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Abstract—Bit-wise unequal error protection problem with
two layers is considered for variable length block-codes with
feedback. Inner and outer bounds are derived for achievable
performance for finite expected decoding time. These bounds
completely characterize the error exponent of the special bits as
a function of overall rate R, overall error exponent E and the
rate of the special bits Rs. Single message Message-wise unequal
protection problem is also solved as a step on the way.

I. INTRODUCTION

In a recent work [2] an information theoretic frame work has

been introduced for unequal error protection (UEP) problems.

Like conventional UEP, error events are grouped into different

classes1 and protection against these different classes of error

events are promoted differently, and like the conventional

information theory these different levels of protection are

measured with exponential decay rates of probabilities of these

classes.

Different choices of these classes of error events lead

to different problems. The convention introduced in [2] is

that, if the class of the error events in consideration can

be expressed solely in terms of error events associated with

individual messages, then the problem is called message-wise
UEP problem. For example one can choose these classes to

be the missed detections of the messages in disjoint sets like

it was done in [5]. Similarly, if the class of the error events in

consideration can be expressed solely in terms of error events

of different groups of bits then the problem is called bit-wise
UEP problem. As noted in [2], there are many UEP problem

of practical importance that are neither message-wise UEP nor

bit-wise UEP problems. Yet studying these special classes

seems to be a good starting point. In this manuscript we focus

on two closely related UEP problems, bit-wise UEP problem

and message-wise UEP problem with single special message.

In bit-wise UEP there are special bits which need a better

protection than the rest. We determine best error exponent

these bits can get, E bits(R,E ,Rs), when overall rate is R,

overall error exponent is E and rate of special bits is Rs.

In message-wise UEP problem with single special message

we determine the best error exponent a message can have

Emd(R,E ) in a rate R code with error exponent E . Our

results generalize corresponding results in [2] which were

derived for the case when overall rate is assumed to be (very

close to) the channel capacity. For many UEP problems the

channel model and family of codes in consideration makes

a big difference. Problems we are considering here are no

1However unlike the conventional UEP these classes are not assumed to
be of some particular form right away.

exception. In this work we focus solely on variable length

block-codes on DMCs.
We start by introducing the channel model and variable

length block-codes in Section II. Then in Section III we state

two UEP problems we will consider. We present the achiev-

ability results and converses in Sections IV and V respectively.

We combine these results to obtain analytical expressions for

error exponents E bits(R,E ,Rs) and Emd(R,E ) in Section VI.

II. MODEL AND PRELIMINARIES

A. Channel Model
We consider a discrete memoryless channel (DMC) with

input alphabet X , output alphabet Y , and transition probability

matrix W (·|·). The input and output letters at time t, up to time

t and between time t1 and t2 are denoted by Xt, Yt, Xt, Y t,

Xt2
t1 and Y t2

t1 respectively. Consequently

Pr
[
Yt|Xt, Y t−1

]
= W (Yt|Xt).

For the reasons that will become clear shortly we assume that

minx,y W (y|x) = λ > 0. We denote the output distribution

W (·|x) associated with the input letters x also by Wx(·).
B. Variable Length Block-codes

A variable length block-code is a (τ,Φ,Ψ) triple where τ
is the decoding time, Φ is the encoding scheme and Ψ is

the decoding rule. Decoding time τ is a stopping time with

respect to the receivers observation.2 For each yt ∈ Yt such

that t < τ , encoding scheme Φ(·, yt) determines the input

letter at time (t + 1) for each message in the message set M.

Φ(·, yt) : M → X ∀yt : τ > t.

The decoding rule is a mapping from the set of output

sequences at τ to the message set M
Ψ(·) : Yτ → M.

At time zero a message M , chosen uniformly at random

from M, is given to the transmitter. The transmitter uses the

codeword associated with this message, i.e. Φ(M , ·), to convey

it until the decoding time τ is reached. Then the receiver

decodes the message M̂ = Ψ(Y τ ). The error probability and

the rate of a variable length block-code are given by

Pe = Pr
[
M̂ �= M

]
and R = ln |M|

E[τ ] .

