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Abstract—Various formulations are considered where some
information is more important than other and needs better
protection. Our information theoretic framework in terms of
exponential error bounds provides some fundamental limits
and optimal strategies for such problems of unequal error
protection. Even for data-rates approaching the channel capacity,
it shows how a crucial part of information can be protected with
exponential reliability. Channels without feedback are analyzed
first, which is useful later in analyzing channels with feedback.
A new channel parameter, called the Red-Alert Exponent, is
fundamentally important in such problems.

I. INTRODUCTION
Classical theoretical framework for communication assumes

that all information is equally important. In this framework, the
communication system aims to provide a uniform error protec-
tion to all messages: any particular message being mistaken as
any other is viewed to be equally costly. With such uniformity
assumptions, the reliability of a communication scheme is
measured by either the average or the worst case probability
of error, over all possible messages to be transmitted. In
information theory literature, a communication scheme is said
to be reliable if this error probability can be made small. Com-
munication schemes designed with this framework turn out to
be optimal in sending any source over any channel, provided
that long enough codes can be employed. This homogeneous
view of information motivates the universal interface of “bits”
between any source and any channel [1], which is often viewed
as Shannon’s most significant contribution.
In many communication scenarios, such as wireless net-

works, interactive systems, and control applications, where
sufficient error protection becomes a luxury, providing such
a uniform protection for all the information may be either
a wasteful or an infeasible approach. Instead, it is more
efficient here to protect a (crucial) part of information better
than the rest. For example in a wireless network, control
signals including channel state, power control, and scheduling
information are often more important than the payload data,
and should be protected more carefully. Similarly for the
Internet, packet headers are more important and need better
protection. Another example is when a multiple resolution
source code is transmitted over a wireless channel, it makes
sense to protect the coarse resolution better so the user can
at least have some crude reconstruction after bad channel
realizations. For such situations of heterogeneous information,
unequal error protection (UEP) is a natural generalization of
the conventional content-blind information processing.
The simplest method of unequal error protection is to

allocate different channels for different types of data. For ex-
ample, wireless systems allocate a separate “control channel”,
often with short codes and low spectral efficiency, to transmit
control signals with high reliability. The well known Gray
code, assigning similar bit strings to close by constellation
points, can be viewed as UEP: even if there is some error
in identifying the transmitted symbol, there is a good chance
that some of the bits are correctly received. More systematic

designs for UEP can be found in [7] and references therein. For
erasure channels, this problem is known as “priority encoded
transmission” (PET) [6]. For wireless channels, [8] analyzes
this problem in terms of diversity-multiplexing tradeoffs. Most
of these approaches focus on designing good codes for spe-
cific channel models. The optimality of these designs was
established in only limited cases. This paper aims to provide
a general information theoretic framework for understanding
fundamental limits in UEP.
A general formulation of the unequal error protection prob-

lem requires some different definitions of decoding error than
the commonly used ones. Consider a channel encoder which
takes the input of l information bits, b = [b1, b2, . . . bl], which
is equivalent to a random variable M taking values from the
set {1, 2, 3, . . . , 2l}. Each message in this set corresponds to
a particular value of the bit-sequence b. This set of possible
values of M are referred to as “messages”. After a message
is encoded and transmitted over the channel, a decoding error
is defined as the event that the receiver decodes to a different
message than the transmitted one. In most information theory
texts, when a decoding error occurs, the entire bit sequence
b is rejected. That is, errors in decoding the message and in
decoding the information bits are treated similarly.
In the existing formulations of unequal error protection

codes, the information bits are divided into subsets, and the
decoding errors in different subsets of bits are viewed as
different kinds of errors. For example, one might want to
provide a better protection to one subset of bits by ensuring
that errors in these bits are less probable than the other bits.
We call such problems “bit-wise UEP”. Previous examples of
packet headers, multiple resolution codes, etc. belong to this
category of UEP.
However, in some situations, instead of bits one might

