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Abstract—The bit-wise unequal error protection problem, for the
case when the number of groups of bits is fixed, is considered for
variable-length block codes with feedback. An encoding scheme
based on fixed-length block codes with erasures is used to estab-
lish inner bounds to the achievable performance for finite expected
decoding time. A new technique for bounding the performance of
variable-length block codes is used to establish outer bounds to the
performance for a given expected decoding time. The inner and the
outer bounds match one another asymptotically and characterize
the achievable region of rate-exponent vectors, completely. The
single-messagemessage-wise unequal error protection problem for
variable-length block codes with feedback is also solved as a nec-
essary step on the way.

Index Terms—Block codes, Burnashev’s exponent, dis-
crete memoryless channels (DMCs), error exponents, errors-
and-erasures decoding variable-length block coding, feedback,
Kudryashov’s signaling, unequal error protection (UEP), vari-
able-length communication, Yamamoto–Itoh scheme.

I. INTRODUCTION

I N the conventional formulation of digital communication
problem, the primary concern is the correct transmission

of the message; hence, there is no distinction between different
error events. In other words, there is a tacit assumption that all
error events are equally undesirable; incorrectly decoding to a
message when a message is transmitted is as undesirable
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as incorrectly decoding to a message when a message is
transmitted, for any other than and other than . There-
fore, the performance criteria used in the conventional formu-
lation (minimum distance between codewords, maximum con-
ditional error probability among messages, average error prob-
ability, etc.) are oblivious to any precedence order that might
exist among the error events.
In many applications, however, there is a clear order of prece-

dence among the error events. For example in Internet commu-
nication, packet headers are more important than the actual pay-
load data. Hence, a code used for Internet communication can
enhance the protection against the erroneous transmission of the
packet headers at the expense of the protection against the erro-
neous transmission of payload data. In order to appreciate such a
coding scheme, one may analyze error probability of the packet
headers and error probability of payload data separately, instead
of analyzing the error probability of the overall message com-
posed of packet header and payload data. Such a formulation for
Internet communication is an unequal error protection (UEP)
problem, because of the separate calculation of the error proba-
bilities of the parts of the messages.
Problems capturing the disparity of undesirability among var-

ious classes of error events, by assigning and analyzing dis-
tinct performance criteria for different classes of error events,
are called UEP problems. UEP problems have already been
studied widely by researchers in communication theory, coding
theory, and computer networks from the perspectives of their
respective fields. In this paper, we enhance the information the-
oretic perspective on UEP problems [2], [5] for variable-length
block codes by generalizing the results of [2] to the rates below
capacity.
In information theoretic UEP, error events are grouped into

different classes and the probabilities associated with these dif-
ferent classes of error events are analyzed separately. In order
to prioritize protection against one or the other class of error
events, corresponding error exponent is increased at the expense
of the other error exponents. There are various ways to choose
the error event classes but two specific choices of error event
classes stand out because of their intuitive familiarity and prac-
tical relevance; they correspond to the message-wise UEP and
the bit-wise UEP. In the following, we first describe these two
types of UEP and then specify the UEP problems we are inter-
ested in this paper.
In the message-wise UEP, the message set is assumed

to be the union of disjoint sets for some fixed , i.e.,
where for all . For

0018-9448/$31.00 © 2012 IEEE



1476 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 3, MARCH 2013

each set , the maximum error probability1 , the rate
, and the error exponent are defined as the corre-

sponding quantities defined in the conventional problem, i.e.,

, ,

, for all in where is
the length of the code. The ultimate aim is calculating the
achievable region of rate vector error exponent vector pairs,

’s where2 and
. The message-wise UEP

problem was the first information theoretic UEP problem to
be considered; it was considered by Csiszár in his work on
joint source channel coding [5]. Csiszár showed that for any
integer , block length , and -dimensional rate vector
such that for , there exists a
length block code with message set where

such that the conditional error probability
of each message in each is less then
where is the random coding exponent and converges
to zero as diverges.3

The bit-wise UEP problem is the other canonical form
of the information theoretic UEP problems. In the bit-wise
UEP problem, the message set is assumed to be the
Cartesian product of for some fixed
, i.e., . Thus, the trans-
mitted message and the decoded message are given by

and , recep-
tively. Furthermore, ’s and ’s are called the transmitted
and decoded submessages, respectively. The error events of
interest in the bit-wiseUEP problem are the ones corresponding
to the erroneous transmission of the submessages. The error
probability , rate , and the error exponent of sub-

messages are given by , ,

for all in where is the block
length. As was the case in the message-wise UEP problem, the
ultimate aim in the bit-wise UEP problem is determining the
achievable region of the rate vector error exponent vector pairs4

. The formulation of Internet communication problem
we have considered above, with packet header and payload
data, is a bit-wise UEP problem with two submessages, i.e.,
with .

1This formulation is called the missed detection formulation of the mes-
sage-wise UEP problem in [2]. If is replaced with

, we get the false alarm formulation of the message-wise
UEP problem. In this paper, we restrict our discussion to the missed detection
problem and use message-wise UEP without any qualifications to refer to the
missed detection formulation of the message-wise UEP problem.
2Here, is assumed to be a fixed integer. All rate-exponent vectors, achiev-

able or not, are in the region of in which and for
all . is the -dimensional real vector space with the norm

3Csiszár proved the aforementioned result not only for the case when
is constant for all but also for the case when is a sequence such that

. See [5, Th. 5].
4Similar to the message-wise UEP problem discussed previously, in the cur-

rent formulation of bit-wise UEP problem, we assume to be fixed. Thus, all
rate-exponent vectors, achievable or not, are in region of in which
and for all , by definition.

There is some resemblance in the definitions ofmessage-wise
and bit-wise UEP problems, but they have very different be-
havior in many problems. For example, consider the message-
wise UEP problem and the bit-wise UEP problem with ,

, and for some
that goes to zero as diverges. It is shown in [2, Th. 1] that if

and for some that
goes to zero as diverges, then5 . Thus, in the bit-wise
UEP problem, even a bit cannot have a positive error exponent.
As result of [5, Th. 5], on the other hand, if ,
we know that can have an error exponent as high as

, while having a small error probability for , i.e.,

for some that goes to zero as

diverges. Thus, in the message-wise UEP problem, it is pos-
sible to give an error exponent as high as to .
The message-wise and the bit-wise UEP problems cover a

wide range of problems of practical interest. Yet, as noted in
[2], there are many UEP problems of practical importance that
are neither message-wise nor bit-wise UEP problems. One of
our aims in studying the message-wise and the bit-wise UEP
problems is gaining insights and devising tools for the analysis
of those more complicated problems.
In the aforementioned discussion, the UEP problems are de-

scribed for fixed-length block codes for the sake of simplicity.
One can, however, easily define the corresponding problems for
various families of codes: with or without feedback, fixed or
variable length, by modifying the definitions of the error proba-
bility, the rate, and the error exponent appropriately. Further-
more, parameter representing the number of groups of bits
or messages is assumed to be fixed in the aforementioned dis-
cussion for simplicity. However, both the message-wise and
the bit-wise UEP problems can be defined for ’s that are in-
creasing with block length in fixed-length block codes and
for ’s that are increasing with expected block length in
variable-length block codes. In fact, Csiszár’s result discussed
previously [5, Th. 5] is proved not only for constant but also
for any sequence satisfying .
In this paper, we consider two closely related UEP prob-

lems for variable-length block codes over a discrete memoryless
channels (DMCs) with noiseless feedback: the bit-wise UEP
problem and the single-message message-wise UEP problem.
1) In the bit-wiseUEP problem, there are submessages each
with different priority and rate. For all fixed values of , we
characterize the tradeoff between the rates and the error
exponents of these submessages by revealing the region of
achievable rate vector, exponent vector pairs. For fixed ,
this problem is simply the variable-length code version of
the previously described bit-wise UEP problem.

2) In the single-message message-wise UEP problem, we
characterize the tradeoff between the exponents of the
minimum and the average conditional error probability.
Thus, this problem is similar to the previously described
message-wise UEP problem for the case and

. But unlike that problem, we work with
variable-length codes and average conditional error prob-

5The channel is assumed to have no zero probability transition.
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ability rather than fixed-length codes and the maximum
error probability.

The bit-wise UEP problem for fixed number of groups of bits,
i.e., fixed , and the single-messagemessage-wiseUEP problem
were first considered in [2], for the case when the rate is (very
close to) the channel capacity; we solve both of these problems
for all achievable rates.
In fact, in [2], single-message message-wise UEP problem

is solved not only at capacity, but also for all the rates below
capacity both for fixed-length block codes without feedback
and for variable-length block codes with feedback, but only for
case when overall error exponent is zero (see [2, Appendix D]).
Recently, Wang et al. [11] put forward a new proof based on
method of types for the same problem.6 Nazer et al. [9], on
the other hand, investigated the problem for fixed-length block
codes on additive white Gaussian noise channels at zero error
exponent and derived the exact analytical expression in terms
of rate and power constraints.
Before starting our presentation, let us give a brief outline

of this paper. In Section II, we specify the channel model and
make a brief overview of stopping times and variable-length
block codes. In Section III, we first present the single-message
message-wise UEP problem and fixed version of the bit-wise
UEP problem for variable-length block codes; then, we state
the solutions of these two UEP problems. In Section IV, we
present inner bounds for both the single-message message-wise
UEP problem and the bit-wise UEP problem. In Section V, we
introduce a new technique, Lemma 5, for deriving outer bounds
for variable-length block codes and apply it to the two UEP
problems we are interested in. Finally, in Section VI, we discuss
the qualitative ramifications of our results in terms of the design
of communication systems with UEP and the limitations of our
analysis. The proofs of the propositions in Sections III–V are
deferred to the Appendices.

