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Abstract— Fixed length block codes on discrete memoryless
channels with feedback are considered for errors and erasures
decoding. Upper and lower bounds are derived for the error
exponent in terms of the rate and the erasure exponents. In
addition the converse result of Burnashev for variable length
block codes is extended to include list decoding.

I. INTRODUCTION:

Early results about the use of feedback on discrete mem-

oryless channels (DMCs) in terms conventional performance

criteria were negative. Not only the capacity was not increasing

with feedback, as Shannon showed in [9], but also the error

exponent was not increasing at high rates, [4], [6], at least

for symmetric channels. Relaxations like errors-and-erasures

decoding or variable length coding was needed to increase the

error exponent for those channels with the use of feedback.

Burnashev, [2], considered variable length block codes with

feedback, instead of fixed-length ones and obtained the exact

expression for the error exponent at all rates.1 Later Yamamoto

and Itoh, [13], suggested a coding scheme which achieves the

best error exponent for variable length block codes by using a

fixed length block code with errors-and-erasures decoding and

feedback repetitively until a decoding without erasures occurs.

However the average transmission time is only a first order

measure, for analyzing the benefits of errors-and-erasures

decoding in which the strain of retransmissions are simply

ignored if they are rare enough. Although these two results can

be reinterpreted together, to reveal the error exponent of fixed-

length block codes with errors-and-erasures decoding and

feedback at all rates below capacity, they can be reinterpreted

so only when erasure probability is decaying sub-exponentially

with block length.

A separate stream of research focused on benefits errors-

and-erasures decoding for block codes on DMC’s without

feedback. First Forney, [5], considered errors-and-erasures

decoding without feedback and obtained an achievable trade-

off between the exponents of error and erasure probabilities.

Then Csiszár and Körner, [3] achieved same performance

using universal coding and decoding algorithms. Later Telatar

1It is evident that including erasures will not result in an increase in the
exponent for variable length block codes with feedback. However it was not
clear in the light of converse techniques that has been previously employed
on the problem [2],[1] whether such an increase is possible or not with list
decoding. We have shown that it is not; a brief discussion will be given in
section IV.

and Gallager, [12], introduced a strict improvement to the

previously mentioned results. Recently there has been a

revived interest in the problem, for universally achievable

performances and alternative methods of analysis, [8], [7].

Our main aim in this work is to complement both streams

of work by characterizing the error exponents for fixed length

block codes with feedback at positive erasure exponents, by

finding upper and lower bounds to it. We will first introduce

our model and notation. Then we will derive a lower bound us-

ing a two phase coding algorithm similar to the one described

by Yamamoto and Ito in [13]. However our decoding rule

and analyzing techniques, inspired by Telatar’s in [11] for the

non-feedback case, will give us a better characterization of the

trade-off between error and erasure exponents. After that we

will derive an upper bound by advancing an idea introduced

by Shannon, Gallager and Berlekamp in [10]. Resulting bound

will be strictly convex for any fixed rate. Finally in the last

part of the paper we will briefly discuss the connections to the

erasure exponent of zero error codes with feedback.

II. MODEL AND NOTATION:

Input and output alphabets of the forward channel are

{1, . . . , |X |} and {1, . . . , |Y|}, respectively. Corresponding

symbols at time k are denoted by Xk and Yk. The feedback

channel is perfect, i.e, a symbol Zk is chosen by the receiver

from an arbitrarily large alphabet, {1, . . . , |Z|} after observing

Yk and is received by the transmitter without any error before

the transmission of Xk+1.

The forward channel is a stationary and memoryless one

characterized by an |X | by |Y| transition matrix {Wjl}.
P

[
Yk|Xk, Y k−1, Zk−1

]
= P [Yk|Xk] = WXkYk

(1)

The coding algorithm for a fixed length block code with

feedback is a sequence of functions, Xk(·), which assigns

an input symbol Xk ∈ X to each message, i in message

set, M = {1, 2, . . . , |M|}, at each time k, depending on the

previous feedback symbols Zk−1, i.e. Xk = Xk(i, Zk−1).
The message, θ, is drawn from M with a uniform dis-

tribution and is given to the transmitter at time zero. At

any time k ∈ [1,n] the input symbol Xk(i, Zk−1) is sent.

