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Abstract—A lower bound bound is established on the error
probability of fixed-length block-coding systems with finite mem-
ory feedback, which can be described in terms of a time depen-
dent finite state machine. It is shown that the reliability function
of such coding systems over discrete memoryless channels is
upper-bounded by the sphere-packing exponent.

I. INTRODUCTION

Despite being provably effective in reducing latency as
well as complexity of coding systems, and in improving
the capacity of certain channels with memory, feedback has
been the object of a long history of negative results when
it comes to transmission over discrete memoryless channels
(DMCs). After Shannon proved that feedback cannot increase
the capacity on DMCs [5], it was shown that fixed-length
block-coding with feedback does not allow one to beat the
sphere-packing bound on symmetric DMCs [2]. Whether such
a result continues to hold for non-symmetric DMCs is a long-
standing conjecture. An upper bound on the reliability function
is given by the Haroutunian exponent [3], which is typically
larger than the sphere-packing exponent on non-symmetric
DMCs. In [7], the aforementioned conjecture was claimed to
be proved, but the proposed proof appears to suffers from
major gaps.

In the present paper, we shall be concerned with fixed-
length block-coding over DMCs with finite memory feedback.
In particular, we shall consider the case when the feed-
back information can only be stored by a, possibly time-
inhomogeneous, finite-state machine, whose state is updated
each time a channel output is fed back to the transmitter.
Under some mild technical assumptions, we shall prove that
the reliability function is upper-bounded by the sphere-packing
exponent of the channel.

The proof presented in this paper partially follows the line
of reasoning of [7], complementing the two major gaps therein
with measure concentration, mixing, and fixed-composition
arguments, whose applicability relies on the finite memory
assumption. Our results may be thought as complementary to
those in [4], where a lower bound on the error probability
of block-coding schemes with delayed feedback has been
derived.

The remainder of this paper is organized as follows. In
Sect. II we describe the transmission model, with the finite
memory restriction on the feedback encoders, and state our
main result as Theorem 1. Then, in Sect. III we derive a
lower bound to the error probability via a change of measure

argument, using Holder’s inequality, and give a brief discus-
sion on how the sphere-packing bound can be established
when there is no feedback. In Sect. IV, we study the mixing
properties of certain Markov chains in order to make a similar
measure change argument for the encoding schemes satisfying
our assumption. In Sect. V we combine the results of section
III and IV using a method of types argument, and complete
the proof of Theorem 1.

II. MODEL AND MAIN RESULT

We consider a DMC with finite input alphabet X , output
alphabet Y , and transition probabilities W (y|x) such that

δW := min {W (y|x) : x ∈ X , y ∈ Y} > 0 (1)

The sphere-packing exponent of the DMC is given by

Esp(R) := maxρ≥0 E0(ρ)− ρR R ≥ 0

E0(ρ) := maxP (·)− ln
∑

y

(∑
x

P (x)W
1

1+ρ (y|x)
)1+ρ

where P (·) is probability distribution over X .
A fixed-length block-coding system with feedback of rate

R, and length n, consists of: a message set M of cardinality
|M| = exp(nR); a sequence of encoding functions

φt :M×Yt−1 → X , 1 ≤ t ≤ n ; (2)

and a decoder Ψ : Yn →M. Any feedback encoder as in (2),
induces a joint probability distribution on M×Yn, given by1

w(m, yn) := |M|−1
∏n

t=1
W (yt|φt(m, yt−1

1 )) . (3)

Then, the error probability can be written as Pe := w(Me),
where Me := {(m, yn) : Ψ(yn) �= m}.

In this paper we shall consider a particular class of feedback
encoders with finite memory for which the encoding function
at time t depends on the past channel outputs yt−1

1 , only
through a state st ∈ S which is updated using a time-
dependent finite-state machine, i.e.,

φt(m, yt−1
1 ) = Φt(m, st) , st+1 = Γt(st, yt) (4)

for some Φt : M×S → X , Γt : S × Y → S. To denote the
state transitions over multiple time units we use the shorthand

st+1 = Γt
u(su,yt

u)
:= Γt(Γt−1(. . .Γu+1(Γu(su, yu), yu+1). . ., yt−1), yt) .

