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Barış Nakiboğlu
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Abstract—On the fast-fading discrete memoryless channels
(DMCs) with channel state information at the receiver a neces-
sary and sufficient condition is determined for the tilted channel
associated with an input distribution to be the product of a tilted
channel state distribution and the tilted channel associated with
the same input distribution on the non-fading DMC for the given
channel state. On fading channels for which constituent channels
associated with different channel states share a common Augustin
capacity-achieving input distribution aforementioned necessary
and sufficient condition is shown to hold, and a parametric form
for the sphere packing exponent (SPE) is obtained in terms of the
tilted channel state distribution and the tilted channel of the non-
fading DMC for the given channel state. The SPE of fast-fading
binary erasure and binary symmetric channels with channel state
information at the receiver are analyzed as examples.

I. INTRODUCTION

The ever-increasing number of users that need to be served
and the challenges emerging from high mobility requirements
are among the most pressing technical issues in contemporary
IoT applications. Nevertheless, high reliability, low latency,
and high transmission rate requirements still exist, and the
resulting constraints play crucial roles in the applications
of emerging technologies. Normal approximation-based ap-
proaches, [1]–[3], are used when the high transmission rate
requirement is more dominant. As the low-latency and high-
reliability requirements become dominant, the error expo-
nent analysis [4]–[7] and its refinements [8]–[14], i.e., large
deviation analysis-based methods, become more appropriate
tools. Augustin’s information measures [15], [16] provide a
framework for both the error exponent analysis [17] and its
refinements [12], [14].

Many IoT systems use wireless channels that are subject
to rapid changes in the channel characteristics, which can, in
principle, be tracked. These effects are often modeled with
a channel state, and the resulting channel models are called
fast-fading channels. If neither the transmitter nor the receiver
knows the channel state, the resulting channel is called a non-
coherent fast-fading channel. Alternatively, one may assume
the channel state to be known at the receiver but not at the
transmitter; such channels are called fast-fading channels with
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the channel state information at the receiver. We confine our
discussion to the latter class of channels in the following.

Our ultimate aim is to investigate the effect of fading on the
achievable performances for the channel coding schemes. To
that end, we obtain a parametric form for the sphere packing
exponent (SPE) —see (37), (38), (39)— which is valid for
fading channels with certain symmetries. We make the follow-
ing qualitative observation1 for the binary symmetric channels:
the SPE of a fast-fading binary symmetric channel is always
larger than the SPE of the binary symmetric channel with
the same channel capacity, at all rates less than the channel
capacity, see Figure 2. Our primary technical result that leads
to results above about SPE is Lemma 1. Lemma 1 provides a
necessary and sufficient condition for the decomposition of the
tilted channel associated with an input distribution on a fading
channel as the product of a tilted fading distribution and the
tilted channel associated with the same input distribution on
the non-fading DMC for the given channel state.

The rest of the manuscript is organized as follows. In §II,
we review Augustin information measures and the characteri-
zation of the SPE and the random coding exponent in terms of
Augustin information measures. In §III, we formally describe
the fast fading channels and then state and prove our main
technical result, Lemma 1. In §IV, we derive a parametric
form for the SPE for fading channels whose constituent chan-
nels associated with different channel states share a common
Augustin capacity-achieving input distribution using Lemma
1. Then we obtain corresponding closed-form expressions for
fast-fading binary erasure and symmetric channels, using this
parametric form. In §V, we discuss extensions of our result to
more general channel models.

II. PRELIMINARIES

We use the word alphabet for finite sets and denote the set
of all probability mass functions on an alphabet Y by P(Y).
A w ∈P(Y) is said to be absolutely continuous in a q∈P(Y),
i.e., w≺q , if w(y) = 0 for all y satisfying q(y) = 0. A w
and q are said to be equivalent, i.e., w ∼ q , if both w≺q and

1This qualitative observation can be seen as a particular case of a more
general result on the extremality of the binary symmetric channel in terms of
the error exponent functions among all binary input symmetric channels that
was reported in [18]–[20].
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q≺w hold. For any positive real number α and w , q ∈P(Y),
the order α Renyi divergence between w and q is defined as

Dα(w∥ q) :=

{
1

α−1 ln
∑

y [w(y)]α[q(y)]1−α if α∈R+\{1}∑
y w(y) ln w(y)

q(y) if α=1
.

For any W :X→P(Y), Q :X→P(Y), and p∈P(X), the order
α conditional Renyi divergence is defined as

Dα(W ∥Q | p) :=
∑

x
p(x )Dα(W (x )∥Q(x )) .