After receiving Y n the receiver will decode a θ̂(Y n) ∈
{x, 1, . . . , |M|} where x is the erasure symbol. Then error

and erasure probabilities of a message i ∈M are,

Px(i) � P
[
θ̂ = x

∣∣∣ θ = i
]

Pe(i) � P
[
θ̂ �= θ

∣∣∣ θ = i
]
−Px(i).
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We will use a somewhat abstract but rigorous approach in

defining the rate and achievable exponent pairs. A reliable

sequence with erasures,Q, will be a sequence of codes indexed

by their block lengths such that

lim sup
n→∞

Pe
(n) = 0 lim sup

n→∞
Px

(n) = 0.

Definition 1: The rate, erasure exponent, and error exponent

of a reliable sequence Q are given by

RQ � lim inf
n→∞

ln |M(n)|
n

, ExQ � lim inf
n→∞

− lnPx
(n)

n

EeQ � lim inf
n→∞

− lnPe
(n)

n
.

Haroutunian, [6], has already established a strong converse

for erasure free block codes with feedback which in our

setting imlies that limn→∞(Pe
(n) + Px

(n)) = 1. Thus we

will consider only rates below capacity, C.

Definition 2: ∀R ≤ C and ∀Ex ≥ 0 the error exponent is,

Ee(R, Ex) � sup
Q:

R(Q)≥R
Ex(Q)≥Ex

Ee(Q). (2)

It is worth noting at this point that

Ee(R, Ex) = E(R) ∀Ex > E(R) (3)

where E(R) is the (true) error exponent of erasure free block-

codes on DMCs with feedback.2 The benefit of the errors-

and-erasures decoding is the, possible, increase in the error

exponent as the erasure exponents goes below E(R).
Determining E(R) for all R’s and for all channels is still

an open problem; only upper and lower bounds to E(R)
are known. Our investigation will focus on quantifying the

gains of errors-and-erasures decoding instead of finding E(R),
consequently we will restrict ourselves the regions where

erasure exponents are lower than the error exponents.

III. ACHIEVABILITY: A LOWER BOUND TO Ee(R, Ex)

Consider a two phase coding scheme, in the first phase of

which transmitter uses a fixed composition code of length αn
and rate R

α . At the end of the first phase, the receiver makes a

maximum mutual information decoding3 and get a temporary

decision, θ̃. The transmitter knows what θ̃ is because of

feedback and confirms θ̃ if it is correct by sending accept

codeword, rejects otherwise by sending reject codeword.4 At

the end of the second phase the receiver decodes using a partial

order. If the pair (yn, θ̃) satisfies (yn, θ̃) � (yn, j), for all

j �= θ̃ in M, i.e. if the pair (yn, θ̃) dominates all other pairs,

2In order to see this consider a reliable sequence with erasures, Q, and
replace its decoding algorithm by any erasure free one such that, θ̂′(yn) =

θ̂(yn) if θ̂(yn) �= x. Then Pe
(n)
Q′ ≤ Px

(n)
Q + Pe

(n)
Q ; thus EeQ′ =

min(ExQ, EeQ) and RQ′ = RQ. This together with the definition of E(R)
leads to the relation given in equation (3).

3One might, possibly, improve this result by doing a list decoding at the
end of the first phase, if the control phase and decoding algorithms are also
modified accordingly. We have avoided that discussion in this first attempt.

4In general the codewords used in the second phase can depend on the
observation in the first phase yαn. Furthermore the coding in the second phase
can actively use the feedback. These approaches have not been analyzed in
this first attempt either.

then θ̃ becomes the final decision else an erasure is declared.

Our goal in rest of this section is analyzing the performance of

the coding architecture described above and finding a proper

partial order5 for it. Before starting this analysis let us recall

certain basic features of fixed composition codes.

A. Fixed Composition Codes and Packing Lemma

Codes, whose all codewords have the same empirical dis-

tribution are called fixed composition codes. In such a code,

for any message i and any output sequence yn corresponding

empirical distribution of transitions, from input letters to

the output letters, V(yn, i), is called the conditional type.

Furthermore the set of yn’s with a conditional type V , will be

denoted by TV (xn(i)) i.e.,

TV (xn(i)) = {yn : V(yn, i) = V } (4)

The following packing lemma is proved by Csiszár and

Körner, [3, Chapter 2, Lemma 5.1]

Lemma 1: For every R > 0, δ > 0 and every type P of

the sequences Xn satisfying H(P ) > R, there exist at least

�en(R−δ)	 distinct sequences xn(i) ∈ Xn of type P such that

for every pair of stochastic matrices V : X → Y , V̂ : X → Y
and for every i

|TV (xn(i))
⋂
∪j �=iTV̂ (xn(j))| ≤ |TV (xn(i))|e−n|I(P,V̂ )−R|+

B. Coding Algorithm:

We use a length αn code satisfying the property described

in Lemma 1, of rate R
α and type P . At the end of the first phase

the receiver makes a temporary decoding by choosing the

codeword that has the maximum empirical mutual information

with the output sequence yαn.