1Throughout, for u ≤ t, we shall use the notation yt

u
:= {yu, . . . , yt}.
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Notice that, if one allows for infinite state space S, then any
feedback encoder as in (2) can be easily represented in the
form (4). In contrast, assuming –as we shall– that (4) holds for
some finite S induces a real constraint. We shall also assume
that there exists some k ≥ 1 such that

∀t ≥ 1, ∀i, j ∈ S, ∃yt+k
t+1 ∈ Y

k : Γt+k
t+1(i, yt+k

t+1 ) = j. (5)

The condition above ensures that effect of past channel outputs
whiters away fast enough. Observe, that (4) and (5) are
naturally satisfied when φt(m, yt−1

1 ) = φt(m, yt−1
t−k), i.e. when

the transmitter uses only the latest k channel outputs. Indeed,
it is sufficient to choose S = Yk and Γt(y

t−1
t−k, yt) = yt

t−k+1.
We use this fact to establish the following bound on the error
probability of finite memory feedback transmission systems.

Theorem 1: For any rate R, length n blockcode with feed-
back of the form (4), satisfying (5) on a DMC satisfying (1)

Pe ≥ e−n(Esp(R−ε(�))+ε(�)) ∀� = 1, 2, . . . ,n (6)

ε(�) =
2kln e

δW

�δk
W

+ �(ln4+|S|ln|X |)
n

+
e|S|�(|Y| ln |S|+ln |X|) ln(1+n

�
)

n
.

III. A FIRST LOWER BOUND ON THE ERROR PROBABILITY

Let V (·|·) be the transition probabilities of a DMC with
input alphabet X , and output alphabet Y . Let Q( · ) be a
probability distribution over Y , such that V ( · |x) is absolutely
continuous with respect to both W ( · |x) and Q( · ), for all
x ∈ X .2 For A ⊆M, define the sets Ae and Ac as

Ae := {(m, yn) : m ∈ A : Ψ(yn) �= m}

Ac := {(m, yn) : m ∈ A : Ψ(yn) = m}.

Let the probability distributions q(·) and v(·) over M×Yn be

q(m, yn) = �A(m)
|A|

∏
1≤t≤n

Q(yt) (7a)

v(m, yn) = �A(m)
|A|

∏
1≤t≤n

V (yt|φj(m, yt−1)). (7b)

Let Ev [·] be the expectation under v(·). The following result
holds for feedback encoders not necessarily satisfying (4).

Lemma 1: For all β > 0, and A ⊆M,

w(Ae)≥v(Ae)
1+β

β
|A|
|M|Ev

[∏n

t=1
e

β ln
v(yt|m,yt−1)

w(yt|m,yt−1)

]−1/β

(8a)

v(Ae)≥1−
[
|M|
|A|

] β
1+β

Ev

[∏n

t=1
eβ(ln

v(yt|m,yt−1)
q(yt)

−R)

]1/(1+β)

(8b)

Proof: Using w(·) and v(·) given in (3), (7) and the
reverse Holder’s inequality, one gets

Ev

[
�A(m)eβ ln v(yn|m)

w(yn |m)

]

= |A|β
|M|β

∑
�A(m)v(m, yn)1+βw(m, yn)−β

≥ |A|β
|M|β

∑
�Ae

(m, yn)v(m, yn)1+βw(m, yn)−β

≥ |A|β
|M|β

[∑
�Ae

(m, yn)v(m, yn)
]1+β[∑

�Ae
w(m, yn)

]−β

= |A|β
|M|β v(Ae)

1+βw(Ae)
−β (9)

2i.e. V (y|x) = 0 whenever W (y|x) = 0 or Q(y) = 0.

Following similar steps one can prove that

Ev

[
�Ac

(m, yn)eβ ln v(yn |m)
q(yn|m)

]
≥ v(Ac)

1+βq(Ac)
−β (10)

Then the lemma follows equations (9), (10) and the observa-
tions q(Ac) ≤ |A|

−1 and v(Ae) = 1− v(Ac).
Note that equations (8a) and (8b) bound the error probability

from below. We shall show in the following sections how
Lemma 1 leads to Theorem 1. In order to introduce some
of the ideas of that proof let us show how Lemma 1 can be
used to establish a lower bound on the error probability in the
case without feedback.

Theorem 2: The error probability of any length-n block
code is lower bounded as

Pe ≥ e−n(Esp(R−ε1)+ε1) (11)

where ε1 =
(ln e

δW
)2
√

n+|X | ln(n+1)

n
.

