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Abstract— Variable-length block-coding schemes are investi-
gated for discrete memoryless channels (DMC) with perfect
feedback under cost constraints. Upper and lower bounds are
found for the minimum achievable probability of decoding error
Pe,min as a function of transmission rate R, cost constraint P , and
expected block length τ . For given P and R, the lower and upper
bounds to the exponent −(ln Pe,min)/τ are asymptotically equal
as τ → ∞. The reliability function, limτ→∞(− ln Pe,min)/τ , as a
function of P and R, is concave in the pair (P, R) and generalizes
the linear reliability function of Burnashev [1] to include cost
constraints.

I. INTRODUCTION

A variable-length block code is a code in which each

message must be encoded, transmitted, and permanently de-

coded before the next message enters the encoder. In an

ordinary block-coding scheme with feedback, the codewords

all have a predetermined length, but the codeword symbols

can depend on previous channel outputs as well as the mes-

sage. For variable-length block coding, the disjointness of the

time intervals for subsequent messages is preserved, but the

receiver dynamically determines the decoding time based on

the received symbols up to that point. We start with a brief

overview of previous work on fixed and variable-length block

codes with feedback.

A. Outline of previous work

A widely accepted quality-of-service criterion for fixed-

length block codes is the error exponent, −(lnPe)/τ , where

τ is the block length. Dobrushin [3] showed that the sphere-

packing exponent is an asymptotic upper bound for the error

exponent for fixed-length block codes on symmetric DMC’s

with feedback. Haroutunian [5] derived an upper bound for

arbitrary DMC’s, but it has been long conjectured that the

sphere packing bound also applies in this case.

For discrete-time additive-white-Gaussian-noise (AWGN)

channels, Pinsker [7] showed that the sphere-packing exponent

is an asymptotic upper bound for the error exponent with feed-

back under the added constraint that the total energy, for each

message and noise realization, is at most the average power

constraint times the block length. Using only an average power

constraint, without the above added constraint, Schalkwijk and

Kailath [9], [8], showed that Pe can be made to decay as a two-

fold exponential in block length. Kramer [6] later showed that

an n-fold exponential decay can be achieved for any n > 0;

no lower bound to Pe,min is known in this case.

Variable-length block coding on a DMC allows the decoding

to be delayed under unusually severe noise (just as additional

energy can be used in the AWGN case). Burnashev [1]

developed upper and lower bounds to Pe,min for variable-

length block coding schemes for the DMC. For given R,

his lower and upper bounds to (− lnPe,min)/τ are asymp-

totically equal as τ → ∞. The resulting reliability function,

limτ→∞(− lnPe,min)/τ , as a function of R decreases linearly

from some constant D∗ at R = 0 to 0 at the channel capacity

C∗. Our main contribution here is to find the reliability

function of variable-length block-coding schemes on DMC’s

with average cost constraints. We show that for each average

cost P , the reliability function is a concave function of R.

B. Forward channel, feedback channel, and cost constraint

The forward channel is assumed to be a DMC with input

alphabet {1, . . . , |X |} and output alphabet {1, . . . , |Y|}. The

input and output at time n are denoted by Xn and Yn; the

n-tuples X1, . . . , Xn and Y1, . . . , Yn are denoted by Xn and

Y n. The feedback channel is discrete and noiseless with an

arbitrarily large alphabet size |Z| (although |Z| = |Y| is

sufficient). The symbol Zn sent from the receiver at time n can

depend on Y n and is received without error at the transmitter

after Xn and before Xn+1 is sent. Zn denotes Z1, . . . , Zn.

The forward DMC is defined by the |X | by |Y| transition

matrix {Pkj} where, for each time n, P [Yn = j|Xn = k] =
Pkj . The channel is memoryless in the sense that

P
[
Yn|Xn, Y n−1, Zn−1

]
= P [Yn|Xn] .

We assume throughout that each pair of rows are different.

