capacity

. For all rates below capacity and for all nonnega-
tive erasure exponents , we define the (true) error exponent

of fixed-length block codes with feedback to be the
best error exponent of the reliable sequences7 whose rate is at
least and whose erasure exponent is at least .

Definition 2: and , the error exponent
is

(3)

Note that

(4)

7We restrict ourselves to the reliable sequences in order to ensure finite error
exponent at zero erasure exponent. Note that a decoder which always declares
erasures has zero erasure exponent and infinite error exponent.



NAKIBOĞLU AND ZHENG: ERRORS-AND-ERASURES DECODING FOR BLOCK CODES WITH FEEDBACK 27

where is the (true) error exponent of erasure-free block
codes on DMCs with feedback.8 Thus, benefit of the errors-and-
erasures decoding is the possible increase in the error exponent
as the erasure exponent goes below .
Determining for all ’s and for all channels is still an

open problem; only upper and lower bounds to are known.
Our investigation focuses on quantifying the gains of errors-
and-erasures decoding instead of finding . Consequently,
we restrict ourselves to the region where the erasure exponent
is lower than the error exponent for the encoding scheme.
For future reference let us recall the expressions for the

random coding exponent and the sphere packing exponent

(5)

(6)

(7)

(8)

where stands for conditional Kullback–Leibler di-
vergence of and under , and stands for mutual
information for input distribution and channel .
We denote the marginal of a distribution like

by . The support of a probability distribution is de-
noted by .

III. AN ACHIEVABLE ERROR-EXPONENT/ERASURE-EXPONENT
TRADEOFF

In this section, we establish a lower bound to the achievable
error exponent as a function of erasure exponent and rate. We
use a two-phase encoding scheme similar to the one described
by Yamamoto and Ito [33] together with a decoding rule sim-
ilar to the one described by Telatar [31]. In the first phase, the
transmitter uses a fixed-composition code of length and rate
. At the end of the first phase, the receiver makes a max-

imum mutual information decoding to obtain a tentative deci-
sion . The transmitter knows because of the feedback link.
In the remaining time units, i.e., the second phase, the
transmitter confirms the tentative decision by sending the accept
codeword, if , and rejects it by sending the reject code-
word otherwise. At the end of the second phase, the receiver
either declares an erasure or declares the tentative decision as
the decoded message. Receiver declares the tentative decision
as the decoded message only when the tentative decision “dom-
inates” all other messages. The word “dominate” will be made
precise later in Section III-B. Our scheme is inspired by [33]
and [31]. However, unlike [33], our decoding rule makes use of
outputs of both of the phases instead of output of just second
phase while deciding between declaring an erasure or declaring
the tentative decision as the final one, and unlike [31], our en-
coding scheme is a feedback encoding scheme with two phases.

8In order to see this consider a reliable sequence with erasures and re-
place its decoding algorithm by an erasure-free decoding algorithm such that

if , to obtain a new reliable sequence . Then,
; thus, and .

This together with the definition of leads to (4).

In the rest of this section, we analyze the performance of
this coding architecture and derive an achievable error-expo-
nent expression in terms of a given rate , erasure exponent ,
time-sharing constant , communication phase type , control
phase type (joint empirical type of the accept codeword and re-
ject codeword) , and domination rule . Then, we optimize
over , , , and to obtain an achievable error-exponent ex-
pression as a function of rate and erasure exponent .

A. Fixed-Composition Codes and the Packing Lemma

We start with a very brief overview of certain properties of
types. Those readers who are not familiar with method types can
use [9] for a concise introduction or [10] for a thorough study.
The empirical distribution of an is called the type of
and the empirical distribution of transitions from a

to a is called the conditional type9

(9)

(10)

For any probability transition matrix , we
have10

(11)

The set of all ’s with the same conditional type with respect
to is called the -shell of and denoted by

(12)

Note that for any transition probability matrix from to
total probability of has to be less than one. Thus, by
assuming that transition probabilities are and using (11), we
can conclude that

(13)

Codes whose codewords all have the same empirical distribu-
tion are called fixed-composition codes.
In Section III-D, we will describe the error-and-erasure events
in terms of the intersections of -shells of different codewords.
For doing that, let us define as the intersection

of -shell of and the -shells of other codewords

(14)

The following packing lemma, proved by Csiszár and Körner
[10, Lemma 2.5.1], claims the existence of a code with a guar-
anteed upper bound on the size of .

9Note that corresponds to a distribution on for all , where
as determines a channel from the support of to .
10Note that for any , there is unique consistent

.
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Lemma 1: For every block length , rate , and type
satisfying , there exist at least distinct

type sequences in such that for every pair of stochastic
matrices , and

where .

The above lemma is stated in a slightly different way by
Csiszár and Körner [10], for a fixed and large enough . How-
ever, this form follows immediately from their proof.
If we use Lemma 1 together with (11) and (13) we can bound

the conditional probability of observing a
when as follows.

Corollary 1: In a code satisfying Lemma 1, when message
is sent, the probability of receiving a

which is also in , for some such that
is bounded as follows:

(15)

where

(16)

B. Coding Algorithm

In the first phase, the communication phase, we use a length
type fixed-composition code with

codewords which satisfies the property described in Lemma 1.
At the end of the first phase, the receiver makes a tentative deci-
sion by choosing the codeword that has the maximum empirical
mutual information with the output sequence . If there is a
tie, i.e., if there are more than one codewords which have the
maximum empirical mutual information, the receiver chooses
the codeword which has the lowest index

(17)
In the remaining time units, the transmitter sends the
accept codeword if and sends the reject code-
word otherwise.
Note that our encoding scheme uses the feedback link ac-

tively for the encoding neither within the first phase nor within
the second phase. It does not even change the codewords it uses
for accepting or rejecting the tentative decision depending on
the observation in the first phase. Feedback is only used to re-
veal the tentative decision to the transmitter.
Accept and reject codewords have joint type , i.e., the

ratio of the number of instances in which accept codeword has

an and reject codeword has a to the length of
the codewords is . The joint conditional type of
the output sequence in the second phase is the empirical
conditional distribution of . We call the set of all output
sequences whose joint conditional type is the -shell
and denote it by .
Like we did in the Corollary 1, we can upper bound the prob-

ability of -shells. Note that if , then

where is the accept codeword, is the reject
codeword, , and .
Noting that , we get

(18a)

(18b)