Proof: Let Q(·) = Qρ(·) be in a parametric form to be
specified later. Let V for v(·) be

Vρ(y|x) =
W

1
1+ρ (y|x)Q

ρ
1+ρ
ρ (y)

rρ(x) (12)

where rρ(x) =
∑

ỹ W
1

1+ρ (ỹ|x)Q
ρ

1+ρ
ρ (ỹ).

Given m, the yt’s are mutually independent. Thus,

Ev

[∏n

t=1
e

β ln
v(yt|m,yt−1)

w(yt|m,yt−1)

∣∣∣∣m
]
=

∏n

t=1
Ev

[
eβln

v(yt|m)
w(yt|m)

∣∣∣m]
(13a)

Ev

[∏n

t=1
eβ ln

v(yt|m,yt−1)
q(yt)

∣∣∣∣m
]
=

∏n

t=1
Ev

[
eβln

v(yt|m)
q(yt)

∣∣∣m]
(13b)

If we could upper bound E [ez] by eE[z] then we could use
equations (8) and (13) to lower bound the error probability
but Jensen’s inequality works in the opposite direction, i.e.
E [ez] ≥ eE[z]. Thus we need to make an approximation. If
z − E [z] ≤ 1 with probability one then3

E [ez] ≤ eE[z]+E[(z−E[z])2] (14)

Thus if β ≤ − lnmin{δW , δQρ
} for all m and t, the bound4

Ev

[(
ln v(yt|m)

w(yt|m) −Ev

[
ln v(yt|m)

w(yt|m)

∣∣∣ m
])2

∣∣∣∣m
]
≤ (ln 1

δQ
)2 + 4

e2

implies that

Ev

[
eβ ln

v(yt|m)
w(yt|m)

∣∣∣m]
≤e

βD(Vρ‖W |xt(m))+β2[[ln 1
δW

]2+ 4
e2 ] (15a)

Ev

[
eβ ln

v(yt|m)
q(yt)

∣∣∣m]
≤e

βD(Vρ‖Qρ|xt(m))+β2[[ln 1
δQ

]2+ 4
e2 ]

(15b)

where xt(m) is the input letter for message m at time t.
For any block-length n there are

(
n+|X |−1
|X |−1

)
≤ (n + 1)|X |

empirical types. Thus if we choose messages of the most
populous type, say P (·), to be A we get, |A| ≥ |M|

(n+1)|X| .
Thus using Lemma 1 and equations (13) and (15) we get,

w(Ae) ≥ v(Ae)
1+β

β e−n(D(Vρ‖W |P )+ε2(β,n)) (16a)

v(Ae) ≥ 1− e
βn

1+β
(D(Vρ‖Qρ|P )−ε2(β,n)−R). (16b)

3Using techniques similar to those in [1], see Appendix A for details.
4The details of the bound on the variance are presented in Appendix B.
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where ε2(β,n)=β[(ln 1
min{δW ,δQρ} )2 + 4

e2 ] + |X | ln(1+n)
n

.
There exists a parametric family of Qρ(·)’s which is con-

tinuous in ρ, see [6] or appendix D for details, such that,

ln rρ(x) ≥ −E0(ρ)
1+ρ (17)

Furthermore when all entries of W (·|·) is positive, δQρ
≥ δW

for all ρ. Using equations (12) and (17) we get,

D (Vρ‖W |P ) ≤ E0(ρ)− ρD (Vρ‖Qρ|P ) ∀P, ρ. (18)

Note that for any P ,

either D (Vρ‖Qρ|P ) |ρ=0 ≤ R− ε2(β,n) − (1+β) ln 2
βn

(a)

or D (Vρ‖Qρ|P ) |ρ=0 > R− ε2(β,n) − (1+β) ln 2
βn

(b)

If (a) is the case: using (12) and (16) at ρ = 0 we get

w(Ae) ≥ (1
2 )

1+β
β e−nε2(β,n) (19)

If (b) is the case: note that limρ→∞D (Vρ‖Qρ|P ) = 0 ∀P .
Thus, by the intermediate value theorem, there exist some ρ∗P
such that D (Vρ‖Qρ|P ) |ρ=ρ∗

P
= R − ε2(β,n) − (1+β) ln 2

βn
.