This causes no loss of generality since inputs i and k could

be considered the same if Pij = Pkj for all j ∈ Y . With

the exception of the concluding section, we also assume that

Pkj > 0 for all k, j,

For each input letter k ∈ X , there is a transmission cost

ρk. The cost Sτ of transmitting a codeword of length τ is the

sum of the costs of the τ symbols in the codeword. The cost

constraint P means that E [Sτ ] ≤ PE [τ ]. We usually refer

to P as a power constraint and to Sτ as energy. With this

definition of power constraint, P can be seen to upper bound

the long-term time-average cost per symbol over a long string

of successive message transmissions.

We assume that mink ρk = 0. This causes no loss of

generality, since otherwise mink ρk could be subtracted from
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P and from each ρk.

II. ACHIEVABILITY: ASYMPTOTICALLY OPTIMUM CODES

In this section, we describe a class of coding schemes that

are adaptations of the Yamamoto and Itoh [10] codes, adapted

to account for the power constraint. We derive the relationship

between rate, power constraint, and error exponent for these

codes.

We begin with a slightly simpler problem, finding fixed-

length block codes for an error-or-erasure decoder, i.e., a

decoder which can either decode the message or produce

an erasure symbol. The objective will be to minimize (or

approximately minimize) the error probability while keeping

the erasure probability relatively small.

A. Fixed-length block codes with error-or-erasure decoding

Consider a code of fixed-length � containing two phases of

length �1 and �2 respectively. The first phase uses a power

constraint P1 and the second P2. To meet an overall power

constraint P , we require �P = �1P1 +�2P2. Define η as �1/�,

so that this power constraint becomes

P = ηP1 + (1 − η)P2.

Phase 1 consists of a conventional block code without feed-

back, operating incrementally close to the capacity C(P1) of

the channel subject to constraint P1,

C(P1) = max
φ:

P
k φkρk≤P1

∑
k,j

φkPkj ln
Pkj∑
i φiPij

. (1)

Here and throughout, φ is assumed to be a probability as-

signment, i.e., φk ≥ 0 for each k and
∑

k φk = 1. The

conventional non-feedback coding theorem1 is as follows: for

any δ1 > 0, there is an ε1(δ1) > 0 such that, for all large

enough �1, codes exist with M ≥ e�1[C(P1)−δ1] code words,

each of energy at most �1P1 and each with error probability

upper bounded by

Pe1 ≤ exp−�1ε1(δ1).

Using such a code in phase 1, the decoder makes a tentative

decision at the end of phase 1. The transmitter (knowing the

decision via feedback) then sends a binary codeword, xA

for ‘accept’ and xR for ‘reject’ in phase 2. Let PRA be the

probability that the receiver decodes xA given that xR is sent.

Similarly, PAR is the probability of decoding xR given xA.

If xA is decoded, the receiver gives its tentative decision

to the user and the overall probability of error Pe satisfies

Pe ≤ PRA. If xR is decoded, an erasure is released and the

probability of erasure Pr satisfies Pr ≤ PAR + Pe1. Assume

for now that the power constraint may be violated by an

incrementally small amount. Thus we choose xA to satisfy the

constraint, and choose xR arbitrarily since it is rarely used. We

bound − lnPRA by the divergence of the output distribution

conditional on xA relative to that conditional on xR.

1See, for example, Theorem 7.3.2 in [4]

To be more explicit, define the single letter divergence for

the input letter k as

Dk = max
i

∑
j

Pkj ln
Pkj

Pij
.

For each k, let ik be an input letter achieving the above

maximum. If xa contains φk�2 occurrences of letter k and

xr is chosen to contain the letter ik whenever xa contains k,

then the following result holds2: for any δ2 > 0, there is an

ε2(δ2) > 0 such that

PRA ≤ exp

[∑
k

−�2φkDk + �2δ2

]
, (2)

PAR ≤ exp [−�2ε2(δ2)] . (3)

From (2), we want to choose xA to maximize
∑

k Dkφk

subject to the power constraint. Thus, for a power constraint

P2 in phase 2, define D(P2) as

D(P2) = max
φ:

P
k φkρk≤P2

∑
k

Dkφk. (4)

The function D(P) in (4) is the maximum of a linear function

over linear constraints. As illustrated in Figure 1, D(P) is

piecewise linear, non-decreasing, and concave in its region of

definition, P ≥ 0.

