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Abstract—A strong converse bound for constant composition
codes of the form P

(n)
e ≥ 1−An−0.5(1−E ′sc(R,W,p))e−nEsc(R,W,p) is

established using the Berry–Esseen theorem through the concepts
of Augustin information and Augustin mean, where A is a
constant determined by the channel W , the composition p, and
the rate R, i.e., A does not depend on the block length n .

I. INTRODUCTION

On discrete stationary product channels, the error proba-
bility of codes operating at rates above capacity is not only
bounded away from zero but also converging to one. This
property, first observed by Wolfowitz [1], is called the strong
converse property. For arbitrary stationary product channels,
a necessary and sufficient condition for the strong converse
property was determined by Augustin [2, §10], [3, §13]. The
strong converse property does not hold in general; nevertheless
there does exist a universal asymptotic constant that bounds
the error probability of codes operating at rates above the
capacity of the stationary product channels, according to Beck
and Csiszar [4]. In [5], Verdú and Han provided a necessary
and sufficient condition for the strong converse property for
channels that are not necessarily stationary or memoryless.

Using the concept of Rényi capacity, which was employed
earlier by Gallager [6] for analyzing the error probability of
codes operating at rates below the channel capacity, Arimoto
established in [7] the following lower bound to the error
probability of codes on discrete stationary product channels
(DPSCs) operating at a rate R above the channel capacity:

P (n)
e ≥ 1− e−nEsc(R) (1)

where Esc(·) is the strong converse exponent of the chan-
nel. Although Arimoto’s initial proof in [7] is for DSPCs,
Arimoto’s lower bound can be proved as a one shot bound
for more general channel models using Jensen’s inequality or
Hölders inequality as noted by Augustin [3] and Sheverdyaev
[8], see also [9]–[11]. Arimoto’s lower bound is used to
establish the strong converse on channels for which alternative
derivations of the strong converse is much more tedious, e.g.
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quantum channels discussed in [11]–[21] and Poisson channels
mentioned in [9, Appendices B-B and B-C].

Aritmoto’s lower bound to the error probability has been
derived for certain constrained codes on memoryless channels
as well, see Dueck and Körner [22] for the constant composi-
tion codes on DSPCs, Oohama [23] for the Gaussian channel,
and Cheng et al. [21] and Mosonyi and Ogawa [24] for the
constant composition codes on classical-quantum channels.

For codes on DSPCs Omura [25] has shown

limn→∞− 1
n ln(1− P (n)

e )≤Esc(R) (2)

for all rates above the channel capacity and below a certain
threshold. Dueck and Körner [22] established (2) for all rates
above the channel capacity. Thus Arimoto’s bound is tight,
in terms of the exponential decay rate of the probability of
correct decoding with block length, for all rates above the
channel capacity. An analogous result is derived for constant
composition codes on DSPCs in [22], for the Gaussian channel
in [23], for classical-quantum channels in [18], for classical
data compression with quantum side information in [20], and
for constant composition codes on classical-quantum channels
in [24].

Although Arimoto’s bound, given in (1), is tight in terms of
the exponential decay rate of the correct decoding probability
with block length, the prefactor multiplying the exponentially
decaying term can be improved. In particular, for the constant
composition codes operating at rates larger than the mutual
information of the composition. Theorems 1 and 2, in the
following, establish a strong converse bound of the form

P (n)
e ≥ 1−An−0.5(1−E

′
sc(R))e−nEsc(R) (3)

where Esc(·) is the strong converse exponent and E ′sc(·) is
its derivative with respect to the rate. Since 1 ≥ E ′sc(R) ≥ 0
for all rates R and E ′sc(R) < 1 for small enough rates R,
the bound (3) improves (1) strictly. In accordance with the
corresponding improvements of the sphere packing bound for
rates below the channel capacity given in [26]–[30], we call
the bounds of the form given in (3) refined strong converses.

