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Abstract—A strong converse bound for constant composition
codes of the form PV > 1— Ap=0-5(—Ei(R.W.p)) o —nBsc(R, W.p) g
established using the Berry—Esseen theorem through the concepts
of Augustin information and Augustin mean, where A is a
constant determined by the channel W, the composition p, and
the rate R, i.e., A does not depend on the block length n.

I. INTRODUCTION

On discrete stationary product channels, the error proba-
bility of codes operating at rates above capacity is not only
bounded away from zero but also converging to one. This
property, first observed by Wolfowitz [1], is called the strong
converse property. For arbitrary stationary product channels,
a necessary and sufficient condition for the strong converse
property was determined by Augustin [2, §10], [3, §13]. The
strong converse property does not hold in general; nevertheless
there does exist a universal asymptotic constant that bounds
the error probability of codes operating at rates above the
capacity of the stationary product channels, according to Beck
and Csiszar [4]. In [5], Verdd and Han provided a necessary
and sufficient condition for the strong converse property for
channels that are not necessarily stationary or memoryless.

Using the concept of Rényi capacity, which was employed
earlier by Gallager [6] for analyzing the error probability of
codes operating at rates below the channel capacity, Arimoto
established in [7] the following lower bound to the error
probability of codes on discrete stationary product channels
(DPSCs) operating at a rate R above the channel capacity:

pén) >1-— e~ "EsR) (1)

where E,.(-) is the strong converse exponent of the chan-
nel. Although Arimoto’s initial proof in [7] is for DSPCs,
Arimoto’s lower bound can be proved as a one shot bound
for more general channel models using Jensen’s inequality or
Holders inequality as noted by Augustin [3] and Sheverdyaev
[8], see also [9]-[11]. Arimoto’s lower bound is used to
establish the strong converse on channels for which alternative
derivations of the strong converse is much more tedious, e.g.
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quantum channels discussed in [11]-[21] and Poisson channels
mentioned in [9, Appendices B-B and B-C].

Aritmoto’s lower bound to the error probability has been
derived for certain constrained codes on memoryless channels
as well, see Dueck and Korner [22] for the constant composi-
tion codes on DSPCs, Oohama [23] for the Gaussian channel,
and Cheng et al. [21] and Mosonyi and Ogawa [24] for the
constant composition codes on classical-quantum channels.

For codes on DSPCs Omura [25] has shown

limy, o0 — 1 In(1 — P{") < E,.(R) 2)

for all rates above the channel capacity and below a certain
threshold. Dueck and Korner [22] established (2) for all rates
above the channel capacity. Thus Arimoto’s bound is tight,
in terms of the exponential decay rate of the probability of
correct decoding with block length, for all rates above the
channel capacity. An analogous result is derived for constant
composition codes on DSPCs in [22], for the Gaussian channel
in [23], for classical-quantum channels in [18], for classical
data compression with quantum side information in [20], and
for constant composition codes on classical-quantum channels
in [24].

Although Arimoto’s bound, given in (1), is tight in terms of
the exponential decay rate of the correct decoding probability
with block length, the prefactor multiplying the exponentially
decaying term can be improved. In particular, for the constant
composition codes operating at rates larger than the mutual
information of the composition. Theorems 1 and 2, in the
following, establish a strong converse bound of the form

Pén) >1- An—O.5(1—E’gC(R))e—nESC(R) 3)

where Fs.(-) is the strong converse exponent and E!_(-) is
its derivative with respect to the rate. Since 1 > E!_(R) > 0
for all rates R and E!.(R) < 1 for small enough rates R,
the bound (3) improves (1) strictly. In accordance with the
corresponding improvements of the sphere packing bound for
rates below the channel capacity given in [26]-[30], we call
the bounds of the form given in (3) refined strong converses.

Proof of Theorem 1 is analogous to the proof of refined
sphere packing bound presented in [29], [30]: it relies on
a tight characterization of the trade-off between type-I and
type-II error probabilities in the hypothesis testing problem
with (possibly non-stationary) independent samples through
the concepts of Augustin information and mean. However,

in [29], [30] for the regime of interest the optimal tiltin
(23], 1301 g P ISIT ZOZOg



parameter is between zero and one; whereas we are now
interested in the regime where the optimal tilting parameter
is larger than one. Similarly, in [29], [30] Agustin information
measures for orders between zero and one are used together
with the sphere packing exponent, whereas we employ Agustin
information measures for orders larger than one together with
the strong converse exponent in our analysis.