•

ρ1 = 0

D1

ρ2

D2

•

ρ3

D3
D(P)

ρ4

D4

•

ρ5

D5

ρ6

D6

ρ7 = ρmax

D7

Fig. 1. Calculation of D(P) as a function of P . The single letter
divergences Dk are also shown. For convenience, the inputs are
ordered in terms of cost. Note that φk need be positive for at most
2 values of k.

Choosing the codewords xA and xR according to this

maximization, (2) becomes

PRA ≤ exp [−�2D(P2) + �2δ2] . (5)

The power constraint P2 is then satisfied by xA and The power

in xR can be upper bounded by ρmax. The preceding results

are summarized in the following lemma.

Lemma 1: For all P1 ≥ 0, P2 ≥ 0, and for all 0 < η < 1,

all positive δ1 and δ2, and all sufficiently large �, there is

an error and erasure code with M ≥ exp {η�[C(P1) − δ1]}
such that for each codeword, the probability of error Pe, the

probability of erasure Pr, and the expected energy E [S] satisfy

Pe ≤ exp {−(1−η)� [D(P2)−δ2)]} , (6)

Pr ≤ e−η� ε1(δ1) + e−(1−η)� ε2(δ2), (7)

E [S] ≤ �[ηP1 + (1 − η)P2 + ρmaxe
−η� ε1(δ1)]. (8)

2This can be derived, for example, by starting with Theorem 5 in [2] and
specializing to the case of asymptotically small s.
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B. Variable-length block codes

The above error-or-erasure code is now converted into a

variable-length block code. As in Yamamoto and Itoh [10],

the transmitter observes each erasure via the feedback and

repeats the fixed length codeword until it is accepted. Since

an error occurs independently after each repetition of the fixed

length codeword,

Pe ≤ 1
1 − Pr

exp {(1 − η)�[D(P2)+δ2]} . (9)

The duration τ of a block is � times the number of error-or-

erasure tries until acceptance, so E [τ ] ≤ �/(1−Pr). Similarly

the expected energy E [Sτ ] over the entire transmission satis-

fies E [Sτ ] ≤ E [S] /(1 − Pr). Finally, using (8),

E [Sτ ]
E [τ ]

≤ �[ηP1 + (1 − η)P2 + ρmaxe
−η� ε1(δ1)].

C. Optimization of the bound

The above lemma can be interpreted as providing a nom-

inal rate of transmission, R = ηC(P1), a nominal power

constraint, P = ηP1 + (1 − η)P2, and a nominal exponent

of error probability, E(R,P) = (1 − η)D(P2). We have

shown that codes exist simultaneously approaching each of

these parameters arbitrarily closely as � becomes large.

For given P > 0 and R < C(P), we now maximize

the exponent (1 − η)D(P2) over η,P1, and P2, subject to

the constraints R = ηC(P1) and P = ηP1 + (1 − η)P2.

The first constraint can be satisfied for any η ≥ R/C∗

and the corresponding P1 can be restricted without loss of

generality to satisfy P1 ≤ P ∗ where P∗ is the smallest power

that achieves the unconstrained capacity C∗. In this range,

C(P1) has an inverse C−1 and P1 = C−1(R/η). The second

constraint implies that ηP1 = ηC−1(R/η) ≤ P . The function

ηC−1(R/η) is decreasing in η, so this constraint is satisfied

for η ≥ η∗(R,P) where η∗ satisfies ηC−1(R/η) = P . This

constraint also ensures that η ≥ R/C∗, so the optimized error

exponent can be expressed as

E(R,P) = sup
η∗(R,P)≤ η <1

(1 − η)D

„P − ηC−1(R/η)

1 − η

«
(10)

The constraint ηC−1(R/η) ≤ P is equivalent to η ≥
P

Ec
−1(P

R ) , where Ec
−1(·), is the inverse of the function Ec(x) =

x
C(x) . By calculating the function Ec

−1(·) once, we can avoid

checking the condition for ηC−1(R/η) ≤ P for each (P, R)
pair.3

Using the concavity of D and the convexity of C−1, it is not

difficult to show that E(R,P) is concave in the pair (R,P).
Figure 2 illustrates this exponent rate function for a given P .