II. PRELIMINARIES

As it is customary, we use upper case letters, e.g., , , ,
for random variables and lower case letters, e.g., , , , for
their sample values.
We denote discrete sets by capital letters with calligraphic

fonts, e.g., , , and power sets of discrete sets by , e.g.,
, , . In order to denote the set of all probability

distributions on a discrete set, we use , e.g., , ,
.

Definition 1 (Total Variation): For any discrete set and for
any , the total variation is defined as

(1)

We denote the indicator function by , i.e., when
event happens otherwise. We denote the binary
entropy function by , i.e.,

(2)

6In addition to their new proof in missed-detection problem [11, Th. 1], Wang
et al. present a completely new result on the false-alarm formulation of the
problem [11, Th. 5].

A. Channel Model

We consider a DMC with input alphabet , output alphabet
, and transition probability matrix . Each
row of corresponds to a probability distribution on , i.e.,

for all . For the reasons that will become
clear shortly, in Section II-D, we assume that for all

and and denote the smallest transitions probability
by

(3)

The input and output letters at time , up to time , and between
time and are denoted by , , , , , and
respectively. DMCs are both memoryless and stationary; hence,
the conditional probability of given is given
by

Definition 2 (Empirical Distribution): For any and
any sequence such that for all , the
empirical distribution is given by

(4)

Note that we replace by when the empirical distribution
becomes a random variable for each .

B. Stopping Times

Stopping times are central in the formal treatment of variable-
length codes; it is not possible to define or comprehend variable-
length codes without a solid understanding of stopping times.
For those readers who are not already familiar with the concept
of the stopping times, we present a brief overview in this section.
In order to make our presentation more accessible, we use

the concept of power sets, rather than sigma fields in the defini-
tions. We can do that only because the random variables we use
to define stopping times are discrete random variables. In the
general case, when the underlying variables are not necessarily
discrete, one needs to use the concept of sigma fields instead of
power set.
Let us start with introducing the concept ofMarkov times. For

an infinite sequence of random variables , a positive,
-valued7 function defined on is a Markov time,

if for all positive integers , it is possible to determine whether
or not by considering only, i.e., if is not only a

function of but also a function of for all positive integers
. The formal definition is given in the following.

Definition 3 (Markov Time): Let be an infinite sequence
of -valued random variables for and be a
function of which takes values from the set .
Then, the random variable is a Markov time with respect to
if

(5)

7 is the set of all integers together with two infinities, i.e.,
.
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where is the Cartesian product of the power
set of and the one element set .
We denote ’s from to by and their sample

values by . The set of all sample values of such that ,
on the other hand, is denoted by . We denote union of
all ’s for finite ’s by and the union of all ’s
by , i.e.,

(6a)

(6b)

(6c)

For an arbitrary, positive, -valued function of ,
however, one cannot talk about , because the value of can
in principle depend on . For a Markov time , however,
the value of does not depend on . That is why we can
define , , , and for any Markov time .
Given an infinite sequence of ’s, i.e., , either

or has a unique subsequence that is in .
In most practical situations, one is interested in Markov times

that are guaranteed to have a finite value; those Markov times
are called stopping times.

Definition 4 (Stopping Time): AMarkov time with respect
to is a stopping time iff .
Note that if is a stopping time, then .

Furthermore, unlike , is a countable set for all stopping
times because is finite.8

C. Variable-Length Block Codes

A variable-length block code on a DMC is given by a random
decoding time , an encoding scheme , and a decoding rule
satisfying .
1) Decoding time is a Markov time with respect to the re-
ceiver’s observation , i.e., given , receiver knows
whether or not. Hence, is a random quantity rather
than a constant; thus, neither the decoder nor the receiver
knows the value of a priori. But as time passes, both the
decoder and the encoder (because of feedback link) will be
able to decide whether has been reached or not, just by
considering the current and past channel outputs.

2) Encoding scheme is a collection of mappings that de-
termines the input letter at time for each message
in the finite message set , for each such that

3) Decoding rule is a mapping from the set of output se-
quences such that to the finite message set
which determines the decoded message, . With a slight

8 is a countable set even when is countably infinite.

abuse of notation, we denote the set of all, possibly infi-
nite, output sequences such that
by9 and write the decoding rule as

4) Note that because of the condition , de-
coding time is not only a Markov time, but also a stopping
time.10

At time zero, the message chosen uniformly at random
from is given to the transmitter; the transmitter uses the
codeword associated , i.e., , to convey the message
until the decoding time . Then, the receiver chooses the de-

coded message using its observation and the decoding
rule , i.e., . The error probability, the rate, and the
error exponent of a variable-length block code are given by

(7a)

(7b)

(7c)

Indeed, one can interpret the variable-length block codes on
DMCs as trees; for a more detailed discussion of this interpre-
tation, readers may go over[1, Sec. II].

D. Reliable Sequences for Variable-Length Block Codes

In order to suppress the secondary terms while discussing the
main results, we use the concept of reliable sequences. In a se-
quence of codes, we denote the error probability and the mes-
sage set of the th code of the sequence by and ,
respectively.

Definition 5 (Reliable Sequence): A sequence of variable-
length block codes is reliable if the error probabilities of
the codes vanish and the size of the message sets of the codes
diverge11

where and are the error probability and the message
set for the th code of the reliable sequence, respectively.
Note that in a sequence of codes, each code has an associ-

ated probability space. We denote the random variables in these
probability spaces together with a superscript corresponding to
the code. For example, the decoding time of the th code in
the sequence is denoted by . The expected value of random
variables in the probability space associated with the th code
in the sequence is denoted12 by .

9See (6).
10Having a finite decoding time with probability one, i.e.,
, does not imply having a finite expected value for the decoding time, i.e.,

. Thus, a variable-length code can, in principle, have an infinite
expected decoding time.
11Recall that the decoding time of a variable-length block code is finite with

probability one. Thus, for all for a reliable sequence.
12Evidently, it is possible to come up with a probability space that includes all

of the codes in a reliable sequence and invoke independence between random
quantities associated with different codes. We choose the current convention to
emphasize independence explicitly in the notation we use.
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Definition 6 (Rate of a Reliable Sequence): The rate of a re-
liable sequence is the limit infimum of the rates of the indi-
vidual codes

Definition 7 (Capacity): The capacity of a channel for vari-
able-length block codes is the supremum of the rates of the all
reliable sequences

The capacity of a DMC for variable-length block codes is iden-
tical to the usual channel capacity [3]. Hence

(8)

where .

Definition 8 (Error Exponent of a Reliable Sequence): The
error exponent of a reliable sequence is the limit infimum of
the error exponents of the individual codes

Definition 9 (Reliability Function): The reliability function
of a channel for variable-length block codes at rate is
the supremum of the exponents of all reliable sequences whose
rate is or higher

Burnashev [3] analyzed the performance of variable-length
block codes with feedback and established inner and outer
bounds to their performance. Results of [3] determine the
reliability function of variable-length block codes on DMCs
for all rates. According to [3], we have the following.
1) If all entries of are positive, then13

where is maximum Kullback–Leibler divergence be-
tween the output distributions of any two input letters

(9)

13Problem is formulated somewhat differently in [3]; as a result, the work in
[3] did not deal with the case . The bounds in [3] does not guar-
antee that the error probability of a variable-length code with infinite expected
decoding time is greater than zero; however, this is the case if all the transition
probabilities are positive. To see that, consider a channel with positive minimum
transition probability , i.e., . In such a channel, any

variable-length code satisfies ; then, as

and . Consequently, both the rate and the error expo-
nent are zero for variable-length block codes with infinite expected decoding
time. A more detailed discussion of this fact can be found in Section H1 in the
Appendix.

2) If there are one or more zero entries14 in , i.e., if there
are two input letters , and an output letter such that,

and , then for all , for large
enough , there are rate variable-length block codes
that are error free, i.e., .

When , all error events can have zero probability at the
same time. Consequently, all the UEP problems are answered
trivially when there is a zero probability transition. This is why
we have assumed that for all and .
We denote the input letters that get this maximum value of

Kullback–Leibler divergence by15 and

(10)

III. PROBLEM STATEMENT AND MAIN RESULTS

A. Problem Statement

For each , the conditional error probability is defined
as16

(11)

In the conventional setting, we are interested in either the av-
erage or the maximum of the conditional error probability of the
messages. The behavior of the minimum conditional error prob-
ability is scarcely investigated. Single-message UEP problem
attempts to answer that question by determining the tradeoff be-
tween exponential decay rates of and . The op-
erational definition of the problem in terms of reliable sequences
is as follows.

