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Abstract—A new analysis technique is suggested for bounding
the error probability of fixed length block codes with feedback
on discrete memoryless channels from above. Error analysis
is inspired by Gallager’s error analysis for block codes with-
out feedback. Using Burnashev-Zigangirov-D’yachkov encoding
scheme analysis recovers previously known best results on binary
symmetric channels and improves up on the previously known
best results on k-ary symmetric channels and binary input
channels.

I. INTRODUCTION

Shannon showed [9] that capacity of the discrete mem-
oryless channels (DMCs) does not increase with feedback.
Later Dobrushin [4] showed that the exponential decay rate
of the error probability of fixed length block codes can not
exceed sphere packing exponent in symmetric channels.1 In
other words for the rates above the critical rate, at least for
symmetric channels, even the error exponent does not increase
with feedback, when we restrict ourselves to the fixed length
block codes. Characterizing the improvement in the error
exponent for the rates below the critical rate is the pressing
open question in this stream of research.2

The first work on the error analysis of block codes with
feedback was by Berlekamp, [1]. He obtained a closed form
expression of the error exponent at zero rate for binary
symmetric channels (BSCs). Later Zigangirov [10] proposed
an encoding scheme, for BSCs which reaches sphere packing
exponent for all rate larger than a critical rate RZcrit.3 Fur-
thermore at zero rate Zigangirov’s encoding scheme reaches
optimal error exponent, which is derived by Berlekamp in [1].
Later D’yachkov [5] proposed a generalization of the encoding
scheme of Zigangirov, and obtained a coding theorem for
general DMCs. However the optimization problem resulting
from his coding theorem, is quite involved and does not allow

1After that Haratounian [7] established an upper bound for the error
exponent for non-symmetric channels as a generalization of Dobrushin’s
result, but his upper bound is strictly larger than the sphere packing exponent
for non-symmetric channels.

2There are a number of closely related models in which error exponent
analysis has been successfully applied, like variable-length block codes, fixed
length block codes with errors-and-erasure decoding, block codes on additive
white Gaussian noise channels, fixed/variable delay code on DMCs. We are
refraining from discussing these variants because understanding those variants
will not help the reader much in understanding the work at hand.

3Evidently RZcrit < Rcrit where Rcrit is the critical rate in the non-
feedback case, i.e. the rate above which random coding exponent is equal to
the sphere packing exponent.

for simplifications that will lead to conclusions about the error
exponents of general DMCs. In [5] after pointing out this
fact, D’yachkov focuses on binary input channels and k-ary
symmetric channels and derives the error exponent expressions
for these families of channels.

In [8] we have derived an upper bound on error probability
for general DMCs, using an analysis technique similar to
Gallager’s in [6]. However like D’yachkov’s expression in [5]
our expression was hard to compute, so we have focussed on
example: k-ary symmetric channels and binary input channels.
We showed that the analysis technique proposed was able to
recover D’yachkov’s and Zigangirov’s result on binary input
channels and improve D’yachkov’s results on k-ary input
channels.

However Burnashev [2] had already improved Zigangirov’s
results [10] in binary symmetric channels. In this work we
suggest a modification to the analysis technique we have
presented in [8] to get the improvement corresponding to
the Burnashev’s in general DMCs. We keep track of the
likelihoods of the messages using a stopping time in order
to avoid making a worst case assumption like the one we
did in [8], at least in some part of the block. Furthermore in
order to accommodate different tilting factors in the encoding
at different times we use a weighted maximum likelihood
decoder instead of a maximum likelihood decoder. However
resulting optimization problem will again be hard. Thus we
will focus on k-ary symmetric and binary input channels to
demonstrate the improvements we have established.

We will start by introducing the channel model and the
notation in section II. After that in section III we will do the
first part of our error analysis inspired by Gallager’s analysis
in [6] and Burnashev’s analysis in [2]. Then we will specify
the feedback encoding scheme in section IV. After that we
will come back to our error analysis and derive a parametric
expression for the achievable error exponent in section V.
These expressions improves upon the previously known best
results reported before, [8], in all channels.4 Finally in section
VI we will mention the aspects of the problem we are
investigating currently

4Evidently with the exception BSCs. For BSCs best results are Burnashev’s
in [2] we are merely recovering his results for BSCs.
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II. CHANNEL MODEL AND NOTATION

We have a discrete memoryless channel with input alphabet
X = {1, 2, . . . , |X |}, output alphabet Y = {1, 2, . . . , |Y|}.
Channel transition probabilities are given by a |X |-by-|Y|
matrix W (y|x). In addition we assume that a noiseless, delay
free feedback link exists from the receiver to the transmitter.