We use Dα(W ∥ q | p) instead of Dα(W ∥Q | p), whenever
Q(x )=q for all x with a positive p(x ).

For a given W : X → P(Y) and x ∈ X, eachW (x ) is an
element of P(Y). We denote the value of W (x ) for a given
y ∈ Y by W (y |x ).

A. Augustin Information Measures

For any order α ∈ R+ , channel W : X→ P(Y) and input
distribution p ∈P(X), the α Augustin information is defined,
see [15], [16], [21], as

Iα(p;W) := infq∈P(Y) Dα(W ∥ q | p) . (1)

By [16, Lemma 13], there exists a unique qα,p ∈ P(Y), called
the order α Augustin mean, satisfying

Iα(p;W) = Dα(W ∥ qα,p | p) . (2)

The order one Augustin information equals to the mutual
information and the order one Augustin mean q1,p is the output
distribution qp for the input distribution p, i.e. q1,p=qp , where

qp(y) :=
∑

x
p(x )W (y |x ). (3)

For other orders the Augustin mean does not have a closed
form expression in general. But it has been characterized in
terms of the Augustin operator defined in the following. The
Augustin operator Tα,p (·) : Qα,p → P(Y) is defined as

Tα,p (q) :=
∑

x
p(x )W q

α (x ) ∀q ∈ Qα,p , (4)

where Qα,p := {q∈P(Y) : Dα(W ∥ q | p) < ∞} and the tilted
channel W q

α :X→P(Y) is defined as

W q
α (y |x ) := [W (y |x )]α[q(y)]1−αe(1−α)Dα(W (x)∥q). (5)

The Augustin mean qα,p is a fixed point of the Augustin opera-
tor Tα,p (·) that is equivalent to qp (i.e., qα,p=Tα,p (qα,p) and
qα,p∼qp) by [16, Lemma 13]. Furthermore, any fixed point of
the Augustin operator in which qp is absolutely continuous in
is equal to the Augustin mean (i.e. if qp≺q and q=Tα,p (q),
then q = qα,p) by [16, Lemma 13], as well.

The order α, Augustin capacity of a W :X→P(Y) is defined
as the supremum of the order α Augustin information

Cα,W := supp∈P(X) Iα(p;W) . (6)

Cα,W is finite for any discrete channel W . Thus there exists
a unique Augustin center qα,W satisfying

Cα,W = infq∈P(Y) maxx∈X Dα(W (x )∥ q) , (7)
= maxx∈X Dα(W (x )∥ qα,W ) , (8)

by [16, Theorem 1]. A necessary and sufficient condition for
Iα(p;W) = Cα,W is Iα(p;W) = maxx∈X Dα(W (x )∥ qα,p) by
[16, Theorem 1], as well.

B. Exponent Functions and Augustin Information Measures

The sphere packing exponent (SPE) and the random coding
exponent (RCE) functions bound the exponential decay rate
of the error probability with the block length from above and
from below for all rates below the channel capacity. For rates
above the critical rate, SPE and RCE are equal, characterizing
the error exponent exactly [4], [5]. SPE and RCE were initially
characterized in terms of Gallager’s function, but they can also
be expressed in terms of the Augustin capacity as follows, see
[16], [17],

Esp(R,W ) := supα∈(0,1)
1−α
α (Cα,W − R) , (9)

Er(R,W ) := supα∈(0.5,1)
1−α
α (Cα,W − R) . (10)

The primary advantage of Augustin information measures over
Gallager’s functions (hence Renyi information [22] measures)
is that when a cost constraint or a convex composition
constraint is imposed on the codes the resulting exponent
functions can be obtained by imposing the same constraint
in the definition of the Augustin capacity in (6) and using
the resulting constrained Augustin capacity in (9) and (10),
see [17]. The SPE and the RCE expressions for the constant
composition codes, [15], [23]–[26], can be seen as a particular
incidence of this more general principle:

Esp(R,W , p) := supα∈(0,1)
1−α
α (Iα(p;W)− R) , (11)

Er(R,W , p) := supα∈(0.5,1)
1−α
α (Iα(p;W)− R) . (12)

For the constant composition codes, the SPE can be expressed
in a parametric form in terms of the tilted channel. For any
R ∈ (limα↓0 Iα(p;W) , I1(p;W)), there exists a unique order
α ∈ (0, 1) satisfying

Esp(R,W , p) = D1(Wα,p∥W | p) , (13)
R = D1(Wα,p∥ qα,p | p) , (14)

= I1(p;Wα,p) , (15)

where Wα,p = W
qα,p
α , see [17, Lemma 2]. This parametric

characterization plays a critical role in refining the sphere
packing bound, see [12]. Augustin information measures for
orders greater than one play similar roles in characterizing the
strong converse exponent, [27]–[29].