We can now substitute this optimized result into (9), getting

Pe ≤ exp−�[E(R,P) − δ].

3If C(·) is linear, say C = βx over an interval (0, x0), then Ec(x) = 1/β,
in that interval. Then Ec−1(1/β) = x0 and Ec−1 is undefined for smaller
arguments.

R

E(R)

C∗

D(ρmax)

C(P)

D(P)

Fig. 2. A typical E(R,P) curve.

From (7), the factor 1/(1 − Pr) has been absorbed into the

arbitrary term δ. The block length � of the error-or-erasure

code can similarly be replaced by the expected length of the

variable-length block code, getting the following theorem:

Theorem 1: For all P ≥ 0, all positive δ and all sufficiently

large τ , there is a variable-length block code with M ≥
exp[τ(R − δ1)] such that for each codeword, the probability

of error Pe and the expected energy E [Sτ ] for each message

satisfy

Pe ≤ exp{−τ [E(R,P) − δ]}, (11)

E [Sτ ] ≤
(
P + ρmaxe

−τε(δ)
)

τ , (12)

where ε(δ) > 0 for each δ > 0.

For P > 0, the function E(R,P) is continuous and the term

ρmaxe
−τε(δ) in (12) can be absorbed into the δ in (11). Thus,

for large enough τ , (12) can be replaced by E [Sτ ] ≤ Pτ ,

meaning that each codeword satisfies the power constraint.

For P = 0, E(R, P) may not be achieved if the constraint is

E [Sτ ] ≤ 0; thus (12) must be used as is.

III. THE CONVERSE: RELATING τ AND Pe

We have established an upper bound on Pe for given rate

R, power P , and expected block length τ by developing and

analyzing a particular class of algorithms. Here we want to

develop a lower bound to Pe. It turns out to be more convenient

to establish a lower bound on the expected decoding time τ
for a given required error probability Pe, number of messages

M , and power constraint P . In this lower bound, we can still

use the idea of a two phase analysis, although this does not

restrict the coding or decoding.

The analysis is a simplification and generalization of Bur-

nashev [1] and is based on the evolution at each time n of the

conditional message entropy, conditioned on the observations

at the receiver. The first phase is the interval until this con-

ditional entropy drops from lnM to some fixed intermediate

value, taken here to be 1. The second phase is the interval until

this conditional entropy further drops to meet the constraint

on error probability; Fano’s inequality is used to link the

conditional entropy to the error probability. In the first phase

we create a stochastic sequence related to the decrease in

conditional entropy at each instant n, and in the second phase

we create a stochastic sequence related to the decrease in the

logarithm of the conditional entropy.
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Establishing this lower bound to τ is more involved than

the upper bound to Pe, since the lower bound must apply to

all variable-length block codes. We start with a more precise

definition of variable-length block coding and decoding algo-

rithms. Then we state some technical lemmas about probability

of error and the above stochastic sequences. These are used to

outline the proof of a theorem lower bounding the expected

decoding time. Finally, this is converted to an upper bound on

the reliability function which agrees with the lower bound in

section II.

A. Variable length coding and decoding algorithms

In a variable-length block-coding scheme, the transmitter

initially receives one of M equiprobable messages from the

set M = {1, . . . , M}. It transmits successive channel symbols

about that message, say message θ, until the receiver makes

a decision and releases the decoded message to the user. The

time of this decision is a random variable denoted by τ .

Given noiseless feedback, we can restrict attention to coding

algorithms in which each input symbol Xn is a deterministic

function of message and feedback.4

Xn = Cn(θ, Zn−1) ∀Zn−1,∀θ. (13)

The entire observation of the receiver up to time n, including

Y n and any additional random choices, can be summarized

by the σ-field Fn generated by these random variables. The

nested sequence of Fn’s is called a filtration F .

A decoding criterion is a decision rule about continuing or

stopping the communication, depending on the observations

up to that time, i.e., it is a Markov stopping time with respect

to the filtration F . The message is also decoded at the stopping

time.