We conclude this section with an overview of the paper. In
§II, we describe our model and notation. In §III, we employ
the concept of tilted probability measure and the Berry—
Esseen theorem to obtain a lower bound on the type-II error
probability in hypothesis testing problem with independent
—but not necessarily identically distributed—samples for the
regime where the optimal tilting parameter is larger than one.
In §IV, we review Augustin’s information measures and the
strong converse exponent. In §V, we establish a refined strong
converse for the constant composition codes on stationary
memoryless channels. We conclude our presentation with a
brief discussion of the results and future work in §VI.

II. MODEL AND NOTATION

We denote the set of all probability mass functions that are
positive only for finitely many elements of X by P(X) and the
set of all probability measures on a measurable space (Y,))
by P(Y). The £ norm of a measure y is denoted by ||||. The
expected value and variance of a measurable function f under
the probability measure 1 are denoted by E,,[f] and V,[f].
The Cartesian product of sets Xq,...,X, is denoted by X7;
the product of o-algebras Vi, ...,Y, is denoted by Vi*. The
symbol ® is used to denote both products of o-algebras and
products of measures.

A channel W is a function from the input set X to the set
of all probability measures on the output space (4,Y):

W:X— P). “4)

If X and Y are both finite sets, then W is a discrete channel.
The product of W, : X; — P(Y;) for t € {1,...,n} is a
channel of the form Wy ,,) : X7 — P(J]") satisfying

~®, e

Any channel obtained by curtailing the input set of a length n
product channel is called a length n memoryless channel. A
product channel W, ) is stationary ift Wy = W for all t’s for
some W. On a stationary channel, we denote the composition
(i.e. the empirical distribution, the type) of each z{* by 1'(z);
thus Y'(z") € P(X).

An (M, L) channel code on W} ;) is composed of an en-
coding function W from the message set M = {1,2,..., M}
to the input set X7 and a V7'~ measurable decoding funcnon G
from the output set Y7 to M £ {£ : L C M and |£| < L}.
For any channel code (¥,0) on W[y ., the conditional error
probability PI* for m € M and the average error probability
P, are defined as

Wity (21") Vi € XT. 5)

m A
P £ Ew,  w(m) [Limgorvpi] »
A 1
Pe B HZ'mEJ\/[ Pem.

A channel code is a constant composition code iff all of its
codewords have the same composition, i.e. Ip € P(X) such
that (¥ (m)) = p, Vm € M.

III. HYPOTHESIS TESTING PROBLEM, TILTED
PROBABILITY MEASURE, AND BERRY ESSEEN THEOREM

Our main aim in this section is to characterize the trade-
off between type-I and type-II error probabilities using the
Berry-Essen theorem and the tilted probability measure. This
trade-off can be studied in various regimes; in order to specify
the regime of interest, let us first recall the definition of
Rényi divergence and define the tilted probability measure.

Definition 1. For any o € R+ and w, ¢ € P(Y), the order o
Rényi divergence between w and q is

ot In [ (G “v(dy)
Da w| g A . ; du
(wllg) { ?T;/ [l % — ln%} v(dy)

where v is any measure satisfying w<v and g<wv.

a#1

a=1

Definition 2. For any w, ¢ € P(Y), let w,. be the component

of w that is absolutely continuous in ¢. If ||wg.| # 0, then
the order 1 tilted probability measure wy is

Wac

lwaell

w! &
Furthermore, for any o € R+ satisfying D, (w{|| ¢) < oo, the
order « tilted probability measure wl is defined in terms of
its Radon-Nikodym derivative with respect to ¢ as follows

d wd A

«
Ly 2 e(l—a)Da(waQ) (dT“;?)

The definition of tilted probability measure used in [9], [30],
[31], employs w in the place of wy. Whenever w! = w, i.e.
whenever w—g, it is equivalent to Definition 2. For orders in
(0,1) these two definitions are equivalent even if w! # w.
For orders larger than or equal to one, they differ only when
wy # w and D, (w|| ¢) < oo. In this case, Dy (w| q) = oo
for all a’s in [1,00) and wg is not defined according to the
definition used [9], [30], [31] but w? is defined according to
Definition 2.