III. FADING DISCRETE MEMORYLESS CHANNELS

Let us first recall the discrete memoryless channel (DMC),
which is characterized by the following equation:

P[Yn
1 =yn

1 |Xn
1 =xn

1 ]=
∏n

t=1
W (yt|xt), (16)

where W is a function of the form W :X→ P(Y) and (16)
holds for any positive integer n , length n string xn

1 of elements
of the input alphabet X, and length n string yn

1 of elements
of the output alphabet Y.

In certain cases, the conditional distribution of Yn
1 given

Xn
1 , can depend on a fading parameter Hn

1 , i.e. the channel
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state, that can be observed at the receiver together with Yn
1 .

The distribution of the fading parameter Hn
1 is often assumed

to be independent of Xn
1 and to be independent and identically

distributed over time. The resulting channel is called the fast-
fading channel with channel state information (CSI) at the
receiver. If H takes values from a finite state set H, then
resulting channel model is characterized by the following
equation:

P[Hn
1 =hn

1 ,Y
n
1 =yn

1 |Xn
1 =xn

1 ]=
∏n

t=1
g(ht)W (yt|xt, ht), (17)

where W is of the form W : X×H → P(Y), g is a probability
mass function on H, i.e. g ∈ P(H), and (17) holds for any
positive integer n and length n strings xn

1 , hn
1 , yn

1 .
A fast-fading DMC with CSI at the receiver with input

alphabet X, output alphabet Y, state alphabet H is also a DMC
with input alphabet X and output alphabet Z = H×Y, where
the transitions probabilities V :X→P(Z) satisfy2

V (h, y |x ) = g(h)W (y |x , h), ∀x , h, y . (18)

Thus as a result of [16, Lemma 13], we know that there exists
a unique Augustin mean sα,p ∼ sp satisfying

sα,p(z ) =
∑

x
p(x )V sα,p

α (z |x ), (19)

where sp :=
∑

x p(x )V (x ) and V s
α : X → P(Z) is

V s
α(z |x ) := [V (z |x )]α[s(z )]1−αe(1−α)Dα(V (x)∥s). (20)

On the other hand for each h ∈ H, W (y |x , h) can be
interpreted as a channel with the input alphabet X and output
alphabet Y. Thus as a result of [16, Lemma 13] for each h there
exists a unique Augustin mean qα,p(h) ∼ qp(h) satisfying

qα,p(y |h) =
∑

x
p(x )W qα,p(h)

α (y |x , h), (21)

where qp(h) :=
∑

x p(x )W (x , h) and W
q(h)
α (·, h) :X→P(Y)

is the tilted channel defined (5) for each h ∈ H.
Recall that the order one Augustin mean is equal to the

output distribution, i.e. s1,p = sp and q1,p(h) = qp(h). Thus
the following identity holds for all input distributions p

s1,p(h, y) = g(h)q1,p(y |h).

For Augustin means of other orders, Lemma 1 establishes a
similar decomposition, see (26), assuming that an analogous
decomposition holds for the tilted channels, see (24). More
importantly Lemma 1 provides a necessary and sufficient
condition for the decomposition in (24), see (25).

Let the tilted channel Vα,p : X → P(H × Y) be

Vα,p(h, y |x ) := V sα,p
α (h, y |x ), (22)

where sα,p ∈ P(H × Y) is the Augustin mean satisfying (19).
Similarly, let the tilted channel Wα,p : X×H → P(Y) be

Wα,p(y |x , h) := W qα,p(h)
α (y |x , h) (23)

where qα,p(h) ∈ P(Y) is the Augustin mean described in (21).

2More generally any fast-fading memoryless channel with CSI at the
receiver can be interpreted as a memoryless channel, [17, §V].

Lemma 1. For a given discrete channel V :X→P(H×Y) of
the form (18), input distribution p ∈ P(X), and order α ∈ R+ ,
the following two statements are equivalent

i) There exist gα ∈ P(H) satisfying

Vα,p(h, y |x ) = gα(h)Wα,p(y |x , h) ∀h, y , (24)

and for all x s.t. p(x ) > 0, for Vα,p defined in (22) and
Wα,p defined in (23).

ii) There exist aα : X → R and bα : H → R satisfying

Dα(W (x , h)∥ qα,p(h)) = aα(x ) + bα(h) ∀h, (25)

and for all x s.t. p(x ) > 0.
Furthermore, if either statement holds then

sα,p(h, y) = gα(h)qα,p(y |h). (26)

Proof. If (24) holds then sα,p satisfies (26) as a result of (19)
and (21). Furthermore,

∑
y Wα,p(y |x , h) = 1 implies∑

y
V sα,p

α (h, y |x ) = gα(h) ∀h,

and for all x s.t. p(x ) > 0. Thus (18), (20), and (26) imply

Dα(W (x , h)∥ qα,p(h)) = α
α−1 ln

gα(h)
g(h) +Dα(V (x )∥ sα,p) .