Using equations (16) and (18) at ρ = ρ∗P together with the
fact that Esp(R) ≥ E0(ρ)− ρR ∀ρ ≥ 0 we get

w(Ae) ≥ (1
2 )

1+β
β e−n[Esp(R−ε2(β,n)− (1+β) ln 2

βn
)+ε2(β,n)] (20)

Equation (11) follows equations (19) and (20) and the identity
(ln 1

δW
)2 + 4

e2 + 2 ln 2 ≤ (ln e
δW

)2 by setting β = n
−1/2.

Notice that, when there is feedback, the input letter at any
time t for any message m depends on the previous channel
outputs. Thus, we can not

• claim conditional independence of Yt’s or equation (13).
• make an expurgation over types

However for the particular encoding schemes satisfying the
assumption 5 we can address both of the issues. For doing that
we need to analyze the mixing properties of Markov chains
resulting from Γ and Φ for each m ∈M under v(·).

IV. FINITE STATE MACHINE ENCODERS AND MIXING

Let v(·) and q(·) be of the form given in (7) for some
channel output probability distribution Q(·), and some tran-
sition probabilities V (·|·). Then, for encoding schemes with
feedback we can not write (13), because the channel outputs
are not conditionally independent given the message. However,
when (5) holds, the dependence between yt and yu vanishes as
t−u increases. Lemma 2 below uses this property to bound the
terms Ev [exp(βμt

u)|m, su] and Ev [exp(βνt
u)|m, su], where

μt
u := ln

v(yt
u|m,su)

w(yt
u|m,su) νt

u := ln
v(yt

u|m,su)
q(yt

u|m,su) (21)

The upper bound provided is in terms of the empirical type

Ps∗(x) := 1
t−u+1

∑t

j=u
v(Φj(m, sj) = x|m, su = s∗) (22)

for any s∗ ∈ S. Observe that, in contrast to the case without
feedback, the type Ps∗(·) depends on the particular V (·|·) that
is used. However, this will not prevent one from applying
the intermediate value theorem, in virtue of the continuity of
D (V ‖W |P ) in P .

Lemma 2: For any feedback encoder of the form (4), sat-

isfying (5), u ≤ t, s∗ ∈ S, β ∈ (0,
ln max{δ−1

W
,δ−1

Q
}

t−u+1 ],

Ev

[
exp(βμt

u)
∣∣m, su

]
≤ e(t−u+1)β(D(V ‖W |Ps∗ )+ε3) (23a)

Ev

[
exp(βνt

u)
∣∣m, su

]
≤ e(t−u+1)β(D(V ‖Q|Ps∗ )+ε3) (23b)

where ε3 :=
k ln δ−1

W +e−1

δ2k
V

[
(t− u + 1)−1 + 2β ln(eδ−1

W )
]
.

Proof: If z −E [z] ≤ 1 with probability one, then5

E [exp(z)] ≤ exp(E [z] + E
[
(z −E [z])2

]
).

Hence, if β ≤ −(t− u + 1)−1 ln δW , then

Ev

[
exp(βμt

u)
∣∣ m, su

]
≤ exp

[
βEv

[
μt

u

∣∣m, su

]
+ ε4

]
, (24)

where6 ε4 = 2(t − u + 1)β2δ−2k
V (k ln δ−1

W + e−1) ln(eδ−1
W ).

Now, we consider Ev [μt
u|m, su] and bound its dependence

on su. Observe that, conditioned on m and su, the state se-
quence st

u forms a Markov chain on S whose time-dependent
transition probabilities are given by

Πj(sj+1|sj) :=
∑

y:Γj(sj ,y)=sj+1

V (y|Φ(m, sj)) ∀u ≤ j < t.

Let us consider a copy of this Markov chain, s̃t
u, which starts

at time u in s̃u = s∗, evolves independently from st
u according

to the same transition kernel Πj(·|·) until the first time they
meet, and sticks to it thenceforth. Let μ̃t

u be defined as in (21)
with s∗ replacing su, and notice that

Ev

[
μ̃t

u

∣∣ m, su

]
= (t− u + 1)D(V ||W |Ps∗) (25)

Moreover as a result of assumption (5) whenever st �= s̃t,
∀yt+k

t , there exists at least one sequence of ỹt+k
t ’s such that

Γt+k
t (st, y

t+k
t ) = Γt+k

t (s̃t, ỹ
t+k
t ). Thus whenever st �= s̃t for

any encoding scheme Φ and any t

Pv{s̃t+k = st+k|m, s̃t, st} ≥ δk
V

As a consequence,

Pv{s̃u+ik �= su+ik|m, su} ≤ (1− δk
V )i , i ≥ 0 . (26)