Receiver sends the channel output at time t, Yt and an
additional random variable of its choice, Λt , to the transmitter
at each time t. The transmitter receives the feedback link
symbol for time t, Zt = (Yt,Λt) before the transmission of
the input symbol at time t+1. A feedback encoding scheme5

Ψ is a mapping from the set of possible feedback sequences,
Zt−1 for t ∈ {1, 2, . . . ,n}, to the set of possible input symbol
assignment for the elements of the message set M,

Ψ(·) :
n�

t=1

Zt−1 → X |M|
.

The input letter for the message m ∈M at time t given z
t−1 ∈

Zt−1 is the m
th element of Ψ(zt−1), i.e. Ψm(zt−1). Note that

when there is no feedback Ψ(zt−1) = Ψ (t), ∀zt−1 ∈ Zt−1.
The probability of observing a Z

t conditioned on message
m ∈M is,

P
�
Z

t
�� θ = m

�
=

t�

j=1

W (Yj |Ψm(Zj−1)) ·P
�
Λj |Zj−1

, Yj

�
.

A decoding rule is a mapping from the set of all length n
output sequences, Yn, to the message set M,

Φ(·) : Zn →M.

We denote the set of all |M|-long sequence of nonnegative
numbers by Q|M|. Thus at any time t both the posterior prob-
ability distribution or the likelihood vector of the messages
will be in Q|M|.

III. ERROR ANALYSIS PART I: STOPPING TIME AND
WEIGHTED MAXIMUM-LIKELIHOOD DECODING

Two main drawbacks of the error analysis we have intro-
duced in [8] were, the use of worst case bound over the space
of possible posterior probability distributions and use of fixed
tilting factor η for the encoding throughout the block. In order
to be able to address the first issue we will keep track of the
likelihoods of the messages, using a stopping time. In order
to be able address the second issue we will use weighted
maximum likelihood decoding instead of maximum likelihood
decoding. In order to accommodate these changes we need to
modify the analysis technique we proposed in [8] this section
is devoted to that end.

5Indeed this additional random variable is not necessary, in the sense
that any performance achievable using a feedback symbol of the form
Zt = (Yt,Λt ) is also achievable, using a feedback symbol of the form
Zt = Yt. However introducing this extra random variable simplifies the
analysis a great deal.

Let τ be a stopping time with respect to the stochastic
sequence Z1, Z2, . . ., i.e. with respect to the receivers obser-
vation. Evidently

�
n�

t=1

I{τ = t}
�

+ I{τ > n} = 1

For each t let ζt be a high probability subset set of Zt to
be determined later.6 Let ζ

τ be the set of Z
τ such that all

subsequences, Z
t’s, are in the corresponding high probability

subset and ζτ be its complement, i.e.

ζ
τ = {Zτ : ∀t ≤ τ, Z

t ∈ ζt} (1)
ζτ = {Zτ : Z

τ
/∈ ζ

τ}. (2)

Evidently I{ζτ}+ I{ζτ} = 1. Thus,

Pe = E
�
I{θ̂(Zn) �= θ}

�

= E

�
I{θ̂ �= θ}

�
I{ζτ}+ I{ζτ}

�
I{τ > n}+

n�

t=1

I{τ = t}
���

≤ P
�
ζτ

�
+ Pe

∗
n +

n�

t=1

Pet (3)

where

Pe
∗
n = E

�
I{ζτ}I{τ > n}I{θ̂(Zn) �= θ}

�
(4)

Pet = E
�
I{ζτ}I{τ = t}I{θ̂(Zn) �= θ}

�
. (5)

Clearly best error performance is obtained by maximum
likelihood decoder for any encoding scheme. However, when
used in conjunction with the bounds we employ, it is not at all
clear why same should hold. Indeed allowing for a weighted
maximum likelihood decoder as described below gives us
better performance,

θ̂(Zn) = arg max
θ

P
�
Z

n
τ+1

�� θ
�
P {Zτ | θ}α

. (6)

For the decoder given in equation (6), for any Z
n, η > 0 and

ρ ≥ 0 we have,

I{θ̂(Zn) �= θ} ≤




�

m �=θ

P{Z
n
τ+1|m,Zτ}η

P{Zτ |m}αη

P{Z
n
τ+1|θ,Zτ}η

P{Zτ |θ}αη




ρ

. (7)

For our later convenience instead of α we work with β = αη.
For any η > 0, α can take any positive value so does β.