Variable length block-codes on DMCs can also be interpreted

as trees, for a more detailed discussion of that interpretation

readers may go over [1, Section II].

2In other words given Y t receiver knows the value of 1(τ>t) where 1(·)
is the indicator function.
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C. Reliable Sequences

A sequence of variable length block-codes Q is reliable iff

limn→∞ Pe
(n) = 0. The rate and the error exponent of a

reliable sequence, Q is defined as,

RQ = lim inf
n→∞

ln |M(n)|
E[τ(n)] EQ = lim inf

n→∞
− lnPe

(n)

E[τ(n)] .

Furthermore the reliability function of the variable length

block-codes is defined as

E (R) = sup
Q:RQ≥R

EQ.

Variable length block codes were first considered by Csiszár in

[4]. Later Burnashev, [3], studied them on DMCs and proved

that: If all entries of W (·|·) are positive then for all R ≤ C

E (R) =
(
1 − R

C

)
D.

where D is the maximum KL divergence between any two

input letters and xa, xr are the maximizing input letters:

D = max
i,j∈X

D (Wi‖Wj) = D (Wxa
‖Wxr

) . (1)

If there are one or more zero entries in W (·|·) then, D = ∞
and for all R < C for large enough E [τ ] there are rate R
variable length block-codes which are error free i.e. Pe = 0.

In this situation all of the messages and bits can have zero

error probability simultaneously. This is why we focused on

the channels for which all entries of W (·|·) are positive.

III. PROBLEM STATEMENT

In the conventional setting either the average or the maxi-

mum of the message error probabilities is studied. However in

many situations different kinds of error events have different

costs. For example some part of the message, i.e. some bits

of the message, can be far more important than the rest. In

that situation we need to study the error events associated with

these special bits separately. To put it more explicitly, message

set M can be of the form M = Ms ×Mo and the demand

on error probability of special bits Pr
[
M̂s �= Ms

]
can be far

more stringent than the one on the error probability of ordinary

bits Pr
[
M̂o �= Mo

]
.

We characterize the trade-off between these two error events

in terms of the trade-off between the exponential decay rates

of their probabilities with E [τ ].
Definition 1: For any reliable sequence Q with message

sets M(n) of the form M(n) = M(n)
s ×M(n)

o , the rate and

the error exponents of the special bits are defined as,

RQ,s � lim inf
n→∞

ln |M(n)
s |

E[τ(n)] EQ,s � lim inf
n→∞

− ln Pr (n)[M̂s �=Ms]
E[τ(n)]

Then for any rate 0 ≤ R ≤ C, exponent 0 ≤ E ≤ (1− R
C )D,

special bit rate 0 ≤ Rs ≤ R, the special bit error exponent

E bits(R,E ,Rs) is defined as

E bits(R,E ,Rs) � sup
Q:RQ≥R, EQ≥E , RQ,s≥Rs

EQ,s (2)

In characterizing the trade-off for bit-wise UEP problems,

message wise UEP problem with single special message

plays a key role. In single message message wise UEP prob-

lem the trade-off between the exponential decay rates of

minm∈M Pr
[
M̂ �= M

∣∣∣M = m
]

and Pr
[
M̂ �= M

]
is stud-

ied. Similar to the bit-wise UEP problem let us first give

the operational definition of Emd(R,E ) in terms of reliable

sequences.

Definition 2: For any reliable sequence Q missed detection

exponent is defined as,

Emd,Q � lim inf
n→∞

− ln Pr (n)[M̂ �=1|M=1]
E[τ(n)] (3)

Then for any rate 0 ≤ R ≤ C, exponent 0 ≤ E ≤ (1− R
C )D,

missed detection exponent Emd(R,E ) is defined as

Emd(R,E ) � sup
Q:RQ≥R, EQ≥E

Emd,Q. (4)

IV. INNER BOUNDS: ACHIEVABLITIES

We start by considering a family of fixed length block-

codes without feedback and we establish an inner bound

to the achievable rate, missed detection exponent pairs. The

codes achieving this trade-off have a positive missed detection

exponent but their overall error exponent is zero, i.e. as we

consider longer and longer codes average error probability

decays to zero but subexponentially in the block length. We

append a control phase to these codes like the one used by

Yamamoto and Itoh in [9] to obtain a positive error exponent.