C. Decoding Rule

For an encoder like the one in Section III-B, a decoder that
depends only on the conditional type of for different code-
words in the communication phase, i.e., ’s for
, the conditional type of the channel output in the control

phase, i.e., , and the indices of the codewords can achieve
the minimum error probability for a given erasure probability.
However, finding that decoder becomes analytically intractable.
Instead, we restrict ourselves to the decoders that can be written
in terms of pairwise comparisons between messages given .
Furthermore, we assume that these pairwise comparisons de-
pend only on the conditional type of for the messages com-
pared, the conditional output type in the control phase, and the
indices of the messages. Thus, if the triplet corresponding to the
tentative decision dominates all other

triplets of the form for , the
tentative decision becomes final; else an erasure is declared.11

Hence, the decoder is of the form given in (19), shown at the
bottom of the page.
The binary relation used in (19) is such that if

dominates then does not dominate
, i.e.,

11Note that conditional probability is only a function of
corresponding and . Thus, all decoding rules that accept

or reject the tentative decision , based on a threshold test on likelihood ratios,

, for , are in this family of decoding rules.

if

if such that
(19)
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This property is a necessary and sufficient condition for a bi-
nary relation to be a domination rule. Decoder given by (19),
however, either accepts or rejects the tentative decision given
in (17). Consequently, its domination rule also satisfies the fol-
lowing two properties.
1) If the empirical mutual informations of the messages in
the communication phase are not equal, only the mes-
sage with larger mutual information can dominate the
other one.

2) If the empirical mutual informations of the messages in
the communication phase are equal, only the message
with lower index can dominate the other one.

For any such binary relation there is a corresponding decoder of
the form given in (19). In our scheme, we either use the trivial
domination rule leading to the trivial decoder or the
domination rule given in (20), shown at the bottom of the page,
both of which satisfy these conditions.
Among the family of decoders we are considering, i.e.,

among the decoders that only depend on the pairwise compar-
isons between conditional types and indices of the messages
compared, the decoder given in (19) and (20) is optimal in
terms of error-exponent/erasure-exponent tradeoff. Further-
more, in order to employ this decoding rule, the receiver needs
to determine only the two messages with the highest empirical
mutual information in the first phase. Then, the receiver needs
to check whether the triplet corresponding to the tentative de-
cision dominates the triplet corresponding to the message with
the second highest empirical mutual information. If it does,
then, for the rule given in (20), it is guaranteed to dominate the
rest of the triplets as well.

D. Error Analysis

Using the encoder like the one described in Section III-B and
the decoder like the one in (19), we achieve the performance
given below. If , then the domination rule

given in (20) is used in the decoder; else a trivial domination
rule that leads to an erasure-free decoding is used in the
decoder.

Theorem 1: For any block length , rate , erasure
exponent , time-sharing constant , communication phase
type , and control phase type , there exists a length block
code with feedback such that

where is given by (21), shown at the
bottom of the page. The optimization problem given in (21) is
a convex optimization problem: it is minimization of a convex
function over a convex set. Thus, the value of the exponent

can numerically be calculated relatively
easily. Furthermore, can be written in
terms of solutions of lower dimensional optimization problems;
see (42). However, problem of finding the optimal
triple for a given pair is not that easy in general, as we
will discuss in more detail in Section III-E.

For all control phase types and control phase output types
, , . Using this fact

together with the definitions of , ,

and given in (6), (16), and (21), we can
conclude that for all

such that
We are interested in quantifying the gains of errors-and-era-

sures decoding over the decoding schemes without erasures,
thus we are ultimately interested only in the region where

holds. However, (21) gives us the whole achievable
region for the family of codes we are considering.

and for

and for
(20)

if

if
(21a)

and (21b)

(21c)
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Proof: A decoder of the form given in (19) decodes cor-
rectly when and for all12 .
Thus, an error or an erasure occurs only when the correct mes-
sage does not dominate all other messages, i.e., when
such that . This can happen in two ways: ei-
ther there is an error in the first phase, i.e., or first phase
tentative decision is correct, i.e., , but the second phase
observation leads to an erasure, i.e., . For a domi-
nation rule satisfying constraints described in Section III-C, the
total probability of the above mentioned two events, hence the
sum of error-and-erasure probabilities, can be bounded as13

s.t.

(22)

where is the intersection of -shell of message
with the -shells of other messages, defined in (14).

Now we bound the summands in (22).
• As a result of Corollary 1, we have

• Furthermore, because of (18a)

• In addition, the number of different nonempty -shells in
the communication phase is less than and
the number of nonempty -shells in the control phase is
less than .

Thus, we can bound like

12We use the short hand for

in the rest of this

section.
13Note that for the case when , we need to replace

with .

(23)

where is the set of triples corresponding to era-
sures with a correct tentative decision, defined in14

and

and (24)

Using the definition of given in (5) together with the
inequality (23), we bound by the inequality (25),
shown at the bottom of the page.
On the other hand, an error occurs only when an incorrect

message dominates all other messages, i.e., when such
that for all , thus is given by

s.t.

(26)

When a dominates all other , it also dominates
, i.e., we have the relation given in

s.t.

s.t. (27)

Consequently, we can bound the error probability by

(28)

The tentative decision is not equal to only if there is a
message with a strictly higher empirical mutual information or
if there is a messages which has an equal mutual information but
smaller index. This is the reason why we sum over

in (28). Using inequality (18b) in the inner most
two sums and then applying inequality (15), we get (29), shown

14Note that in (24) is a dummy variable and is the same set for all
.

(25)
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at the bottom of the page, where15 is the complement of
in given by

and

and (30)

The domination rule divides the set into two subsets: the
erasure subset and the error subset . Choosing the domi-
nation rule is equivalent to choosing the . Depending on the
value of and , we chose different ’s as follows.
i) : . Then, and Theorem
1 follows from (25).

ii) : is given by

and

(31)

Then, all the triples satisfying

are in the error subset. Thus, as a result of (25), erasure
probability is bounded as and Theorem
1 follows from (29).

E. Lower Bound to

In this section, we use Theorem 1 to derive a lower bound to
the optimal error exponent .We do that by optimizing
the achievable performance over , , and
.
High Erasure-Exponent Region [i.e., ]: As a

result of (21), , and , we have:
• , for all ,
and ;

• for , for all and for
.

Thus, for all pairs such that : optimal time
sharing constant is , optimal input distribution is the optimal
input distribution for random coding exponent at rate , we
use maximum mutual information decoding and never declare

15Note that in the definition of is also a dummy variable.

erasures. Furthermore, since , we have only a single phase
in our scheme. Thus, and

(32)

where satisfies and can be any
control phase type. Evidently benefits of errors-and-erasures de-
coding are not observed in this region.
Low Erasure-Exponent Region [i.e., ]: We ob-

serve and quantify the benefits of errors-and-erasures decoding
for pairs such that . Since is a
nonnegative nonincreasing and convex function of , ,

, we have

where is the unique solution of the equation
.