Above upper bound on the indicator function of the error
event still depends on the transmitted message θ, i.e. it is not
known at the receiver. In order to get rid of that dependence
let us define ξt,

ξt =






E

2

4

2

4
X

m �=θ

P{Zt|m}β

P{Zt|θ}β

3

5
ρ ˛̨
˛̨
˛̨Z

t−1, Yt, θ

3

5 t ≤ τ

E

2

4

2

4
X

m �=θ

P{Zt
τ+1|m,Zτ}η

P{Zτ |m}β

P{Zt
τ+1|θ,Zτ}η

P{Zτ |θ}β

3

5
ρ ˛̨
˛̨
˛̨Z

t−1, Yt, θ

3

5 t > τ






.

6Say with probability P {ζt} = 1− e−n2
.
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Thus we get

Pe
∗
n ≤ E [I{ζτ}I{τ > n}ξn] (8)

Pet ≤ E [I{ζτ}I{τ = t}ξn]
= E [I{ζτ}I{τ = t}E [ξn|Zτ ]] . (9)

Let us assume for the moment that there exist an encoding
scheme such that

E
�
ξt+1|Zt−1

, Y
t
�
≤ G(ρ,η )ξt ∀ Z

t−1
, Yt s.t. t ≥ τ.

Then for any Z
τ such that τ ≤ n we have

E [ξn|Zτ ] ≤ G(ρ,η )(n−τ)
ξτ . (10)

Using equations (9) and (10) we get the following upper bound
on Pet

Pet ≤ E
�
I{ζτ}I{τ = t}G(ρ,η )(n−τ)

ξτ

�

≤ G(ρ,η )(n−t)E [I{ζτ}I{τ = t}ξτ ] . (11)

In order to bound the error probability further we need to
specify the high probability sets ζt and the encoding scheme,
i.e. the stopping time τ , and the encoding scheme for the
interval [0, τ ] and [τ +1,n]. We will do that in the next section
and after that in section V we will continue to derive the upper
bound.

IV. ENCODING SCHEME:

A. Stopping time:

Note that using the “tilted” likelihoods P {Zt| ·}β we can
define “tilted” posterior probability distributions follows,

ϕ(m|Zt) = P{Z
j|m}β

P
m̃∈M P{Zj |m̃}β . (12)

The stopping time τ(β,�) is the first time instance at which
a message reaches a “tilted” posterior probability higher than
�. Note for some Z

n this might not happen in first n times in
which case τ(β,�) > n.

τ(β,�)�min

�
t : max

m∈M

P {Zt|m}β

�
m̃ P {Zt| m̃}β

≥ �

�
(13)

Note that for any t receiver chooses Λt after observing
(Zt−1

, Yt) but without knowing the transmitted message θ,
thus given (Zt−1

, Yt), Λt is independent of the transmitted
message θ,

P
�
Z

t
��m

�
= P

�
Z

t−1
, Yt

��m
�
·P

�
Λt |Zt−1

, Yt

�
.

As a result receiver know whether τ > t or not before it draws
Λt .

B. Encoding in [0, τ ]: Random Coding

Recall that for each history Z
t−1 the encoding scheme at

time t is a mapping of messages to the input letters. For all
(Zt−2

, Yt−1) such that τ ≥ t we use Λt−1 to choose this
mapping randomly. For each (Zt−2

, Yt−1) each message is
assigned to an input letter x for time t with probability P (x).
Furthermore given (Zt−2

, Yt−1) assignments of the messages
are independent of one another, i.e.

P
�
Ψ(Zt−1) = �X

��� Z
t−2

, Yt−1

�

=
�

m∈M
P

�
Ψm(Zt−1) = �Xm

��� Z
t−2

, Yt−1

�

=
�

m∈M
P ( �Xm) (14)

For such an encoding if t ≤ τ then for almost all Λt−1 ’s
�

m:Ψm(Zt−1 )=x

P
�
Z

t−1
��m

�β ≈ P (x)
�

m:Ψm(Zt−1 )=x

P
�
Z

t−1
��m

�β

The main idea here is that if τ ≥ t then tilted posterior
probability, ϕ(·|Zt−1) of each message is small, i.e. less than
�, and there are many of them, i.e. |M|. Thus if we assign
each one of them to the input letter x with probability P (x)
independently the total “tilted” posterior probability of the
messages that are assigned to input letter x will be very close
P (x). More precisely,

Lemma 1: For any (Zt−2
, Yt−1) such that τ ≥ t let ζt−1

is be

ζt−1 =




Z
t−1 : ∀x ∈ X

������

�

m:Ψm(Zt−1 )=x

ϕ(m|Zt−1)− P (x)

������
≤ P (x)

n




 .