Definition 10 (Single-Message Message-Wise UEP
Problem): For any reliable sequence , the missed detec-
tion exponent of the reliable sequence is defined as

(12)

where is the conditional error probability of the message
for the th code of the reliable sequence .
For any rate and error exponent17

, the missed detection exponent is defined as

(13)

In variable-length block codes with feedback, the single-mes-
sage message-wise UEP problem not only answers a curious

14Note that, in this situation, .
15This particular naming of letters is reminiscent of the use of these letters

in Yamamoto–Itoh scheme [12]. Although they are named differently in [12],
is used for accepting and is used for rejecting the tentative decision in Ya-

mamoto–Itoh scheme.
16Later, in the paper, we consider block codes with erasures. The conditional

error probabilities, for , are defined slightly differently for them,
see (24).
17Burnashev’s expression for error exponent of variable-length block codes

is used explicitly in the definition because we know, as a result of [3], that the
error exponents of all reliable sequences are upper bounded by Burnashev’s
exponent. An alternative definition oblivious to Burnashev’s result can simply
define for all rate-exponent vectors that are achievable. That defi-
nition is equivalent to Definition 10, because of [3].



1480 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 3, MARCH 2013

Fig. 1. function is drawn for BSCs with crossover probabilities .

question about the decay rate of the minimum conditional error
probability of a code, but also plays a key role in the bit-wise
UEP problem, which is our main focus in this paper.
Though they are central in the message-wise UEP problems,

the conditional error probabilities of the messages are not rele-
vant in the bit-wise UEP problems. In the bit-wise UEP prob-
lems, we analyze the error probabilities of groups of submes-
sages. In order to do that, consider a code with a message set
of the form

Then, the transmitted message and decoded message of
the code are of the form

where for all . Furthermore,
and are called th transmitted submessage and th decoded
submessage, respectively.
The error probabilities we are interested in correspond to er-

roneous transmission of certain parts of the message. In order
to define them succinctly, let us define , , and for all
between one and as follows:

Then, is defined18 as the probability of the event that

(14)

18Similar to the conditional error probabilities, ’s for , error
probabilities of submessages, ’s for , are defined slightly
differently for codes with erasures, see (30).

Note that if , then for all greater than .
Thus

(15)

Definition 11 (Bit-Wise UEP Problem for Fixed ): For any
positive integer , let be a reliable sequence whose message
sets are of the form .
Then, the entries of the rate vector and the error exponent
vector are defined as

A rate-exponent vector is achievable if and only if there
exists a reliable sequence such that .
This definition of the bit-wise UEP problem is slightly dif-

ferent than the one described in the introduction, because

is defined as rather than . Note that

if , then ; consequently,

for all ’s. In addition, if we assume without loss

of generality that for all , the

union bound implies that . Thus,
for the case when is fixed, both formulations of the problem
result in exactly the same achievable region of rate-exponent
vectors.
The achievable region of rate-exponent vectors could

have been defined as the closure of the points of the form
for some reliable sequence . Using the definition

of ’s, one can easily show that, in this case too both
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Fig. 2. is drawn at various values of the error exponent as a function of rate for a BSC with crossover probability . Note that when
, Nats per channel use and . As we increase the exponent of the average error probability, i.e., , the value of

decreases, as one would expect.

definitions result in exactly the same achievable region of
rate-exponent vectors.

B. Main Results

For variable-length block codes with feedback, the results of
both the single-message message-wise UEP problem and the
bit-wise UEP problem are given in terms of the func-
tion defined in the following. The function is first intro-
duced by19 Kudryashov [7, eq. (2.6)], while describing the per-
formance of nonblock variable-length codes with feedback and
delay constraints. Later, the function is used in [2] for de-
scribing the performance of block codes in single-messagemes-
sage-wise UEP problem. It is shown in [2, Appendix D] that
for both fixed-length block codes without feedback and vari-
able-length block codes with feedback on DMCs satisfy

(16)

Recently Nazer et al. obtained the closed-form expression for
for fixed-length block codes on the additive white

Gaussian noise channel, under certain average and peak power
constraints [9, Th. 1]. Curiously, equality given in (16) holds in
that case too.20

Definition 12: For any , is defined as

(17)

19In [7, eq. (2.6)], there is no optimization over the parameter . Thus, strictly
speaking, what is introduced in [7, eq. (2.6)] is given in (64) rather than

given in (17).
20Unlike DMC for these channels, it is possible to obtain a closed-form ex-

pression in terms of the rate and the power constraints.

where for , 2.
We have plotted the function for binary symmetric

channels21 (BSCs) with various crossover probabilities in
Fig. 1. Note that as the channel becomes noisier, i.e., as the
crossover probability becomes closer to 1/2, the value of
function decreases at all values of rate where it is positive.
Furthermore, the highest value of rate where it is positive, i.e.,
the channel capacity, decreases.

Lemma 1: The function defined in (17) is a concave,
decreasing function such that for .
Proof of Lemma 1 is given in Section A in the Appendix.
Now, let us consider the singe-message message-wise UEP

problem given in Definition 10.

Theorem 1: For any rate and error exponent
, the missed detection exponent defined

in (13) is equal to22

(18)

where , , and are given in (8), (9), and (17), respec-
tively. Furthermore is jointly concave in
pairs.
We have plotted as a function of rate, for various

values of in Fig. 2. When rate is zero, the exponent of the
average error probability can be made as high as . Thus, all

21Recall that in a BSC with crossover probability , ,
, and .

22For the case when and , the term

should be interpreted as 0, i.e., .
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Fig. 3. is drawn for various values of rate pairs as a function of error exponent for a BSC with crossover probability .
Recall that when , Nats per channel use and .

the curves meet at point. But for all positive rates, the
exponent of the average error probability makes a difference; as
increases, decreases. Furthermore, for any given

rate , the exponent of the average error probability can only
be as high as . This is why the curves corresponding
to higher values of have smaller support on rate axis.
Proof of Theorem 1 is presented in Section I in the Appendix.
Similar to the single-message message-wise UEP problem,

the solution of the bit-wise UEP problem is given in terms of
the function.

Theorem 2: A rate-exponent vector is achievable if
and only if there exists a such that23

(19a)

(19b)

(19c)

(19d)

where , , and are given in (8), (9), and (17), respec-
tively. Furthermore, the set of all achievable rate-exponent vec-
tors is convex.
Proof of Theorem 2 is presented in Section J in the Appendix.
For the special case when there are only two submessages,

the condition given in Theorem 2 for the achievability of a rate

23For the case when and , the term should be

interpreted as 0, i.e., .

vector error exponent vector pair can be turned into an analyt-
ical expression for the optimal in terms of , , and .
In order to see why, note that revealing the region of achiev-
able vectors is equivalent to revealing the re-
gion of achievable ’s and the value of the max-
imum achievable for all the ’s in the achievable
region.

Corollary 1: For any rate pair such that
and error exponent such that , the

optimal value of is given by24

(20)

where , , and are given in (8), (9), and (17), respec-
tively. Furthermore is concave in .
Note that for the given in (20),

for all triples such that
and . Furthermore,

inequality is strict as long as . We have drawn
for various pairs as a function of

in Fig. 3.

IV. ACHIEVABILITY

In both the single-message message-wise UEP problem and
the bit-wise UEP problem, the codes that achieve the optimal
performance employ a number of different ideas at the same
time. In order to avoid introducing all of those ideas at once,

24For the case when and , the second
term on the right-hand side of (20) should be interpreted as zero, i.e.,
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we first describe two families of codes and analyze the proba-
bilities of various error events in those two families of codes.
Later, we use those two families of codes as the building blocks
for the codes that achieve the optimal performance in the UEP
problems we are interested in. Before going into a more detailed
description and analysis of those codes, let us first give a birds
eye plan for this section.
1) A Single-Message Message-wise UEP Scheme without
Feedback: First, in Section IV-A, we consider a family of
fixed-length codes without feedback. We prove that these
codes can achieve any rate less than channel capacity,
with vanishing25 error probability while having a
minimum conditional error probability, , as low
as . The main drawback of this family of codes is
that the decay rate of the average error probability has
to be subexponential in this family of codes.

2) Control Phase and Error-Erasure Decoding: In
Section IV-B, in order to obtain nonzero exponential
decay for the average error probability, we use a method
introduced by Yamamoto and Itoh in [12]. We append
the fixed-length codes described in Section IV-A with
a control phase and use an error-erasure decoder. This
new family of codes with control phase and error-erasure
decoding is shown, in Section IV-B, to achieve any rate
less than the channel capacity with exponentially

decaying average error probability , exponentially de-
caying minimum conditional error probability ,
and vanishing erasure probability .

3) Single-Message Message-wise UEP for Variable-Length
Codes: In Section IV-C, we obtain variable-length codes
for single-message message-wise UEP problem using the
codes described in Section IV-B. In order to do that, we
use the fixed-length codes with feedback and erasures de-
scribed in Section IV-B, repetitively until a nonerasure de-
coding happens. This idea too was employed byYamamoto
and Itoh in [12].

4) Bit-wise UEP for Variable-Length Codes: In Section IV-D,
we first use the codes described in Section IV-A and the
control phase discussed in Section IV-B to obtain a family
of fixed-length codes with feedback and erasures which
has bit-wise UEP, i.e., which has different bounds on error
probabilities for different submessages. While using the
codes described in Section IV-A, we employ an implicit ac-
ceptance explicit rejection scheme first introduced in [7] by
Kudryashov. Once we obtain a fixed-length code with era-
sures and bit-wise UEP, we use a repeat at erasures scheme
like the one described in Section IV-C to obtain a vari-
able-length code with bit-wise UEP.