At each time n, depending on the realization fn of σ-field

Fn, the receiver has an a posteriori probability pi(fn) for each

i in M. Consequently the conditional entropy of the message,

given Fn, is a random variable HFn
, measurable in Fn. Its

sample value for any realization fn ∈ Fn, is given by:

Hfn = H(θ | Fn = fn) = −
M∑
i=1

pi(fn) ln pi(fn).

Fano’s inequality can be extended to variable decoding time

systems by upper bounding the expected values of the these

conditional entropies at the decoding time τ . The result is that

for P [τ < ∞] = 1,

E [HFτ ] ≤ h(Pe) + Pe ln(M − 1), (14)

where h(x) = −x ln(x) − (1 − x) ln(1 − x).
This suggests that the conditional entropy is usually very

small at the decoding time, which motivates focusing on how

fast the logarithm of the entropy changes in the second phase

of the analysis below.

4This allows the receiver to feed back not only the channel outputs but also
some random choices. Random choices at the transmitter provide no added
generality since those choices (for all possible θ) could be made earlier at the
receiver with no loss of performance.

B. Bounds on the change in conditional entropy
Let

V P
n = HFn

+ γP
C(E [Sn| Fn] − nP) (15)

WP
n = lnHFn

+ γP
D(E [Sn| Fn] − nP). (16)

where γP
C and γP

D are the Lagrange multipliers for the cost

constraints in the optimization problems given in (1) and (4)

respectively.
V P

n will be used to keep track of changes in entropy and cost

with time for phase 1, whereas WP
n will be used to keep track

of changes in the logarithm of entropy for phase 2. Using (1)

and (4), one can derive the following bounds on the expected

change of these random variables in one time unit.
Lemma 2: ∀n ≥ 0, and ∀P ≥ 0,

E
[
V P

n − V P
n+1

∣∣Fn

] ≤ C(P) (17)

E
[
WP

n − WP
n+1

∣∣Fn

] ≤ D(P) (18)
The following result relates expected stopping times for a

stochastic sequence to expected changes over time:
Lemma 3: Let {Γi} be a stochastic sequence measurable in

the filtration F and let τi and τf be stopping times with respect

to the filtration F such that E [τf ] < ∞ and τi(w) ≤ τf (w)
∀w ∈ F . If ∃K, R ∈ � such that

E [|Γn − Γn+1|| Fn] < K and E [Γn − Γn+1| Fn] ≤ R,

then

RE [τf − τi| F0] ≥ E
[
Γτi − Γτf

∣∣F0

]
.

Evidently these conditions are satisfied by both V P
n and

WP
n , provided that we can uniformly bound the change of

WP
n in one time unit. One can prove that for any Yn+1 = j,

| lnHFn − lnHFn+1 | ≤ max
i,k

ln
Pkj

Pij
≤ max

i,k,j
ln

Pkj

Pij
= F

(19)
Consequently we get the following corollary.
Corollary 1: For any pair of stopping times (τi, τf ), and

any coding algorithm; if τf ≥ τi and E
[Sτf

− Sτi

] ≤
PE [τf − τi] then

E
[
HFτi

−HFτf

]
≤ C(P)E [τf − τi] (20)

E
[
lnHFτi

− lnHFτf

]
≤ D(P)E [τf − τi] (21)

C. Lower bound for the expected decoding time
The following theorem uses the previous lemmas to lower

bound the expected decoding time τ . The parameter η below is

essentially the fraction of overall decoding time required for

HFτ
to first reach 1. Intuitively, we can view V1 ≈ lnM

and V2 ≈ − lnPe in the sense that V1/ lnM → 1 and

V2/(− lnPe) → 1 as τ → ∞.
Theorem 2: Given any DMC with feedback, consider a

variable-length block code with M > 2, Pe > 0, and P > 0.

If E [Sτ ] ≤ PE [τ ], then the expected number of observations

E [τ ] satisfies the inequality

E [τ ] ≥ min
0<η<1;P1

max

⎧⎨
⎩ V1

ηC (P1)
,

V2

(1 − η)D
(

P−ηP1
1−η

)
⎫⎬
⎭ ,

(22)
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where

V1 = ln M

„
1 − Pe(ln M − ln Pe + 1) − 1

ln M

«
,

V2 = − ln Pe

„
1 − F

− ln Pe
− ln(ln M − ln Pe + 1)

− ln Pe

«
.