Using the fact that μj+k
j+1 ≤ k ln δ−1

W , and the inequality
−x lnx ≤ e−1, one gets, for γ = k ln δ−1

W + e−1

Ev

[
μj+k

j+1 − μ̃j+k
j+1

∣∣∣ m, su

]
≤ γ1(su+ik �= s̃u+ik) (27)

Using equations (26) and (27) , we get

Ev

[
μt

u − μ̃t
u

∣∣m, su

]
≤

∑	(t−u+1)/k

i=0

γ(1− δk
V )i

≤γ
∑

i≥0
(1− δk

V )i

(a)
=γδ−2k

V (28)

Using equations (25) and (28)

Ev

[
μt

u

∣∣ m, su = i
]
≤ (t− u + 1)D(V ||W |P ) + γδ−k

V (29)

Then, (23a) follows from (24), and (29). Equation (23b) can
be derived from a similar discussion.

5See Appendix A for details.
6Details of the bound on Ev

ˆ
(μt

u
− Ev

ˆ
μt

u

˛
˛ m, su

˜
)2

˛
˛ m, su

˜
are pre-

sented in Appendix C.
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V. SUPER-LETTERS AND FIXED COMPOSITION ARGUMENT

Notice that, as a result of Lemma 2, we know that the depen-
dence of both Ev [exp(βμt

u)|m, su] and Ev [exp(βνt
u)|m, su]

on su tends to fade away, as (t−u) grows large. On the other
hand, if (t−u) is large but finite, one can interpret (t−u)-long
encoding functions together with (t−u)-long sequences of Γt’s
as an input letters and make a fixed composition argument
to bound Ev [exp(βμn

1 )|m, s1] and Ev [exp(βνn

1 )|m, s1]. The
rest of this section is devoted to making this argument precise
and establishing the bound given in Theorem 1, using Lemmas
1 and 2.

First notice that for any t ∈ [1,n] and m ∈ M, Γt is
a mapping form S × Y to S, i.e. an element of SS×Y and
Φt(m) is a mapping form S to X , i.e. an element of XS .
Thus for any m ∈ M any �-long string of Γ and Φ(m), say
(Γt+�

t+1, Φ
t+�
t+1(m)) is an element of Z =

(
SS×Y ×XS)�

.
If we interpret �-long parts of the encoding function and

finite state machine, (Γ
(i+1)�
i�+1 , Φ

(i+1)�
i�+1 (m)), as super letters,

zi’s for i = 0, 1, . . . (�n� �−1) then the codeword for a message
m ∈M is composed of �n� � super-letters and an (n− �n� ��)
long extension. Including different extensions there are less
than (�n� �+1)|Z||X ||S|� different types. Thus if we choose A
to be the most populous type we will have

|A|
|M| ≥ exp(−(|S|�|S||Y||X |�|S|) ln(1+ n

� )−|S|� ln |X |) (30)

Note that codewords of the message in set A differ
only in first n1 = ��n� � time instances. Although order-
ing of these super letters will effect the actual value of
Ev

[
exp(β ln v(yn1 |m)

w(yn1 |m) )
∣∣∣m]

and Ev

[
exp(β ln v(yn1 |m)

q(yn1) )
∣∣∣m]

we can bound all of those expectations in a way that is inde-
pendent of the ordering, using Lemma 2. As a consequence,
for β ∈ [0,

− ln min{δW ,δQ}
� ],

Ev

[
exp(β ln v(yn1 |m)

w(yn1 |m))
∣∣∣ m

]
= eβn1(D(V ‖W |Pm)−ε5) (31a)

Ev

[
exp(β ln v(yn1 |m)

q(yn1) )
∣∣∣ m

]
= eβn1(D(V ‖Q|Pm)−ε5) (31b)

where ε5 =
(k ln 1

δW
+e−1)

δ2k
V

[1� + 2β ln e
δW

] and

Pm(x) =
P n1

�
−1

i=0

P�
t=1 Pv{Φi�+t(m,si�+t)=x|m,si�+1=j}

n1
(32)

Note that unlike Pm in the non-feedback case Pm in equation
(32) depends on V . However that dependence is continuous
in V . Furthermore Pm is identical for all messages in a given
type, no matter what V is.