θ̃(yαn) = {i : I (P, V(yαn, i)) > I (P, V(yαn, j)) ∀j �= i}
If θ̃(yαn) = θ the transmitter will send the accept codeword xa

else the transmitter will send the reject codeword xr instead.

Codewords xa and xr will have joint type ϕ(i, j), i.e. the ratio

of the number of time instances in which xa has an i and xr

has a j to the length of the codewords, � = (1 − α)n, will

be ϕ(i, j). The joint conditional type υ(l|i, j) of yn
αn+1, the

output sequence in the second phase, is the ratio of number

of time instances in which yk = l, xa = i and xr = j to the

overall number of time instances in which xa = i and xr = j
i.e. (1− α)ϕ(i, j)n.

C. Decoding Rule:

The receiver decodes correctly, when θ̃(yαn) = θ and

(yn, θ) � (yn, j ) for all j �= θ.Thus an error or an erasure

will occur only when the correct message can not dominate all

other messages, i.e. when ∃j �= θ such that (yn, θ) � (yn, j )
consequently,

Pe(i)+Px(i)=P [{yn:∃j �= i s.t.(yn, i) � (yn, j)}| θ=i] (5)

5Binary relation � is a strict partial order, on message, output sequence
pairs, i.e. for all such pairs a, b and c following three holds,

(i){a � a} (ii){a � b ⇒ b � a} (iii){(a � b), (b � c) ⇒ (a � c)}
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Similarly an error will occur only when an incorrect message

dominate all other messages, i.e. when ∃j �= θ such that

(yn, j) � (yn, k) for all k �= j.

Pe(i)=P [{yn : ∃j �= i s.t.(yn, j) � (yn, k) ∀k �= j}| θ = i]

Note that {yn : ∃j �= i s.t.(yn, j) � (yn, k) ∀k �= j} is a

subset of {yn : ∃j �= i s.t.(yn, j) � (yn, i)}. Thus

Pe(i) ≤ P [{yn : ∃j �= i s.t.(yn, j) � (yn, i)}| θ = i] (6)

The optimal order for (yn, i)’s for a given coding algorithm,

might depend on the conditional types of yn corresponding

to all of the messages in the first phase, i.e. all V(i)’s, and

the conditional type of the second phase, υ. However we will

restrict ourselves to the orders that can be written pair wise,

i.e. which only depends on the conditional types of the two

messages that are compared and the conditional type of the

second phase.

We assume that (yn, i) � (yn, j) implies

I (P, V(yαn, i)) ≥ I (P, V(yαn, j)) and use packing

lemma to bound the number of yn in TV (xn(θ)) that are also

in TV̂ (xn(i)) of some i �= θ, then equation (5) becomes6

Pe(i) + Px(i)

≤
∑

(V,υ)�(V̂ ,υ)

(V P )�(V̂ P )

e
−

λ(P,R,α,ϕ,V,V̂ ,υ)z }| {»
αD ( V ‖ W |P ) +

˛̨̨
αI

“
P, V̂

”
− R

˛̨̨+
+ (1 − α)D ( υ‖ Wa|ϕ)

–
n

where D (υ‖Wa|ϕ) =
∑

i,j,l ϕ(i, j)υ(l|i, j) log υ(l|i,j)
Wi,l

and

(V P )�(V̂ P ) means that PV and PV̂ has same marginal

output distributions, i.e. ∀j,
∑

i PiVi,j =
∑

i PiV̂i,j .

Similarly we can write equation (6) as,

Pe(i) ≤
∑

(V̂ ,υ)�(V,υ)

(V P )�(V̂ P )

e−[αD(V ‖W |P )+|αI(P,V̂ )−R|++(1−α)D(υ‖Wr|ϕ)]n

≤
∑

(V,υ)�(V̂ ,υ)

(V P )�(V̂ P )

e−[

β(P,R,α,ϕ,V,V̂ ,υ)z }| {
αD

“
V̂

‚‚‚ W |P
”

+ |αI (P, V ) − R|+ + (1 − α)D ( υ‖ Wr|ϕ)]n

where D (υ‖Wr|ϕ) =
∑

i,j,l ϕ(i, j)υ(l|i, j) log υ(l|i,j)
Wj,l

.