Proof of Theorem 1 is analogous to the proof of refined
sphere packing bound presented in [29], [30]: it relies on
a tight characterization of the trade-off between type-I and
type-II error probabilities in the hypothesis testing problem
with (possibly non-stationary) independent samples through
the concepts of Augustin information and mean. However,
in [29], [30] for the regime of interest the optimal tilting
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parameter is between zero and one; whereas we are now
interested in the regime where the optimal tilting parameter
is larger than one. Similarly, in [29], [30] Agustin information
measures for orders between zero and one are used together
with the sphere packing exponent, whereas we employ Agustin
information measures for orders larger than one together with
the strong converse exponent in our analysis.

We conclude this section with an overview of the paper. In
§II, we describe our model and notation. In §III, we employ
the concept of tilted probability measure and the Berry–
Esseen theorem to obtain a lower bound on the type-II error
probability in hypothesis testing problem with independent
—but not necessarily identically distributed—samples for the
regime where the optimal tilting parameter is larger than one.
In §IV, we review Augustin’s information measures and the
strong converse exponent. In §V, we establish a refined strong
converse for the constant composition codes on stationary
memoryless channels. We conclude our presentation with a
brief discussion of the results and future work in §VI.

II. MODEL AND NOTATION

We denote the set of all probability mass functions that are
positive only for finitely many elements of X by P(X) and the
set of all probability measures on a measurable space (Y,Y)
by P(Y). The L1 norm of a measure µ is denoted by ‖µ‖. The
expected value and variance of a measurable function f under
the probability measure µ are denoted by Eµ[f ] and Vµ[f ].
The Cartesian product of sets X1, . . . ,Xn is denoted by Xn

1 ;
the product of σ-algebras Y1, . . . ,Yn is denoted by Yn

1 . The
symbol ⊗ is used to denote both products of σ-algebras and
products of measures.

A channel W is a function from the input set X to the set
of all probability measures on the output space (Y,Y):

W : X→ P(Y). (4)

If X and Y are both finite sets, then W is a discrete channel.
The product of Wt : Xt → P(Yt) for t ∈ {1, . . . ,n} is a
channel of the form W[1,n] : X

n
1 → P(Yn

1 ) satisfying

W[1,n](x
n
1 ) =

⊗n

t=1
Wt(xt) ∀xn

1 ∈ Xn
1 . (5)

Any channel obtained by curtailing the input set of a length n
product channel is called a length n memoryless channel. A
product channel W[1,n] is stationary iff Wt = W for all t’s for
some W. On a stationary channel, we denote the composition
(i.e. the empirical distribution, the type) of each xn

1 by Υ (xn
1 );

thus Υ (xn
1 ) ∈ P(X).

An (M,L) channel code on W[1,n] is composed of an en-
coding function Ψ from the message set M , {1, 2, . . . ,M}
to the input set Xn

1 and a Yn
1 -measurable decoding function Θ

from the output set Yn
1 to M̂ , {L : L ⊂ M and |L| ≤ L}.

For any channel code (Ψ,Θ) on W[1,n], the conditional error
probability Pm

e for m ∈M and the average error probability
Pe are defined as

Pm
e , EW[1,n](Ψ(m))

[
1{m /∈Θ(Yn

1 )}
]
,

Pe , 1
M

∑
m∈M

Pm
e .

A channel code is a constant composition code iff all of its
codewords have the same composition, i.e. ∃p ∈ P(X) such
that Υ (Ψ(m)) = p, ∀m ∈M.

III. HYPOTHESIS TESTING PROBLEM, TILTED
PROBABILITY MEASURE, AND BERRY ESSEEN THEOREM

Our main aim in this section is to characterize the trade-
off between type-I and type-II error probabilities using the
Berry-Essen theorem and the tilted probability measure. This
trade-off can be studied in various regimes; in order to specify
the regime of interest, let us first recall the definition of
Rényi divergence and define the tilted probability measure.

Definition 1. For any α ∈ R+ and w , q ∈ P(Y), the order α
Rényi divergence between w and q is

Dα(w‖ q) ,

{
1

α−1 ln
∫
(dwdν )

α(dqdν )
1−αν(dy) α 6= 1∫

dw
dν

[
lndw

dν − lndq
dν

]
ν(dy) α = 1

where ν is any measure satisfying w≺ν and q≺ν.