These fixed length block-codes with feedback and erasures

are then used as the building block for the variable length

block-codes for the UEP problems we are interested in.

This encoding scheme can be seen as a generalization of an

encoding scheme first suggested by Kudrayshov [7]. The key

feature of the encoding scheme in [7] is the tacit acceptance

and explicit rejection strategy, which was also used in [2].

We combine this strategy with a classic control phase with

explicit acknowledgments to get a positive error exponent for

all messages/bits. The outer bounds we derive in Section V

reveals that such schemes are optimal.

A. An Achievable Scheme without Feedback

Let us first consider a parametric family of codes in

terms of two input-letter-input-distribution pairs (x1, PX,1)
and (x2, PX,2) and a time sharing constant α. Let us denote

the output distributions resulting from PX,k on W (·|·) by PY ,k

PY ,k(j) =
∑

x

W (j|x)PX,k(x) k = 1, 2.

Lemma 1: For any block-length n, time sharing constant

0≤α≤ 1, input distribution-input letter pairs (x1, PX,1) and

(x2, PX,2) there exist a fixed length block-code such that

|M| ≥ en(αI(PX,1;W )+(1−α)I(PX,2;W )−ε1(n))

Pe ,1 ≤ e−n(αD(PY ,1‖Wx1)+(1−α)D(PY ,2‖Wx2)−ε2(n))

Pe ,m ≤ ε3(n) m = 2, 3, . . . , |M|
where εi(n) ≥ 0 and limn→∞ εi(n) = 0 for i = 1, 2, 3.
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Proof: The codeword of message 1, xn(1), is concatena-

tion of 
nα� x1’s and (n − 
nα�) x2’s. The decoding region

of the first message is all the yn’s that are not typical with

(α,PY ,1, PY ,2),

G(1)=
{
yn:
nα�Δ(Q

(y�nα�
1 )

,PY,1)+(n−
nα�)Δ(Q(yn
�nα�+1)

,PY,2)≥n
3
4

}

where Q(yt′
t ) is the empirical distribution of yt′

t and Δ(·,·) is

the total variation between the two distributions. Then

Pe1 ≤ e−n(αD(PY ,1‖Wx1)+(1−α)D(PY ,2‖Wx2)−ε2(n))

The codewords of the remaining messages are specified using

the classical random coding argument with the empirical

typicality. Consider an ensemble of codes in which first n1

entries of all the codewords are independent and identically

distributed (i.i.d.) with input distribution PX,1 and the rest

of the entries are i.i.d. with the input distribution PX,2.

Decoding region of each message m is the set yn’s for

which (xn(m), yn) is jointly typical with (α,PX,1W, PX,2W )
and for which no other (xn(m̃), yn) is jointly typical with

(α,PX,1W, PX,2W ). Following typicality arguments as usual

we get lemma 1. A more detailed discussion is in [6].

Note that given the channel and the target rate R ≤ C one

can optimize over time-sharing constant α, and the input-letter-

input-distribution pairs (x1, PX,1) and (x2, PX,2) to obtain the

best missed detection exponent achievable for a given rate with

the above architecture. In order to characterize this trade off

let us define J (R) as follows

J (R) � max
α,x1,x2,PX,1,PX,2:

αI(PX,1;W )+(1−α)I(PX,2;W )≥R

αD (PY,1‖Wx1)+(1−α)D (PY,2‖Wx2) (5)

B. Error-and-Erasure Decoding

The codes described in Lemma 1 have large missed de-

tection exponent, but their overall error exponent is zero. We

append them with a control phase and allow erasures to give

them a positive error exponent, like it was done in [9].

Lemma 2: For any block length n, rate 0 < R < C and

error exponent E < (1− R
C )D, there exists a block-code with

erasure probability Px such that,

|M| ≥ en(R−ε1(n))

Pe ,1 ≤ e−n(E+(1−E/D)J( R
1−E/D )+ε2(n))

Pe ,m ≤ ε4(n) min{1, e−n(E−ε2(n))} m = 2, 3, . . . , |M|
Px,m ≤ ε5(n)

where εi(n) ≥ 0 and limn→∞ εi(n) = 0 for i = 1, 2, 4, 5.

