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Abstract—The mutual information is analyzed as a function
of the input distribution using an identity due to Topsøe for
channels with (possibly multiple) linear constraints and finite
input and output sets. The mutual information is bounded above
by a function decreasing quadratically with the distance to the
set of all capacity-achieving input distributions for the case when
the distance is less than a certain threshold. Explicit expressions
for the threshold and the coefficient of the quadratic decrease
are derived. A counter-example is provided demonstrating the
non-existence of such a quadratic bound in the case of infinitely
many linear cost constraints. Implications of these observations
for the channel coding problem and applications of the proof
technique to related problems are discussed.

I. INTRODUCTION

In his seminal paper [1], Strassen proved for channels with
finite input and output sets that there exist positive constants
γ and δ for which the mutual information satisfies

I(p;W ) ≤ C − γ∥p − p∗∥2 if ∥p − p∗∥ ≤ δ (1)

where p∗ is the projection of p to the set of all capacity-
achieving input distributions Π in the underlying Euclidean
space, and hence ∥p − p∗∥ is the distance of p to Π. Strassen’s
brief and elegant argument relies implicitly on the fact that
for any p /∈ Π, the direction p−p∗ cannot be simultaneously
orthogonal to the gradient of mutual information at p∗, i.e.,
orthogonal to D(W ∥qW ), and in the kernel of the linear
transformation relating the input distributions to the output
distributions, i.e., in KW . Strassen’s proof has a gap that can
be fixed by using polyhedral convexity, see [2, Appendix A].

Strassen’s bound (1), plays an important role in establishing
sharp impossibility results for the channel coding theorem, see
[1], [3], [4]. Determining an explicit expression for (δ, γ) pair
for which (1) holds is also worthwhile because of this role.

One of the claims of Polyanskiy, Poor, and Verdú in [3]
is to establish (1) with an explicit coefficient γ. They apply
an orthogonal decomposition to write p − p∗ = v0 + v⊥,
where v0 is the projection of p − p∗ to KW . Then they
assert ⟨v0,D(W ∥qW )⟩ ≤ −Γ∥v0∥ for some Γ > 0, see [3,
(500)]. This claim, however, is wrong for some p’s on certain
channels; see, for example, the channel described in §II-C.

In our judgment, the issue overlooked in [3] is the following.
The projection of p−p∗ to the subspace of KW that is also
orthogonal to D(W ∥qW ) needs not be zero; the principle used
by Strassen in [1] asserts merely that this projection cannot

be the p−p∗ vector itself. This principle can be strengthened
using convex analysis to assert that the angle between the
p−p∗ vector and its projection cannot be less than a positive
constant, determined by the channel. In §III, we establish this
fact for the case with multiple linear constraints. In §IV, we
use this observation to prove (1) with explicit expressions for
γ and δ for channels with finitely many linear constraints using
orthogonal decompositions, similar to [3].

Recently in [5], Cao and Tomamichel presented a proof
of (1), in the spirit of [1]. First the cone generated by the
vectors p−p∗ for p /∈ Π is proved to be closed, and then a
second-order Taylor series expansion for the parametric family
of functions {I(p∗ + τ(p − p∗);W )}p /∈Π at τ = 0 with a
uniform approximation error term for all p /∈ Π is obtained.
Then (1) is established using the extreme value theorem,
the fact that p − p∗ cannot be an element of KW that is
orthogonal to D(W ∥qW ), and the Taylor series expansion.
Cao and Tomamichel, later generalized their analysis to the
case with finitely many linear constraints, in [6].

In §II, we introduce our notation, and bound the Kullback–
Leibler divergence from below and the mutual information
from above using a Taylor series expansion. In §III, we review
essential concepts and results from convex analysis and prove
the positivity of the aforementioned minimum angle. In §IV,
we prove (1) for any channel with possibly multiple linear
constraints and finite input and output sets. We also present a
channel with infinitely many linear cost constraints for which
(1) does not hold. In §V, we discuss the implications of
the analysis presented and possible applications of the proof
techniques to some related problems.

II. INFORMATION THEORETIC PRELIMINARIES

For any finite set X, we denote the set of all probability
mass functions on X by P(X). A p ∈ P(X) is said to be
absolutely continuous in a q ∈ P(X), i.e., p≺q , if p(x ) = 0
for all x satisfying q(x )=0. The Kullback–Leibler divergence
D(p∥q) is defined for any p, q∈P(X) as

D(p∥q):=
(P

x p(x ) ln
p(x)
q(x) p≺q

∞ p⊀q
.