In order to see why Definition 2 can be more relevant than
the one used in [9], [30], [31], let us consider two probability
measures w and ¢ for which w)! # w and Dg(w/|| ¢) is finite
for some 3 > 1. Then both D;(wi|| ¢) and D (wd|| wy) are
analytic, and hence continuous, functions of the order o on
(0,0) by [31, Lemma 11]. On the other hand as, a result of
Pinsker’s inequality [32, Thm. 31] we have
wa || wy')-

lwg — wi'll < 4/2Dx(

Thus w? converges in total variation to wf , rather than w, as
a converges to one by the continuity of Dy (wi|| w{) in a.
Furthermore, the continuity of Dy (wZ|| ¢) in a implies that

'l g)-

limay1 Di(wgll ¢) = D (wy

This convergence provides further justification to Definition 2
because D;(wl|| ¢) = oco. Recall that both definitions of the

s (t)ilted probability measure lead to the same wd for « € (0,1).



Lemma 1. For any o € (1,00), n € Z+, wy, ¢t € P(Vs), let
Wy, qc be the component of w, that is absolutely continuous in
q; and let as, a3, and A be

n 2
1 d'wt,ac dwt,ac
1y Euy {(mdqi ~ By [Ine]) ]
3
12 Ewa |: :| )
a1 0.564;
A= 7 (m +2 3) ’
where w = Q7 w; and ¢ = Q71 q. Then for any € € Yo'
and BER; satisfying q(&) < fe~ Pl we have
e A
HHwt a6||‘| : T la—D)a 1

—1 n

“Aw B%a o—Di(wd||w])
= |:1_ 26(0?_1)’1/(1 € ,,lLl/za - :| H ||wt,ac||~ (7)
t=1

S
(%)
(1>

||l>

as

de ac E q [lndwl,ac}
qt

We dg:

T me Dl(w(‘i\lw)7 (6)

w(¥7\E) >

Lemma 1 is often applied for the case when w; is absolutely
continuous in g; for all ¢, i.e. in the case when w; < ¢; for all t.
In that case wy 4. = w; for all ¢ and thus []}_; [|wi,qc|] = 1.

The lower bound asserted in Lemma 1 is tight in the sense
that for any o€ (1,00) and B € {Me e~ avan, ?/—%ea\/m},

NG
there exists an € €)Y} such that
q(& )<56*D1(w2||Q)
(1 a)d a—1 e—D (wg”w)
%1 \8 [H ||wt acl] V2maz (%) « TLIIW7

where § = e\/2meas A, see [33, Appendix A] for a proof.
One can calculate exact asymptotic value of the constant
in the trade-off between error probabilities in the hypothesis
testing problem in this regime, under stronger hypotheses. For
the stationary case —i.e. the case when w; = wy, ¢ = ¢; for all
t— assuming w—= g, first Csiszdr and! Longo [34] and more
recently Vazquez-Vilar et al. [35] have discussed this problem.

Proof of Lemma 1. Let the random variables &; and ¢ be?

Then & = nd(’i";“, and hence & = ln(é—";’, holds g¢-a.s., and the
. . . q q
Radon-Nikodym derivatives d;j; and dd“:;‘ can be expressed

in terms of ¢ as follows

In 2% = Dy (wl]| ) + o (€ — Eyg[¢]) )
In 4% = Dy (wd|w) + (a—1) (€ — Eyel€]). 9

For each integer x, let the set B,, be

Sy r+r<E-Eulll<t4+r+1}. (10)

IThe approach of [34] is sound, but its calculations seem to have some
mistakes.
2¢; and £ are implicitly assumed to be zero outside the support of g.