As we did in the non-feedback case we will use Vρ and Qρ

and use equation (18). Using equations (30) and (31) together
with Corollary 1 we get,

w(Ae) ≥ v(Ae)
1+β

β e−n1(D(Vρ‖W |Pm)+ε6) (33a)

v(Ae) ≥ 1− e
βn1
1+β

(D(Vρ‖Qρ|Pm)+ε6− n

n1
R) (33b)

where ε6 = ε5 +
(|S|�|S||Y||X |�|S|) ln(1+

n1
�

)+|S|� ln |X |
n1

.
Note that both Vρ and Qρ are continuous functions of ρ.

Hence, Pm is a continuous function of ρ. As a consequence,

D (Vρ‖Qρ|Pm) is continuous in ρ. Thus, D (Vρ‖Qρ|Pm) |ρ=0

is either less than, or strictly greater than n

n1
R−ε6+ (1+β) ln 2

βn1
.

Using the same reasoning as in the non-feedback case, one gets
that, for β ∈ [0,

− ln min{δW ,δQ}
� ],

w(Ae) ≥ (1
2 )

1+β
β e

−n1[Esp( n

n1
R−ε6− (1+β) ln 2

βn1
)+ε6] (34)

Note that when all entries of W are positive δQρ
≥ δW and

δVρ
≥ δW . Using equation (34) and setting β = 1

2�(1−ln δW )

and using the fact that Esp(·) is decreasing function of its
argument we recover equation (6).

VI. DISCUSSION

In this paper, we have proved a lower bound on the
error probability of fixed-length block-codes with finite state
machine encoders over discrete memoryless channels with
feedback. We have shown that, when the transmitter is only
allowed to store the feedback information by means of a finite
state machine, whose is updated as channel outputs are fed
back to it, the sphere-packing bound continues to hold even
on non-symmetric DMCs. Ongoing work includes relaxing
some of the technical assumptions, and extending our results
to channels with memory.
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APPENDIX

A. E [exp(z)] vs exp(E [z]) :

Let g(z) = 2 exp(z)−1−z
z2 than one can show that

g(z) ≥ 0 g′(z) ≥ 0 g′′(z) ≥ 0

Let z be r.v. such that z −E [z] ≤ 1 then,

E [exp(z −E [z])] = E

[
1 + z −E [z] + (z−E[z])2g(z−E[z])

2

]

≤ 1 + E

[
(z−E[z])2g(1)

2

]

≤ exp(
E[(z−E[z])2g(1)]

2 ).

Using g(1) ≤ 1 we get,

E [exp(z)] ≤ exp(E [z] + E
[
z2

]
−E [z]

2
). (35)

B. Bounding
∑

y fy(ln
fy

gy
)2 − (

∑
y fy ln

fy

gy
)2:

Let fy and gy be two probability distributions on Y then∑
y

fy(ln
fy

gy
)2 =

∑
y

gy
fy

gy
(ln

fy

gy
)2

(a)

≤
∑

y

gy

[
fy

gy
(ln 1

δg
)21(

fy

gy
≥ 1) + 1(

fy

gy
≤ 1) 4

e2

]

≤(ln 1
δg

)2 + 4
e2 (36)
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where in step (a) we used the facts that fy ≤ 1, gy ≥ δg and
x(ln x)2 ≤ 4

e2 for x ∈ [0, 1]. Thus∑
y

fy(ln
fy

gy
)2 − (

∑
y

fy ln
fy

gy
)2 ≤ (ln 1

δg
)2 + 4

e2 (37)

C. Bounding Ev

[
(μt

u −Ev [μt
u|m, su])

2
∣∣∣m, su

]
:

Let us denote Ev [μt|m, su] by μt for brevity.

Ev

[
(μt

u−μt
u)2

∣∣∣ m, su

]

=
∑t

j=u
Ev

[
(μj−μj)

2
∣∣ m, su

]

+
∑t−1

j=u
Ev

[
(μj−μj)(μ

t
j+1−μt

j+1)
∣∣∣m, su

]
(38)

Note that

Ev

[
(μj−μj)