25Vanishing with increasing block length.

The achievability results we derive in this section are revealed
to be the optimal ones, in terms of the decay rates of error prob-
abilities with expected decoding time , as a result of the
outer bounds we derive in Section V.

A. Single-Message Message-Wise UEP Scheme Without
Feedback

In this section, we describe a family of fixed-length block
codes without feedback that achieves any rate less than ca-
pacity with small error probability while having an exponen-
tially small , for sufficiently large block length .
We describe these codes in terms of a time-sharing constant

, two input letters , and two probability
distributions on the input alphabet, .
In order to point out that certain sequence of input letters is a

codeword or part of a codeword for message , we put after
it. Hence, we denote the codeword for by in a given
code and by in a code ensemble, as a random quantity.
Let us start with describing the encoding scheme. The code-

word of the first message, i.e., , is in first
time instances and in the rest, i.e., for

and for . The
codewords of the other messages are described via a random
coding argument. In the ensemble of codes, we are considering
all entries of all codewords other than the first codeword, i.e.,

, are generated independently of
other codewords and other entries of the same codeword. In the
first time instances, is generated using , in the rest
using , i.e., for and

for .
Let us begin the description of the decoding scheme, by spec-

ifying the decoding region of the first message : it is the set
of all output sequences whose empirical distribution is not
typical with . More precisely, the decoding region of
the first message is given by (21) shown at the bottom of
the page where is the total variation distance defined in (1),

and are the empirical distributions of and
defined in (4), and and are probability distributions

on , i.e., , such that .
For other messages, , decoding regions are

the set of all output sequences for which is typ-
ical with and is not typical with

for any . To be precise, the decoding
region of the messages other than the first message are

(22)

where for all , is the set of all ’s for which
is typical with shown at the bottom

(21)
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of the page where is the total variation distance defined
in (1), and are the empirical distri-
butions of and defined in (4), and

and are probability distributions on , i.e.,
and .

In Section B in the Appendix, we have analyzed the condi-
tional error probabilities for the previously described code
and proved Lemma 2 given in the following.

Lemma 2: For any block length , time-sharing constant
, input letters , and input distributions
, there exists a length block code such that

where , and

.
Given the channel , if we discard the error terms , for

a given value of rate, , we can optimize exponent
of over the time-sharing constant , the input letters ,
, and input distributions , . Evidently, the optimization

problem we get is the one given for the definition of , in
(17). Thus, Lemma 2 implies that for any and block
length , there exists a length code such that ,

for and .
One curious question is whether or not the exponent of
can be increased by including more than two phases.

Carathéodory’s theorem answers that question negatively, i.e.,
to obtain the largest value of one does not need to do time
sharing between more than two input-letter–input-distribution
pairs.

B. Control Phase and Error-Erasure Decoding

The family of codes described in Lemma 2 has a large expo-
nent for the conditional error probability of the first message,
i.e., . But the conditional error probabilities of other mes-
sages, for , decay subexponentially. In order to
facilitate an exponential decay of for with block
length, we append the codes described in Lemma 2 with a con-
trol phase and allow erasures. The idea of using a control phase
and an error-erasure decoding, in establishing achievability re-
sults for variable-length code, was first employed by Yamamoto
and Itoh in [12].
In order to explain what we mean by the control phase, let us

describe our encoding scheme and decoding rule briefly. First,
a code from the family of codes described in Section IV-A is
used to transmit and the receiver makes a tentative decision
using the decoder of the very same code. The transmitter

knows because of the feedback link. In the remaining time
instances, i.e., in the control phase, the transmitter sends the
input letter if , the input letter if . The input
letters and are described in (10). At the end of the control
phase, the receiver checks whether or not the output sequence
in the control phase is typical with , if it is then
otherwise an erasure is declared.
Lemma 3 given in the following states the results of the per-

formance analysis of the previously described code. In order to
understand what is stated in Lemma 3 accurately, let us make
a brief digression and elaborate on the codes with erasure. We
have assumed in our models until now that . However,
there are many interesting problems in which this might not
hold. In codes with erasures, for example, we replace
with where and is the erasure symbol.
Furthermore, in codes with erasures for each , the condi-
tional error probability and conditional erasure probability

are defined as follows:

(24a)

(24b)

Note that definitions of and given previously can be
seen as the generalizations of the corresponding definitions in
block codes without erasures. In erasure free codes, aforemen-
tioned definitions are equivalent to corresponding definitions
there.

Lemma 3: For any block length , rate , and error
exponent , there exists a length block code
with erasures such that

where .
Proof of Lemma 3 is given in Section C in the Appendix.
Note that in Lemma 3, unlike ’s which decrease expo-

nentially with , ’s decays as . It is possible to tweak the
proof so as to have a nonzero exponent for ’s, see [8]. But
this can only be done at the expense of ’s. Our aim, how-
ever, is to achieve the optimal performance in variable-length
block codes. As we will see in the following section, for that
what matters is exponents of error probabilities and having van-
ishing erasure probabilities. The rate at which erasure proba-
bility decays does not effect the performance of variable-length
block codes in terms of error exponents.

(23)
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C. Single-Message Message-Wise UEP Achievability

In this section, we construct variable-length block codes for
the single-messagemessage-wiseUEP problem using Lemma 3.
In first time units, the variable-length encoding scheme uses
a fixed-length block code with erasures which has the perfor-
mance described in Lemma 3. If the decoded message of the
fixed-length code is in the message set, i.e., if , then de-
coded message of the fixed-length code becomes the decoded
message of the variable-length code. If the decoded message of
the fixed-length code is the erasure symbol, i.e., if , then
the encoder uses the fixed-length code again in the second
time units. By repeating this scheme until the decoded message
of the fixed-length code is in , i.e., , we obtain a vari-
able-length code.
Let be the number of times the fixed-length code is used

until a is observed. Then, given the message , is a
geometrically distributed random variable with success proba-
bility where is the conditional erasure prob-
ability of the fixed-length code given the message . Then,
the conditional probability distribution and the conditional ex-
pected value of given are

(25a)

(25b)

Furthermore, the conditional expected value of decoding time
and the conditional error probability given the message are

(26a)

(26b)

where is the block length of the fixed-length code and
is the conditional error probability given the message for the
fixed-length code.
Thus, as result of (25b) and (26) and Lemma 3, we know that

for any rate , error exponent , there
exists a reliable sequence such that , , and

(27)

We show in Section V-C that for any reliable sequence with
rate and error exponent , is upper
bounded by the expression on the right-hand side of (27).

D. Bit-Wise UEP Achievability

In this section, we first use the family of codes described
in Section IV-A and the control phase idea described in
Section IV-B to construct fixed-length block codes with era-
sures which have bit-wise UEP. Then, we use them with a
repeat until nonerasure decoding scheme, similar to the one
described in Section IV-C, to obtain variable-length block
codes with bit-wise UEP.
Let us start with describing the encoding scheme for the fixed-

length block code with bit-wiseUEP. If there are submessages,
i.e., if , then the encoding
scheme has phases with lengths such
that .

1) In the first phase, a length code from the family of codes
described in Section IV-A is used. The message set of the
code is and the message of the
code is determined by the first submessage .
At the end of first phase, receiver uses the decoder of the
length code to get a tentative decision which is
known by the transmitter at the beginning of the second
phase because of the feedback link.

2) In the second phase, a length code from the family
of codes described in Section IV-A, with the message set

, is used. If is decoded cor-
rectly at the end of the first phase, then the message
of the code used in the second phase is determined by the
second submessage as , else . At
the end of the second phase, the receiver uses the decoder
of the second phase code to get the tentative decision
which is known by the transmitter at the beginning of the
third phase because of the feedback link.

3) In phases 3 to , the previously described scheme is used.
In phase , a length code, with the message set

, from the family of codes described in
Section IV-A is used. The message of the length code

is if , 1 otherwise for
.

4) The last phase is a long control phase, i.e., a
long code with the message set is used
in the last phase. The codewords for the first and second
messages are long sequences of input letters and
, respectively, where and are described in (10). The
tentative decision in the last phase is equal to the
first message if the output sequence in the last phase is
not typical with , the second message otherwise. The
message of the long code is equal to 2 if
, 1 otherwise.

Note that if we define , and all to be 1, i.e.,
, we can write the following rule

for determining the ’s for to

(28)

It is important however to keep in mind that the last phase is
a control phase and the codes in the first phases are from the
family of codes described in Section IV-A.
Note that during the phases to , erroneous transmission

of is conveyed using ; hence, the transmission of
through , i.e., , is a tacit approval of the

tentative decision . Because of this, the aforementioned
encoding scheme is said to have an implicit acceptance explicit
rejection property. The idea of implicit acceptance explicit re-
jection was first introduced by Kudryashov in [7] in the con-
text of nonblock variable-length codes with feedback and delay
constraints.
After finishing the description of the encoding scheme, we are

ready to describe the decoding scheme. The receiver determines
the decoded message using the tentative decisions, for
to . If one or more of the tentative decisions are equal to
1, then an erasure is declared. If all tentative decision are
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different from 1, then for all .
Hence, the decoding rule is

if

if

(29)

For bit-wise UEP codes with erasure, the definition of
is slightly different from the original one given in (14)

(30)

With this alternative definition in mind, let us define
as the conditional probability of the erroneous transmission of
any one of the first submessage when

(31)

The error analysis of the previously described fixed-length
codes, presented in Section D in the Appendix, leads to Lemma
4 given in the following.