Note that the number of the terms in both of the sums are

polynomial in n, thus the term with the minimum exponent

in each sum determine the decay rate of the sum. On the

other hand two sums are over two disjoint and collectively

exhaustive subsets of the set of all possible {(V, υ), (V̂ , υ)}
pairs. In order to have an erasure exponent higher then say

Ex, all of the {(V, υ), (V̂ , υ)} pairs satisfying

λ(P, R, α, ϕ, V, V̂ , υ) ≤ Ex (7)

should satisfy (V, υ) � (V̂ , υ). Adding more pairs to these,

however can only decrease the error exponent. Thus we will

chose �, so that (V, υ) � (V̂ , υ) if and only if equation

6We are not ignoring the fact that whenever θ̃ �= i, the codeword xr will be
sent. But we are merely using the fact that

P
υ e−(1−α)D( υ‖Wr|ϕ)n ≥ 1.

(7) is satisfied. One can prove that for all values of Ex <
αEr

(
R
α , P

)
, (yn, i) � (yn, j) implies I (P, V(yαn, i)) ≥

I (P, V(yαn, j)) as we have previously assumed. Thus fol-

lowing is achievable

Ee(R, P, Ex, α, ϕ) = min
(PV )�(PV̂ )

λ(P,R,α,ϕ,V,V̂ ,υ)≤Ex

β(P, R, α, ϕ, V, V̂ , υ) (8)

D. Optimizing The Relative Durations of Phases:

Note that in our scheme P
h
θ̃(yαn) �= θ

i
decays no faster

than e−αEr( R
α

,P)n. Thus either error or erasure exponent of

the code has to be smaller than or equal to αEr

`
R
α

, P
´
. We

are characterizing the error exponent using the region where

erasure exponent is lower than the error exponent, thus we are

interested in the region where αEr

`
R
α

, P
´ ≥ Ex. This implies,

α ≥ α∗(R, P, Ex) =
R

ξ−1
P

(
Ex

R

) (9)

where ξP (R) = Er(R,P )
R .

Ee(R, P, Ex) = max
ϕ

max
α∈[α∗,1]

Ee(R, P, Ex, α, ϕ) (10)

Thus only α’s in the interval [α∗(R, P, Ex), 1] are permis-

sible. Furthermore it can be proved that, for any quadruple

(R, P, Ex, ϕ), Ee(R, P, Ex, α, ϕ) is a convex function of α
on the same interval. Consequently its maximum is on the

boundaries. For some ϕ’s optimum α is 1, the trivial ϕ’s

which correspond to identical accept and reject codewords for

example. For others, optimal α is α∗ and resulting value of Ee

is strictly greater than Ee(R, P, Ex, 1, ϕ). Noting that when

α = 1, the value of Ee is same for all ϕ’s we get

Ee(R, P, Ex) = max
ϕ

Ee(R, P, Ex, α∗, ϕ) (11)

For Ex = 0 equation (11) leads to
(
1− R

C

)
D where D =

maxi,j

∑
l Wi,l log Wi,l

Wj,l
, which can be proved to be optimal

using the converse part of [2] or the upper bounds established

in the next section.

For channels which has non-zero zero-error capacity, one

can prove using equation (11) that, for any Ex < Er(R)
will be Ee(R, Ex) = ∞, where Er(R) is the random coding

exponent. Using upper bounds we establish in the next section

one can prove that this is the optimum, i.e. Ee(R, Ex) will

be finite for all Ex’a strictly greater than Er(R), at least for

symmetric channels at rates above the critical rate.

IV. CONVERSE: AN UPPER BOUND TO Ee(R, Ex)

Shannon, Gallager and Berlekamp showed in, [10, Theorem

1], that for fixed length block codes, with list decoding and

without feedback

P̃e(M,n, L) ≥ P̃e(M,n1, L1)P̃e(L1 + 1,n− n1, L) (12)

where P̃e(M,n, L) denotes the minimum error probability of

erasure free codes of length n with M messages and with

decoding list size of L. As they have mentioned in [10]

theorem continues to hold in the case when there exist a

feedback link from receiver to the transmitter; although P̃e’s
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would be different when feedback is available, the relation

given in equation (12) will still hold.