Definition 2. For any w , q ∈ P(Y), let wac be the component
of w that is absolutely continuous in q . If ‖wac‖ 6= 0, then
the order 1 tilted probability measure wq

1 is

wq
1 , wac

‖wac‖ .

Furthermore, for any α ∈ R+ satisfying Dα(w
q
1 ‖ q) <∞, the

order α tilted probability measure wq
α is defined in terms of

its Radon-Nikodym derivative with respect to q as follows

d
dq wq

α , e(1−α)Dα(w
q
1‖q)

(
dwq

1

dq

)α
.

The definition of tilted probability measure used in [9], [30],
[31], employs w in the place of wq

1 . Whenever wq
1 = w , i.e.

whenever w≺q , it is equivalent to Definition 2. For orders in
(0, 1) these two definitions are equivalent even if wq

1 6= w .
For orders larger than or equal to one, they differ only when
wq
1 6= w and Dα(w

q
1 ‖ q) < ∞. In this case, Dα(w‖ q) = ∞

for all α’s in [1,∞) and wq
α is not defined according to the

definition used [9], [30], [31] but wq
α is defined according to

Definition 2.
In order to see why Definition 2 can be more relevant than

the one used in [9], [30], [31], let us consider two probability
measures w and q for which wq

1 6= w and Dβ(w
q
1 ‖ q) is finite

for some β > 1. Then both D1(w
q
α‖ q) and D1(w

q
α‖wq

1 ) are
analytic, and hence continuous, functions of the order α on
(0, β) by [31, Lemma 11]. On the other hand as, a result of
Pinsker’s inequality [32, Thm. 31] we have

‖wq
α − wq

1 ‖ ≤
√

2D1(w
q
α‖wq

1 ).

Thus wq
α converges in total variation to wq

1 , rather than w , as
α converges to one by the continuity of D1(w

q
α‖wq

1 ) in α.
Furthermore, the continuity of D1(w

q
α‖ q) in α implies that

limα↑1 D1(w
q
α‖ q) = D1(w

q
1 ‖ q) .

This convergence provides further justification to Definition 2
because D1(w‖ q) = ∞. Recall that both definitions of the
tilted probability measure lead to the same wq

α for α ∈ (0, 1).
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Lemma 1. For any α ∈ (1,∞), n ∈ Z+ , wt , qt ∈ P(Yt), let
wt,ac be the component of wt that is absolutely continuous in
qt and let a2, a3, and ∆ be

a2, 1
n

∑n

t=1
Ewq

α

[(
ln

dwt,ac

dqt
−Ewq

α

[
ln

dwt,ac

dqt

])2]
,

a3, 1
n

∑n

t=1
Ewq

α

[∣∣∣lndwt,ac

dqt
−Ewq

α

[
ln

dwt,ac

dqt

]∣∣∣3] ,
∆, 1

e
√
a2

(
1√
2π

+ 2 0.56a3

a2

)
,

where w = ⊗n
t=1wt and q = ⊗n

t=1qt . Then for any E ∈ Yn
1

and β∈R+ satisfying q(E)≤βe−D1(w
q
α‖q), we have

w(Yn
1 \E)≥

[
n∏

t=1

‖wt,ac‖

]
− 2eα∆

1
α β

α−1
α

(α−1)1/α n−
1
2α e−D1(w

q
α‖w), (6)

=

[
1− 2eα∆

1
α β

α−1
α

(α−1)1/α
e−D1(w

q
α‖wq

1)

n1/2α

] n∏
t=1

‖wt,ac‖. (7)

Lemma 1 is often applied for the case when wt is absolutely
continuous in qt for all t , i.e. in the case when wt≺qt for all t .
In that case wt,ac = wt for all t and thus

∏n
t=1 ‖wt,ac‖ = 1.