Then for any € € Y and k € Z, we can bound wi(ENB,,)
from above in terms of ¢(€ N B,;) using (8) and from below
in terms of w(& NB,) using (9), as follows

wl(&NB,)<q(& N B, )ePrwalldtartalntl) an
wl(ENBL)>w(ENB, ) wl ||w)+(a— 1)T+(a DE(12)

In order bound w (Y} \ &) we use w(YP\E€) > w(Bz \ &) and
w(Bz\ &) = w(Bz) —w(Bz NE) where Bz = U,z B,. First
note that for any family of reference measures {v;} satisfying
wy<vy and q;<v; for all ¢ we have

w(Bz) = (®j:1 wT) ({yl ig’f‘ > 0 and % >0 Vt})
= Hj:l Wy ({yt:?i—ly”: > 0 and SZ: > 0})
= thl | we,acl-

Thus for Bzgué

wE\&) 2],

In order to bound w(ENBz_,) we use (11), (12), the identity
(€N B,) < ¢(&), the hypothesis ¢(&) < fe~Prwall9) and
the formula for the sum of a geometric series:

w(€NByz,) = ZKIEZ«] w(€NBy)

< E 56T+n+o¢7D1(wg‘Hw)
- HGZSO

S /867'+04*D1(w41|‘w)$' (15)

On the other hand &;’s are jointly independent under wZ. Thus
the Berry—Esseen theorem [36]-[38] implies

wi(B,) < @(LM) _ ¢<T+m ) 49056 _a

(13)
Unezo, Brand Bz, = Uxez, By, we have
|wtacll—w

(EQBZSO)—w(SﬂBZJr). (14)

Vazn Vazn Vn o a2y/az
1 0.56a
< A (m+2 23),
<eAn~!

Thus we can bound w(€ N Bz, ) using (12), the fact that
wi(& N By) < wi(By), and the formula for the sum of a
geometric series, as well:

w(€NBgz, )= ZK% w(€NB,)
—1/2 = Da(w||w)+(1-a)T+(1-a)r
< Znez+ eAn~ e

< eAn =2~ Dilw,

ZHWH(l*a)Tlel_” (16)

—el-a-

W 1 ~In = L — — 1, (6) follows from
< 1

(14), (15), (16), and the 1dent1ty %

1 — a—1"

For 7=

O

IV. AUGUSTIN INFORMATION, AUGUSTIN MEAN AND THE
STRONG CONVERSE EXPONENT

Our primary goal in this section is to define the Augustin
information and mean and the strong converse exponent and
review those properties of them that will be useful in our anal-
ysis. Let us start by defining the conditional Rényi divergence:

2151



Definition 3. For any o € R+, W : X — P(})), ¢ € P(}),
and p € P(X) the order o conditional Rényi divergence for
the input distribution p is

Da(Wlalp) & Y p(@)Da(W(z)] ).

Definition 4. For anya € R+, W:X—P(Y), and p € P(X) the
order o Augustin information for the input distribution p is

Io(p;W) £ inf epyy Da(W] | p).

The infimum in (18) is achieved by a unique probability
measure ¢, p, called the order o Augustin mean for the input
distribution p, by [31, Lemma 13-(b,c,d)]. Furthermore,

Dl\/(x(Q(x,p” Q) ZDQ(W” Q‘ p)_la(p;W)ZDl/\a(Qa,p ‘ Q) (19)

for all ¢ € P(Y) by [31, Lemma 13-(b,c,d)], as well. I, (p; W)
is continuously differentiable in « on R+ and

ex a7

(18)

1 9o
: o (W[ Wlp) a#l
LLpw) =487 20
dalalts ) {Zzp(f)ku)[lnddvgﬁf)} a=1 @

by [31, Lemma 17-(e)], where W (z) is the order « tilted
probability measure between W(z) and gqp.

Wiler s called the order « tilted channel for the channel
W and the output distribution ¢, ,. The tilted channel is also
used to express I, (p; W) in terms of the Kullback-Leibler
divergences in [31, Lemma 13-(e)]:

Lp; W) = 12 Dy (Wier | Wp) + Lip; Wier).

Since Y, p(z)Wa""(z) = ga,p by’ [31, Lemma 13-(b,c,d)],
we also have the following identity for all « € R+

Lip;Wier) = Di(WE*[| gap| p) -

A more comprehensive discussion of Augustin’s information
measures can be found in [31].

Definition 5. For any W:X — P(Y), peP(X), and RER+,
the strong converse exponent (SCE) is

ESC(Ra va) £ Supae(l,oo) 1TTQ (I&(p; VV) - R) .