For the case , however, has mul-
tiple solutions and Theorem 1 holds but resulting error exponent

does not correspond to the error exponent of
a reliable sequence. Convention introduced in (33) addresses
both issues at once, by choosing the minimum of those solu-
tions as . In addition, by this convention, is
also continuous at :

(33)

where is the inverse of the function .
As a result of (21) and (33), and ,

we have:
• for all ,
and ;

• for , for all and for
.

Thus, for all pairs such that , optimal time
sharing constant is in the interval .
For an triple such that , , and

, let be

(34)
The constraint on mutual information is there to ensure that

’s are corresponding to error exponent of

(29)
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reliable sequences. The set is convex because
and are concave in .

Note the following.
• If and , satisfies
the constraint given in (35a)–(35b), shown at the bottom of
the page. Thus, for such pairs, we can restrict the
optimization over to the set .

• If and , corresponds to
the error exponent of a reliable sequence only if it satisfies
constraints given in (35a)–(35b).

Thus, using Theorem 1, we conclude that given
in (36), shown at the bottom of the page, is an achievable
error exponent at rate and erasure exponent , where

, and are given in
(21), (33), and (34), receptively.
Note that unlike itself, as de-

fined in (36) corresponds to the error exponent of reliable code
sequences even at .
If the maximizing , for the inner maximization in

(36), is the same for all , the op-
timal value of is . In order to see that, we
first observe that in any fixed such that

, function is convex
in for all , where is the
unique solution of the equation16 as is shown
in Lemma 10 in Appendix B. Since the maximization preserves
the convexity, is also convex in
for all . Thus, for any triple,

takes its maximum value either at the
minimum possible value of , i.e., ,
or at the maximum possible value of , i.e., . It is shown in

16Evidently, we need to make a minor modification for case as before
to ensure that we consider only the ’s that correspond to the
reliable sequences: .

Appendix C that takes its maximum
value at .
Furthermore, if the maximizing is not only the same for

all for a given pair but also for all
pairs such that , then we can find the op-

timal by simply maximizing over ’s. In symmetric
channels, for example, uniform distribution is the optimal dis-
tribution for all pairs and the error exponent is simply
given by (37), shown at the bottom of the page, where is the
uniform distribution.

F. Alternative Expression for Exponent

The minimization given in (21) for is
over transition probability matrices and control phase output
types. In order to get a better grasp of the resulting expression,
we simplify the analytical expression in this section. We do that
by expressing the minimization in (21) in terms of solutions of
lower dimensional optimization problems.
Let be the minimum Kullback–Leibler di-

vergence under with respect to among the transition
probability matrices whose mutual information under is less
than and whose output distribution under is . It is shown
in Appendix B that for a given , is convex in

pair. Evidently, for a given pair, is
nonincreasing in . Thus, for a given pair,
is strictly decreasing on a closed interval and is an extended
real-valued function of the form given in (38a)–(38c), shown at
the bottom of the next page, where iff for all
pairs such that is zero is also zero.
Let be the minimum Kullback–Leibler divergence

with respect to under , among the ’s whose Kull-
back–Leibler divergence with respect to under is less
than or equal to

(39)

(35a)

(35b)

(36)

if
if

(37)
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For a given , is nonincreasing and convex in , thus
is strictly decreasing in on a closed interval. Equiv-

alent expressions for and boundaries of this closed in-
terval are derived in Appendix A given in

if
if
if

(40)

where

if

if

if

For a such that , using the
definition of in (21) together with the (16),
(38a)–(38c), and (40), we get (41), shown at the bottom of the
page.
For any , the above minimum is also

achieved at a such that . In order
to see this take any minimizing , then there
are three possibilities:

a) claim holds trivially;
b) , since is a nonincreasing
function , is also minimizing, thus the
claim holds;

c) , since is a nonincreasing func-
tion , is also minimizing, thus the claim
holds.

Thus, is given by (42), shown at the bottom
of the page.
Equation (42) is simplified further for symmetric channels as

follows. Recall that for symmetric channels

(43)

where is the uniform input distribution and is the cor-
responding output distribution under . Using an alternative
expression for given in (42) together with
(37) and (43) for symmetric channels, we get (44), shown at the
bottom of the next page, where is given in (33).
Although (43) does not hold in general using definition of

and , we can assert that

(45)

Note that inequality given in (45) can be used to bound the
minimized expression in (42) from below. In addition, recall
that if the constraint set of a minimization is enlarged, then the
resulting minimum cannot increase. We can use (45) also to

(38a)

(38b)

(38c)

(41)

if

if

(42)
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enlarge the constrained set of the minimization in (42). Thus,
we get an exponent , given in (46), shown
at the bottom of the page, which is smaller than or equal to

in all channels and for all rate erasure-ex-
ponent pairs.
After an investigation, very similar to the one we have al-

ready done for in Section III-E, we con-
clude that given in (47), shown at the bottom of the
page, where , , and
are given in (33), (34), and (46), respectively, is an achievable
error exponent for the for reliable sequences emerging from
(46).

G. Special Cases

Zero Erasure-Exponent Case : Using a simple
repetition-at-erasures scheme, fixed-length errors-and-erasures
codes can be converted into variable-length block codes, with
the same error exponent. Thus, the error exponents of vari-
able-length block codes given by Burnashev [3] are an upper
bound to the error exponent of fixed-length block codes with
erasures

where .

We show below that . This implies
that our coding scheme is optimal for for all rates, i.e.,

.
Recall that, for all less than the capacity, .

Furthermore, for any

Thus, for any such that ,
, , and imply

that , , . Consequently

When we maximize over and , we get

for all . Simply inserting the minimum possible value
of , i.e., , we get

Thus, .
Indeed one need not to rely on the converse of variable-length

block codes in order to establish the fact that
. The lower bound to the probability of the error presented

in the next section not only recovers this particular optimality re-
sult but also upper bounds the optimal error exponent
as a function of rate and erasure exponents .
Channels With Nonzero Zero-Error Capacity: For chan-

nels with a nonzero zero-error capacity, as a result of (21),
for any . This implies that we can

get error-free block codes with this two-phase coding scheme

if

if (44)

if

if

(46)

(47)



NAKIBOĞLU AND ZHENG: ERRORS-AND-ERASURES DECODING FOR BLOCK CODES WITH FEEDBACK 35

for any rate and any erasure exponent .
As we discuss in Section V in more detail, this is the best
erasure exponent for rates over the critical rate, at least for the
symmetric channels.