The lower bound asserted in Lemma 1 is tight in the sense
that for any α∈(1,∞) and β∈

[
9∆eαδ√

n
e−α

√
a2n , 9∆√

n
eα
√
a2n
]
,

there exists an E∈Yn
1 such that

q(E)≤βe−D1(w
q
α‖q),

w(Yn
1 \ E)≤

[
n∏

t=1

‖wt,ac‖

]
− e(1−α)δ
√
2πa2

( β
9∆ )

α−1
α e−D1(w

q
α‖w)

n1/2α ,

where δ = e
√
2πea2∆, see [33, Appendix A] for a proof.

One can calculate exact asymptotic value of the constant
in the trade-off between error probabilities in the hypothesis
testing problem in this regime, under stronger hypotheses. For
the stationary case —i.e. the case when wt =w1, qt =q1 for all
t— assuming w≺q , first Csiszár and1 Longo [34] and more
recently Vazquez-Vilar et al. [35] have discussed this problem.

Proof of Lemma 1. Let the random variables ξt and ξ be2

ξt , ln
dwt,ac

dqt
,

ξ,
∑n

t=1
ξt .

Then ξ = lndwac
dq , and hence ξ = lndw

dq , holds q-a.s., and the

Radon-Nikodym derivatives dwq
α

dq and dwq
α

dw can be expressed
in terms of ξ as follows

ln
dwq

α

dq =D1(w
q
α‖ q) + α

(
ξ −Ewq

α
[ξ]
)
, (8)

ln
dwq

α

dw =D1(w
q
α‖w) + (α−1)

(
ξ −Ewq

α
[ξ]
)
. (9)

For each integer κ, let the set Bκ be

Bκ,
{

yn
1 :τ + κ ≤ ξ −Ewq

α
[ξ] < τ + κ+ 1

}
. (10)

1The approach of [34] is sound, but its calculations seem to have some
mistakes.

2ξt and ξ are implicitly assumed to be zero outside the support of q .

Then for any E ∈ Yn
1 and κ ∈ Z , we can bound wq

α(E∩Bκ)
from above in terms of q(E ∩ Bκ) using (8) and from below
in terms of w(E ∩Bκ) using (9), as follows

wq
α(E ∩Bκ)≤q(E ∩Bκ)e

D1(w
q
α‖q)+ατ+α(κ+1), (11)

wq
α(E ∩Bκ)≥w(E ∩Bκ)e

D1(w
q
α‖w)+(α−1)τ+(α−1)κ. (12)

In order bound w(Yn
1 \E) we use w(Yn

1 \E) ≥ w(BZ \E) and
w(BZ \E) = w(BZ )−w(BZ ∩E) where BZ , ∪κ∈Z Bκ. First
note that for any family of reference measures {νt} satisfying
wt≺νt and qt≺νt for all t we have

w(BZ ) =
(⊗n

τ=1
wτ

)({
yn
1 : dwt

dνt
> 0 and dqt

dνt
> 0 ∀t

})
=
∏n

t=1
wt

({
yt :

dwt

dνt
> 0 and dqt

dνt
> 0
})

=
∏n

t=1
‖wt,ac‖. (13)

Thus for BZ≤0
, ∪κ∈Z≤0

Bκ and BZ+ , ∪κ∈Z+ Bκ, we have

w(Yn
1 \E)≥

∏n

t=1
‖wt,ac‖−w(E∩BZ≤0

)−w(E∩BZ+). (14)

In order to bound w(E∩BZ≤0
) we use (11), (12), the identity

q(E ∩ Bκ) ≤ q(E), the hypothesis q(E)≤ βe−D1(w
q
α‖q), and

the formula for the sum of a geometric series:

w(E ∩BZ≤0
) =

∑
κ∈Z≤0

w(E ∩Bκ)

≤
∑

κ∈Z≤0

βeτ+κ+α−D1(w
q
α‖w)

≤ βeτ+α−D1(w
q
α‖w) 1

1−e−1 . (15)

On the other hand ξt ’s are jointly independent under wq
α . Thus

the Berry–Esseen theorem [36]–[38] implies

wq
α(Bκ) ≤ Φ

(
τ+κ+1√

a2n

)
− Φ

(
τ+κ√
a2n

)
+ 2 0.56√

n
a3

a2
√
a2

≤ 1√
a2n

(
1√
2π

+ 2 0.56a3

a2

)
.