Proof: We use a two phase block-code to achieve this

performance. In the first phase a length n1 = n − 
E
D n�,

rate n
n1

R code with high missed detection exponent is used to

convey the message, like the one described in Lemma 1. At the

end of this phase a tentative decision is made. If the tentative

decision is correct the accept letter xa is sent for remaining


E
D n� time units; if the tentative decision is wrong the reject

letter letter xr is sent. Letters xa and xr are the ones described

in equation (1). At the end of the second phase an erasure is

declared if the output sequence in the second phase is not

typical with Wxa
, if it is typical tentative decision becomes

the final. A more detailed discussion is in [6].

C. Single Special Message:

We get a variable length block-code by using above fixed

length block-code with erasures repetitively until a non-erasure

decoding occurs. Expected decoding time and average error

probability of this new code and the error probability of its

special message are given by

E [τ ] = n
1−Px

P̃e
′
= Pe

1−Px
P̃e
′
1 = Pe1

1−Px1
(6)

D. Special Bits:

Lemma 3: For any block length n, rate 0 < R < C and

error exponent E ≤ (1− R
C )D, special bit rate Rs ≤ R, there

exists a block-code with erasure probability Px such that,

|Ms|≥en(Rs−ε1(n))

|Mo|≥en(R−Rs−ε1(n))

Pe
s
,m ≤e−n(E+(1−Rs

C − E
D )J( R−Rs

1−Rs/C−E/D)+ε2(n)) m ∈ Ms

Pe
o
,m ≤ε6(n) min{1, e−n(E−ε2(n))} m ∈ Mo

Px,m ≤ε7(n) m ∈ M

where εi(n) ≥ 0 and limn→∞ εi(n) = 0 for i = 1, 2, 6, 7.

Proof: Consider a three phase block-code. In the first

phase a length n1 = R
C n, rate C code is used to convey Ms, i.e.

MI = Ms. At the end of the first phase a tentative decision, M̃I

is made. In the second phase, a code with a special message,

like the one described in Lemma 1, is used. If M̃I �= MI the

special message is sent, i.e. MII = 1. If M̃I = MI then Mo

is sent, i.e. MII = Mo + 1. The code in the second phase is

of length n2 = n(1 − Rs

C − E
D ) and of rate n

n2
(R − Rs). At

the end of the second phase a tentative decision, M̃II is made

about MII . If the tentative decision M̃II is correct the accept

letter xa is sent through out the third phase; if the tentative

decision M̃II is wrong the reject letter letter xr is sent. At the

end of the third phase an erasure is declared if

• Y sequence in the third phase is not typical with Wxa
or

• M̃II = 1

Otherwise, tentative decisions become the final, i.e. M̂s = M̃I

and M̂o = M̃II − 1. A more detailed discussion is in [6].

Using a similar repetition argument we can turn this errors-

and-erasures code to a variable length code such that,

E [τ ] = n
1−Px

P̃e
′
= Pe

1−Px
P̃e

s′ = Pe
s

1−Px
(7)

We show in Section V that this lower bound is tight and the

encoding scheme leading to it is optimal. But even before that

one can show that within the three phase encoding scheme like

the one considered in Lemma 3 particular choice of relative

duration of phases are optimal.
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V. OUTER BOUNDS: CONVERSES

In this section we first prove a rather technical lemma for

variable length block-codes. This Lemma bounds the expected

value of a particular conditional error probability from below

in terms of the rate of decrease of the conditional entropy of

the messages in different intervals. Lower bounds for both of

the UEP problems in consideration follows from this lemma.

A. Missed Detection Probability and Decay Rate of Entropy:

Like similar lemmas in [1] and [2], Lemma 4 bounds the

error probability for a question that is asked at a stopping

time. But unlike them Lemma 4 works with the missed detec-

tion probability instead of average error probability. Putting

it more explicitly Lemma 4 bounds the expected value of

Pr
[
M̂ /∈ Ai

∣∣∣ Y τi ,M ∈ Ai

]
for variable length block-codes

with feedback, where Ai is a subset of the message set that

is uniquely determined by Y τi .