We can apply the derivative test to determine Es.(R, W, p),
because I, (p; W) is continuously differentiable in the order «
by [31, Lemma 17-(e)]. Equations (20) and (21) imply

355 (Lalp: W) = R) = s (R— L W3))

Jda «
On the other hand, either I (p;Wqy*") is increasing and
continuous in a on Ri, or L(p;Wd*") = L{p;W)
for all positive a by [31, Lemma 17-(f)]. Furthermore,
Li(p; W) is equal to I(p;W). Thus for any rate R in
(I (p; W), limaqoo Iy (p; Wa™7)), there exists an order o in
(1,00) satisfying

2n

(22)

(23)

(24)

R=1 ;Wi (25)

3In fact the Augustin mean is the only probability measure satisfying such
a fixed point property by [31, Lemma 13], as well.

by the intermediate value theorem [39, 4.23]. The o satisfying
(25) is unique because I; (p; W4*") is increasing in «. The
monotonicity of I;(p;Wa*") in « and (24) also implies
Ey(R, W,p) = 122 (I« (p; W) — R). Thus as a result of (21),
the unique o satisfying (25) also satisfies

Esc(Ra va) = Dl(Wolzl*dka W|p) :

Since Dl(Waqa"’H qa,p| p) is continuous and increasing
in «, its inverse is increasing and continuous, as well.
Thus the definition of SCE given in (23) and the defi-
nition of derivative as a limit imply that for any R in
(Il (p; W), limgtoo It (p; W;f“"’)) the unique o satisfying (25)
also satisfies

(26)

a' —1

%Esc(Rv Wyp) =& - (27)
If R > limatoo 1 (p; Wf“’”), then the derivative given in (24)
is positive for all « € (1,00) and thus
Esc(R7 W, p) = limaToo 1?Ta (Ia(p; W) - R)
=R —I.(p;W)

for all R > limatoo Iy (p; Wa™™?).
On the other hand, if R < I (p; Wy""), then the derivative
given in (24) is negative for all a € (1,00) and thus

Esc(R7 va) = Hmail 1?TOC (Ia(p; VV) - R)
=0.

(28)

(29)

for all R < L (p; W).

Equations (25), (26), (27), (28), and (29) characterize the
strong converse exponent F,.(R, W, p) defined in (23) as
a non-decreasing continuously differentiable convex function
that is strictly convex on (1 (p; W), limatoo I (p; Wa™*)) and
increasing on ([; (p; W), 00).

Remark 1. The definition of Es.(R, W,p) given in (23) is
equivalent to the one used by Dueck and Korner [22]. In order
to see why, recall that the Augustin information satisfies the
following variational characterization by [31, Lemma 13-(e)]

el W) = Di(V|| Wlp)+E2Lp; V).

Thus Es.(R, W, p) can be written as follows for s = “=L:

Es.(R, W,p)

inf
VeP(Y|X)

= su inf

Dy(V| W|p) + s(R — L(p;
i A S (VI Wip) + s( 1(p; V)

inf sup Di(V| W + s(R — Li(p;
velthi 5 L(VI Wip) + s(R— Lip;V))

Dy(V|| W|p)+ R~ Lp; V)"

inf
VeP(Y|X)

We can change the order of the infimum and supremum using
Sion’s minimax theorem [40], [41] because we can replace
P(V|X) by the set of elements of P()|supp(p)) satisfying
Dy (V|| W|p) < R and the latter set is compact in the
topology of setwise convergence by the necessary and sufficient
condition for the uniform integrability given by de la Vallee
Poussin [42, Thm. 4.5.9], see [31, (d-iii) on p.36] for a similar
argument.
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V. THE REFINED STRONG CONVERSE

Theorem 1. For any W : X — P(y) M,L,n€Z+, pe
P(X) satisfying I (p; W) <+ In £ <111rno[TOo 11(p Wa“ ") and
np(z) € Zso for all z€X, the order o=

1-E7(1 ln A wW.p)
satisfies

(30)

h W) =

Furthermore, any (M, L) channel code of length n whose
codewords all have the same composition p satisfies

11, M
nlnL.