want to provide a better protection to a subset of messages
by ensuring a lower probability of error when one of these
special messages is transmitted/decoded. For example, one
might consider embedding a special message in a normal l-bit
code, i.e., transmitting one of 2l+1 messages, where the extra
message has a special meaning and requires a smaller error
probability. We call such problems as “message-wise UEP”.
For example, this special message could indicate some

system emergency, which is too costly to be missed. Bor-
rowing from hypothesis testing, we call the conditional error
probability of a special message as its missed-detection proba-
bility, which is the probability of missing to detect the special
message when it was transmitted. Note that the decoding error
conditioned on the special message is not associated to error
in any particular bit. Instead, it corresponds to a particular
bit-sequence (corresponding to the special message) being
decoded as some other bit-sequence.
Alternatively, the special messages could demand small

false-alarm probability: the event when the receiver erro-
neously chooses that message although some other message
was sent. For example consider the reboot message for a
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remote-controlled system such as a robot or satellite. Its false-
alarm could cause unnecessary shutdowns and other system
troubles. For brevity however, we will not discuss false-alarms
anymore and only focus on avoiding missed-detections in
message-wise UEP.
In conventional data communication, there is no need to

distinguish between bit-errors and message-errors, as all in-
formation is “created equal”, its meaning (and importance) is
separated from the engineering problem of communication [1].
In the UEP problems however, bits and messages are different
as some are labeled as “special” or “high priority”. Now it
becomes necessary to differentiate the two notions of special
information: special bits and special messages.
The main contribution of this paper is a set of results, identi-

fying the performance limits and optimal coding strategies, for
a variety of UEP scenarios. We will focus on a few simplified
notions of UEP, most with immediate practical applications,
and try to illustrate the main insights for them. One can
imagine using these UEP strategies for embedding protocol
information within the actual data. By eliminating a separate
control channel, this can enhance the overall bandwidth and/or
energy efficiency.
For conceptual clarity, this article focuses on situations

where the data-rate is essentially equal to the channel ca-
pacity1. By this analysis, we will be addressing UEP issues
for scenarios where data rate is a crucial system resource
that can not be compromised. In these cases, no positive
error exponent in the conventional sense can be achieved.
That is, if we aim to protect the entire information uniformly
well, neither bit-wise nor message-wise error probabilities can
decay exponentially fast with increasing block length. We ask
the question then “can we make the error probability of a
particular bit, or a particular message, decay exponentially fast
with block length?”
The question of fundamental limits of UEP was clearly

of interest in previous works on code designs for UEP. To
the best of our knowledge, however, there was no general
characterization of these limits in terms of error exponents;
partially due to the difficulty in proving converses. In this
paper and [5], we develop such converses as well as optimal
strategies. More importantly, the notion of message-wise UEP
was essentially never addressed in the past (except in the paper
Joint Source-Channel Error Exponent by Csiszár, [9]).
When we break away from the conventional framework

and start to provide better protection to selected parts of
information, these parts of information need not be only
bits. A general formulation of UEP could be an arbitrary
combination of protection demands from messages, where
each message demands better protection against some specific
kinds of errors. In this general definition of UEP, bit-wise
UEP and message wise UEP are simply two particular ways
of specifying which kinds of errors are too costly compared
to others.
In the following, Section II discusses bit-wise UEP and

message-wise UEP for the no-feedback case. Theorem 1 shows
that for data-rates approaching capacity, even a single bit
cannot achieve any positive error exponent. Thus in bit-wise

1In another write-up [5], we will analyze similar problems in a more general
framework to allow data-rates below capacity.