The Kullback–Leibler divergence is a non-negative function
and D(p∥q)=0 iff p=q .

2023 IEEE International Symposium on Information Theory (ISIT)

978-1-6654-7554-9/23/$31.00 ©2023 IEEE 2111



We interpret real valued functions on a finite set X as the
elements of a Euclidean vector space RX. For any |X|-by-|X|
positive semidefinite matrix Λ, we define the inner product
⟨·, ·⟩Λ : RX × RX → R and the norm ∥·∥Λ : RX → R≥0 as

⟨f , g⟩Λ :=f TΛg ∀f , g ∈ RX,

∥f ∥Λ :=
p
⟨f , f ⟩Λ ∀f ∈ RX.

When Λ is the identity matrix, we denote the inner product
and the norm by ⟨·, ·⟩ and ∥·∥, respectively.

We represent a channel with a finite input set X and a finite
output set Y by an |X|-by-|Y| right stochastic matrix W , i.e.
the element in the row x and the column y is the probability of
observing the output letter y when the input letter is x , which
is commonly denoted by W (y |x ). Without loss of generality,
we assume that any output letter y satisfies W (y |x ) > 0 for
some x ∈ X. The kernel of the channel W is denoted by KW :

KW :=
�
v ∈ RX :



W T v


 = 0

	
. (2)

For |X|-by-|Y| right stochastic matrix W and q ∈ P(Y),
D(W ∥q) is a column vector whose rows are D(W (·|x )∥q)’s.
For any p ∈ P(X) we define the conditional Kullback–Leibler
divergence D(W ∥q |p) as

D(W ∥q |p):=⟨p,D(W ∥q)⟩.
A. The Mutual Information

For any p ∈ P(X) and |X|-by-|Y| right stochastic matrix
W , the mutual information I(p;W ) is defined as

I(p;W ):=D(W ∥qp |p), (3)

where qp ∈ P(Y) is the output distribution of p, i.e.,

qp :=W T p. (4)

The following identity, due to Topsøe [7], can be confirmed
by substitution

D(W ∥q |p) = I(p;W ) +D(qp∥q) (5)

for all p ∈ P(X) and q ∈ P(Y). Let p∗ ∈ P(X) be such that
qp≺qp∗ , then as a result of (5) we have

I(p;W )=D(W ∥qp∗ |p)−D(qp∥qp∗)

=I(p∗;W ) + ⟨p − p∗,D(W ∥qp∗)⟩ −D(qp∥qp∗). (6)

To characterize the behavior of the identity in (6) in the
vicinity of p∗ we will bound D(qp∥qp∗) from below using
the Taylor series expansion of z ln z around z = 1.

z ln z ≥ z − 1 + 1
2 (z − 1)2 − 1

6 (z − 1)3 ∀z ∈ (0,∞),

and the inequity is strict unless z =1. Thus

D(qp∥qp∗) ≥
X

y

1
2
(qp(y)−qp∗ (y))

2

qp∗ (y)
− 1

6
(qp(y)−qp∗ (y))

3

(qp∗ (y))
2 , (7)

for all p, p∗ ∈ P(X) satisfying qp≺qp∗ and the inequality is
strict unless qp = qp∗ . Furthermore,
X

y

(qp(y)−qp∗ (y))
2

qp∗ (y)
= (qp−qp∗)

T diag
�
1{qp∗>0}

1
qp∗

�
(qp−qp∗)

= ∥p − p∗∥2Λp∗
,

where Λp∗ is the |X|-by-|X| matrix defined as follows

Λp∗ :=W diag
�
1{qp∗>0}

1
qp∗

�
W T . (8)

On the other hand using Cauchy–Schwarz inequality we get

qp(y)− qp∗(y) =
X

x
W (y |x )(p(x )− p∗(x ))

≤ ∥W (y |·)∥ · ∥p − p∗∥,
where ∥W (y |·)∥ is

∥W (y |·)∥ =

rX
x
(W (y |x ))2. (9)

Thus we can bound the second term in (7) to get

D(qp∥qp∗) ≥ 1
2∥p − p∗∥2Λp∗

− κ3
p∗
6 ∥p − p∗∥3, (10)

where κp∗ is defined as

κp∗ :=
3

rX
y

∥W (y|·)∥3

(qp∗ (y))
2 . (11)