≤ e∆n−
1/2.

Thus we can bound w(E ∩ BZ+ ) using (12), the fact that
wq
α(E ∩ Bκ) ≤ wq

α(Bκ), and the formula for the sum of a
geometric series, as well:

w(E ∩BZ+ ) =
∑

κ∈Z+

w(E ∩Bκ)

≤
∑

κ∈Z+

e∆n−
1/2e−D1(w

q
α‖w)+(1−α)τ+(1−α)κ

≤ e∆n−
1/2e−D1(w

q
α‖w)+(1−α)τ e1−α

1−e1−α . (16)

For τ= 2 ln∆−2 ln β−lnn
2α + 1

α ln e−1
eα−1−1 − 1, (6) follows from

(14), (15), (16), and the identity (e−1)1−α
eα−1−1 ≤

1
α−1 .

IV. AUGUSTIN INFORMATION, AUGUSTIN MEAN AND THE
STRONG CONVERSE EXPONENT

Our primary goal in this section is to define the Augustin
information and mean and the strong converse exponent and
review those properties of them that will be useful in our anal-
ysis. Let us start by defining the conditional Rényi divergence:
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Definition 3. For any α ∈ R+ , W : X → P(Y), q ∈ P(Y),
and p ∈ P(X) the order α conditional Rényi divergence for
the input distribution p is

Dα(W‖ q | p) ,
∑

x∈X
p(x )Dα(W (x )‖ q) . (17)

Definition 4. For anyα∈R+ , W :X→P(Y), and p∈P(X) the
order α Augustin information for the input distribution p is

Iα(p;W) , infq∈P(Y) Dα(W‖ q | p) . (18)

The infimum in (18) is achieved by a unique probability
measure qα,p , called the order α Augustin mean for the input
distribution p, by [31, Lemma 13-(b,c,d)]. Furthermore,

D1∨α(qα,p‖ q)≥Dα(W‖ q | p)−Iα(p;W)≥D1∧α(qα,p‖ q) (19)

for all q ∈ P(Y) by [31, Lemma 13-(b,c,d)], as well. Iα(p;W)
is continuously differentiable in α on R+ and

∂
∂α Iα(p;W) =

{
1

(α−1)2 D1

(
W

qα,p
α

∥∥W
∣∣ p) α 6= 1∑

x
p(x)
2 VW (x)

[
ln dW (x)

dq1,p

]
α = 1

(20)

by [31, Lemma 17-(e)], where W
qα,p
α (x ) is the order α tilted

probability measure between W(x ) and qα,p .
W

qα,p
α is called the order α tilted channel for the channel

W and the output distribution qα,p . The tilted channel is also
used to express Iα(p;W) in terms of the Kullback–Leibler
divergences in [31, Lemma 13-(e)]:

Iα(p;W) = α
1−αD1(W

qα,p
α ‖W | p) + I1(p;W

qα,p
α ) . (21)

Since
∑

xp(x )W
qα,p
α (x ) = qα,p by3 [31, Lemma 13-(b,c,d)],

we also have the following identity for all α∈R+

I1(p;W
qα,p
α ) = D1(W

qα,p
α ‖ qα,p | p) . (22)

A more comprehensive discussion of Augustin’s information
measures can be found in [31].