UEP, the data-rate must back-off from capacity for achieving
any error exponent even for a single bit. On the contrary, in
message-wise UEP, positive error exponents can be achieved
even at capacity. If only one message in a capacity achieving
code was special and demanded an error exponent, Theorem 2
shows its optimal value is equal to a new fundamental channel
parameter called the Red-Alert Exponent. We then consider
situations where an exponentially large subset of messages
is special and demands a positive error exponent. Theorem
3 shows a surprising result that these special messages can
achieve the same exponent as if all the other (ordinary)
messages were absent. In other words, a capacity achieving
code and an error exponent-optimal code below capacity can
coexist without affecting each other. These results shed some
new light on the structure of capacity achieving codes.
Insights from the no-feedback case become useful in Section

III for the case with full feedback, which shows that full
feedback creates some fundamental connections between bit-
wise UEP and message-wise UEP. Now even for bit-wise UEP,
positive error exponent can be achieved at capacity. In fact,
Theorem 4 shows that a single special bit can achieve the
same exponent as a single special message, which equals the
Red-Alert Exponent. For a single special message however,
Theorem 5 shows that feedback does not improve the achiev-
able exponent. The case of exponentially many messages is
resolved in Theorem 6. Of course, many special messages
cannot achieve a better exponent compared to a single special
message. We will see that the special messages can achieve
the same error exponent with feedback as if all other messages
were absent. Lastly, some future directions are discussed in
Section IV.

II. ERROR EXPONENTS AT CAPACITY: NO-FEEDBACK CASE
Consider a discrete memoryless channel W from input X

to output Y and let X ,Y denote their alphabets, respectively.
The output distribution conditioned on input i ∈ X is denoted
by WY |X(·|i) and the channel capacity is denoted by C. We
assume that all entries of the channel transition matrix are non-
zero, i.e., every output is reachable from every input. Let us
first review the classical definition of an error exponent when
all information is treated equally [2],[3].
Definition 1: A (n, R, εn) code denotes a length n code

of rate R, which has enR messages and the average error
probability of the overall code equals εn.

Pr(M̂ �= M) =
1

enR

∑

k

∑

j �=k

Pr(M̂ = j|M = k) = εn

where M and M̂ are in {1, 2, · · · , enR} denote the randomly
chosen transmitted message and the decoded message, respec-
tively.
At a given rate R, a sequence of (n, R, εn) codes with

increasing block length n is said to achieve an error exponent
if its error probability εn can decay exponentially with n.
Definition 2: The error exponent E(R) at rate R is the

maximum value of E such that a sequence of (n, R, εn) codes
exists for which εn satisfies εn

.
= e−nE .

We use .
= as a shorthand notation for

E = lim
n→∞

− log εn

n
(1)
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Reliable communication at capacity means that for arbitrarily
small gap to capacity C−R

Δ
= ξ > 0, a sequence of (n, R, εn)

codes exists for which εn vanishes for large n. However, εn

cannot decay exponentially in this case. That is, no positive
exponent is achievable for this error probability as the gap ξ
to capacity vanishes [2].

ξ → 0 ⇒ E(R) = E(C − ξ) → 0

A. Special bit
We first address the situation where one particular (say the

first) information bit out of the total nR/ log 2 information bits
is a special bit—it needs a superior error protection compared
to other bits. If this first bit is denoted as b0 and its decoded
value is denoted by b̂0. We require that the error probability
for b0, Pr(b̂0 �= b0), to decay exponentially while ensuring
reliable communication at capacity for the remaining bits. Let
us define its exponent.
Definition 3: Let Eb(ξ) be the largest value such that a

sequence of (n, C − ξ, εn) codes exists for which εn vanishes
for large n and Pr(b̂0 �= b0)

.
= e−nEb(ξ). We define Eb as the

infimum of Eb(ξ) over all positive ξ.

Eb = inf
ξ>0

Eb(ξ)

This is equivalent to this simpler version used later.
Definition 4: Eb is the largest number such that a sequence

of (n, C − ξ, εn) codes exists for arbitrarily small ξ > 0, for
which εn vanishes, and Pr(b̂0 �= b0)

.
= e−nEb .

As noted earlier, the overall information cannot achieve any
positive error exponent E(R) near capacity. However, it is not
clear whether a single special bit can steal an error exponent
Eb near capacity.
Theorem 1: Eb = 0

Intuitive Interpretation: Let the shaded balls in Fig. II-A
denote the minimal decoding regions of the .