Then

P
�
Z

t−1
/∈ ζt−1

�� Z
t−2

, Yt−1

�
≤ 2|X|e−n2

2

For any (Zt−2
, Yt−1) such that τ < t, ζt−1 = Zt−1 and

P
�
Z

t−1
/∈ ζt−1

�� =
�

0.
Proof: Second part of the lemma is trivial so we focus

on the first part. Let am be

am(x) = I{Ψm(Zt−1) = x}ϕ(m|Zt−1)

Then

E
�
am(x)|Zt−2

, Yt−1

�
= ϕ(m|Zt−1)P (x)

|am(x)−E
�
am(x)|Zt−2

, Yt−1

�
| ≤ ϕ(m|Zt−1)

Recall that since τ ≥ t we have max
m

ϕ(m|Zt−1) < �. Thus

�

m

E
�
am |Zt−2

, Yt−1

�
= P (x)

�

m

ϕ(m|Zt−1)2 ≤
�

m

ϕ(m|Zt−1)�

= �
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As result of [3, Theorem 5.3] we have,

P

������
�

m

am(x)− P (x)

����� ≥ λ

����� Z
t−1

, Yt

�
≤ 2e

−λ2
2�

If we choose λ = P (x)
n , � =

�
minx P (x)

n2

�2
and apply union

bound over x ∈ X , lemma 1 follows.
Evidently using lemma 1 we can bound the probability of ζτ

defined in equations (1), (2) from above as follows

P
�
ζτ

�
≤ 2|X |ne

−n2
2 (15)

Note that on the other hand Pet terms contributing to the
upper bound in equation (3) are themselves upper bounded
by equation (11). Below we will bound ξτ from above for
Z

τ ∈ ζ
τ to bound (11). Note that for all Z

t−1 ∈ ζt−1 and
Yt ∈ Y we have
�����

P
m P{Z

t−1
,Yt|m}β

P
m P{Zt−1|m}β −

�

x

W (Yt|x)β
P (x)

����� ≤
P

x W (Yt|x)β
P (x)

n

Thus for all Z
τ ∈ ζ

τ we have

1
ϕ(θ|Zτ ) =

�P
m P{Zτ |m}β

P{Zτ |θ}β

�

≤
�
1 + 1

n

� �P
x W (Yτ |x)β

P (x)

P{Yτ |Zτ−1}β

� �P
m P{Z

τ−1|m}β

P{Zτ−1|θ}β

�

≤ e
nR

�
1 + 1

n

�τ

τ�

t=1

�P
x W (Yt|x)β

P (x)

P{Yt|Zt−1}β

�

(a)
≤ e

nR
�
1 + 1

n

�n τ�

t=1

�P
x W (Yt|x)β

P (x)

P{Yt|Zt−1}β

�

(b)
≤ e

nR+1
τ�

t=1

�P
x W (Yt|x)β

P (x)

P{Yt|Zt−1}β

�
(16)

where (a) follows (1 + 1/n)τ ≤ (1 + 1/n)n and (b) follows
(1 + 1/n)n ≤ e.

Evidently for any Z
τ ,

�

m �=θ

P {Zτ |m}β ≤
�

m

P {Zτ |m}β

Consequently for all Z
τ ∈ ζ

τ

ξτ ≤ E
��P

m P{Zτ |m}
P{Zτ |m}

�ρ
��� Z

τ

�

≤ E

��
e
nR+1

τ�

t=1

P
x W (Yt|x)β

P (x)
P{Yt|θ,Zt−1}

�ρ
����� Z

τ

�

= E [Γτ (θ)ρ|Zτ ] (17)

where Γτ (θ) is the value of Γt(m) which is defined for Z
t

such that t ≤ τ and m ∈M as

Γt(m) = e
nR+1

t�

�=1

P
x W (Y�|x)β

P (x)
P{Y�|m,Z �−1} . (18)

Evidently above analysis implies that for Z
n ∈ ζ

n and τ > n
we have

ξn ≤ E [Γn(θ)ρ|Zn] (19)

C. Encoding in [τ + 1,n]:
In section III we have assumed that there exists a feedback

encoding scheme such that

E
�
ξt+1|Zt−1

, Yt

�
≤ G(ρ,η )ξt ∀Zt−1

, Yt s.t. t ≥ τ.

In this section we derive achievable values for G(ρ,η ). These
achievable values will be used in section V while we are
deriving an upper bound to the error probability Pe. In
subsection IV-C1 we formally describe an achievable value
for G(ρ,η ) which we have not been able to simplify to get
a single letter expression. In subsection IV-C2 we describe a
modified Zigangirov-D’yachkov(Z-D) encoding and obtain an
expression for the resulting G(ρ,η ).