Then using (6), we can bound I(p;W ) from above in terms
of I(p∗;W ) provided that qp≺qp∗ holds, i.e.,

I(p;W ) ≤ I(p∗;W ) + ⟨p − p∗,D(W ∥qp∗)⟩
− 1

2∥p − p∗∥2Λp∗
+

κ3
p∗
6 ∥p − p∗∥3. (12)

B. Shannon Capacity and Center

For any closed and convex constraint set A ⊂ P(X), the
Shannon capacity CA is defined as

CA:= supp∈A I(p;W ).

As a result of the extreme value theorem we know that the
supremum is achieved because I(p;W ) is continuous in p.
More interestingly, [8], [9], there exists a unique Shannon
center qA ∈ P(Y) satisfying,

D(W ∥qA|p) ≤ CA ∀p ∈ A. (13)

Furthermore, D(qp∗∥qA)=0 and thus qp∗ =qA for any p∗∈A

satisfying I(p∗;W )=CA by (5).
We know that qp = qA and D(W ∥qA|p) = CA imply

I(p;W ) = CA by (3). The existence of a unique Shannon
center implies that the converse statement is true as well, i.e.,
I(p;W ) = CA implies qp = qA and D(W ∥qA|p) = CA. Thus
the capacity-achieving input distributions can be characterized
as the elements of A satisfying certain linear constraints, i.e.,

ΠA = A ∩ SA, (14)

where ΠA is the set of all capacity-achieving input distribu-
tions in A and SA is an affine subset of RX defined below

ΠA:={p ∈A : I(p;W ) = CA}, (15)

SA:=
�
v ∈RX : ⟨v ,D(W ∥qA)⟩ = CA &W T v = qA

	
. (16)

Both Λp∗ and κp∗ , defined in (8) and (11), respectively, are
same for all p∗ ∈ ΠA because qp∗ = qA for all p∗ ∈ ΠA;
hence we denote them by ΛA and κA. Furthermore, the non-
negativity of the mutual information, (5), and (13), imply
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D(qp∥qA) ≤ CA and hence qp≺qA. Thus for any p∗ ∈ ΠA

the bound in (12) is

I(p;W )≤ CA+⟨p − p∗,D(W ∥qA)⟩
− 1

2∥p−p∗∥2ΛA
+

κ3
A

6 ∥p−p∗∥3 ∀p∈A. (17)

We denote the kernel of the second term in (17) by Kd
A:

Kd
A:=

�
v ∈ RX : ⟨v ,D(W ∥qA)⟩ = 0

	
. (18)

Note that the kernel of the last two terms in (17) are both
equal to KW because

∥v∥ΛA
≥


W T v



≥∥v∥ΛA

q
miny qA(y) ∀v ∈R|X|. (19)

Furthermore, ∥v∥ΛA
can be bounded from above in terms of

∥v∥ for an arbitrary v ∈ RX using first the Cauchy–Schwarz
inequality and then the concavity of the function z

2/3 in z
together with the Jensen’s inequality, as follows:

∥v∥2ΛA
=

X
y

(
P

x W (y|x)v(x))2
qA(y)

≤
X

y

∥W (y|·)∥2·∥v∥2

qA(y)

= ∥v∥2
X

y
qA(y)

�
∥W (y|·)∥3

(qA(y))3

� 2
3

≤ ∥v∥2 · κ2
A ∀v ∈ RX. (20)

Recall that κA is κp∗ defined in (11) for any p∗ ∈ ΠA.

C. A Counter-Example for [3, (500)]
Example 1. Let W be a channel with 9 input letters and 8
output letters given in the following

W =




β/315×1
β/315×1

β/315×1 (1− β)I5
1/2 1/3 1/6 01×5
1/6 1/2 1/3 01×5
1/3 1/6 1/2 01×5
1/3 1/2 1/6 01×5



,

where 15×1 is a column vector of ones, I5 is 5-by-5 identity
matrix, 01×5 is a row vector of zeros, and β is the unique
solution of the equation

√
3 3
√
0.002 = β5−β on β ∈ (0, 1/2).