Definition 5. For any W :X→ P(Y), p∈P(X), and R∈R+ ,
the strong converse exponent (SCE) is

Esc(R,W, p) , supα∈(1,∞)
1−α
α (Iα(p;W)− R) . (23)

We can apply the derivative test to determine Esc(R,W, p),
because Iα(p;W) is continuously differentiable in the order α
by [31, Lemma 17-(e)]. Equations (20) and (21) imply

∂
∂α

1−α
α (Iα(p;W)−R)= 1

α2 (R−I1(p;W
qα,p
α )) . (24)

On the other hand, either I1
(
p;W

qα,p
α

)
is increasing and

continuous in α on R+ , or I1
(
p;W

qα,p
α

)
= I1(p;W)

for all positive α by [31, Lemma 17-(f)]. Furthermore,
I1
(
p;W

q1,p
1

)
is equal to I1(p;W). Thus for any rate R in

(I1(p;W) , limα↑∞I1
(
p;W

qα,p
α

)
), there exists an order α∗ in

(1,∞) satisfying

R = I1
(
p;W

qα∗,p
α∗

)
(25)

3In fact the Augustin mean is the only probability measure satisfying such
a fixed point property by [31, Lemma 13], as well.

by the intermediate value theorem [39, 4.23]. The α∗ satisfying
(25) is unique because I1

(
p;W

qα,p
α

)
is increasing in α. The

monotonicity of I1
(
p;W

qα,p
α

)
in α and (24) also implies

Esc(R,W, p) = 1−α∗
α∗ (Iα∗(p;W)−R). Thus as a result of (21),

the unique α∗ satisfying (25) also satisfies

Esc(R,W, p) = D1

(
W

qα∗,p
α∗

∥∥W
∣∣ p) . (26)

Since D1

(
W

qα,p
α

∥∥ qα,p
∣∣ p) is continuous and increasing

in α, its inverse is increasing and continuous, as well.
Thus the definition of SCE given in (23) and the defi-
nition of derivative as a limit imply that for any R in(
I1(p;W) , limα↑∞ I1

(
p;W

qα,p
α

))
the unique α∗ satisfying (25)

also satisfies
∂
∂REsc(R,W, p) = α∗−1

α∗ . (27)

If R ≥ limα↑∞ I1
(
p;W

qα,p
α

)
, then the derivative given in (24)

is positive for all α ∈ (1,∞) and thus

Esc(R,W, p) = limα↑∞
1−α
α (Iα(p;W)− R)

= R − I∞(p;W) (28)

for all R ≥ limα↑∞ I1
(
p;W

qα,p
α

)
.

On the other hand, if R ≤ I1
(
p;W

q1,p
1

)
, then the derivative

given in (24) is negative for all α ∈ (1,∞) and thus

Esc(R,W, p) = limα↓1
1−α
α (Iα(p;W)− R)

= 0. (29)

for all R ≤ I1(p;W).
Equations (25), (26), (27), (28), and (29) characterize the

strong converse exponent Esc(R,W, p) defined in (23) as
a non-decreasing continuously differentiable convex function
that is strictly convex on (I1(p;W) , limα↑∞ I1

(
p;W

qα,p
α

)
) and

increasing on (I1(p;W) ,∞).

Remark 1. The definition of Esc(R,W, p) given in (23) is
equivalent to the one used by Dueck and Körner [22]. In order
to see why, recall that the Augustin information satisfies the
following variational characterization by [31, Lemma 13-(e)]

1−α
α Iα(p;W) = inf

V∈P(Y|X)
D1(V ‖W | p) + 1−α

α I1(p;V) .

Thus Esc(R,W, p) can be written as follows for s = α−1
α :

Esc(R,W , p)

= sup
s∈(0,1)

inf
V∈P(Y|X)

D1(V ‖W | p) + s(R − I1(p;V))

= inf
V∈P(Y|X)

sup
s∈(0,1)

D1(V ‖W | p) + s(R − I1(p;V))

= inf
V∈P(Y|X)

D1(V ‖W | p) + |R − I1(p;V)|+.