Hence (25) holds for the following aα :X→R and bα :H→R ,

aα(x ) = Dα(V (x )∥ gαqα,p) , (27)

bα(h) =
α

α−1 ln
gα(h)
g(h) . (28)

Now assume that (25) holds and let s(h, y) be

s(h, y) := g(h)
γ e

α−1
α bα(h)qα,p(y |h),

where γ=
∑

h g(h)e
α−1
α bα(h). Then (20) and (25) imply

V s
α(h, y |x ) =

g(h)
γ e

α−1
α bα(h)W qα,p(h)

α (y |x , h).
Consequently s is a fixed point of the Augustin operator by
(21) and s ∼ sp . Thus s = sα,p by [16, Lemma 13] and (24)
holds for the following gα ∈ P(H)

gα(h) =
(∑

h̃
g(h̃)e

α−1
α bα(h̃)

)−1

g(h)e
α−1
α bα(h). (29)

The decomposition in (24) expresses the tilted channel for
the fading channel, i.e., Vα,p , as the product of a tilted fading
distribution, i.e., gα, and the tilted channel for the particular
realization of the fading parameter, i.e., Wα,p . Lemma 1
establishes that when such a decomposition exists for the tilted
channel Vα,p it is inherited by the Augustin mean sα,p , see
(26). The decomposition in (24) also implies the following
parametric form for the SPE of the constant composition codes
on the fading channel via (13), (14), and (15)

Esp(R,V , p) = D1(gα∥ g) +D1(Wα,p∥W | pgα) , (30)
R = D1(Wα,p∥ qα,p | pgα) , (31)

= I1(pgα;Wα,p) , (32)
= I1(p;Vα,p) . (33)

Furthermore, Lemma 1 provides a necessary and sufficient
condition for the existence of a decomposition of the form
given in (24), in terms of the Augustin means corresponding
to particular realizations of the fading parameter, see (25).
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IV. FADING CHANNELS WITH A COMMON AUGUSTIN
CAPACITY-ACHIEVING INPUT DISTRIBUTIONS

The decomposition given (25) holds only for certain input
distributions and channels. An important special case is when
p is the Agustin capacity-achieving input distribution for the
channel W (·, h) : X → P(Y) for all values of h with a positive
g(h). We will analyze this special case further in this section.
With a slight abuse of notation, we denote Cα,W (·,h) by Cα,h .
Thus the assumption we invoke in the rest of this section, can
be expressed as the existence of a p ∈ P(X) satisfying

Iα(p;W (·, h)) = Cα,h ∀h : g(h) > 0. (34)

(34) and [16, Theorem 1] imply (25), because they imply

Dα(W (x , h)∥ qα,p(h)) = Cα,h (35)

for all x s.t. p(x ) > 0 and h s.t. g(h) > 0. Using (29), we get

gα(h) =
(∑

h̃
g(h̃)e

α−1
α C

α,h̃

)−1

g(h)e
α−1
α Cα,h . (36)

Note that Iα(p;V) = Dα(V ∥ sα,p | p), (26), and (36) imply

Iα(p;V) = α
α−1 ln

∑
h̃
g(h̃)e

α−1
α C

α,h̃ .

On the other hand, since Dα(W (x , h)∥ qα,p(h)) ≤ Cα,h for
all x , as a result of (26) and (36) we have

Dα(V (x )∥ sα,p) ≤ α
α−1 ln

∑
h̃
g(h̃)e

α−1
α C

α,h̃ .

Thus (34) imply not only (25) but also Iα(p;V) = Cα,V .
If (34) holds for all orders α ∈ (0, 1) on the fast-fading

discrete channel V , then Esp(R,V ) = Esp(R,V , p) and as
a result of (30) and (31), the SPE of the fast-fading discrete
channel V is given by

Esp(R,V ) = D1(gα∥ g) +D1(Wα,p∥W | pgα) , (37)
R = D1(Wα,p∥ qα,p | pgα) , (38)

= I1(pgα;Wα,p) (39)

for gα given in (36) and p satisfying (34).