2
∣∣ m, su

]
= Ev

[
μj

2
∣∣ m, su

]
= Ev

[
Ev

[
μj

2
∣∣m, st

]∣∣m, su

]
≤ (ln δ−1

W )2 + 4e−2 (39)

the inequality following from (36). For u ≤ j < t, it holds

Ev

[
(μj−μj)(μ

t
j+1−μt

j+1)
∣∣∣m, su

]
= Ev

[
(μj−μj)(μ

t
j+1 −Ev

[
μt

j+1

∣∣m, sj+1

]
)
∣∣m, su

]
+ Ev

[
(μj−μj)(Ev

[
μt

j+1

∣∣m, sj+1

]
−μt

j+1)
∣∣∣m, su

]
(a)
= Ev

[
(μj−μj)(Ev

[
μt

j+1

∣∣m, sj+1

]
− μt

j+1)
∣∣∣ m, su

]
(b)

≤ Ev

[
(μj−μj)

2
∣∣m, su

] 1
2

· Ev

[
(Ev

[
μt

j+1

∣∣m, sj+1

]
− μt

j+1)
2
∣∣∣m, su

] 1
2

(40)

where (a) follows from the Markovian property of the encod-
ing and (b) follows from Schwarz’s inequality. In addition, as
a result of the Markovian property, we have,

μt
j = Ev

[
Ev

[
μt

j

∣∣ m, sj

]∣∣ m, su

]
. (41)

Using equation (29) together with equation (41) we get,

|Ev

[
μt

j+1

∣∣ m, sj+1

]
− μt

j | ≤ δ−2k
V (−k ln δW + e−1). (42)

Using equation (38), (39), (40) and (42) and the fact that
ln2 δ−1

W + 4e−2 ≤ ln2(e/δW ) we get,

Ev

[
(μt

u−μt
u)2

∣∣∣m, su

]
≤(t−u+1)

(
k ln δ−1

W
+e−1

δ2k
V

+ ln e
δW

)
ln e

δW

≤(t−u+1)
(

k ln δ−1
W

+e−1

δ2k
V

)
2 ln e

δW
(43)

D. Uniqueness and Continuity of Qρ

Recall that

e−E0(ρ,Q) = min
x

(
∑

y

W (y|x)
1

1+ρ Q(y)
ρ

1+ρ )1+ρ

e−E0(ρ) = max
Q

e−E0(ρ,Q)

Note that maximizing Qρ satisfies

∑
y

W (y|x)
1

1+ρ Qρ(y)
ρ

1+ρ ≥ e
−E0(ρ)

1+ρ ∀x (44)

and with equality for some x.
Note that if there are two distinct optimal distributions Qρ,a

and Qρ,b then∑
y

W (y|x)
1

1+ρ (αQρ,a(y)
ρ

1+ρ + (1 − α)Qρ,b(y)
ρ

1+ρ )

<
∑

y

W (y|x)
1

1+ρ (αQρ,a(y) + (1− α)Qρ,b(y))
ρ

1+ρ

All of their linear combinations will lead to a strictly larger
E0(ρ) so they can not be the optimal Qρ simultaneously. Thus
there exist a unique Qρ.

Note that e−E0(ρ,Q) is a decreasing function for all decreas-
ing in ρ. Because

E

[
x

1
1+ρ

]1+ρ

= E

[
x

1
1+ρ′

1+ρ′

1+ρ

] 1+ρ

1+ρ′ (1+ρ′)

≥ E

[
x

1
1+ρ′

]1+ρ′

for ρ′ ≥ ρ. Then e−E0(ρ) is also a decreasing function of ρ.
Thus

0 ≤ e−E0(ρ) − e−E0(ρ+ε) ≤ e−E0(ρ,Qρ) − e−E0((ρ+ε),Qρ)

0 ≤ e−E0(ρ) − e−E0(ρ+ε) ≤ δ1(Qρ, ε) (45)

where limε→0 δ1(Qρ, ε) = 0 and last step follows from the
continuity of e−E0(ρ,Q) in ρ for any Q.

Furthermore

e−E0(ρ) − e−E0(ρ+ε) ≥ e−E0(ρ,Qρ) − e−E0(ρ,Qρ+ε)

≥ ζ(||Qρ −Qρ+ε) (46)

where the ζ(ρ) is strictly increasing function such that ζ(0) =
0. Last step follows from the strict convexity of −e−E0(ρ,Q)

in Q.
Thus as result of equations (45) and (46) we get,

||Qρ −Qρ+ε|| ≤ ζ−1(δ1(Qρ, ε)) (47)

limε→0 δ1(Qρ, ε) = 0 and ζ−1(·) is also a strictly increasing
function such that ζ−1(0) = 0. Thus Qρ is continuous in ρ.
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