Outline of Proof: Define the stopping time t1 as the smallest

n for which HFn ≤ 1. Then τ1 = min(τ, t1) is also a Markov

stopping time and τ1(w) ≤ τ(w) ∀w. Let us define η and P1,

as

η =
E [τ1]
E [τ ]

, P1 =
E [Sτ1 ]
E [τ1]

. (23)

The main steps of the proof are as follows:

• Use the Markov inequality to upper bound P [HFτ
> 1]

in terms of E [HFτ ].
• Use this bound and the fact that HFn ≤ lnM to upper

bound E
[HFτ1

]
.

• Use (23), the upper bound on E
[HFτ1

]
, HF0 = lnM ,

and (20) to show that E [τ ] ≥ V1
ηC(P1)

.

• Use (19) and the definition of τ1 to lower bound

E
[
lnHFτ1

]
.

• Use Jensen’s inequality and (14) to upper bound

E [lnHFτ
] .

• Use (23), the upper bound on E [lnHFτ
], the lower bound

on E
[
lnHFτ1

]
and (21) to get E [τ ] ≥ V2

(1−η)D(P−ηP2
1−η ) .

• The maximum of the above lower bounds on E [τ ] will

be a lower bound on E [τ ] in terms of η,P1, and P .

• Minimize the bound over η and P1 to remove the

dependence on η and P1.

Now we can find a lower bound on − lnPe/τ̄ , for codes of

rate R = (lnM)/τ , using the above result.

Theorem 3: For any DMC with all Pjk > 0, assume P ≥
0,R ≤ C(P), and δ > 0. Then for all sufficiently large E [τ ],

Pe ≥ e−E[τ ](E(R,P)+δ).

Proof: Assume that the above statement is not true. Then

for some δ > 0, there exists a sequence of codes such that

lim
i→∞

E
[
τ i

]
= ∞ and Pe

i < e−E[τ i](E(R,P)+δ) for all i. Then

lim
i→∞

V1
i

− lnM i
= 1 and lim

i→∞
V2

i

− lnPe
i

= 1.

Thus for any 1 > δ1 > 0 and for large enough E [τ ], theorem

2 implies that

E [τ ] ≥ min
0<η<1;P1

max

⎧⎨
⎩ (1 − δ1) ln M

ηC (P1)
,

−(1 − δ1) ln Pe

(1 − η)D
(

P−ηP1
1−η

)
⎫⎬
⎭ ,

1 ≥ min
0<η<1;P1

max

⎧⎨
⎩ (1 − δ1)R

ηC (P1)
,

(1 − δ1)− ln Pe

E[τ ]

(1 − η)D
(

P−ηP1
1−η

)
⎫⎬
⎭ ,

(1 − δ1)
− lnPe

E [τ ]
≤ E(R(1 − δ),P).

Using the fact that E(R,P ) is a decreasing function of R, one

can argue that for any δ′ > 0 and for large enough E [τ ],

− lnPe

E [τ ]
≤ E(R,P) + δ′

Choose δ′ = δ, Pe ≥ e−E[τ ](E(R,P)+δ), which contradicts our

initial assumption.

IV. THE ZERO ERROR CASE

The reliability function above relies heavily on the assump-

tion that Pij > 0 for all i,j. Here assume Pij = 0 for some i,j
and Pkj > 0 for some k and that same j. In this case Dk = ∞.

Suppose that the ‘accept’ codeword of section 2 uses all k’s,

the ‘reject’ message all i’s, and the receiver decodes ‘accept’

only if it receives one or more j’s. In this case, no errors can

ever occur for the corresponding variable-length block code.

Asymptotically, phase 2 can occupy a negligible portion of the

block, so that C(P) is the zero-error cost constrained capacity

of the channel for variable-length block coding. This result is

implicitly contained in Burnashev [1] for the DMC without

cost constraints.
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