IV. AN OUTER BOUND FOR ERROR-EXPONENT/
ERASURE-EXPONENT TRADEOFF

In this section, we derive an upper bound on
using previously known results on the erasure-free block codes
with feedback and a generalization of the straight-line bound
of Shannon et al. [30]. We first present a lower bound on the
minimum error probability of block codes with feedback and
erasures, in terms of that of shorter codes in Section IV-A.
Then, in Section IV-B, we make a brief overview of the outer
bounds on the error exponents of erasure-free block codes with
feedback. Finally, in Section IV-C, we use the relation we have
derived in Section IV-A to tie the previously known results we
have summarized in Section IV-B to bound .

A. A Trait of Minimum Error Probability
of Block Codes With Erasures

Shannon et al. [30] considered fixed-length block codes, with
a list decoding and established a family of lower bounds on the
minimum error probability in terms of the product of minimum
error probabilities of certain shorter codes. They have shown
[30, Th. 1] that for fixed-length block codes with a list decoding
and without feedback

(48)

where denotes the minimum error probability of
erasure-free block codes of length with equally probable
messages and with decoding list size . As they have already
pointed out in [30], this theorem continues to hold in the case
when a feedback link is available from the receiver to the trans-
mitter; although ’s are different when feedback is available,
the relation given in (48) still holds. They were interested in era-
sure-free codes. On the other hand, we are interested in block
codes which might have nonzero erasure probability. Accord-
ingly, we need to incorporate erasure probability as one of the
parameters of the optimal error probability. This is what this
section is dedicated to.
In a size list decoder with erasures, decoded set is either

a subset17 of whose size is at most , like the erasure-free
case, or a set which only includes the erasure symbol, i.e., either

such that or . An erasure occurs
whenever and an error occurs whenever and

.We will denote the minimum error probability of length
block codes, with equally probable messages, decoding list
size , and erasure probability by .
Theorem 2 bounds the error probability of block codes with

erasures and list decoding using the error probabilities of shorter
codes with erasures and list decoding, as [30, Th. 1] does in
the erasure-free case. As its counterpart in the erasure-free case,

17Note that if , then , because .

Theorem 2 is later used to establish the outer bounds to the error
exponents.

Theorem 2: For any , , , , , , and ,
the minimum error probability of fixed-length block codes with
feedback satisfies

(49)

Note that given a triple if the error-proba-
bility/erasure-probability pairs and are
achievable, then for any using the initial symbol

of the feedback link we can construct a code that uses
the code achieving with probability and the
code achieving with probability . This
new code achieves error-probability/erasure-probability pair

. As a result, for any
triple, the set of achievable error probability erasure

probability pairs is convex. We use this fact twice in order to
prove Theorem 2.
Let us first consider the following lemma which bounds the

achievable error-probability/erasure-probability, pairs for block
codes with nonuniform a priori probability distribution, in terms
of block codes with a uniform a priori probability distribution
but fewer messages.

Lemma 2: For any length block code with message set ,
a priori probability distribution on , erasure probability
, decoding list size , and integer

(50)

where and .

Recall that is the minimum error proba-
bility of length codes with equally probable messages
and decoding list size , with feedback if the original code does
have feedback, and without feedback if the original code does
not.
Note that is the error probability of a decoder which

decodes to the set of most likely messages under . In other
words, is the minimum error probability for a size
list decoder when the posterior probability distribution is .

Proof: If , the lemma holds trivially. Thus,
we assume henceforth. For any size
subset of , one can use the encoding scheme and the
decoding rule of the original code for , to construct the fol-
lowing block code for .
• Encoder: use the encoding scheme for message

in the original code, i.e., for all , , and
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• Decoder: For all if the original decoding rule
declares erasure, declare erasure; else decode to the inter-
section of the original decoded list and

if
else.

This is a length code with messages and decoding
list size . Furthermore, for all in , the conditional error
probability and the conditional erasure probability
are equal to the conditional error probability and the con-
ditional erasure probability in the original code, respec-
tively.
Note that for all such that

(51)

where is the set of the achievable error prob-
ability, erasure probability pairs for length block codes with

equally probable messages, and with decoding list size
.
Let the smallest nonzero element of

be . For any size
subset of , which includes , and all whose

elements have nonzero probabilities, say , we have

Equation (51) and the definition of imply that
such that

(52)

(53)

where

Furthermore, the number of nonzero ’s is at least one
fewer than that of nonzero ’s. The remaining probabilities

have a minimum among their nonzero ele-
ments. One can repeat the same argument once more using that
element and reduce the number of nonzero elements to at least
one more. After at most such iterations, one reaches
to , which is nonzero for or fewer messages

(54)

where

and

In (54), the first sum is equal to a convex combination of
’s multiplied by ; the second sum is equal to a

pair with nonnegative entries. As a result of the definition of
given in (50)

(55)

Then, as a result of convexity of , we can
conclude that there exists a such that

for some , ,
and . Thus

(56)
for some .
Then, the lemma follows from (56), the fact that

is decreasing in , and the fact that
is uniquely determined by

for for all as follows:

(57)

For proving Theorem 2, we express the error-and-erasure
probabilities as a convex combination of error-and-erasure
probabilities of long block codes with a priori prob-
ability distribution over the messages,
and apply Lemma 2 together with convexity arguments similar
to the ones above.

Proof of Theorem 2: For all in , let be the
decoding region of , let be the decoding region of the
erasure symbol , and let be the error region of

where . Then, for all . Then

(58)

Note that18

Then, the erasure probability is

18There is a slight abuse of notation here: if ’s include real-valued random
variables with densities, we should integrate, rather than sum, over them. Since
it is clear from the context what needs to be done we omit that subtlety in the
following calculations.
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Note that for every , is the erasure probability of a
code of length with a priori probability distribution

. Furthermore, one can write the error
probability as

where is the error probability of the very same
length code. As a result of Lemma 2, the pair

satisfies

(59)
Then, using the convexity19 of in , we con-
clude that for any , satisfies (60), shown at the
bottom of the page.
Now consider a code which uses the first time units of

the original encoding scheme as its encoding scheme. Decoder
of this new code draws a real number from uniformly
at random, independently of of the original code (and the
message evidently). If this number is less than , it declares
erasure; else it makes a maximum-likelihood decoding with
list of size . Then, the sum on the left-hand side of (61) is
its error probability. But that probability is lower bounded by

, which is the minimum error probability over
all length block codes with messages and decoding list
size , i.e.,

(61)

Then, the theorem follows from (60), (61) and the fact that
is a decreasing function of .