Lemma 4: For any variable length block-code with decod-

ing time τ , and k stopping times such that 0 ≤ τ1 ≤ τ2 ≤
· · · τk ≤ τ with the associated functions (A1,A2, . . . ,Ak) of

the form3 Ai(·) : Yτi → P(M) we have

ln 1

E[Pr[M̂ /∈Ai|Y τi ,M∈Ai]]

≤
ln 2+

Pk
j=i E[τj+1−τj ]J

 
E[H(M |Y τj )−H(M |Y τj+1)]

E[τj+1−τj ]

!

1−Pe−Pr[M∈Ai]
(8)

Bound on E
[
Pr

[
M̂ /∈ Ai

∣∣∣ Y τi ,M ∈ Ai

]]
depends only on

Pr [M ∈ Ai] and the rate of decrease of conditional entropy

in the intervals (τj , τj+1] for j ≥ i. Particular choice of Aj for

j �= i has no effect on the bound. This property of the bound

is its main merit over bounds resulting from the previously

suggested techniques.

Proof: We prove the lemma for i = 1, clearly this implies

the bound ∀i ∈ {1, 2, . . . , k}. Let G(A1) be the decoding

region for the messages in A1, i.e G(A1) = {yτ : M̂ (yτ ) ∈
A1}. Using data processing inequality for KL-divergence and

the fact that h(x) = x ln 1
x +(1−x) ln 1

1−x ≤ ln 2 ∀x ∈ [0, 1]
we get

E
[
ln Pr[Y τ |Y τ1 ]

Pr[Y τ |Y τ1 ,M∈A1]

]
≥ ln 1

2 + {1 − Pr [G(A1)]} ln 1

E[Pr[M̂ /∈A1|Y τ1 ,M∈A1]] .

Note that Pr [G(A1)] ≤ Pe + Pr [M ∈ A1] thus we have

E

»
ln

2 Pr[Y τ |Y τ1 ]
Pr[Y τ |Y τ1 ,M∈A1]

–
1−Pe−Pr[M∈A1]

≥ ln 1

E[Pr[M̂ /∈A1|Y τ1 ,M∈A1]] (9)

Now we bound E
[
ln Pr[Y τ |Y τ1 ]

Pr[Y τ |Y τ1 ,M∈A1]

]
from above. For that

let us consider the stochastic sequence

St =

⎡
⎣ t∑

j=τ1+1

J (I (
M; Yj

∣∣Y j−1))−ln
Pr[Y t|Y τ1 ]

Pr[Y t|Y τ1,M∈A1]

⎤
⎦1(t>τ1) (10)

3Recall that for any set M the power set P(M) is the set of all possible
subsets of M.

where I (
M ; Yt

∣∣Y t−1
)

= E

[
ln

Pr[Yt|M ,Y t−1]
Pr[Yt|Y t−1]

∣∣∣∣ Y t−1

]
.

Note that given Y t−1 random variables M −Xt − Yt form

a Markov chain, thus I (M ; Yt+1 |Y t ) ≤ I (Xt; Yt+1 |Y t ).
Consequently using the fact that J (·) is a decreasing function

and the definition of J (·) given in (5) we get E [St+1|Y t] ≥
St. Since min Wi,j = λ and |J (·) | ≤ D we have

E [|St+1 − St||Y t] ≤ ln 1
λ + D thus St is a sub-martingale.

Furthermore for stopping times E [τ1] ≤ E [τ2] < ∞, we can

use [8, Theorem 2, p487] to get E [Sτ2 ] ≥ E [Sτ1 ] = 0, i.e.