With a slight abuse of notation when A = P(X), we denote
the Shannon capacity by CW and the Shannon center by qW .
Let us assume A = P(X). Then the capacity-achieving input
distribution is unique and it is the uniform distribution on the
first 5 input letters. Furthermore,

CW = (1− β) ln 5 and qW =
�
β
3

β
3

β
3

1−β
5 11×5

�T
.

Note that D(W (x )∥qW ) = CW for all input letters x .
On the other hand KW = {τs : τ ∈ R} where the vector s

is given by

s =
�
01×5 2 2 −1 −3

�T
.

Note that ⟨s ,D(W ∥qW )⟩ = 0. Thus ⟨v0,D(W ∥qW )⟩ = 0 for
any p, where v0 is the projection of p−p∗ onto KW considered
in [3]. On the other hand if p puts non-zero probability only on
one of the last four input letters then ∥v0∥ ̸= 0. Consequently,
⟨v0,D(W ∥qW )⟩ ≤ −Γ∥v0∥, i.e., [3, (500)], cannot be true
for any positive Γ.

III. PRELIMINARIES ON CONVEX ANALYSIS

Let A be a closed convex subset of the Euclidean space Rn .
Then by [10, Proposition A.5.2.1], the tangent cone of A at
p∗∈A is the closure of the cone generated by {p−p∗ : p∈A}:

TA(p∗) = cl(cone(A− p∗)).

The normal cone of A at a point p∗ ∈ A is

NA(p∗):={s ∈ Rn : sT (p − p∗) ≤ 0, ∀p ∈ A}.
Then by [10, p. 66]

TA(p∗) ∩NA(p∗) = {0} ∀p∗ ∈ A. (21)

The projection of p onto A is the unique point satisfying

PA(p) = arg min
p∗∈A

∥p − p∗∥ ∀p ∈ Rn ,

see [10, p. 46]. Then by [10, Theorem A.3.1.1]

p∗ = PA(p) ⇐⇒ ⟨p − p∗, s − p∗⟩ ≤ 0 ∀s ∈ A. (22)

A closed convex set A ⊂ Rn is polyhedral iff there exists
a finite index set IA, vectors {fı ∈ Rn}ı∈IA , and constants
{bı ∈ R}ı∈IA such that

A = {p ∈ Rn : ⟨fı, p⟩ ≤ bı ∀ı ∈ IA}. (23)

We denote the set of active constraints at p∗ by JA(p∗), i.e.,

JA(p∗):={ı ∈ IA : ⟨fı, p∗⟩ = bı} ∀p∗ ∈ A. (24)

Then the tangent cone and the normal cone at any p∗ ∈ A can
be characterized via JA(p∗) as follows,see [10, p. 67],

TA(p∗) = {p ∈ Rn : ⟨fı, p⟩ ≤ 0 ∀ı ∈ JA(p∗)}, (25)
NA(p∗) = cone({fı : ı ∈ JA(p∗)}). (26)

Thus both TA(p∗) and NA(p∗) are closed convex polyhedral
sets, as well.

S is an affine subspace iff there exists a finite index set IS ,
vectors {fı}ı∈IS , and constants {bı}ı∈IS such that

S = {p ∈ Rn : ⟨fı, p⟩ = bı ∀ı ∈ IS}. (27)

Thus an affine subspace S can be interpreted as a closed
convex polyhedral set for which all constraints are active at all
points p∗ ∈ S. Hence, the tangent cone and the normal cone
will not change from one point of S to the next and they can
be denoted by TS and NS instead of TS(p∗) and NS(p∗). If
S is non-empty then TS and NS are

TS = {p ∈ Rn : ⟨fı, p⟩ = 0 ∀ı ∈ IS}, (28)
NS = span({fı : ı ∈ IS}), (29)

where span({fı : ı ∈ IS}) is the subspace spanned by fı
vectors for ı ∈ IS .

Lemma 1. Let A be a closed convex polyhedral subset of
Rn , S be an affine subspace, and Π be their intersection, i.e.,
Π:=A ∩ S . Then

TΠ(p∗) = TA(p∗) ∩ TS ∀p∗ ∈ Π, (30)
NΠ(p∗) = NA(p∗) +NS ∀p∗ ∈ Π, (31)

(TA(p∗) ∩NΠ(p∗)) ∩ TS = {0} ∀p∗ ∈ Π. (32)
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The angle θp∗ , defined in (33), is uniquely determined by the
active constraints at p∗ for A and S, i.e. by {fı}ı∈JA(p∗) and
{fı}ı∈IS . Furthermore, θp∗ is positive for all p∗ ∈ Π and the
angle θΠ , defined in (34), is positive.