1) An Upper Bound on G(ρ,η ): Recall again that given
Z

t encoding at time (t + 1), Ψ(Zt) is simply a mapping of
messages to the input letters. Furthermore using the short hand

φ(m|Zt) = P
�
Z

t

τ+1

��m,Z τ
�η P {Zτ |m}β

. (20)

we get

E [ξt+1|Zt]
ξt

=
E

»„ P
m �=θ φ(m|Zt+1)

φ(θ|Zt+1)

«ρ ˛̨
˛̨Zt

–

E

»„ P
m �=θ φ(m|Zt)

φ(θ|Zt)

«ρ ˛̨
˛̨Zt

–

= υη,ρ(P
�
Z

t
�� ·

�
, φ(·|Zt),Ψ·(Zt))

where υ is defined for ρ ≥ 0, η ≥ 0, q ∈ Q|M|, p ∈ Q|M|

and X ∈ X |M| as follows

υη,ρ(q, p, X) =
P

Y

P
m W (Y |Xm)1−ρη

qmp
−ρ
m (P

m̃ �=m W (Y |Xm)η
pm̃)ρ

P
m qmp

−ρ
m (P

m̃ �=m pm̃)ρ

(21)
Thus

E[ξt+1|Zt]
ξt

is only function of the pair (η,ρ ), “tilted”
weighted likelihoods of the messages, i.e. φ(·|Zt), likelihoods
of the messages, i.e. P {Zt| ·}, and the mapping, Ψ(Zt).

However Ψ(Zt) can depend on both φ(·|Zt) and P {Zt| ·}
because given Z

t their values are known. If we chose the
mapping at time (t + 1), i.e. Ψ(Zt), as

Ψ(Zt) = argmin
X

υη,ρ(P
�
Z

t
�� ·

�
, φ(·|Zt), X)

we get

E [ξt+1|Zt]
ξt

= min
X

υη,ρ(P
�
Z

t
�� ·

�
, φ(·|Zt), X).

Evidently for any Z
t this value is upper bounded by the worst

case value over Q|M| ×Q|M|. Then

E [ξt+1|Zt]
ξt

≤ max
q,p

min
X

υη,ρ(q, p, X) ∀Zt (22)

Note that although expression in equation (22) is a valid upper
bound it is not a single letter expression.

2) Z-D Encoding Scheme: In this subsection we use Z-
D encoding scheme via “tilted” weighted likelihoods, φ(·|Zt),
to get explicit single letter upper bounds to G(ρ,η ). This
encoding scheme was first described by Zigangirov [10] for
binary symmetric channels then generalized by D’yachkov [5]
to general DMCs. We have previously used this encoding on
“tilted” likelihoods in [8].

868



Consider a probability distribution a P (·) on input alphabet
X and a p ∈ Q|M|. Without loss of generality we can assume
that7 ∀m, m̃ ∈ M, if m ≤ m̃ then pm ≥ pm̃ . Now we can
define mapping X for a given p and P (·) iteratively as follows:

γ0(x) = 0 ∀x ∈ X
Xm = argmin

x∈supp(P )

γm−1 (x)
P (x)

γm(x) =
�

1≤m̃≤m:Xm̃=x

pm̃

For assigning m ∈M we first calculate for each input letter,
x ∈ X , the total mass of all of the messages that has already
been assigned to x, γm−1 (x). Then we divide γm−1 (x)’s by
the corresponding P (x) values and assign the message m ∈
M to the x ∈ X , for which P (x) > 0 and γm−1 (x)

P (x) is the
minimum. If there is a tie we choose the input letter, x, with
larger P (x). If there is still a tie, we choose the input letter
with smaller index.

A Z-D encoding scheme with P (·), will satisfy,

χm = pXm−pm

P (Xm) ≤ px

P (x) ∀x ∈ X ∀ m ∈M (23)

where px = γ|M|(x). In order to see this, simply consider the
last message assigned to each input letter x ∈ X . They will
satisfy this property by construction. Since the messages that
are assigned to the same letter prior to the last message have
at least the same mass as the last one, they will satisfy the
property given in equation (23) too. Thus for any p ∈ Q|M|

and any input distribution P (x), the mapping created by a
Z-D encoding scheme, satisfies

px − P (x)χm ≥ 0 ∀x ∈ X ∀ m ∈M (24)

Thus
P

m̃ �=m I{Xm̃=x}pm̃P
m̃ �=m pm

= χmP (x)P
m̃ �=m pm

+
P

x�=Xm
I{Xm̃=x}(px−χmP (x))P

m̃ �=m pm̃

In other words, with Z-D encoding scheme, the mass of the
p is distributed over the input letters in such a way that; when
we consider all the mass distribution except an m ∈M, it is
a linear combination of P (x) and δx,x� ’s for x