E
[
ln Pr[Y τ2 |Y τ1 ]

Pr[Y τ2 |Y τ1 ,M∈A1]

]
≤E

[
τ2∑

t=τ1+1

J (I (
M; Yt

∣∣Y t−1))] (11)

Using the concavity of J (·) and Jensen’s inequality we get

E[Pτ2
t=τ1+1 J(I(M;Yt|Y t−1))]

E[τ2−τ1]
≤J

(
E[Pτ2

t=τ1+1 I(M ;Yt|Y t−1 )]
E[τ2−τ1]

)
(12)

In order to find the sum within J (·) in equation (12) consider

the stochastic sequence,

Vt = H(M |Y t) +
∑t

i=1
I (

M ; Yi

∣∣Y i−1
)

(13)

Note that E [Vt+1|Y t] = Vt and E [|Vt|] < ∞, thus Vt

is a martingale. Furthermore, E [|Vt+1 − Vt||Y t] < ∞ and

E [τ1] ≤ E [τ2] < ∞, thus using Doob’s optimal stopping

theorem, [8, Theorem 2, p487], we get E [Vτ1 ] = E [Vτ2 ] i.e.,

E

[
τ2∑

t=τ1+1

I (
M ; Yt

∣∣Y t−1
)]

=H(M |Y τ1)−H(M |Y τ2) (14)

Using equations (11), (12) and (14)

E
[
ln Pr[Y τ2 |Y τ1 ]

Pr[Y τ2 |Y τ1 ,M∈A1]

]
≤ E [τ2 − τ1]J

(
H(M |Y τ1 )−H(M |Y τ2 )

E[τ2−τ1]

)
Repeating same arguments for the intervals [τi + 1, τi+1] and

using equation (9) we get equation (8) for τ1.

B. Single Special Message:

Lemma 5: For any variable length block-code with rate 0 <
R < C, error exponent 0 < E < (1−R/C)D, decoding time

τ and 0 < δ < 0.5

− ln Pr[M̂ �=i|M=i]
E[τ ] ≤ E + (1 − E−ε̃

D )J
(

R−ε̃
1−(E−ε̃)/D

)
(15)

where ε̃= ε̃1D+̃ε2
1−ε̃1

, ε̃1 =Pe+δ+ Pe

δ + 1
|M| and ε̃2 = ln 2−lnλδ

E[τ ] .

Lemma 5 is a generalization of [2, Theorem 8] to the case

where E > 0, however unlike [2, Theorem 8] proof presented

below does not use the previous results like [1, Lemma 1].

Proof: Let τ1 = 0, A1 = i. Let τ2 and A2 be

τ2 = inf{t :maxm Pr
[
M = m|Y t

] ≥ 1 − δ or t =τ} (16a)

A2 = {m ∈ M : Pr [M = m|Y τ2 ] < (1 − δ)}. (16b)

Note that Pr [M ∈ A2|Y τ2 ] ≥ λδ. Thus

E
[
Pr

[
M̂ /∈ A2

∣∣∣ Y τ2 ,M ∈ A2

]]
≤ Pe

λδ . (17)

If Pr
[
M̂ �= M

∣∣∣A2 = M
]
≥ δ. Thus using Markov inequality

for Pe we get

Pr [A2 = M] ≤ Pe

δ . (18)
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Using the fact that Pr [M ∈ A2| A2 �= M] ≤ δ and (18)

Pr [M ∈ A2] ≤ δ + Pe

δ . (19)

Note that A2 has at least (|M| − 1) messages. Thus Fano’s

inequality together with equation (18) implies

H(M |Y τ2) ≤ − ln 2 + (δ + Pe

δ ) ln |M|. (20)

Using equations (17-20), Lemma 4 and J (R) ≤ D we get

1
E[τ ] ln 1

Pr[M̂ �=i|M=i] ≤
ηJ
“

R(1−ε̃1)−ε̃2
η

”
+(1−η)D+ε̃2

1−ε̃1
(21a)

1
E[τ ] ln 1

Pe
≤ (1−η)D+ε̃2

1−ε̃1
(21b)

where η = E[τ2]
E[τ ] . J (R) is a concave function thus it lies below

its tangents. Thus for any 0 ≤ R ≤ C and η ≤ R
C

d

dη

[
ηJ

(
R
η

)
+(1−η)D

]
=J

(
R
η

)
−R

ηJ ′
(
R
η

)
−D ≥ 0

Thus the bound in equation (21a) has its maximum value for

the maximum value of η. Furthermore equation (21b) gives an

upper bound on η. These two observations leads to Lemma 5.