1
P 21— 20 (G5 ) e W) )
where
2
ay = Ep@qu*’p Ulndiw E q;x P {1nd(;::p} ’ :| 5 (32)
3
as = E;D@qu*,p [‘lnddqu - ij:v*,p |:1nddqu:| :| ) (33)

(34)

Aéel (\/%4_2006113)'

Theorem 2. For v any W:X—=PY), M,L,n€Z+, peP(X)
satisfying + ln > limaqoo [1 (p; Wa™ ) and np(x) € Zxo
for all x € f)C any (M, L) channel code of length n whose
codewords all have the same composition p satisfies

Pén) > 1— e—nEsC( In & I ,W,p). (35)

Theorems 1 and 2 collectively imply for all n € Z+ a strong
converse of the form (3) for Es.(R) = Ey(:In 2, W, p),
for a constant A determined by the rate R, the channel W,
and the composition p. Following the convention used for the
corresponding improvement of the sphere packing bound in
[26]-[30], we call these bounds refined strong converses.

Proof of Theorem 1. The existence of a unique order o sat-
isfying (30) was proved and its value was determined in §IV,
see (25), (26), and (27).
Let the probability measures w,,, ¢, and v,, in P(Y}*) be
A n
Wiy = ®t:1 W(W:(m)),
q ®l’t:1 Qo NX)
Um = ®t:1 W;Q*yp(wt(m)»

Then v,, is equal to the order o tilted probability measure

>

between w,, and q. Furthermore,*
Di(vp q) = nDl(Wogfi*’”H qw’p| p) m €M,
D1 (U || ) = nDy (W™ || W] p) m € M.

Note that Dl(Wq‘** H qo[« p’p) =

L1n 2 by (22) and (30)
and Dy (W™ || W|p) = Ese (2 In 2L,

W, p) by (25), (26),

It is worth mentioning that both D1 (v || ¢) and Di(vm || wm) can be
expressed in this form for all messages because all ¥(m)’s have the same
composition p.

3) as Pé") >1
158 =

and (30). Thus applying Lemma 1, for € = {y" : meO(y")}

and 3 = ¢(meO)I we get
_1 e—nEsc(%I“ %,W,P)

2e%" A1/0" qg(meOd)M o
(o —1)1/e" L :
(36)

On the other hand ) .. ¢(m € ©) < L, as a result of the
definition of the list decoding. Thus using the concavity of the
in z together with the Jensen’s inequality get

PI>1-

e —

nl/2a*

. aF—1
function z &

o —1
z : 1 (g(meO)M\ o
mem M L

*

1 g(me@)M aTIl
< (ZmEM M : L )
=1.

Then (31) follows from (36) and the definition error probabil-
ity as the average of the conditional error probabilities. O

Proof of Theorem 2. Let the probability measures w,,, g, be

A " A "
Wm, = ®t:1 W(Wt(m))a and ¢, = ®t:1 Ga,p-

Then D, (wp, || go) = nla(p; W) for all m because all ¥(m)’s
have the composition p. On the other hand the data processing
inequality of the Rényi divergence, [32, Thm 9], imply
In[(PL')* (ga(mEB))' "> +(1=P")* (4a(meO))' 7]
a—1
In[(1-PJ")* (g (meO))' 7]
a—1 '

Do (winl| ¢a)

Y

>

Thus P >1 — (go(m € (9)) & e "Ia(p W), On the other
a—1

hand the concavity of the function z“= in z for o > 1,

the Jensen’s inequality, and Y omem qa(m € ©) <L, imply

ZmeM a7 (ga(m € (9)) (L/M) a . Hence
P > 1— e wnleM—ninE) o e (1,00).
Then (35) follows from (23). O

VI. DISCUSSION

Although we have confined our analysis to the constant
composition codes for brevity, using the Augustin capacity
and center —instead of Augustin information and mean— one
can obtain analogous results for additive white Gaussian noise
channels with quadratic cost functions and Rényi symmetric
channels defined in [30]. For Rényi symmetric channels the
refined strong converse (3), can be established with smaller,
i.e., better, constant A using the saddle point approximation.
Such a result has been reported in [35, (36)], assuming a
common support for all output distributions of the channel
and a non-lattice structure for the random variables involved.
Establishing refined strong converses without any symmetry
hypothesis is the main technical challenge in this line of work.

We believe the refined strong converses of the form (3) are
the best possible bounds for derivations of the strong converse
relying on the asymptotic behavior of sums of independent
random variables. Nevertheless for the singular symmetric

channels considered in [43], it should be possible to improve
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