We can change the order of the infimum and supremum using
Sion’s minimax theorem [40], [41] because we can replace
P(Y|X) by the set of elements of P(Y|supp(p)) satisfying
D1(V ‖W | p) ≤ R and the latter set is compact in the
topology of setwise convergence by the necessary and sufficient
condition for the uniform integrability given by de la Vallee
Poussin [42, Thm. 4.5.9], see [31, (d-iii) on p.36] for a similar
argument.
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V. THE REFINED STRONG CONVERSE

Theorem 1. For any W : X → P(Y), M,L,n ∈ Z+ , p ∈
P(X) satisfying I1(p;W)< 1

n ln M
L < limα↑∞ I1

(
p;W

qα,p
α

)
and

np(x )∈Z≥0 for all x ∈X, the order α∗, 1

1−E ′sc( 1
n ln M

L ,W ,p)
satisfies

I1
(
p;W

qα∗,p
α∗

)
= 1

n ln M
L . (30)

Furthermore, any (M,L) channel code of length n whose
codewords all have the same composition p satisfies

P (n)
e ≥ 1− 2eα

∗
(

∆
α∗−1

) 1
α∗

n−
1/2α∗e−nEsc(

1
n ln M

L ,W ,p) (31)

where

a2 = E
p~W

qα∗,p
α∗

[∣∣∣ln dW
dqα∗,p

−E
W

qα∗,p
α∗

[
ln dW

dqα∗,p

]∣∣∣2] , (32)

a3 = E
p~W

qα∗,p
α∗

[∣∣∣ln dW
dqα∗,p

−E
W

qα∗,p
α∗

[
ln dW

dqα∗,p

]∣∣∣3] , (33)

∆, 1
e
√
a2

(
1√
2π

+ 2 0.56a3

a2

)
. (34)

Theorem 2. For any W :X→P(Y), M,L,n∈Z+ , p∈P(X)
satisfying 1

n ln M
L ≥ limα↑∞ I1

(
p;W

qα,p
α

)
and np(x ) ∈ Z≥0

for all x ∈ X, any (M,L) channel code of length n whose
codewords all have the same composition p satisfies

P (n)
e ≥ 1− e−nEsc(

1
n ln M

L ,W ,p). (35)

Theorems 1 and 2 collectively imply for all n∈Z+ a strong
converse of the form (3) for Esc(R) = Esc

(
1
n ln M

L ,W , p
)
,

for a constant A determined by the rate R, the channel W,
and the composition p. Following the convention used for the
corresponding improvement of the sphere packing bound in
[26]–[30], we call these bounds refined strong converses.

Proof of Theorem 1. The existence of a unique order α∗ sat-
isfying (30) was proved and its value was determined in §IV,
see (25), (26), and (27).

Let the probability measures wm , q , and vm in P(Yn
1 ) be

wm ,
⊗n

t=1
W (Ψt(m)),

q ,
⊗n

t=1
qα∗,p ,

vm ,
⊗n

t=1
W

qα∗,p
α∗ (Ψt(m)).

Then vm is equal to the order α∗ tilted probability measure
between wm and q . Furthermore,4

D1(vm‖ q) = nD1

(
W

qα∗,p
α∗

∥∥ qα∗,p
∣∣ p) m ∈M,

D1(vm‖wm) = nD1

(
W

qα∗,p
α∗

∥∥W
∣∣ p) m ∈M.

Note that D1

(
W

qα∗,p
α∗

∥∥ qα∗,p
∣∣ p)= 1

n ln M
L by (22) and (30)

and D1

(
W

qα∗,p
α∗

∥∥W
∣∣ p)= Esc

(
1
n ln M

L ,W , p
)

by (25), (26),

4It is worth mentioning that both D1(vm‖ q) and D1(vm‖wm ) can be
expressed in this form for all messages because all Ψ(m)’s have the same
composition p.

and (30). Thus applying Lemma 1, for E = {yn
1 : m∈Θ(yn

1 )}
and β = q(m∈Θ)ML we get

Pm
e ≥1− 2eα

∗
∆1/α∗

(α∗−1)1/α∗
(

q(m∈Θ)M
L

)α∗−1
α∗ e

−nEsc( 1
n

ln M
L
,W ,p)

n1/2α∗ .

(36)

On the other hand
∑
m∈M q(m ∈ Θ) ≤ L, as a result of the

definition of the list decoding. Thus using the concavity of the
function z

α∗−1
α∗ in z together with the Jensen’s inequality get∑

m∈M
1
M

(
q(m∈Θ)M

L

)α∗−1
α∗ ≤

(∑
m∈M

1
M

q(m∈Θ)M
L

)α∗−1
α∗

= 1.