= enC messages.
These decoding regions to ensure reliable communication, they
essentially denote the typical noise-balls around codewords.
The decoding regions on the left of the thick line corresponds
to b̂1 = 1 and those on the right correspond to the same when
b̂1 = 0. Each of these halves includes half of the decoding
regions.

Fig. 1. Impossible: splitting the output space into 2 distant enough clusters.

For achieving a positive error exponent for the special bit,
the codewords in the two halves should be sufficiently sepa-
rated from each other as seen in Fig. II-A. Such separation is

necessary to ensure exponentially small probability of landing
in the wrong half. However, above theorem indicates that such
a thick patch takes too much volume, and is impossible when
we have to fill .

= enC typical noise balls in the output space.

B. Special message
Now we focus on situations where one particular message

(say M = 1) out of the total enR messages is a special
message—it needs a superior error protection. The missed de-
tection (i.e., conditional error) probability Pr(M̂ �= 1|M = 1)
for this ‘emergency’ message needs to be minimized.
Definition 5: Em is the largest number such that a sequence

of (n, C − ξ, εn) codes exists for arbitrary ξ > 0, for which
εn vanishes, and Pr(M̂ �= 1|M = 1)

.
= e−nEm.

Theorem 2: Em = maxi∈X D(P ∗Y (·)‖WY |X(·|i)) Δ
= DRed,

where P ∗Y denotes the capacity achieving output distribution.
Compare this with the corresponding result for classical

communication near capacity. If all the messages demand
equally small missed detection probability, then no positive
error exponent is achievable for them near capacity. This
follows from the previous discussion of the classical error
exponent E(R). The above theorem shows the improvement
in this exponent if we only demand it for a single message
instead of all.
Definition 6: Parameter DRed of a channel is defined as its

Red-Alert Exponent.

DRed = max
i∈X

D(P ∗Y (·)‖WY |X(·|i)) (2)

The input letter achieving this maximum is denoted by xr .
Notice the relation between DRed and C: the arguments to

KL divergence are flipped. It is because Karush-Kuhn-Tucker
conditions for achieving capacity imply the following [2],

C = max
i∈X

D(WY |X(·|i)‖P ∗Y (·)).

Capacity C represents the best possible data-rate over a
channel, whereas Red-Alert ExponentDRed represents the best
possible protection of a message for data-rates near capacity.
It is worth mentioning here the “very noisy” channel in

[2]. In this formulation [4], the KL divergence is symmetric,
which implies D(P ∗Y (·)‖WY |X(·|i)) ≈ D(WY |X(·|i)‖P ∗Y (·)).
Hence the Red-Alert Exponent and capacity become essen-
tially equal.
Optimal strategy: The special codeword is a repetition se-
quence of input xr. Its decoding region S contains every out-
put sequence with empirical distribution (output type) different
than the capacity achieving P ∗Y . For the ordinary codewords,
use a capacity achieving code and apply ML decoding over
them for output sequences outside S.
For a symmetric channel like BSC, any input letter can be

used as xr. Since the P ∗Y is the uniform distribution (denoted
by UY ) for these channels, DRed = D(UY (·)‖WY |X(·|i)) for
any input i. This is the sphere-packing exponent Esp(0) of this
channel at rate 0.

Intuitive Interpretation: Having a large missed detection
exponent for the special message corresponds to having a large
decoding region G(1) for the special message. This ensures
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that when the special message is transmitted, probability of
landing outside G(1) is exponentially small. In a sense, Emd
indicates how large G(1) could be made, while still filling
.
= enC typical noise balls in the remaining space. The red
region in Fig. 2 denotes such a large region. Note that
the actual decoding region G(1) is much larger than this
illustration, because it consists of all output types except P ∗Y ,
whereas the ordinary decoding regions only contain the output
type P ∗Y .