Unlike them we are interested in the error probabilities of

the codes with non-zero erasure probabilities. We will denote

the minimum error probability of length n block codes, with

M messages, decoding list size L and erasure probability Px

by Pe(M,n, L,Px). Instead of the relation given in (12) we

have the following.

Theorem 1: For any n, M , L, Px and for any n1 ≤ n, L1,

minimum error probabilities of fixed length block codes with

feedback is satisfy,

Pe(M,n, L,Px) ≥ Pe(M,n1, L1, 0)·
Pe

(
L1 + 1,n− n1, L, Px

Pe(M,n1,L1,0)

)
(13)

Similar to [10, Theorem 1], theorem 1 lower bounds error

probability of a longer code, using that of shorter ones. After

giving a sketch of the proof, we will derive upper bounds

to error exponent using Theorem 1. Let us first consider the

following lemma about, achievable error and erasure proba-

bilities of codes, which has a nonuniform a priori probability

distribution on the messages.

Lemma 2: For any block length n, message set M, list

decoding size L and a priori probability distribution f(·) on

M and for any integer K such that Ω (f, K) > 0, all of the

achievable error and erasure probability pairs satisfy,

(Px,Pe) = Ω (f, K) ϑ for some ϑ ∈ Ψ(K +1,n, L) (14)

where Ω (f, K) = minS:|S|=|M|−K f(S) and Ψ(K + 1,n, L)
is the set of achievable error, erasure probability pairs for

length n block codes, with decoding list size of L and message

set of size K+1 with uniform a priori probability distribution.

Proof: For any size (K + 1) subset M′ of M, consider

the original coding and decoding rule. If a message which

is not in M′ was in the decoding list we will ignore it, if

the decoding list is solely composed of such messages we

will declare an erasure. Clearly this is a length n code with

(K + 1) messages and list decoding size of L. Thus
1

K + 1

∑
i∈M′

(Px(i),Pe(i)) ∈ Ψ(K + 1,n, L) (15)

Let the smallest non-zero element of {f(1), f(2), . . . f(|M|)}
be f(ξ1), pick any size (K + 1) subset of M which includes

ξ1 and has all non-zero elements, say M1, then we have,

(Px,Pe) =
∑
i∈M

f(i) (Px(i),Pe(i))

=
∑

i∈M\M1

f(i)(Px(i),Pe(i))+f(ξ1)
∑

i∈M1

(Px(i),Pe(i))

+
∑

i∈M1

(f(i)− f(ξ1))(Px(i),Pe(i))

Using equation (15) we get,

(Px,Pe) =
∑
i∈M

f (1)(i)(Px(i),Pe(i)) + f(ϑ1)ϑ1 (16)

for some ϑ1 ∈ Ψ(K + 1,n, L), where f(ϑ1) = (K + 1)f(ξ1)
and f (1)(i) = f(i)− f(ξ1)I{i ∈M1}. Consequently∑

i∈M
f (1)(i) + f(ϑ1) = 1 (17)

Furthermore the number of non-zero f (1)(i)’s is at least one

less than that of non-zero f(i)’s. The remaining probabilities,

f (1)(i), have a minimum, f (1)(ξ2) among its non-zero ele-

ments. We can repeat the same argument once more using

that element and reduce the number of non-zero elements at

least one more. After at most |M|−K iterations like this we

will get,

(Px,Pe) =
|M|−K∑

j=1

f(ϑj)ϑj +
∑
i∈M

f (|M|−K)(i)(Px(i),Pe(i)) (18)

where at most K of f (|M|−K)(i)’s are non-zero and all of

them are non-negative and less than or equal to corresponding

f(i).
Consequently the first sum is equal to a weighted sum of

ϑj’s multiplied by a scalar greater than Ω (f, K). Furthermore

the second sum is equal to a pair with non-negative entries.

Recalling that Ψ(K + 1,n, L) is convex, and the fact that

∀a ≥ 1, ∀b1, b2 ≥ 0 ϑ ∈ Ψ ⇒ (a · ϑ + (b1, b2)) ∈ Ψ (19)

we get equation (14).