Lemma 4: For block length , any integer , rate

vector , and time-sharing vector such that

(32a)

(32b)

(32c)

there exists a length block code such that

where

Recall the repeat at erasures scheme described in
Section IV-C. If we use that scheme to obtain a variable-length
code from the fixed-length bit-wise UEP code described in
Lemma 4, we obtain a variable-length code with UEP such that

(33a)

(33b)

As a result of (33) and Lemma 4, we know that for any rate
vector , error exponent vector , and time-sharing vector
such that

(34a)

(34b)

(34c)

(34d)

there exists a reliable sequence such that .
Thus, the existence of the time-sharing vector satisfying the
constraints given in (34) is a sufficient condition for the
achievability of a rate-exponent vector . We show in
Section V-D that the existence of a time-sharing vector satis-
fying the constraints given in (34) is also a necessary condition
for the achievability of a rate-exponent vector .

V. CONVERSE

Berlin et al. [1] used the error probability of a random binary
query posed at a stopping time for bounding the error proba-
bility of a variable-length block code. Later, similar techniques
have been applied in [2] for establishing outer bounds in UEP
problems. Our approach is similar to that of [1] and [2]; we,
too, use error probabilities of random queries posed at stopping
times for establishing outer bounds. Our approach, nevertheless,
is novel because of the error events we choose to analyze and
the bounding techniques we use. Furthermore, the relation we
establish in Lemma 5 between the error probabilities and the
decay rate of the conditional entropy of the messages with time
is a brand new tool for UEP problems.
For rigorously and unambiguously generalizing the technique

used in [1] and [2], we introduce the concept of anticipative
list decoders (ALDs) in Section V-A. Then, in Section V-B, we
bound the probabilities of certain error events associated with
ALDs from the following. This bound, i.e., Lemma 5, is used in
Sections V-C and V-D to derive tight outer bounds for the per-
formance of variable-length block codes in the single-message
message-wise UEP problem and in the bit-wise UEP problem,
respectively.

A. Anticipative List Decoders (ALDs)

In this section, we first introduce the concepts of ALDs and
nontrivial ALDs. After that, we show that for a given vari-
able-length code, any nontrivial ALD can be used to de-
fine a probability distribution, , on . Finally, we
use to define the probability measure for the events
in . Both the nontrivial ALDs and the prob-
ability measures associated with them play key roles in
Lemma 5 of Section V-B.
An ALD for a variable-length code is a list decoder that de-

codes at a stopping time that is always less than or equal to the
decoding time of the code . The ALDs are used to formulate
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questions about the transmitted message or the decoded mes-
sage, in terms of a subset of the message set that is chosen at
a stopping time . For example, let be the set of all
whose posterior probability at time one is larger than .
Evidently, for all values of , is a subset of , but it is not
necessarily the same subset for all values of . Indeed, is a
function from to the power set of and is an ALD,
for which . Formal definition, for ALDs, is given in the
following. In order to avoid separate treatment in certain special
cases, we include the case when and is fixed subset of
, in the definition.

Definition 13 (ALD): For a variable-length code with de-
coding time , a pair is called an ALD if
1) either is the constant random variable 0 and is a fixed
subset of , i.e.,

2) or is a stopping time, which is smaller than with prob-
ability one, and is a -valued function defined on

, i.e.,

Definition of ALD does not require to be of some fixed size,
nor it requires to include more likely or less likely messages.
Thus, for certain values of , might not include any
with positive posterior probability. In other words, for some

values of , we might have

The ALD’s in which such ’s have zero probability are called
nontrivial ALD’s.

Definition 14 (Nontrivial ALD): An ALD is
called a nontrivial anticipative list decoder (NALD) if

with probability one, i.e.,

(35)

In the following, for any variable-length code and an associ-
ated NALD , we define a probability distribution on

and a probability measure for the events in
. For doing that, first note that the probability mea-

sure generated by the code, i.e., , can be used to define a
probability distribution on as follows:

(36)

where is a countable set for any stopping time, given in
(6b).
As is a stopping time, the probability of any event in

under , i.e., , is equal to

(37)

Evidently, we can extend the definition of and assume that
is zero whenever is in , i.e.,

(38)

This extension is neither necessary nor relevant for calculating
the probabilities of the events in , because is a
stopping time, i.e., .

Definition 15: Given a variable-length code with decoding
time , for any NALD let be26

(39)

Note that Definition 15 is a parametric definition in the sense
that it assigns a for all NALDs .While proving outer
bounds, we will employ not one but multiple NALD’s and use
them in conjunction with our new result, i.e., Lemma 5. But
before introducing Lemma 5, let us elaborate on the relations
between marginal and conditional distributions of and .
For defined in (39), we have

Hence, is a probability distribution on , i.e.,
.

Note that themarginal distributions of and are the same

on . Furthermore, for all and , the con-
ditional distributions of and are the same on . The
probability distributions and differ only in their condi-
tional distributions on given . More specifically

(40a)

(40b)

(40c)

Using the parametric definition of probability distribution
on , we define a probability measure for

the events in as follows:

(41)

26There is a slight abuse of notation in (39); if is not a stopping time but
rather a constant random variable , should be interpreted as
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Evidently, we can extend the definition of to by
defining it to be zero on , i.e.,

(42)

As in the case of , this extension is neither necessary nor rele-
vant for calculating the probabilities given in (41).

B. Error Probability and Decay Rate of Entropy

In this section, we lower bound the probability of the event
that the decoded message is in under the probability mea-
sure , i.e., . The bounds we derive de-
pend on the decay rate of the conditional entropy of the mes-
sages in the interval between and .
Before even stating our bound, we need to specify what

we mean by the conditional entropy of the messages. While
defining the conditional entropy, many authors do take an
average over the sample values of the conditioned random vari-
able and obtain a constant. We, however, do not take an average
over the conditioned random variable and define conditional
entropy as a random variable itself, which is a function of the
random variable that is conditioned on27

(43)

Using the probability distribution defined in (36), we see that
the conditional entropy defined in (43) is equal to

(44)

Lemma 5: For any variable-length block code
with finite expected decoding time, , let

be NALDs28 such that

(45)

27Recall the standard notation in probability theory about the conditional ex-
pectations and conditional probabilities. Let be a real-valued random vari-
able and be a random quantity that takes values from a finite set , such that

for all . Then, unlike , which is constant,
is a random variable. Thus, an equation of the form implies not
the equality of two constants but the equality of two random variables, i.e., it
means that for all . Similarly, let be a set of
sample values of the random variable ; then, unlike , which is
a constant, is a random variable. Equations (43) and (44) are
such equations. Explaining conditional expectations and conditional probabili-
ties are beyond the scope of this paper; readers who are not sufficiently fluent
with these concepts are encouraged to read [10, Ch. I, Sec. VIII], which deal
the case where random variables can take finitely many values. Appropriately
generalized formal treatment of the subject in terms of sigma fields is presented
in [10, Ch. II, Sec. VII].
28Recall ALD’s and NALD’s are defined in Definitions 13 and 14,

respectively.

Then, for all in such that
we have (46)

shown at the bottom of the page where , ,
and for all in , ’s are given by

(47)
Proof of Lemma 5 is presented in Section E in the Appendix.
Before presenting the application of Lemma 5 in UEP prob-

lems, let us elaborate on its hypothesis and ramifications. We
assumed that are all NALDs. Thus, for each ,
the set of all such that the transmitted message is
guaranteed to be outside has zero probability and there
is an associated probability measure given in (41). Fur-

thermore, is the probability of the event

that decoded message is not in under the probability mea-
sure .
Condition given in (45) ensures that the decoding times

of the NALD’s we are considering, , are
reached in their indexing order and before the decoding time
of the variable-length code . Any satisfying
(45) divides the time interval between 0 and into
disjoint intervals. The duration of these intervals as well as the
decrease of the conditional entropy during them is random. For
the th interval, the expected values of the duration and the
decrease in the conditional entropy are given by
and , respectively. Hence, ’s
defined in (47) are rate of decrease of the conditional entropy
of the messages per unit time in different intervals.
Lemma 5 bounds the probability of being outside under

from below in terms of ’s and ’s for

. The bound on also depends on

and . But the particular choice of ’s for
has no effect on the bound. This feature of the bound is its

main merit over bounds resulting from the previously suggested
techniques.

C. Single-Message Message-Wise UEP Converse

In this section, we bound the conditional error probabilities
of the messages, i.e., ’s, from below uniformly over the
message set in a variable-length block code with average
error probability , using Lemma 5. Resulting outer bound
reveals that the inner bound we obtained in Section IV-C for
the single-message message-wise UEP problem is tight.
Consider a variable-length block code with finite expected

decoding time, i.e., . In order to bound , defined

(46)
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in (11), from the following, we apply Lemma 5 for with
, given in the following.