� �= Xm . Using
this decomposition of the input distribution together with the
convexity of the function z

ρ for ρ ≥ 1 and Jensen’s inequality
we get,

�P
k �=m W (y|Xk)η

qkP
k �=m qk

�ρ

=
�P

x W (y|x)η P
m̃ �=m I{Xm̃=x}pm̃P

m̃ �=m pm̃

�ρ

=

�
�

x

W (y|x)η

�
χmP (x)P

m̃ �=m pm̃
+

P
x�=Xm

I{Xm̃=x}(px−χmP (x))P
m̃ �=m pm̃

��ρ

≤ χm [Px W (y|x)η
P (x)]ρP

m̃ �=m pm̃
+

�

x�=Xm

(px−χmP (x))W (y|x)ηρ
P

m̃ �=m pm̃
(25)

7If this is not the case for a p, we can rearrange the messages m ∈M,
according to their pm in decreasing order. If two or more messages have same
mass, p, we order according to their indices.

Using equation (23) in the definition of υη,ρ(q, p, X) given in
equation (21), for ρ ≥ 1 for all input distributions P and for
all η > 0, we get

υη,ρ(q, p, X) ≤ max
x∈supp P (·)

max{µx(P,ρ ,η ), λx(ρη)}

where ∀x ∈ X

µx(P, ρ,η ) =
X

y

W (y|x)(1−ρη)

 
X

x̃

P (x̃)W (y|x̃)η

!ρ

λx(ρη) = max
x̃�=x,x̃∈supp(P )

ln
X

y

W (y|x)(1−ρη)W (y|x̃)ρη

When ρ ∈ [0, 1], we will do random coding instead of Z −D ,
using concavity of s

ρ for s ≥ 0 we get

υη,ρ(q, p, X) ≤
�

x

P (x)µx(P,ρ ,η )

V. ERROR ANALYSIS PART II:

In this section we continue the error analysis we have started
in section III, for the encoding scheme specified in section IV.
We will start with bounding Pe

∗
n, than we will bound Pet and

proceed to combining the bounds we have established to bound
the overall error probability, Pe.

A. Bounding Pe
∗
t
:

Using equations (8) and (19) We can bound

Pe
∗
n ≤ E [I{τ > n}I{Zn ∈ ζ

n}Γn(θ)ρ]
= E [I{ϕ(θ|Zn) ≤ �}I{Zn ∈ ζ

n}Γn(θ)ρ]

≤ E
�
I{ 1

Γθ(n) ≤ �}I{Zn ∈ ζ
n}Γn(θ)ρ

�

≤ E
�
�
λΓn(θ)ρ+λ

�

≤ �
λ
e
ρ+λ

e
nR(λ+ρ)

H0(ρ, β,λ 0)n (26)

where

H0(ρ, β,λ 0) =
�

y,x

P (x)W (y|x)
�P

x̃ P (x̃)W (y|x̃)β

W (y|x)β

�(ρ+λ)

(27)

B. Bounding Pet:

Using equations (11) and (17) we get,

Pet ≤ E
�
I{τ = t}I{Zt ∈ ζ

t}Γt(θ)
ρ
�
G(ρ,η )n−t

For Z
t ∈ ζ

t following an analysis similar to the one leading
to equation (16) we can prove that,

ϕ(m|Zτ ) ≤ 4
enR

τ�

t=1

�
P{Yt|m,Zt−1}β

P
x W (Yt|x)βP (x)

�

= 4e

Γt(m) (28)

Consequently for ϕ(m|Zt) ≥ � to hold Γt(m)
4e�−1 ≤ 1 should

hold. Thus if Γt(θ)
4e�−1 > 1 then a message m �= θ should have

a tilted posterior, ϕ(m|Zt) ≥ � for τ = t. This case and the
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case in which ϕ(θ|Zt) ≥ � should be analyzed differently. To
do we rewrite Pet in the following form,

Pet ≤ Peta + Petb (29)

Peta =E
�
I{ Γt(θ)

4e�−1≤1}I{τ = t}I{Zt ∈ ζ
t}Γt(θ)

ρ

�
G(ρ,η )n−t

Petb =E
�
I{ Γt(θ)

4e�−1 >1}I{τ = t}I{Zt ∈ ζ
t}Γt(θ)

ρ

�
G(ρ,η )n−t

Let us start with bounding Peta

Peta=E
�
I{ Γt(θ)

4e�−1≤1}I{τ = t}I{Zt ∈ ζ
t}Γt(θ)

ρ

�
G(ρ,η )n−t

≤E
�
I{ Γt(θ)

4e�−1≤1}Γt(θ)
ρ

�
G(ρ,η )n−t

≤ E
��

4e�
−1

Γt(θ)

�λ

Γt(θ)
ρ

�
G(ρ,η )n−t

=
�

4e

�

�λ E
�
Γt(θ)

ρ−λ

�
G(ρ,η )n−t

= e
ρ
�

4
�

�λ

e
nR(ρ−λ)

H1(ρ, β,λ )t
G(ρ,η )n−t (30)

where

H1(ρ, β,λ ) =
�

y,x

P (x)W (y|x)
�P

x̃ P (x̃)W (y|x̃)β

W (y|x)β

�ρ−λ

(31)

Note that the equation (28) is an implicit lower bound on the
value of t. i.e.