For proving theorem 1, we will first write the error and

erasure probabilities, as weighted sum of error and erasure

probabilities of length n− n1 codes with a priori probability

distribution fyn1 (·) = P [θ = ·| yn1 ], over yn1’s. Then we will

apply similar convexity arguments and use the fact that,∑
yn1

P [yn1 ] Ω (fyn1 , L1) ≥ Pe(M,n1, L1, 0) (20)

to prove that (Px,Pe) = Pe(M,n1, L1, 0)ϑ for some ϑ in

Ψ(L1 + 1,n − n1, L). Using the fact that Pe(L1 + 1,n −
n1, L,Px) is the boundary of the Ψ(L1 + 1,n − n1, L) and

Pe(L1 +1,n−n1, L,Px) is a decreasing function of Px, we

get the desired result, equation (13).

Like the result of Shannon, Gallager and Berlekamp in

[10, Theorem 1], theorem 1 is correct both with and without

feedback. Although Pe’s will be different in each case, the

relationship between them given in equation (13) holds in both

cases.

As a digression we have employed these ideas in variable

length block codes. The main difference in the analysis was,

using decoding time E [τ ] instead of erasure probability Px.

By incorporating the strong converse of Haroutunian for fixed

length block codes with feedback to our analysis we have

proved the tightness of Burnashev exponent even when list

decoding is allowed. This fact was not known, prior to this

work. Details of the calculation are omitted because of the

limited space here.

A. Generalized Straight Line Bound for Error-Erasure Expo-
nents

One can convert Theorem 1 into an upper bound on er-

ror exponent of errors-and-erasures codes in terms of error

exponents of erasure-free codes and error-and-erasures codes,

by taking the logarithm of equation (13) and dividing by n.

Resulting bounds will constitute a family of straight lines.
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Fig. 1. Solid lines are lower bounds on the error exponent for block codes
on DMC with feedback, which have established in this work, and without
feedback, which was previously established [5], [3], [11]. Dashed lines are
the upper bounds obtained using Theorem 2 for γ = γ∗(R, Ex). While
calculating the upper bound for the case without feedback we have used
Telatar’s result [11] on the error exponent at zero rate and zero erasure
exponent.

One end of each line will be (R, Ex, Ẽe(R, Ex)) where

Ẽe(R, Ex) is an upper bound on the error exponent of errors-

and-erasures codes. The other end will be a point of the forms

(R, Ẽ(R), Ẽ(R)) where Ẽ(R) is an upper bound on error

exponent of erasure-free codes with feedback. In the following

theorem we have used Haroutunian’s upper bound, Eh(R), on

error exponents of erasure-free codes with feedback.

Theorem 2: For any rate R ≥ 0, Ex ≤ Eh(R), for any

γ ∈ (
R
C , γ∗(R, Ex)

)
Ee (R, Ex) ≤ γEh

(
R

γ

)
+ (1− γ)Ee

⎛
⎝0,

Ex − γEh

(
R
γ

)
1− γ

⎞
⎠

where γ∗(R, Ex) is the unique solution of γEh

(
R
γ

)
= Ex

if it exists, 1 else.

For the ease of discussion we have restricted our discussion

to the case where list size is one, but one can easily derive

corresponding results for larger but fixed list sizes and for list

sizes increasing with block length.

In Fig. 1. upper and lower bounds to the error exponent

are plotted as a function of erasure exponent at a fixed rate,

R = 0.05 nats per channel use, for a binary symmetric channel

with a cross over probability of ε = 0.25 both with and without

feedback.

V. ZERO-ERROR CODES WITH FEEDBACK

Zero error codes with erasure and feedback is part of

the general error and erasure exponents discussion. In order

to state the links between these problems clearly let us

define ‘zero error reliable sequences with erasure’, Q0’s, as

sequences of codes such that

∀n Pe
(n) = 0 lim sup

n→∞
Px

(n) = 0

The highest rate achievable with zero-error codes with erasures

is the zero-error capacity with feedback and erasures and it

will be denoted by Cx,0. One can show that Cx,0 is zero, if

all of the transition probabilities are positive. Furthermore, if

there is one or more zero probability transitions, Cx,0 is equal

to channel capacity C.

Definition 3: ∀R ≤ Cx,0 the zero error erasure exponent

with feedback is defined as

Ex,0(R) � sup
Q0:R(Q0)≥R

Ex(Q0)

Clearly any zero-error reliable sequence with erasures, Q0 is

also a reliable sequence with erasures. Thus

Ee(R, Ex) =∞ ∀Ex ≤ Ex,0(R) (21)

Indeed, it can be shown that this reasoning works both ways

i.e., Ee(R, Ex) is finite for values of Ex greater than Ex,0(R).
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