Then (31) follows from (36) and the definition error probabil-
ity as the average of the conditional error probabilities.

Proof of Theorem 2. Let the probability measures wm , qα be

wm ,
⊗n

t=1
W (Ψt(m)), and qα ,

⊗n

t=1
qα,p .

Then Dα(wm‖ qα) = nIα(p;W) for all m because all Ψ(m)’s
have the composition p. On the other hand the data processing
inequality of the Rényi divergence, [32, Thm 9], imply

Dα(wm‖ qα) ≥
ln[(Pm

e )α(qα(m∈Θ))1−α+(1−Pm
e )α(qα(m∈Θ))1−α]

α−1

≥ ln[(1−Pm
e )α(qα(m∈Θ))1−α]

α−1 .

Thus Pm
e ≥ 1 − (qα(m ∈ Θ))

α−1
α e

α−1
α nIα(p;W). On the other

hand the concavity of the function z
α−1
α in z for α > 1,

the Jensen’s inequality, and
∑
m∈M qα(m ∈ Θ) ≤ L, imply∑

m∈M
1
M (qα(m ∈ Θ))

α−1
α ≤ (L/M)

α−1
α . Hence

P (n)
e ≥ 1− e−

1−α
α n(Iα(p;W)− 1

n ln M
L ) ∀α ∈ (1,∞).

Then (35) follows from (23).

VI. DISCUSSION

Although we have confined our analysis to the constant
composition codes for brevity, using the Augustin capacity
and center —instead of Augustin information and mean— one
can obtain analogous results for additive white Gaussian noise
channels with quadratic cost functions and Rényi symmetric
channels defined in [30]. For Rényi symmetric channels the
refined strong converse (3), can be established with smaller,
i.e., better, constant A using the saddle point approximation.
Such a result has been reported in [35, (36)], assuming a
common support for all output distributions of the channel
and a non-lattice structure for the random variables involved.
Establishing refined strong converses without any symmetry
hypothesis is the main technical challenge in this line of work.

We believe the refined strong converses of the form (3) are
the best possible bounds for derivations of the strong converse
relying on the asymptotic behavior of sums of independent
random variables. Nevertheless for the singular symmetric
channels considered in [43], it should be possible to improve
(3) as P

(n)
e ≥ 1−An−0.5e−nEsc(R).

2153



REFERENCES

[1] J. Wolfowitz, “The coding of messages subject to chance errors,” Illinois
Journal of Mathematics, vol. 1, no. 4, pp. 591–606, 12 1957.

[2] U. Augustin, “Gedächtnisfreie Kanäle für diskrete Zeit,” Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol. 6, no. 1, pp.
10–61, Mar 1966.

[3] ——, “Noisy channels,” Habilitation Thesis, Universität Erlangen-
Nürnberg, 1978, (http://bit.ly/2ID8h7m).

[4] J. Beck and I. Csiszár, “Medium converse for memoryless channels with
arbitrary alphabets,” Problems of control and information theory, vol. 7,
no. 3, pp. 199–202, 1978.

[5] S. Verdú and T. S. Han, “A general formula for channel capacity,” IEEE
Transactions on Information Theory, vol. 40, no. 4, pp. 1147–1157, Jul
1994.

[6] R. G. Gallager, “A simple derivation of the coding theorem and some
applications,” IEEE Transactions on Information Theory, vol. 11, no. 1,
pp. 3–18, Jan. 1965.

[7] S. Arimoto, “On the converse to the coding theorem for discrete
memoryless channels (corresp.),” IEEE Transactions on Information
Theory, vol. 19, no. 3, pp. 357–359, May 1973.

[8] A. Y. Sheverdyaev, “Lower bound for error probability in a discrete
memoryless channel with feedback,” Problems of Information Trans-
mission, vol. 18, no. 4, pp. 5–15, 1982.
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