As the result of Shannon et al. [30, Th. 1], Theorem 2 is cor-
rect both with andwithout feedback. Although ’s are different

19The convexity of in follows from (57) and the con-
vexity of the region .

in each case, the relationship between them given in (49) holds
in both cases.

B. Classical Results on Error Exponent of Erasure-Free
Block Codes With Feedback

In this section, we give a very brief overview of the previously
known results on the error probability of erasure-free block
codes with feedback. These results are used in Section IV-C
together with Theorem 2 to bound from above. Note
that Theorem 2 only relates the error probability of longer codes
to that of the shorter ones. It does not in and of itself bound the
error probability. It is in a sense a tool to glue together various
bounds on the error probability.
First bound we consider is on the error exponent of era-

sure-free block codes with feedback. Haroutunian [17]
proved that, for any sequence of triples, such
that

(62)

where

(63a)

(63b)

Second boundwe consider is on the tradeoff between the error
exponents of two messages in a two-message erasure-free block
code with feedback. Berlekamp mentions this result in passing
[1] and attributes it to Gallager and Shannon.

Lemma 3: For any feedback encoding scheme with two mes-
sages and erasure-free decision rule and for all

either (64a)

or (64b)

where

(65)

(66)

Result is old and somewhat intuitive to those who are familiar
with the calculations in the nonfeedback case. Thus, probably it

(60)
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has been proven a number of times. But we are not aware of a
published proof, hence we have included one in Appendix A.
Although Lemma 3 establishes only the converse part,

is indeed the optimal tradeoff for the error expo-
nents of two messages in an erasure-free block code, both
with and without feedback. Achievablity of this tradeoff has
already been established in [30, Th. 5] for the case without
feedback; evidently this implies the achievablity with feedback.
Furthermore, does have an operational meaning; it is the
maximum error exponent first message can have, while the
second message has zero-error probability. This fact is also
proved in Appendix A.
For some channels Lemma 3 gives us a bound on the error

exponent of erasure-free codes at zero rate, which is tighter than
Haroutunian’s bound at zero rate. In order to see this let us first
define to be

(67)

Note that is finite iff for all ,
pairs. Recall that this is also the necessary and sufficient condi-
tion of zero-error capacity to be zero. on the other
hand is infinite for all like where is given
by

(68)

Even in the cases where is finite, . We can
use this fact, Lemma 3, and Theorem 2, or [30, Th. 1] for that
matter, to strengthenHaroutunian bound at low rates, as follows.

Lemma 4: For all channels with zero zero-error capacity,
and any sequence of , such that

(69)

where

if
if

and is the unique solution of the equation
if it exists; otherwise.

Before going into the proof let us note that is obtained
simply by drawing the tangent line to the curve
from the point . The curve is the same as
the tangent line, for the rates between and , and it is the
same as the curve from then on where is the
rate of the point at which the tangent from meets the
curve .

Proof: For , this Lemma immediately follows
from Haroutunian’s result [17] for . If , then
we apply Theorem 2

(70)

with20 , , , and . Furthermore, by
Lemma 3 and the definition of given in (67), we have

(71)

Using (70) and (71), we get

where . The lemma follows by simply applying
Haroutunian’s result to the first terms on the right-hand side.

C. Generalized Straight-Line Bound
for Block Codes With Erasures

Theorem 2 bounds the minimum error probability length
block codes from below in terms of the minimum error

probability of length and length block codes. The
rate and erasure probability of the longer code constraints the
rates and erasure probabilities of the shorter ones, but does
not specify them completely. We use this fact together with
the improved Haroutunian’s bound on the error exponents of
erasure-free block codes with feedback, i.e., Lemma 4, and
the error-exponent tradeoff of the erasure-free feedback block
codes with two messages, i.e., Lemma 3, to obtain a family of
upper bounds on the error exponents of feedback block codes
with erasure.

Theorem 3: For any DMC with rate and
and for any

where is the unique solution of

Theorem 3 simply states that any line connecting any two
points of the curves
and lies above the surface

. The condition is
not merely a technical condition due to the proof technique; as
we will see in Section V for channels with , there are
zero-error codes with erasure exponent as high as for
any rate .

Proof: We will consider the cases and
separately.

• : For any sequence such that
, , if

we choose , as a result of Lemma 4, we know
that there exists a sequence such that

and

20Or [30, Th. 1] with and .
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Theorem 2 for , , implies

where the second inequality follows from the fact that
is a decreasing function of . If we take

the logarithm of both sides and divide by , we get

(72)

Since and is convex, we have

Assume for the moment for any and sequence
of such that , we have

(73)

Then, Theorem 3 follows from (72) if we take the limit as
goes to infinity and use the fact that is a nonde-

creasing function of .
In order to establish (73), note that if and ,
then . Thus, (73) holds trivially. For
case, we prove (73) by contradiction. Assume that (73) is
wrong. Then, there exist an and a block code with
erasures that satisfies

Enlarge the decoding region of by taking its union with
the erasure region

The resulting code is an erasure-free code with

Since , , this contradicts with
Lemma 3, thus (73) holds.

• : Apply Theorem 2 with , ,
, and

(74)

Note that for

Then, as a result of Lemma 4, we have

Then

(75)

Assume for the moment that for any such that

(76)

Then, taking the logarithm of both sides of (74), dividing
both sides by , taking the limit as tends to infinity, and
substituting (75) and (76), we get

(77)

Note that Theorem 3 for case is equivalent
to (77). Identity given in (76) follows from an analysis sim-
ilar to the one used for establishing (73), in which instead
of Lemma 3 we use a simple typicality argument such as
[10, Corollary 1.2].

We have set in the proof. If instead of we had
chosen to be a subexponential function of which grew to
infinity with , the logic and the mechanics of the proof would
still work but we would have replaced with ,
while keeping the term including the same. Since the
best known upper bound for is for ,
the final result is the same for the case with feedback.21 On the
other hand, for the case without feedback, which is not the main
focus of this paper, this does make a difference. By choosing
to be a function of block length that goes to infinity subex-

ponentially with block length, one can use Telatar’s converse
result [31, Th. 4.4], on the error exponent at zero rate and zero
erasure exponent without feedback.
In Fig. 1, the upper and lower bounds we have derived for

error exponent are plotted as a function of the erasure expo-
nent for a binary symmetric channel with crossover probability

at rate 8.62 10 nats per channel use. Solid
lines are the lower bounds to the error exponent for block codes
with feedback, which have been established in Section III, and
without feedback, which was established previously [10], [14],

21In binary symmetric channels, these results can be strengthened using the
value of , [35]. However, those changes will improve the upper bound on
error exponent only at low rates and high erasure exponents.
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Fig. 1. Error exponent versus erasure exponent.