C. Special Bits:

Lemma 6: For any variable length block-code with rate 0 <
R < C, error exponent 0 < E < (1−R/C)D, special bit rate

0 < Rs < R, decoding time τ and 0 < δ < 0.5

− ln Pr[M̂s �=Ms]
E[τ ] ≤E +(1−Rs

C − E
D −ε̃)J

(
R−Rs

1−Rs
C − E

D−ε̃

)
(22)

where ε̃= ε̃4
1−̃ε3

C+D
CD , ε̃3 =Pe+δ+ Pe

δ and ε̃4 = ln2−lnλδ
E[τ ] .

Proof: Let τ1 and A1 be

τ1 =inf{t :maxms
Pr

[
Ms = ms|Y t

] ≥1 −δ or t = τ} (23a)

A1 ={(ms,mo) ∈ M : Pr [Ms = ms|Y τ1 ] <1−δ}. (23b)

and τ2 and A2 be same as Lemma 5, i.e. equation (16). Using

an analysis very similar to the one for τ2 and A2 we can get

the equivalents of equations (17), (19), (20) for τ1 and A1

Pr[M̂s �=Ms]
λδ ≥ E

[
Pr

[
M̂ /∈ A1

∣∣∣ Y τ1 ,M ∈ A1

]]
(24a)

Pr [M ∈ A1] ≤ δ + Pe

δ (24b)

H(M |Y τ1) ≤ − ln 2 + ln |M|
|M1| + (δ + Pe

δ ) ln |M1| (24c)

Using equation (14) and I (
M;Y t

∣∣yt−1
)≤C we get

CE [τ1] ≥ E [H(M |Y τ0) −H(M |Y τ1)] (25)

Let us introduce the short hand:

η1 = E[τ1]
E[τ ] , η2 = E[τ2−τ1]

E[τ ] , f1 = E[H(M |Y τ1 )]
E[τ ] , f2 = E[H(M |Y τ2 )]

E[τ ]

Using lemma 4, equations (17), (19), (20), (24), (25) and

J (·) ≤ D implies that if a Pr
[
M̂s �= M

]
is achievable for

a (R,E ,Rs) triple then equation (26) is satisfied for some

(η1, η2, f1, f2)
−Pr[M̂s �=Ms]

E[τ ] ≤ ε̃4
1−ε̃3

+ η2
1−ε̃3

J
(

f1−f2
η2

)
+ (1−η1−η2)D

1−ε̃3
(26a)

(1 − ε̃3)E ≤ ε̃4 + (1 − η1 − η2)D (26b)

f1≤ ε̃4 + R − (1 − ε̃3)Rs (26c)

f2≤ ε̃4 + ε̃3R (26d)

f1≥ R − Cη1 (26e)

one can show that largest value of the inequality constraint

in equation (26a) happens when equations (26b), (26c), (26d),

(26e) are satisfied with equality. Using this fact we obtain

equation (22).

VI. RESULTS AND CONCLUSIONS

Using Lemma 5 for δ= −1
lnPe

together with equation (6) and

Lemma 2 we get
Theorem 1: For any rate 0 < R ≤ C and error exponent

0≤E ≤(1−R/C)D missed detection exponent is

Emd(R,E ) = E + (1 − E/D)J
(

R
1−E/D

)
. (27)

Using lemma 6 for δ = −1
lnPe

together with equation (7) and

lemma 3 we get
Theorem 2: For any rate 0≤R≤C, error exponent 0≤E ≤

(1− R
C )D and special bit rate 0≤Rs ≤R the special bit error

exponent E bits(R,E ,Rs) is

E bits(R,E ,Rs)=E +
(
1−Rs

C − E
D

)J (
R−Rs

1−Rs
C − E

D

)
(28)

Using the very same machinery, we have characterized the

achievable region for a k layer bit-wise UEP problem, [6].

One important observation is that unlike the case when total

rate is capacity, multi-layer systems do not necessarily have

a successive cancellation property. We have derived the nec-

essary conditions for having successive cancellation property.

Arguably the most important contribution of this work is the

new technique for establishing outer bounds, Lemma 4.
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