θp∗ := inf
v∈TA(p∗)∩NΠ (p∗)

arccos

�
∥PTS (v)∥

∥v∥

�
, (33)

θΠ := infp∗∈Π θp∗ , (34)

where we let θp∗ :=
π
2 if TA(p∗) ∩NΠ(p∗) = {0}.

Note that θp∗ is the minimum angle between TS and
TA(p∗)∩NΠ(p∗). Similarly θΠ is the minimum angle between
TS and

S
p∗∈Π TA(p∗) ∩NΠ(p∗).

Proof of Lemma 1. Π is a closed convex polyhedral set be-
cause any affine subspace is a closed convex polyhedral set
and intersection of two closed convex polyhedral sets is again
a closed convex polyhedral set. Furthermore,

JΠ(p∗) = JA(p∗) ∪ JS(p∗) ∀p∗ ∈ Π. (35)

Note that (30) follows from (25), (28), and (35). The identity
in (31) follows from (26), (29), and (35). Furthermore, (32)
follows from (30) because TΠ(p∗) ∩NΠ(p∗) = {0} by (21).

If TA(p∗) ∩ NΠ(p∗) = {0}, then θp∗ = π
2 by definition,

else v = PTS (v) + PNS (v) and ∥PNS (v)∥ ̸= 0 for any v in

TA(p∗)∩NΠ(p∗) because v /∈ TS by (32). Thus
∥PTS (v)∥

∥v∥ <1

whenever v ∈ TA(p∗) ∩NΠ(p∗).

sup
v∈TA(p∗)∩NΠ (p∗)

∥PTS (v)∥
∥v∥ = sup

v∈TA(p∗)∩NΠ (p∗):∥v∥=1

∥PTS (v)∥

= max
v∈TA(p∗)∩NΠ (p∗):∥v∥=1

∥PTS (v)∥.

Note that we can replace the supremum with maximum
because norm and projection are continuous and supremum
is over a compact set.

There are only finitely many distinct possible TA(p∗) sets
for p∗ ∈ A and finitely many distinct possible NΠ(p∗) sets for
p∗ ∈ Π. Thus there are only finitely many distinct possible θp∗
values for p∗ ∈ Π. Consequently the infimum θΠ is positive,
as well.

We apply Lemma 1 to ΠA defined in (15) and SA defined
in (16). For any closed convex constraint set A, (14) holds
and SA is an affine subspace. Thus the hypotheses of Lemma
1 holds whenever A is determined by finite number of cost
constraints, i.e., whenever A is polyhedral. Thus for any A

determined by finite number of linear constraints the minimum
angle θΠ

A
between TS

A
and TA,Π

A
is positive, i.e.,

θΠ
A
> 0 (36)

where θΠ
A

and TA,Π
A

are

TA,Π
A
:=

[
p∗∈Π

A

TA(p∗) ∩NΠ
A
(p∗), (37)

θΠ
A
:=





π
2 if TA,Π

A
=∅

inf
v∈TA,Π

A

arccos

�
∥PTS (v)∥

∥v∥

�
if TA,Π

A
̸=∅ . (38)

Furthermore, as a result of (28) the tangent TS
A

of SA is

TS
A
= Kd

A ∩KW , (39)

where KW and Kd
A are defined in (2) and (18), respectively.

IV. MAIN RESULT

Theorem 1. Let W be a |X|-by-|Y| right stochastic matrix,
i.e. a channel, and A ⊂ P(X) be a closed convex polyhedral
constraint set, i.e. a constraint set that can be characterized
by a finite number of linear constraints,

I(p;W )≤CA−γA∥p−p∗∥2+ κ3
A

6 ∥p−p∗∥3 ∀p∈Πδ
A, (40)

where p∗:=PΠ
A
(p), the positive constant κA is defined in1

(11), and positive constants γA and δ, the set Πδ
A are

γA:=
sin2 θΠ

A

2 inf
v∈Kd

A
∩NS

A
:∥v∥=1

∥v∥2ΛA
, (41a)

δ:=
�
κ2
A + γA

sin2 θΠ
A

�−1

∥D(W ∥qA)∥, (41b)

Πδ
A:=

n
p ∈ A :



p − PΠ
A
(p)