[31]. Dashed lines are the upper bounds obtained using Theorem
3.
Note that all four curves meet at a point on the bottom right;

this is the point that corresponds to the error exponent of block
codes at the rate 8.62 10 nats per channel use and its
values are the same with and without feedback since we are on
a symmetric channel and our rate is over the critical rate. Any
point to the lower right of this point is achievable both with and
without feedback.
The proximity of the inner and outer bounds demonstrated in

Fig. 1 is not particular to the channel we have chosen. A discus-
sion of the closeness of the inner and outer bounds is given in
Section VI.

V. ERASURE EXPONENT OF ERROR-FREE CODES:

For all DMCs which have one or more zero probability tran-
sitions, for all rates below capacity, and for small enough
’s, . For such pairs, coding scheme

we have described in Section III gives us an error-free code. The
connection between the erasure exponent of error-free block
codes and the error exponent of block codes with erasures is not
confined to this particular encoding scheme. In order to explain
those connections in more detail let us first define the error-free
codes more formally.

Definition 3: A sequence of block codes with feedback is
an error-free reliable sequence iff

and

The highest rate achievable for error-free reliable codes is the
zero-error capacity with feedback and erasures .

If all the transition probabilities are positive, i.e.,
, then for all

and . Thus, we have

(78)
Consequently, we have and is zero.
On the other hand, as an immediate consequence of the encoding
scheme suggested by Yamamoto and Itoh [33], if there is one
or more zero probability transitions, is equal to channel
capacity .

Definition 4: For all DMCs with at least one pair such
that , erasure exponent of error-free block
codes with feedback is defined as

(79)

For any erasure exponent less than , there is an error-
free reliable sequence, i.e., there is a reliable sequence with an
infinite error exponent

(80)

More interestingly, if , then .
In order to see this, let be the minimum nonzero transition
probability. Then, for any and such that

, we have . Thus,

if , then .
Using this, we get
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(81)

Equation (81) reveals that the total probability of ’s, at
which the receiver chooses to decode to a message rather than
declaring an erasure despite the fact that it is not certain about
the message, is upper bounded by times the unde-
tected error probability. Thus, if we replace the decoder with a
new decoder, which declares an erasure unless it is sure about
the transmitted message, i.e., unless there is a message with
posterior probability one, resulting erasure probability will
be bounded in terms of original error-and-erasure probabilities
as follows:

(82)

Thus, by changing the decoding rule, any length code with
error probability and erasure probability can be trans-
formed into error-free code with erasure probability , where

satisfies (82). Using this transformation, we can change any
code with errors-and-erasure decoding into an error-free block
code with erasures. Evidently, we can use the very same trans-
formation to convert reliable sequences into error-free reliable
sequences. Considering error-and-erasure exponents of the orig-
inal reliable sequences and erasure exponents of the resulting
error-free reliable sequences, we get

(83)

Consequently

(84)

As a result of (80) and (84), we can conclude that
if and only if . In a sense, similarly to the error

exponent of erasure-free block codes , the erasure expo-
nent of the error-free bock codes gives a partial descrip-
tion of . gives the value of error exponents below
which the erasure exponent can be pushed to infinity and
gives the value of the erasure exponent below which the error
exponent can be pushed to infinity.

In the following, the erasure exponent of zero-error codes
is investigated separately for two families of channels:

channels which have a positive zero-error capacity, i.e.,
and channels which have zero zero-error capacity, i.e., .

A. Case 1:

Theorem 4: For a DMC, if , then

Proof: If zero-error capacity is strictly greater than zero,
i.e., , then one can achieve the sphere packing expo-
nent, with zero-error probability using a two-phase scheme.
In the first phase, the transmitter uses a length
block code without feedback with a list decoder of size

where is the input distribution
satisfying . Note that with this list

size the sphere packing exponent22 is achievable at rate .
Thus, the correct message is in the list with at least probability

; see [10, p. 196]. In the second phase, the
transmitter uses a zero-error code of length23

with messages, to tell the receiver whether the correct
message is in that list, and the correct message itself if it is
in the list. Clearly such a feedback code with two phases is
error-free, and it has erasures only when there exists an error
in the first phase. Thus, the erasure probability of the overall
code is upper bounded by . Note that is fixed for
a given . Consequently, as the length of the first phase
grows to infinity, the rate and erasure exponent of
long block code converges to the rate and error exponent of
long code of the first phase, i.e., to and . Thus

Any error-free block code with erasures can be forced to de-
code, at erasures. The resulting fixed-length code has an error
probability no larger than the erasure probability of the original
code. However, we know that [17] the error probability of the
erasure-free block codes with feedback decreases with an expo-
nent no larger than . Thus

This upper bound on the erasure exponent also follows from the
converse result we present in Theorem 6.

For symmetric channels, and Theorem
4 determines the erasure exponent of error-free codes on sym-
metric channels with nonzero zero-error capacity completely.

B. Case 2:

This case is more involved than the previous one. First, we es-
tablish an upper bound on in terms of the improved ver-
sion of Haroutunian’s bound, i.e., Lemma 4, and the erasure ex-
ponent of error-free codes at zero rate . Then, we show that

is equal to the erasure-exponent error-free block codes
with two messages and bound from below.
For any , , and , for large enough
. We denote the minimum of such ’s by .

Thus, we can write as

Theorem 5: For any , , , and , minimum
erasure probability of fixed-length error-free block codes with
feedback satisfies

(85)

22Indeed this upper bound on error probability is tight exponentially for block
codes without feedback.
23For some DMCs with and for some , one may need more than

time units to convey one of the messages without any errors,
because itself is defined as a limit. But even in those cases we are guaranteed
to have a fixed amount of time for these transmissions, which do not change
with . Thus, the above argument holds as is, even in those cases.
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As Theorem 2, Theorem 5 is correct both with and without feed-
back. Although ’s and will be different in each case, the
relationship between them given in (85) holds in both cases.

Proof: If , the theorem holds triv-
ially. Thus, we assume henceforth that .
Using Theorem 2 with , we get

Since and
, we have

Thus

As we have done in the errors-and-erasures case, we can con-
vert this into a bound on exponents. If we use the improved ver-
sion of Haroutunian’s bound, i.e., Lemma 4, as an upper bound
on the error exponent of erasure-free block codes, we get the
following.

Theorem 6: For any rate for any

Now let us focus on the value of the erasure exponent at zero
rate.