1 ≥ Γt(m)
4e�−1 ≥ e

nR+1

4e�−1

�
min

x

min
y

P
x̃ W (y|x̃)β

P (x̃)
W (y|x)β

�t

Thus if Z
τ ∈ ζ

τ and t = τ than t has to be greater than t0

where,

t0 =




nR+ln

�

4

maxx,y log
W (y|x)β

P
x̃ W (y|x̃)βP (x̃)




(32)

For bounding Petb, note that if Γt(θ)
4e�−1 < 1 as a result of

equation (28), ϕ(θ|Zt) < �. Thus as we have already pointed
out for τ to be t, maxm �=θ ϕ(m|Zt) should be greater than
�. This and the equation (28) implies minm �=θ

Γt(m)
4e�−1 ≤ 1. We

can write above observation using indicator functions as

I{ Γt(θ)
4e�−1 > 1}·I{τ = t}I{Zt ∈ ζ

t}
≤ I{ Γt(θ)

4e�−1 > 1} · I{min
m �=θ

Γt(m)
4e�−1 ≤ 1}

Using the above identity in the definition of Petb we get

Petb=E
�
I{ Γt(θ)

4e�−1 >1}I{τ = t}I{Zt ∈ ζ
t}Γt(θ)

ρ

�
G(ρ,η )n−t

≤E
�
I{ Γt(θ)

4e�−1 >1}I{min
m �=θ

Γt(m)
4e�−1 ≤ 1}Γt(θ)

ρ

�
G(ρ,η )n−t

≤ E
�
E

�
I{ Γt(θ)

4e�−1 > 1}I{min
m �=θ

Γt(m)
4e�−1 ≤ 1}Γt(θ)

ρ

���� Y
t

��

·G(ρ,η )n−t (33)

Note that given Y
t, Γt(m)’s are independent of each other,

consequently

E
�
I{ Γt(θ)

4e�−1 > 1}I{min
m �=θ

Γt(m)
4e�−1 ≤ 1}Γt(θ)

ρ

���� Y
t

�

= E
�
I{ Γt(θ)

4e�−1 > 1}Γt(θ)
ρ

��� Y
t

�
E

�
I{min

m �=θ

Γt(m)
4e�−1 ≤ 1}

���� Y
t

�

(34)

Let us first bound E
�
I{ Γt(θ)

4e�−1 > 1}Γt(θ)
ρ

��� Y
t

�
,

E
�
I{ Γt(θ)

4e�−1 > 1}Γt(θ)
ρ

��� Y
t

�
≤ E

��
�

4e

�λ1 Γt(θ)
ρ+λ1

��� Y
t

�

(35)

For bounding E
�
I{minm �=θ

Γt(m)
4e�−1 ≤ 1}

��� Y
t

�
. First note that

I{min
m �=θ

Γt(m)
4e�−1 ≤ 1} ≤ min{1,

�

m �=θ

I{Γt(m)
4e�−1 ≤ 1}

Taking the expectation of both sides of the inequality we get,

E
�
I{min

m �=θ

Γt(m)
4e�−1 ≤ 1}

���� Y
t

�

≤ E



min{1,

�

m �=θ

I{Γt(m)
4e�−1 ≤ 1}

������
Y

t





≤ min




1,

�

m �=θ

E
�
I{Γt(m)

4e�−1 ≤ 1}
��� Y

t

�



 . (36)

For each term in the inner sum in the minimum we have

E
�
I{Γt(m)

4e�−1 ≤ 1}
��� Y

t

�
≤ E

�
I{Γt(m)

4e�−1 ≤ 1}
�

4e�
−1

Γt(m)

�λ2
���� Y

t

�

≤
�

4e

�

�λ2 E
�
Γt(m)−λ2

��� Y
t

�
(37)

For any m �= θ distribution of the input letter at any time � is
P (x) and it is independent of Y�. Using this one can show that
E

�
Γt(m)−λ2

��� Y
t

�
= e

−nR−1 when λ2 = 1. Thus using this
fact together with equations (36) and (37) we can see that the
minimum in equation (36) buys us at most a factor of 4�

−1

which is polynomial in n.
Thus for bounding E

�
I{minm �=θ

Γt(m)
4e�−1 ≤ 1}

��� Y
t

�
, we in-

stead of equations (36) and (37) we will simply use

E
�
I{min

m �=θ

Γt(m)
4e�−1 ≤ 1}

���� Y
t

�
≤

�
4e

�

�λ2
e
nRE

�
Γt(θ)

−λ2
��� Y

t

�
.