1) Let be zero and be , i.e.,

(48)

(49)

2) Let be the first time instance before such that one
message, not necessarily the one chosen for , i.e., ,
has a posterior probability or higher

(50)

Let be the set of all messages whose posterior proba-
bility at time is less then

(51)

We apply Lemma 5 for and given in
(48)–(51). Then, using the fact that , we get

(52a)

(52b)

If , one can show is roughly

equal to . Thus, inequality in (52b) becomes a lower bound
on in terms of . It can be shown that the lower
bound (52a) takes its smallest value for the smallest value of

. Then, using Fano’s inequality for ,
we obtain Lemma 6 given in the following.
A complete proof of Lemma 6 for variable-length block codes

with finite expected decoding time is presented in Section F in
the Appendix. For variable-length block codes with infinite ex-
pected decoding time, Lemma 6 follows from the lower bounds
on and derived in Sections H1 and H2 in the Appendix.

Lemma 6: For any variable-length block code and positive
such that

(53)

where , , ,

and .
Lemma 6 is a generalization of [2, Th. 8] and [2, Lemma 1].

While deriving bounds given in [2, Th. 8] and [2, Lemma 1], no
attention is paid to the fact that the rate of decrease of the condi-
tional entropy of the messages can be different in different time
intervals. As a result, both [2, Th. 8] and [2, Lemma 1] are tight
only when the error exponent is very close to zero. While de-
riving the bound given in Lemma 6, on the other hand, the vari-
ation in the rate the conditional entropy decreases in different
intervals is taken into account. Hence, the outer bound given in
Lemma 6 matches the inner bound given in Section IV-C for all
achievable values of error exponent, .

Consider a reliable sequence of codes with rate
and error exponent . Then, if we apply Lemma 6 with

, we get

(54)

Note that the upper bound on ’s given in (54) is achiev-
able by at least one described in Section IV-C.

D. Bit-Wise UEP Converse

In this section, we apply Lemma 5 to a variable-length
block code with a message set of the form

, in order to obtain lower bounds
on ’s for in terms of the sizes of the
submessage sets and the expected
decoding time . When applied to reliable code sequences,
these bounds on ’s in terms of ’s and give a
necessary condition for the achievability of a rate vector and
error exponent vector pair that matches the sufficient
condition for the achievability derived in Section IV-D.
In order to bound ’s, we use Lemma 5 with NALD’s,

. Let us start with defining ’s and
’s.

1) For any in , let be the first time instance
that a member of gains a posterior probability larger
than or equal to if it happens before , otherwise

(55)

2) For any in , let be the set of all
messages of the form for which
posterior probability of is less than at

(56)

If we apply Lemma 5 for defined in (55)

and (56), we obtain lower bounds on ’s in

terms of ’s and ’s and ’s for
. In order to turn these bounds into bounds on ’s,

we bound ’s and ’s from
above.
1) The posterior probability of a message at time
cannot be smaller than times its value at time because

. Thus, if , one can bound

’s from above

(57)

2) Note that if at there is a with posterior proba-
bility , then . If at
there is no with posterior probability , then

. Using these facts, one can bound

from above

(58)
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More detailed derivations of the inequalities given in (57) and
(58) can be found in Section G in the Appendix.
Using (57) and (58) together with Lemma 5, we can conclude

that

(59)

provided that , where ’s are defined in
(47).
Note that the lower bound on ’s given in (59) takes

different values depending on the rate of decrease of the
conditional entropy of the messages in different intervals,
i.e., ’s, and the expected duration of different intervals, i.e.,

’s. Making a worst case assumption on the rate
of decrease of entropy and the durations of the intervals, one
can obtain Lemma 7 given in the following.
A complete proof of Lemma 7 for variable-length block

codes with finite expected decoding time is presented in Sec-
tion G in the Appendix. For variable-length block codes with
infinite expected decoding time, Lemma 7 follows from the
lower bounds on and ’s derived in Sections H1 and
H3 in the Appendix.

Lemma 7: For any variable-length block code with feedback
with a message set of the form29

and for any positive such that , we have

(60a)

(60b)

for some time-sharing vector such that

(61a)

(61b)

where , , ,

and .

For any reliable sequence whose message sets are of
the form , if we set to

, Lemma 7 implies that there exists a such that30

(62a)

(62b)

(62c)

(62d)

29We tacitly assume, without loss of generality, that .
30This fact is far from trivial; yet, it is intuitive to all who has worked with

sequences of vectors in a bounded subset of where is the -dimensional
real vector space with the norm For details, see Section J in
the Appendix.

Recall that a rate-exponent vector is achievable only if
there exists a reliable code sequence such that

. Thus, a rate-exponent vector is achievable only
if there exists a time-sharing vector satisfying (34). In other
words, the sufficient condition for the achievability of
we have derived in Section IV-D is also a necessary condition.

VI. CONCLUSION

We have considered the single-messagemessage-wise and the
fixed bit-wise UEP problems and characterized the achievable
rate error exponent regions completely for both of the problems.
In the bit-wiseUEP problem, we have observed that encoding

schemes decoupling the communication and bulk of the error
correction both at the transmitter and at the receiver can achieve
optimal performance. This result is extending the similar ob-
servations made for conventional variable-length block coding
schemes without UEP. However, for doing that one needs to go
beyond the idea of communication phase and control phase in-
troduced in [12], and harness the implicit confirmation explicit
rejection schemes, introduced by Kudryashov in [7].
For the converses results, we have introduced a new tech-

nique for establishing outer bounds to the performance of the
variable-length block codes, which can be used in both mes-
sage-wise and bit-wise UEP problems.31

We were only interested in bit-wise UEP problem in this
paper. We have analyzed single-message message-wise UEP
problem, because it is closely related to bit-wise UEP problem
and its analysis allowed us to introduce the ideas we use for
bit-wise UEP, gradually. However, it seems using the technique
employed in [2, Th. 9] on the achievability side and Lemma
5 on the converse side, one might be able to determine the
achievable region of rate-exponent vectors for variable-length
block codes in message-wise UEP problem. Such a work would
allow us to determine the gains of feedback and variable-length
decoding, because Csiszár [5] had already solved the problem
for fixed-length block codes.
Arguably, the most important shortcoming of our bit-wise

UEP result is that it only addresses the case when the number
of groups of bits is a fixed integer. However, this has more to
do with the formal definition of the problem we have chosen in
Section III than our analysis and nonasymptotic results given in
Sections IV and V, i.e., Lemmas 4 and 7.
Using the rate-exponent vectors for representing the perfor-

mance of a reliable sequence with bit-wiseUEP is apt only when
the number of groups of bits are fixed or bounded. When the
number of groups of bits in a reliable sequence diverge with
increasing , i.e., when , the rate-exponent
vector formulation becomes fundamentally inapt. Consider, for
example, a reliable sequence in which .
The rate of this reliable sequence is ; yet, the rate of all of the
submessages are zero. Thus, when diverges, the rate vector
does not have the same operational relevance or meaning it has
when is fixed or bounded. In order to characterize the change
of error performance among submessages in the case when

31We have not employed the bound in any hybrid problem but it seems that the
result is abstract enough to be employed even in those problems with judicious
choice of NALD’s.
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diverges, one needs to come up with an alternative formulation
of the problem, in terms of cumulative rate of submessages.
Our nonasymptotic results are useful to some extend even

when diverges. Although infinite dimensional rate-exponent
vectors fall short of representing all achievable performances,
one can still use Lemma 4 of Section IV and Lemma 7 of
Section V to characterize the set of achievable rate vector error
exponent vector pairs.
1) As a result of Lemma 7, the necessary condition given in
(19) is still a necessary condition for the achievability of
rate-exponent vector.

2) Using Lemma 4, we see that the sufficient condition
given in (19) is still a sufficient condition as long as the
number of submessages in the reliable sequence satisfy

.

Thus, for the case when , i.e.,

, the condition

given in (19) is still a necessary and sufficient condition for the
achievability of a rate-exponent vector.

APPENDIX

A. Proof of Lemma 1

Proof: Note that defined in (17) is also equal to

(63)

where is given by

(64)

Note that is a bounded real-valued function of a real vari-
able. Therefore, Carathéodory’s Theorem implies that consid-

ering two point convex combinations suffices in order make
a concave function. In other words, for any , we have

:

(65)

Then, the concavity of follows from (63)–(65).
Evidently, if the constraint set in a maximization is curtailed,

then resulting maximum value cannot increase. Hence,
function defined in (17) is a decreasing function of .
As a result of the definition of given in (9) and the con-

vexity of Kullback–Leibler divergence, we have . On
the other hand, and for
and where and are described in (10). There-
fore, we have . Using the fact that , we
conclude that .