Lemma 5: For the channels which have zero zero-error ca-
pacity, i.e., , the erasure exponent of error-free block
codes at zero rate is equal to the erasure exponent of
error-free block codes with two messages .

Note that unlike the two-message case , in the zero rate
case , the number of messages increases with block length
to infinity, thus we cannot claim just as a result of
their definitions.

Proof: If we write Theorem 5 for , and

Thus, as an immediate result of the definitions of and ,
we have .
In order to prove the equality, one needs to prove
. For doing that let us assume that it is possible to send one

bit with erasure probability with a block code of length

(86)

One can use this code to send bits, by repeating each bit when-
ever there exists an erasure. If the block length is ,
then a message erasure occurs only when the number of bit era-
sures in trials is more than . Let denote the number
of erasures out of trials, then

and

Thus

Then, for any , we have

Evidently for . Thus

Then, is an achievable erasure exponent for any sequence

of ’s such that , i.e., . Thus,
any exponent achievable for the two-message case is achievable
for zero rate case: .

As a result of Lemma 6, which is presented in the next section,
we know that

where

Thus, as a result of Lemma 5, we have

C. Lower Bounds on

Suppose at time the correct message is assigned to the
input letter and the other message is assigned to the input
letter , then the receiver cannot rule out the incorrect message
at time with probability . Using this fact,
one can prove that

(87)
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Now let us consider channels whose transition probability ma-
trix is of the form

(88)

We denote the output letter that can be reached from both of
the input letters by . For the moment, we consider only the
deterministic encoding schemes, i.e., . Note that in the
optimal encoding scheme

Then, for all and

(89)

Furthermore, if , then the receiver cannot decode
without errors, i.e., it has to declare an erasure. Then

(90)

where hods because the arithmetic mean is larger than the
geometric mean and follows from (89).
For given in (88) the bound given in (90) is very tight.

If the encoder assigns the first message to the input letter that
always leads to and the secondmessage to the other input letter
in first instances, and does the flipped assignment in the last

instances, then an erasure happens with a probability less
than , i.e., .
On the other hand, for given in (88), the bound given in

(87) ensures only , rather than
. Thus, for the channel given in (88), the bound given in (90)

is tighter than the one in (87).
The idea used in deriving the bound given in (90) for this

particular can be applied to a general DMC to prove the
following lower bound:

(91)

The bound given in (91) decays exponentially in , even when
all entries of are positive, however for those channels the
bound given in (87) implies . Thus, the bound
given in (91) cannot be superior to the bound given in (87) in
general. The following bound implies bounds given in both (87)
and (91). Furthermore, for certain channels, it is strictly better
than both.

Lemma 6: Erasure probability of all error-free block codes
with two messages is lower bounded as

(92)

where

Note that bounds given in (87) and (91) are implied by
and , respectively.

Although is convex in on
for all pairs, is not convex in because of the min-
imization in its definition. Thus, the supremum over does not
necessarily occur on the boundaries. Indeed there are channels
for which the bound given in Lemma 6 is strictly better than the
bounds given in (87) and (91). Following is the transition prob-
ability matrix of one such channel

, , and
.

Proof: Let and be

Then, for any error-free code and for any , we have

(93)

where the last inequality follows from the fact that the arithmetic
mean is lower bounded by the geometric mean.
Furthermore, using the law of total expectation, we can

rewrite the first terms in (93) as described in (94), shown at the
bottom of the page. Note that

(95)

(94)
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Similarly

(96)

Thus, using (95) and (96), we have

(97)

where the last inequality follows from the definition of
given in (92).
Using (94) and (97), we get

(98)

If we follow a similar line of reasoning for the second term in
(93), we get

(99)

The lemma follows from (93), (98), and (99) by taking the
supremum over .

VI. DISCUSSION

The value of the error exponent is not known for erasure-free
fixed-length block codes with feedback on a general DMC. We
do not even know if it is still upper bounded by the sphere
packing exponent for nonsymmetric DMCs. Yet the value of
the error exponent for fixed-length block codes with feedback
and errors-and-erasures decoding can be deduced, for the zero-
erasure-exponent case, from the results on the variable-length
block codes [3], [33]. Our main aim in this paper was estab-
lishing upper and lower bounds that extend the bounds at the
zero erasure-exponent case gracefully and nontrivially to the
positive erasure-exponents values. Our results are best under-
stood in this framework and should be interpreted accordingly.
By finding the optimal error-exponent/erasure-exponent

tradeoff, one solves the open problem of finding the optimal
error exponent of erasure-free fixed-length block codes with
feedback. This is an important and difficult problem on its
own. We did not attempt to solve that problem, yet the inner
and outer bounds we have derived for the case with erasure
quantify how much we loose from the optimal performance by
using the encoding schemes inspired by the optimal encoding
schemes for variable-length block codes.

We derived inner bounds using two-phase encoding schemes,
which are known to be optimal at zero-erasure-exponent case.
We have improved the performance of these two-phase schemes
at positive erasure-exponent values by choosing relative dura-
tions of the phases considering the desired values of the rate and
erasure exponent, and by using a decoder that takes into account
the outputs of both phases while deciding between decoding to a
message and declaring an erasure. However within each phase
the assignment of messages to input letters is fixed. In a gen-
eral feedback encoder, on the other hand, the assignment of the
messages to input symbols at each time can depend on the pre-
vious channel outputs, and such encoding schemes have proven
to improve the error exponent at low rates [6], [13], [23], [34]
for some DMCs. Using such an encoding in the communication
phase will improve the performance at low rates. In addition,
instead of committing to a fixed duration for the communica-
tion phase, one might consider using a stopping time to switch
from the communication phase to the control phase. However,
in order to apply these ideas effectively for a general DMC,
it seems that one first needs to solve the problem for the era-
sure-free block codes for a general DMC.
We derived the outer bounds without making any assump-

tion about the feedback encoding scheme. Thus, they are valid
for any fixed-length block code with feedback and erasures.
The principal idea of the straight-line bound is making use of
the bounds derived for different rate, erasure-exponent pairs by
taking their convex combinations. This approach can be inter-
preted as a generalization of the outer bounds used for vari-
able-length block codes [2], [3]. As was the case for the inner
bounds, it seems that in order to improve the outer bounds one
needs to establish the outer bounds on two related problems,
i.e., on the error exponents of erasure-free block codes with
feedback and on the error-exponent/erasure-exponent tradeoff
at zero rate.
The inner and outer bounds we have derived do not coincide

for arbitrary values of the erasure exponent. But they do coin-
cide for all channels at all rates at zero erasure exponent.
• If the channel does not have a zero probability transition,
both the inner bound and the outer bound are equal to

.
• If the channel does have a zero probability transition, the
inner bound is equal to infinity and there are fixed-length
block codes with zero-error probability for all large enough
block lengths.