 ≤ δ
o
. (41c)

Proof of Theorem 1. Let v be p−p∗, and v1, v2, v3 be v ’s
projections to the orthogonal subspace TS

A
, Kd

A ∩NS
A

, and
{βD(W ∥qA) : β ∈ R}:

v :=p − p∗, (42a)
v1:=PTS

A
(v), (42b)

v2:=PKd
A
∩NS

A

(v) (42c)

v3:=
⟨v ,D(W ∥qA)⟩
∥D(W ∥qA)∥2 D(W ∥qA). (42d)

Note that span

TS

A
,Kd

A ∩NS
A
,D(W ∥qA)

�
= RX. Thus

v = v1 + v2 + v3. (43)

On the other hand using (17), we can bound I(p;W ) from
above for any p ∈ A as follows

I(p;W )≤ CA+⟨v ,D(W ∥qA)⟩− 1
2∥v∥

2
ΛA

+
κ3
A

6 ∥v∥3. (44)

Let us proceed with bounding the terms in (44). Note that
the sign of the inner product ⟨v ,D(W ∥qA)⟩ cannot be positive
because otherwise (13) would be violated. Thus

⟨v ,D(W ∥qA)⟩ = ⟨v3,D(W ∥qA)⟩
= −∥v3∥ · ∥D(W ∥qA)∥. (45)

1Recall that (11) defines κp∗ but qp∗ =qA for all p∗ ∈ Π
A

and thus κp∗
has the same value for all p∗ ∈ Π

A
, which we denote by κA.
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On the other hand,

∥v∥2ΛA
= ∥v2 + v3∥2ΛA

(a)

≥

∥v2∥ΛA

− ∥v3∥ΛA

�2

≥ ∥v2∥2ΛA
− 2 · ∥v2∥ΛA

· ∥v3∥ΛA

(b)

≥∥v2∥2ΛA
− 2κ2

A · ∥v2∥ · ∥v3∥
(c)

≥ 2γA

sin2 θΠ
A

∥v2∥2 − 2κ2
A · ∥v2∥ · ∥v3∥

= 2γA

sin2 θΠ
A

∥v2 + v3∥2−2
�

γA·∥v3∥
sin2 θΠ

A

+κ2
A · ∥v2∥

�
· ∥v3∥

(d)

≥ 2γA

sin2 θΠ
A

∥v2 + v3∥2 − 2∥v∥ ∥D(W ∥qA)∥
δ ∥v3∥,

(e)

≥ 2γA · ∥v∥2 − 2∥v∥ ∥D(W ∥qA)∥
δ ∥v3∥, (46)

where (a) follows from the triangle inequality, (b) follows
from (20), (c) follows from the definition of γA given in
(41a), (d) follows from (41b) and ∥v2∥ ∨ ∥v3∥ ≤ ∥v∥, and
(e) follows from (38), which implies ∥v1∥ ≤ ∥v∥ cos θΠ

A
and

thus ∥v2 + v3∥ ≥ ∥v∥ sin θΠ
A

.
(40) holds for all p ∈ Πδ

A as a result of (44), (45), and (46).
We are left with establishing the positivity of γA. Note that

{v ∈ Kd
A ∩NS

A
: ∥v∥ = 1} is a closed and bounded set, i.e.,

a compact set, thus the infimum in the definition of γA given
in (41a) is a minimum, i.e., it is achieved by some v∗. If the
minimum value in (41a) is zero then v∗ ∈ KW by (19); on
the other hand v∗ ∈ Kd

A by hypothesis. Thus v∗ ∈ TS
A

by
(39). This, however, is a contradiction because v∗ ∈ NS

A
by

hypothesis. Hence, γA is positive.

Theorem 1 assumes A to be polyhedral. The following
example demonstrates that this assumption is not superficial.

Example 2. Let s∈P(X), A, W , and pβ∈P(X) be

s =
�
2
3

1
6

1
6

�T
A =

n
p∈P(X) : ∥p − s∥ ≤ 1

2
√
6

o

W =



1 0
0 1
0 1


 pβ = s + 1

12




−2 cosβ

cosβ +
√
3 sinβ

cosβ −
√
3 sinβ


.

Then CA = ln 2, ΠA = {p0}, and qA =
�
1
2

1
2

�T
.