Fig. 2. Avoiding missed-detection

C. Many special messages
Now consider that instead of a single special message,

exponentially many of the en(C−ξ) total messages are special.
Let these special messages be the first enr messages. Define
EM(r) as their missed detection exponent.
Definition 7: For a fixed r < C, define EM(r) as the largest

number such that a sequence of (n, C−ξ, εn) codes exists for
arbitrarily small ξ > 0, for which εn vanishes, and

Pr(M̂ �= k|M = k)
.
= e−nEM(r), ∀ k ∈ {1, 2 . . . enr}

If there were only enr messages in the code (instead of
en(C−ξ)), their best missed detection exponent equals E(r).
This is the classical exponent defined in Eq. (1) earlier.
Theorem 3: EM(r) = E(r) ∀ r ∈ [0, C).
Thus whatever E(r) is achievable for only enr messages,

is also achievable when there are en(C−ξ) − enr ≈ enC extra
ordinary messages requiring reliable communication.
Optimal strategy: Start with an optimal code-book for enr

messages which achieves error exponent E(r). These code-
words are used for the special messages. Now the ordinary
codewords are added using random coding. The ordinary
codewords which land close to a special codeword may
be discarded without essentially any effect on the rate of
communication. At the decoder, a two-stage decoding rule is
employed. The first stage decides that some special codeword
was sent if at least one of the special codewords is within
a threshold distance from the received sequence. Otherwise,
the first stage decides that an ordinary codeword was sent.
Depending on the first stage decision, the second stage ignores
all codewords of one kind and applies ML decoding to the rest.

Intuitive Interpretation: This means that we can start with
a code of enr messages, where the decoding regions are
large enough to provide a missed detection exponent of E(r).
Consider the balls around each codeword with sphere-packing

radius (see Fig. 3(a)). For each message, the probability of
going outside its ball decays exponentially with the sphere-
packing exponent.
Although, these enr balls fill up most of the output space,

there are still some cavities left between them. These small
cavities can still accommodate .

= enC typical noise balls for
the ordinary messages (see Fig. 3(b)), which are much smaller
than the original enr balls. This is analogous to filling sand
particles in a box full of large boulders. This theorem is like
saying that the number of sand particles remains unaffected
(exponentially) in spite of the large boulders.

(a) Exponent optimal code

(b) Achieving capacity
Fig. 3. “There is always room for capacity.”

III. EFFECTS OF FULL FEEDBACK
Now we revisit the previous problems assuming perfect

feedback at the transmitter: it knows all the past outputs
before sending a new input symbol. Feedback allows us to use
variable time decoding schemes. Similar to Burnashev [10],
we focus on block encoding schemes where transmission of a
new message begins only after decoding of the old message is
finished. Since the decoding time n could be a random variable
now, let n̄ denote its average.
Definition 8: A (n̄, R, εn̄) feedback code denotes an encod-

ing strategy which has en̄R messages and error probability
εn̄, where n̄ equals the average decoding delay assuming
uniformly distributed messages.

n̄
Δ
=

1

en̄R

en̄R∑

k=1

E [n|M = k]

where E [n|M = k] is average decoding time for message k.

A. Special bit
First consider the situation where the first bit b0 out of the

n̄R/ log 2 bits is special. The error exponent for the special
bit at capacity is defined as follows.
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Definition 9: Ef
b is the largest number such that a sequence

of (n̄, R, εn̄) feedback codes exists for arbitrary ξ > 0, for
which εn vanishes, and Pr(b̂0 = b0)

.
= e−n̄Ef

b .
Theorem 4: Ef

b = DRed.
Recall that without feedback, the single bit could not

achieve a positive error exponent near capacity. The following
strategy shows how feedback connects message-wise UEP
with bit-wise UEP: strategy for protecting a special message
becomes useful for protecting special bits. This special mes-
sage is for indicating incorrect decisions at the receiver.
Optimal strategy: We achieve this exponent using the missed
detection exponent of DRed for a special message. This special
message aims to notify the receiver when b̂0 is incorrect. More
specifically, transmitter first conveys b0 using a short repetition
code of length