Furthermore, on the plane where the erasure exponent is equal
to the error exponent, the outer bound we have derived is loose
only as much as the best outer bound we know for the error ex-
ponent of the erasure-free block codes with feedback is loose.
Thus, the proximity we have observed between the inner and
outer bounds in Fig. 1 is not peculiar to the particular channel
we have chosen for Fig. 1. For all channels, the inner and outer
bounds we have derived coincide in the upper left corner as they
do in Fig. 1. If the channel is symmetric and if we are con-
sidering a rate over critical rate they will also coincide in the
lower right corner. Furthermore, if the sphere packing exponent
is shown to be an upper bound for the error exponent of era-
sure-free fixed-length block codes, this behavior will extend to
nonsymmetric channels.
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APPENDIX A
THE ERROR-EXPONENT TRADEOFF FOR FEEDBACK ENCODING

SCHEMES WITH TWO-MESSAGE AND ERASURE-FREE
DECODERS

In this appendix, we will first establish an alternative expres-
sion for the function defined in (39) in Lemma 7. After
that, we will prove that in a two-message code with feedback on
a DMC, if the error exponent of one of the messages is greater
than some , then the error exponent of the other mes-
sage cannot be greater than , where and are de-
fined in (65) and (66), respectively. Furthermore, we will prove
that if the error probability of the one of the messages is zero,
then the error probability of the other message cannot be lower
than ; we will also prove that it can be as low as ;
see Lemma 8. These results will imply that the error perfor-
mance of a two-message code does not improve with feedback.
Berlekamp attributes this result to Shannon and Gallager in [1].

Lemma 7: defined in (39) is equal to the expres-
sion given in (40)

Proof: satisfies

(100)

Note that follows from convexity of
in and linearity (concavity) of it in ;

holds because minimizing is for .
The function on the right-hand side of (100) is maximized at a

positive and finite iff there is a such that

. Thus, by substituting , we receive (101), shown at
the bottom of the page. Lemma follows from the definition
at and (101).

Now we are ready to present the proof of Lemma 3

Proof of Lemma 3: Our proof is very much like the one
for the converse part of [30, Th. 5], except few modifications
that allow us to handle the fact that encoding schemes we are
considering are feedback encoding schemes. As [30, Th. 5], we
construct a probability measure on as a function of
and the encoding scheme. Then, we bound the error proba-

bility of each message from below using the probability of the
decoding region of the other message under . We consider
probability measures on rather than to include the pos-
sible randomization in the encoding and decoding schemes.
For any and , let be

if
if s.t.
if

(102)

Recall that

and

Then, for all , we have

(103)

Thus, as a result of the definition of and (103), we have

(104)

Using Lemma 7, the definition of , and (103), we can also
conclude that

(105)

Note that given channel input letters assigned
to each message at time , and are
fixed for any feedback encoding scheme

. Thus, the corresponding is given by

if
if

(106)
Then, for any , let be

(107)

if
if
if for some
if
if

(101)
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Furthermore, let us assume that the conditional distribution of
given under is identical to the condi-

tional distribution of given under , i.e.,
the original conditional distribution.
Note that as a result of (104) and (105), we have

and

Now we make a standard measure change argument

(108)

where

(109)

For , let be

(110)
For any event measurable in the sigma field generated by
as a result of equation (108), we have

and (111)

Following a similar line of reasoning, we get

(112)
where

(113)

and for any event measurable in the sigma field generated by
, we have

and (114)

Note that for all , , and

(115a)

(115b)

(115c)

Thus, as a result of (115), for

(116a)

(116b)

Using (116) and Chebychev’s inequality, we conclude that

Hence

Thus, either the total probability of intersection of
with the decoding region of the second message is equal

to or larger than or the total probability of intersection of
with the decoding region of the first message

is strictly larger than . Then, the lemma follows from (111)
and (114).

As we have noted previously does have an operational
meaning: it is the maximum error exponent first message can
have, when the error probability of the second message is zero.

Lemma 8: For any feedback encoding scheme with two
messages, if , then . Furthermore,
there does exist an encoding scheme such that , then

.
Proof: Let us use a construction similar to the one used in

the proof of Lemma 3

Recall that

Thus

As we have done in the proof of Lemma 3, we will assume
that the conditional distribution of given under

is identical to the conditional distribution of given
under , i.e., the original conditional distribu-

tion.
Then, for any event measurable in the sigma field generated

by , we have

(117)

(118)



NAKIBOĞLU AND ZHENG: ERRORS-AND-ERASURES DECODING FOR BLOCK CODES WITH FEEDBACK 47

where is the minimum nonzero element of .
Since , (118) implies that

and . Using this fact together with (117),
we conclude that

(119)

Let us assume that maximizing -pair in (65) is , i.e.,
. If the encoding scheme

sends for the first message and for the secondmessage, the
decoder decodes to the secondmessage unless for some

and for some such that .
Then, and .

APPENDIX B
CONVEXITY OF IN

Lemma 9: For any probability distribution on input al-
phabet , is convex in pair.

Proof: Note that

Using the convexity of in and Jensen’s in-
equality, we get

where .
If the constraint set of a minimization is enlarged, then the

resulting minimum does not increase. Using this fact together

with the convexity of in and Jensen’s inequality, we
get

where , .

Lemma 10: For all quadruples such that
, is a convex function of

on the interval where is the
unique solution24 of .

Proof: For any such that is a nonnega-
tive, convex, and decreasing function of in the interval

. Thus, is strictly an increasing contin-
uous function of . Furthermore, for ,

, and for , . Thus,
has a unique solution.

Using the convexity arguments analogous to the ones used
in the proof of Lemma 9 one can prove that the inequality
leading to (120) holds for any . Then, the convexity
of in follows from (120), shown at the
bottom of the page, where , , , , and are given
by

24The equation has multiple solutions; we choose the min-
imum of those to be , i.e., .

(120)
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APPENDIX C
,

Let us first consider a control phase type

and establish for all

(121)

First consider

(122)

where the last step follows from the log sum inequality, and
transition probability matrices and are given by

Using a similar line of reasoning, we get

(123)

Note that for all if we use the inequalities
(122) and (123) together with the definition of given in (16)
and (21), we get

for some . Consequently, for all ,
(121) holds.
Note that for all and for all

Thus, for all , we have

(124)
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