Furthermore, the boundary A can be described parametrically
as follows ∂A = {pβ : β ∈ (−π,π]}. One can confirm
by substitution the following closed-form expressions for
∥pβ − p0∥ and I(pβ ;W )

∥pβ − p0∥ = 1√
6

���sin β
2

���,

I(pβ ;W ) = ln 2−D

qpβ



qp0

�
, qpβ

=

�
1
2 + 1

3 sin
2 β

2
1
2 − 1

3 sin
2 β

2

�
.

Using D

qpβ



qp0

�
≤ ∥pβ − p0∥Λp0

together with (12) we get

ln 2− 1
18 sin

4 β
2 +

√
2

162 sin
6 β

2 ≥ I(pβ ;W ) ≥ ln 2− 1
9 sin

4 β
2 .

Thus the decrease of mutual information with the distance
from ΠA can not be claimed to be at least quadratic as in (1),

because for the points on ∂A, i.e., on the boundary of A, decay
of the mutual information is much slower, it is proportional
with forth power of the distance, rather than the second power.

V. DISCUSSION

We have bounded the mutual information from above by a
function that is decreasing quadratically with the distance to
the set of all capacity-achieving input distributions ΠA, for
channels with finite input and output sets and with a finite
number of linear constraints, i.e., with a polyhedral constraint
set A, in Theorem 1.

We assumed the output set of the channel is finite, however,
the same analysis applies for the case of countably infinite
output sets provided that κA is finite. There are, however,
channels with finite input sets and countably infinite output
sets for which not only κA, but also one or more of the entries
of ΛA are infinite, see [2, Example 3]. Unfortunately, for
such channels we do not have the Hilbert space structure we
had before. Nevertheless, one can use Lemma 1 together with
Pinsker’s inequality —in place of (7)— to establish (1) for all
channels with finite input sets and countable output sets, see [2,
Appendix B]. Evidently, this analysis extends to any channel
with measurable output space and finite input set. This analysis
recovers (1) for classical–quantum channels whose density
operators are on a separable (rather than finite dimensional)
Hilbert space, see [2, Appendix C]. Under appropriate techni-
cal assumptions, one can obtain (1) for Augustin information
[11]–[14] using the same framework too. However, in each
of these extensions one relies on tools that are specific to the
problem at hand, as expected.

Example 2 demonstrates that if the convex constraint set
A is not polyhedral, then the decrease might be slower than
quadratic with the distance to ΠA. One way to address this
issue might be calculating the distance not to ΠA but to the
hyperplane ΠA + TS

A
or its intersection with the probability

simplex. Such a modification recovers the quadratic decrease
with the distance at least for Example 2. Another remedy to the
issue raised by Example 2 is working with a distance related to
the vector D(W ∥qA) and the norm ∥·∥ΛA

instead of the usual
Euclidean distance. Alternatively, one can work with a distance
related to the vector D(W ∥qA) and the total variation norm of
the corresponding output distributions. These approaches are
inspired by characterization given in (6).

Another interesting question for this line of work is the
determination of the best coefficient for the quadratic decrease
for a given channel and polyhedral constraint.
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[9] B. Nakiboğlu, “The Rényi Capacity and Center,” IEEE Transactions
on Information Theory, vol. 65, no. 2, pp. 841–860, Feb 2019,
(arXiv:1608.02424 [cs.IT]).

[10] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analy-
sis, 1st ed., ser. Grundlehren Text Editions. Heidelberg: Springer-Verlag
Berlin, 2001.

[11] U. Augustin, “Noisy channels,” Habilitation Thesis, Universität
Erlangen-Nürnberg, 1978, (http://bit.ly/3bsWDgG).

[12] I. Csiszár, “Generalized cutoff rates and Rényi’s information measures,”
IEEE Transactions on Information Theory, vol. 41, no. 1, pp. 26–34,
Jan 1995.

[13] B. Nakiboğlu, “The Augustin Capacity and Center,” Problems of In-
formation Transmission, vol. 55, no. 4, pp. 299–342, October 2019,
(arXiv:1803.07937 [cs.IT]).

[14] H.-C. Cheng, M. H. Hsieh, and M. Tomamichel, “Quantum sphere-
packing bounds with polynomial prefactors,” IEEE Transactions on
Information Theory, vol. 65, no. 5, pp. 2872–2898, May 2019,
(arXiv:1704.05703 [quant-ph]).

2023 IEEE International Symposium on Information Theory (ISIT)

2116