B. Proof of Lemma 2

Proof: We prove the lemma for a slightly more general
setting and establish a result that will be easier to make use of in
the proofs of other achievability results. Let , , and

be (66a)–(66c) shown at the bottom of the page. Note
that , , and given, (21)–(23) are simply the ,

, and for .
For all , we have

(66a)

(66b)

(66c)
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Inequality follows from the nonnegativity of the Kull-
back–Leibler divergence. In order to see why holds, first
recall that . Hence, and

. Then, the inequality follows from the
definitions of total variation and , given in (1) and (66a)
and the fact that .
Note that the conditional error probability of the first message

is given by

Recall that the codeword of the message is the
concatenation of ’s and ’s where .
Hence, the probability of all ’s whose empirical distribution
in first times instances is and whose empirical
distribution in is is upper bounded by

. Furthermore,
there are less than distinct empirical distributions
in the first phase and there are less than
distinct empirical distributions in the second phase. Thus, we
have the equation shown at the bottom of the page where

.
The codewords and the decoding regions of the remaining

messages are specified using a random coding argument to-
gether with an empirical typicality decoder. Consider an en-
semble of codes in which first entries of all the codewords
are independent and identically distributed (i.i.d.) with input dis-
tribution and the rest of the entries are i.i.d. with the input
distribution .
For any message other than the first one, i.e., , the

decoding region is given in (66b). In other words, for
any message , other than the first one, the decoding region
is the set of output sequences for which is typical
with , i.e., , and is
not typical with , i.e., , for any

.
Since the decoding regions of different messages are

disjoint, the previously described code does not decode to
more than one message. Disjointness of decoding regions
of messages follows from the definitions of

, given in (66b). In order to see
why holds, note that for any pair
probability of distributions, the total variation between them is
lower bounded by the total variation between their marginals.
In particular

Then, as results of definitions of , , and for
given in (66a), (66c), and (66b), we have

Then, for , the average of the condi-
tional error probability of th message over the ensemble is
upper bounded as

(67)

Let us start with bounding . Let
and be

(68a)

(68b)

As a result of the definition of total variation distance given in
(1) and aforementioned definitions, we have

Thus, the definition of given in (66c) implies that

(69)

If for all , , and ,
, then . Thus,

if , then for at least one triple
. Using the union bound, we get

(70)

For bounding , we can simply use
Chebyshev’s inequality; however, in order to get better error
terms, we use a standard concentration result about the sums
of bounded random variables, [4, Th. 5.3].

Lemma 8: Let be independent random vari-
ables satisfying for all . Then
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For all , , and , we have for all
; thus

(71)

Similarly

(72)

Using (69)–(72), we get

(73)

Now, we focus on terms. Note
that all in satisfy

(74)

On the other hand, when , and are indepen-
dent and their distribution is given by (75) shown at the bottom
of the page. Furthermore, the number of se-
quences with an empirical distribution is upper

bounded as . In addition, there are at most
different empirical distributions. Using these two

bounds and their counterparts for together
with (74) and (75) we get (76) shown at the bottom of the page.
Hence, if (see the third equation at the bottom of the page) then

(77)

Thus, the average over the ensemble can be bounded using
(67), (70), and (77) as

But if the ensemble average of the error probability is upper
bounded like this, there is at least one code that has this low error
probability. Furthermore, half of its messages have conditional
error probabilities less than twice this average. Thus, for any
block length , time-sharing constant , input letters

, input distributions , there exists a
length code such that

(78a)

(78b)

(78c)

where

(79a)

(79b)

(79c)

Lemma 2 follows from (78) and the fact that

(80)

for , , and given in (79).

(75)

(76)
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C. Proof of Lemma 3

Proof: Let be . Recall that we have
assumed ; then, we have . Conse-
quently, and . On the other hand, as a result
of (78) and the definition of given in (17), for any positive
integer , positive real number , rate , there exists a
length code such that

(81a)

(81b)

(81c)

where , , and are given in (79).
We use such a code in the first phase with and call

its decoded message , the tentative decision. Then, as a result
of (81) and the fact that32 ,
we get

(82a)

(82b)

(82c)

The transmitter knows what the tentative decision is and de-
termines the channel inputs in the last time instances
depending on its correctness. If , the channel inputs in
the last time instances are all ; if , the channel
inputs in the last time instances are all .
After observing , receiver checks whether the empirical

distribution of the channel output in the last time units
is typical with if it is then otherwise . Hence,
the decoding region for erasures is given by

Let us start with bounding , i.e.,
the probability of erasure for correct tentative decision. First
note that

where . Then, following
an analysis similar to that one presented between (69) and (73),
we get

(83)

32Recall that and is a nonincreasing and positive
function.

In order to bound the probability of nonerasure decoding when
tentative decision is incorrect, note that

Then, following an analysis similar to the one between (75) and
(76), we get

(84)

Furthermore, the conditional error and era-
sure probabilities can be bounded in terms of

, , and

as follows:

(85a)

(85b)

Using (82)–(85), we get

(86a)

(86b)

(86c)

(86d)

(86e)

where .
We set for , 2 and obtain

(87a)

(87b)

(87c)

Lemma 3 follows from the identities , ,
, and (86) and (87).
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D. Proof of Lemma 4

Proof: Note that given the encoding scheme summarized
in (28) and the decoding rule given in (29), if , then there
is a such that for all and .
Thus, the conditional erasure probability is upper bounded
as shown in (88) at the bottom of the page. Similarly, if
and , then for all , and ;
furthermore, there is a such that for all
and . Hence, one can bound as shown in
(89) at the bottom of the page.
In the first phases, we use long codes with rate
with the performance given in (81). Thus, for , we

have

(90a)

(90b)

(90c)

where , , are given in (79).
In order to derive bounds corresponding to the ones given in

(90) for the last phase, let us give the decoding regions for 1 and
2 for the length code employed between
and

Following an analysis similar to the one leading to (83) and (84),
we get

(91a)

(91b)

Using (88)–(91), we obtain, see obtain (92a)–(92d) shown at
the bottom of the page. If we set
for for , , and
given in (79), we have

Using the concavity of function, we can conclude that

(93a)

(93b)

(93c)

(88)

(89)

(92a)

(92b)

(92c)

(92d)
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Then, Lemma 4 follows from (92) and (93) for any .

E. Proof of Lemma 5

Proof: For defined in (36) as a result of (37), we have

(94a)

(94b)

For defined in (39) as a result of (41), we have

(95a)

(95b)

Using (94) and (95) together with the data processing inequality
for Kullback–Leibler divergence, we get

Since , we have

(96)

Note that if and , then .
Consequently

(97)

Since the binary entropy function is increasing on the in-
terval if , (96) and (97)
imply

(98)

Let , , and be

(99a)

(99b)

(99c)

where is the minimum of and .

Note that as goes to infinity, and with
probability one. Since and , we can
apply the dominated convergence theorem [10, Th. 3, p. 187] to
obtain

(100)

Finally for and defined in (99), we have

(101a)

(101b)

Thus, as a result of (100) and (101), we have

(102)

Furthermore, using the definition of given in (39), we get

(103)

where for all and

(104)
Assume for the moment that

(105)

where and is defined in (47).
Then, Lemma (5) follows from (98), (102), (103), and (105).
Above, we have proved Lemma 5 by assuming that the in-

equality given in (105) holds for all in and in
; in the following, we prove that fact.

First note that if , then as result of (47) and
(103), (105) is equivalent to which holds trivially.
Thus, we assume hence forth that , which
implies .
Let us consider the stochastic sequence

(106)

where is the conditional mutual information
between and given , defined as

Note that as it was the case for conditional entropy, while
defining the conditional mutual information, we do not take
the average over the conditioned random variable. Thus,

is itself a random variable.



NAKIBOĞLU et al.: BIT-WISE UNEQUAL ERROR PROTECTION FOR VARIABLE-LENGTH BLOCK CODES WITH FEEDBACK 1497

For defined in (106), we have

(107)

Conditioned on random variables
form a Markov chain: thus, as a result of the data pro-
cessing inequality for the mutual information, we have

. Since is a de-
creasing function, this implies that

(108)

Furthermore, because of the definitions of , , and
given in (17), (36), and (39), the convexity of Kullback–Leibler
divergence and Jensen’s inequality, we have

(109)
Using (107)–(109), we get

(110)

Recall that and . Thus, as a result
of (107), we have

(111)

As a result of (110) and (111) and the fact that , is a
submartingale.
Recall that we have assumed that and

; consequently

(112)

Because of (111) and (112), we can apply a version of Doob’s
optional stopping theorem [10, Th. 2, p. 487] to the submartin-
gale and the stopping time to obtain

. Consequently

(113)

Note that as a result of the concavity of and Jensen’s in-
equality, we have

(114)

In order to calculate the argument of in (114), consider the
stochastic sequence

(115)

Clearly, and .
Hence, is a martingale.
Furthermore

(116)

Recall that we have assumed that and
; consequently

(117)

As a result of (116) and (117), we can apply Doob’s optimal
stopping theorem, [10, Th. 2, p. 487] to both at stopping
time and at stopping time , i.e.,
and . Consequently

(118)

Using (113), (114), and (118)

(119)

Hence, inequality given in (105) is not only when
but also when .

F. Proof of Lemma 6 for the Case

Proof: In order to bound from below, we apply
Lemma 5 for and given in (48)–(51) and
use the fact that to get

(120a)

(120b)

provided that and
.