√
n̄. If b̂0 is correct after this repetition code,

the remaining bits are conveyed using a capacity achieving
code of length n̄ −√

n̄. If b̂0 is incorrect after the repetition
code, transmitter sends a ‘buzzer’ codeword of length n̄−√

n̄.
For this buzzer, we use the same codeword that achieved the
missed detection exponent Em = DRed, which is a repetition
of the input symbol xr.
An erasure is declared (only) if the decoder detects the

buzzer in the last n̄ − √
n̄ symbols. Then the encoder re-

transmits by repeating the same strategy afresh. The erasure
probability is vanishingly small, which ensures the effective
rate of communication approaches capacity in spite of such
retransmissions. Decoded b̂0 is wrong if buzzer is not detected,
which happens with the missed-detection exponent DRed.
Remark: Similar scheme is useful when n̄r/ log 2 bits (instead
of one) are special and achieves (1 − r/C)DRed as their
exponent.

B. Special message
Now one particular message (say M = 1) requires small

missed-detection probability. Similar to the no-feedback case,
define Ef

m as the missed-detection exponent near capacity
which implies Pr(M̂ �= 1|M = 1)

.
= exp(−n̄Ef

m).
Theorem 5: Feedback does not improve the missed detec-

tion exponent for a single special message: Ef
m = Em = DRed.

If Red-Alert Exponent was defined as the best protection
of a special message (for data-rates near capacity), then this
result could be thought of as an analog the “feedback does
not increase capacity” for Red-Alert Exponent. Also note that
with feedback, Ef

m for the special message and Ef
b for the

special bit became equal.

C. Many special messages
Now let us reconsider the problem where the first en̄r mes-

sages are special. We will now require that average decoding
delay E [n|M = k] to be equal across all messages—special
and ordinary—and hence equals n̄. This uniformity constraint
reflects a system requirement for ensuring a robust delay
performance, which is invariant of the transmitted message.
As in the no-feedback case, define Ef

M(r) capacity such that
Pr(M̂ �= k|M = k)

.
= e−n̄Ef

M(r) for every special message k.

Theorem 6: Let Dmax≡maxi,j D(WY |X(·|i)‖WY |X(·|j)),
Ef
M(r) =min{DRed, (1 − r/C)Dmax}, ∀ r < C.

Thus Ef
M(r) is the minimum of DRed and the Burnashev

exponent at rate r. For r at which DRed ≤ (1 − r/C)Dmax,
all en̄r special messages achieve the best missed detection
exponentDRed for a single special message. For larger r where
DRed > (1 − r/C)Dmax, the special messages achieve the
Burnashev exponent as if the ordinary messages were absent.
The optimal strategy is based on transmitting a special bit

first. It again shows how feedback connects bit-wise UEP with
message-wise UEP: now however the strategy for protecting
a special bit is used for protecting special messages (which is
the exact opposite of the scheme for achieving Ef

b)
Optimal strategy: We combine the strategy for achieving
DRed for a special bit and the Yamamato-Itoh strategy for
achieving Burnashev exponent [11]. In the first phase, an
indicator bit b0 is sent with a repetition code of

√
n̄ symbols.

This is an indicator bit for special messages: it is 1 when a
special message is to be sent and 0 otherwise. If it is decoded
incorrectly as b̂0 = 0, then a missed detection buzzer is sent
for the remaining n̄ −√

n̄ symbols. If it is decoded correctly
as b̂0 = 0, then the ordinary codeword is sent using a capacity
achieving code.
If it is decoded as b̂0 = 1, then the particular special

message is sent using the Yamamato-Itoh scheme: transmit
it at capacity using ≈ n̄r

C
symbols and confirm the decoded

M̂ in the remaining ≈ n̄(1 − r
C

) symbols.

IV. FUTURE DIRECTIONS
This framework provides a large set of fundamental prob-

lems to be studied. For example, many fundamental limits
for UEP at rates below capacity need to be understood.
Effects of allowing erasures and list decoding also need to be
studied. Designing efficient codes for achieving these tradeoffs
is another open area. Information networks (e.g., two-way
channels, broadcast and relay channels) provide another rich
dimension of problems in information theory and optimization.
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