(38)

where θ is any message other than θ.
Using equations (33), (35) and (38) we get,

Petb≤
�

�

4e

�λ1−λ2 E
�
Γt(θ)

ρ+λ1
e
nRΓt(θ)

−λ2
�
G(ρ,η )n−t

≤e
ρ
�

�

4

�λ1−λ2
e
nR(1+ρ+λ1−λ2)H2(ρ, η,λ 1, λ2)t

G(ρ,η )n−t

(39)
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where

H2(ρ, η,λ 1, λ2)

=
�

x,y

P (x)W (y|x) [
P

x̃ P (x̃)W (y|x̃)β ]ρ+λ1

W (y|x)β(ρ+λ1)

P
x̃ P (x̃)W (y|x̃)βλ2

[
P

x̃ P (x̃)W (y|x̃)β ]λ2

(40)

C. Parametric Error Bounds:

Using equations (3), (15) and (29) we get

Pe ≤ 2|X |ne
−n2

2 + Pe
∗
n +

n�

t=t0

(Peta + Petb) (41)

where the expression for t0 is given in (32) and bounds
for Pe

∗
n, Peta and Petb are given in parametric form in

equation (26), (30) and (39) in terms of G(ρ,η ), � =
(minx∈suppP (x) P (x)

n2 )2, λ0 ≥ 0, λ ≥ 0, λ1 ≥ 0, λ2 ≥ 0, β ≥ 0,
ρ ≥ 0, η ≥ 0.

We will address the issue of optimal choice of parameters
in the journal paper on the subject. In order to recover the
extension of the results of [2], we will chose λ0 = 0, λ1 =
0, λ2 = 1 + λ, β = 1

1+ρ
. Note that using the definition of

H0(ρ, β,λ 0) in (27) we get

H0(ρ,
1

1+ρ
, 0) = e

−E0(P,ρ)

where

E0(P,ρ ) = − ln
�

y

�
�

x

P (x)W (y|x)
1

1+ρ

�1+ρ

Similarly definitions of H1(ρ, β,λ ) and H2(ρ, β,λ 1, λ2) in
(31) and (40) leads to,

H1(ρ,
1

1+ρ
, λ) = e

−H(ρ,λ)

H2(ρ,
1

1+ρ
, 0, (1 + λ)) = e

−H(ρ,λ)

where

H(ρ,λ ) = − ln
�

x,y

P (x)W (y|x)
�P

x̃ P (x̃)W (y|x̃)
1

1+ρ

W (y|x̃)
1

1+ρ

�ρ−λ

Plugging these and (32),(26), (30), (39) in (41) and discard-
ing polynomial factors multiplying exponentials and additive
factors decaying faster than exponentials we can see that
exponential decay rate of the error will be,

F (R,ρ ,λ ) = min{F1(R,ρ ), F2(R,ρ , η,λ )} (42)
F1(R,ρ ) = E0(ρ)− ρR

F2(R,ρ , η,λ ) = min
α0≤α≤1

aH(ρ,λ ) + (1− a)G∗(ρ)− ρR

G
∗(ρ) = max

η

− lnG(ρ,η )

α0 = R

maxx,y ln
W (y|x)β

P
x̃ W (y|x̃)βP (x̃)

In order to see the gains of the modification we have
discussed over the original scheme we described in [8] we
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Fig. 1. Spherepacking exponent, exponent resulting from equation (42),
exponent we derived in [8], D’yachkov’s exponent expression in [5] and
random coding exponent are plotted for a ternary symmetric channel with
δ = 10−4.

consider k-ary symmetric channels, i.e. channels with W (y|x)
of the forms

W (i|j) =

�
1− δ i = j

δ

K−1 i �= j

Figure 1 compares the error exponent achievable with the cur-
rent scheme with the error exponents resulting from previous
studies.

VI. CURRENT WORK:
We are currently working on the optimal solution of the

parametric bounds on the error probability and its implications
for general DMCs. Furthermore we are seeking alternative
encoding schemes to the random coding for the first phase
and a good single letter bound on G(ρ,η ) function for general
DMCs. Finally we are also investigating the possible gains of
multi-phase schemes.
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