We start with bounding from above

and from below.
1) Since , the posterior probability of
a message at time cannot be smaller than times the
posterior probability of the samemessage at time . Hence,
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for the stopping time defined in (50), random33 set
defined in (51), and , we have

(121)

As a result of the definition of given in (39),
we have

(122)
If the decoded message is not in and mes-
sage is in , then

(123)

Using (122) and (123), we get

(124)

If we sum over all ’s in and use (37) and
(41), we get

(125)

2) The probability of an event is lower bounded by the
probability of its intersection with any event , i.e.,

:

(126)

Note that if , then is reached before any of
the messages reach a posterior probability of . Thus

(127)

Thus, as a result of (126) and (127), we have

(128)

On the other hand, if , then the most likely
message with a probability at least is excluded from

. Thus

(129)

33The set is random in the sense that it depends on previous channel
outputs.

Using (128) and (129) together with total probability for-
mula, we get

(130)

We plug the bounds on and

given in (125) and (130) in (120) to get

(131a)

(131b)

provided that where .
Now, we bound from below. Note that

is a discrete random variable that is either zero

or one; its conditional entropy given is given by

(132)

Furthermore, since is a function of and ,
chain rule entropy implies that

(133)

Since has at most elements and its complement,
, has at most one element, we can bound the con-

ditional entropy of the messages as follows:

(134)

Thus, using (132)–(134), we get

(135)

Then, using concavity of the binary entropy function to-
gether with (130) and (135), we get

(136)

provided that .
If we plug in (136) and the identity in (131),

we get

(137a)

(137b)
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provided that where ,

, , and .
Note that the inequality given in (137b) bounds the value of
from above

(138)

where .

Furthermore, for any , as a result of concavity
of , we have

(139)

Using (138) and (139) we see that the bound in (137a) is lower
bounded by its value at if and
by its value at otherwise, i.e.,

where .
Then, for the case , Lemma 6 follows from the

fact that is a nonnegative decreasing function. For the case
, Lemma 6 follows from the fact that is a concave

nonnegative decreasing function.

G. Proof of Lemma 7 for the Case

Proof: We start with proving the bounds given in (57) and
(58).
1) Let us start with the bound on given

in (57). Since , the posterior prob-
ability of a at time cannot be smaller than
times its value at time . Hence, for , as a result

of definitions of and given in (55) and (56), we
have

Then, as a result of the definition of given in
(39), we have

(140)

For given in (56), if the decoded message is
not in but is in , then

(141)

Using (140) and (141), we get

If we sum over all ’s in and use (37) and
(41), we get

(142)

2) Let us now prove the bound on given in
(58).
a) If , then at , there is a with pos-
terior probability and all the messages of
the form are excluded from
. Consequently, we have

(143)

b) If , then at , there is no with
posterior probability and . Since
implies that , we have

(144)

As a result of total probability formula for
, we have

(145)

If use the total probability formula for to-
gether with (143) and (145), we get

We apply Lemma 5 for defined

in (55) and (56); use the bounds on

and given in (57) and (58). Then, we can
conclude that if , then

(146)
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where , , , and are defined in Lemma 7, ’s are defined
in (47) of Lemma 5, and ’s are defined as follows34:

(147)

Depending on the values of and , the bound in (146) takes
different values. However, and are not changing freely. As
a result of (118) and the fact that , we have

(148)

In addition, ’s and ’s are constrained by the definitions of
and given in (55) and (56). At with high probability,
one element of has a posterior probability . In the
following, we use this fact to bound from above.
Then, we turn this bound into a constraint on the values of ’s
and ’s and use that constraint together with (146) and (148) to
bound ’s from above.
For all in , is a discrete random

variable that is either zero or one; its conditional entropy is given
by

(149)

Furthermore, since is a function of and ,
the chain rule entropy implies that

(150)

Note that has at most elements and its
complement, , has at most elements.
We can bound the conditional entropy of the messages

as follows:

(151)

Thus, using (149)–(151), we get

(152)

If we take the expectation of both sides of the inequality (152)
and use the concavity of the binary entropy function, we get

34We use the convention and .

Using the inequality given (58) and the fact that binary entropy
function is an increasing function on the interval , we
see that

(153)

provided that .
Note that as a result of Fano’s inequality for ,

we have

(154)

If we divide both sides of the inequalities (153) and (154) to
, we see that following bounds holds:

(155a)

(155b)

Note that

(156)

Using (155) and (156), we get

(157a)

(157b)

where ’s and ’s are given in (47) and (147) respectively.
Thus, using (47), (146)–(148), and (157), we reach the fol-

lowing conclusion. For any variable-length block code satis-
fying the hypothesis of Lemma 7 and for any positive such
that

(158a)

(158b)

(158c)

for some such that

(159a)

(159b)

(159c)
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We show in the following if the constraints given in (158) is
satisfied for some satisfying (159), and constraints
given in (60) is satisfied for some satisfying (61).
One can confirm numerically that

Recall that we have assumed that , i.e., .
Thus

(160)

Let , , , and be

Note that satisfies (158b), (158c),
and (159) by construction. Furthermore, as a result of concavity
of , we have

Thus, also satisfies (158a).
For , we use and to define , and as

follows:
(161a)

(161b)

(161c)

Using the fact that satisfies (158)
and (159) and the concavity of , we can show that

also satisfies (158) and (159). We
repeat the iteration given in (161) until we reach and
and we let .
Then, we conclude that for any variable-length block code

satisfying the hypothesis of the Lemma 7 and for any positive
such that

(162a)

(162b)

(162c)

for some such that35

(163a)

(163b)

(163c)

Lemma 7 follows from the fact that .

35One can replace the inequality in (162c) by equality because is a de-
creasing function.

H. Codes with Infinite Expected Decoding Time on Channels
with Positive Transition Probabilities

In this section, we consider variable-length block codes
on DMCs with positive transition probabilities, i.e.,

, and derive lower bounds to the
probabilities of various error events. These bounds, i.e., (166),
(172), and (175), enable us to argue that Lemmas 6 and 7 hold
for variable-length block codes with infinite expected decoding
time, i.e., .
1) : On DMC such that , the

posterior probability of any message at time is lower
bounded as

Then, conditioned on the event , the probability of er-
roneous decoding is lower bounded as

(164)

Note that since , the error probability of any
variable-length code satisfies

(165)

Using (164) and (165), we get

(166)

Note that (166) implies that for a variable-length code with in-
finite expected decoding time, not only the rate but also the
error exponent is zero.
2) If , then : Note that since

and

For any variable-length block code such that , let
be

(167)
Since for all in and is finite,
is finite.
Note that for any , , and we have

(168)

Then, using (168), we get

(169)
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Note that as a result of (167), we have

(170)
Furthermore

(171)

Thus, using (169)–(171), we get

(172)

where is a finite integer defined in (167).
3) For all , : For a variable-length

block code with message set of the form
on a DMC such that , the

posterior probability of any element of at time is lower
bounded as

Then, conditioned on the event , the probability of de-
coding any one of the first sub-messages erroneously is lower
bounded as

(173)

Since , satisfies

(174)

Using (173) and (174), we get

(175)

Equation (175) implies that for a variable-length code with infi-
nite expected decoding time, not only the rates but also the error
exponents of submessages are zero.

I. Proof of Theorem 1

Proof: In Section IV-C, it is shown that for any rate
, error exponent , there exists a reliable

sequence such that , ,

. Thus, as a result of the definition of
given in (13), we have

(176)

In Section V-C, we have shown that any reliable sequence of
codes with rate and error exponent satisfies

Thus, using the fact that is a decreasing concave function,
we can conclude that

Consequently, as a result of the definition of given
in (13), we have

(177)

Thus, using (176) and (177), we can conclude that

(178)

In order to prove the concavity of in pair, let
and be two pairs such that

(179a)

(179b)

Then, for any , let and be

(180a)

(180b)

From (179) and (180), we have

(181)

Furthermore, using the concavity of , we get

(182)

Thus, is jointly concave in rate exponent pairs.

J. Proof of Theorem 2

Proof: In Section IV-D, it is shown that for any positive
integer , a rate-exponent vector is achievable if there
exists a time-sharing vector such that

(183a)

(183b)

(183c)

(183d)

Thus, the existence of a time-sharing vector satisfying (183)
is a sufficient condition for the achievability of a rate-exponent
vector .
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For any reliable code sequence whose message sets are of
the form , Lemma 7 with

implies that there exists a sequence such that

(184a)

(184b)

(184c)

(184d)

where , ,

,

and .

Note that as a result of (184), all members of the sequence
are from a compact metric space.36 Thus, there exists a conver-
gent subsequence, converging to a . Using (184), with defini-
tions of and given in Definition 11, we can conclude
that satisfies

(185a)

(185b)

(185c)

(185d)

According to Definition 11 describing the bit-wise UEP
problem, a rate-exponent vector is achievable
only if there exists a reliable code sequence such that

. Consequently, the existence of a
time-sharing vector satisfying (183) is also a necessary
condition for the achievability of a rate-exponent vector
Thus, we can conclude that a rate-exponent vector is

achievable if and only if there exists a satisfying (183).
In order to prove the convexity of region of achievable rate-

exponent vectors, let and be two achievable
rate-exponent vectors. Then, there exist triples and

satisfying (183).
For any , let , , and be

36Let the metric be .

As is concave and the triples and
satisfy the constraints given in (183), the triple
also satisfies the constraints given in (183). Consequently, the
rate-exponent vector is achievable and the region of
achievable rate-exponent vectors is convex.
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