Example 1 (Fading Binary Erasure Channel (FBEC)). A
FBEC is a fading channel satisfying (18), for X = {0, 1},
Y = {0, 1, e}, and W (y |x , h) of the form

W (y |x , h) =


1− h if y = x ,

h if y = e,

0 else,
(40)

for some finite subset H of the interval [0, 1].
Let p be the uniform distribution on X and let qα(y |h) be

qα(y |h) =

{
1−h

2−2h+21/αh
if y ∈ {0, 1}

21/αh
2−2h+21/αh

if y = e
.

Since both Tα,p (qα(h)) = qα(h) and qp(h)≺qα(h) hold for
each h ∈ [0, 1], qα(h) is the Augustin mean for p on the
channel W (·, h) : X → P(Y), i.e. qα(h) = qα,p(h), and thus

1 1

e

0 0
1− h

h

h

1− h
1 1

0 0
1− h

h

h

1− h

Fig. 1: Fading Binary Erasure and Symmetric Channels

Iα(p;W (·, h)) = Dα(W (·, h)∥ qα(h)| p) for each h ∈ [0, 1] by
[16, Lemma 13]. Consequently,

Wα,p(y |x , h) =


2−2h

2−2h+21/αh
if y = x ,

21/αh
2−2h+21/αh

if y = e,

0 else,

(41)

Furthermore, Iα(p;W (·, h)) = Dα(W (x , h)∥ qα(h)) for all
x ∈ X. Thus Iα(p;W (·, h)) = Cα,h and (35) hold. Hence,

Cα,h =

{
α

α−1 ln
[
h + 2

α−1
α (1− h)

]
if α ̸= 1,

(1− h) ln 2, if α = 1,
(42)

gα(h) =
g(h)

h̄+2
α−1
α (1−h̄)

[
h + 2

α−1
α (1− h)

]
(43)

where h̄ :=
∑

h g(h)h . Plugging (41) and (43) in (37) and
(39) we get

Esp(R,V )=ln 1

h̄+2
α−1
α (1−h̄)

+ α−1
α

2
α−1
α (1−h̄)

h̄+2
α−1
α (1−h̄)

ln 2, (44)

R= 2
α−1
α (1−h̄)

h̄+2
α−1
α (1−h̄)

ln 2. (45)

One can determine the value of α in terms of R and h̄ from
(45) and plug in the value in (44) to get

Esp(R,V )=d1
(

R
ln 2

∥∥ 1− h̄
)
, (46)

where dα(·∥ ·) : [0, 1]× [0, 1] → [0,∞] is defined as

dα(ε∥ τ) :=

{
ln(εατ1−α+(1−ε)α(1−τ)1−α)

α−1 if α ̸=1

ε ln ε
τ + (1− ε) ln 1−ε

1−τ if α=1
. (47)

Example 2 (Fading Binary Symmetric Channel (FBSC)). A
FBSC is a fading channel satisfying (18), for X = {0, 1},
Y = {0, 1}, and W (y |x , h) of the form

W (y |x , h) =

{
1− h if y = x ,

h if y ̸= x
(48)

for some finite subset H of the interval [0, 0.5].
Let p be the uniform distribution on X and qα(·|h) be

the uniform distribution on Y for all h ∈ [0, 0.5]. Then both
Tα,p (qα(h)) = qα(h) and qp(h)≺qα(h) hold. Consequently,
qα(h) = qα,p(h) and Iα(p;W (·, h)) = Dα(W (·, h)∥ qα(h)| p)
for each h∈ [0, 0.5], by [16, Lemma 13]. Thus,

Wα,p(y |x , h) =

{
(1−h)α

hα+(1−h)α if y = x ,
hα

hα+(1−h)α if y ̸= x .
(49)
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Fig. 2: The SPEs of BSC with crossover probability 0.1 and
FBSC with g(0) = 0.531 and g(0.5) = 0.469.

Furthermore, Iα(p;W (·, h)) = Dα(W (x , h)∥ qα(h)) for all
x ∈ X. Thus Iα(p;W (·, h)) = Cα,h and (35) hold. Hence,

Cα,h = dα(h∥ 1/2) (50)

gα(h) =
g(h)(hα+(1−h)α)

1
α∑

h̃
g(h̃)(h̃α+(1−h̃)α)

1
α

(51)

Plugging (49) in (37) and (39) we get

Esp(R,V )=D1(gα∥ g)+
∑
h

gα(h)d1

(
hα

hα+(1−h)α

∥∥∥∥h), (52)

R=
∑
h

gα(h)d1

(
hα

hα + (1− h)α

∥∥∥∥ 1
2

)
, (53)

where gα is given in (51).

To understand the effect of fading on reliable communi-
cation, we might compare the SPE of fading channel with a
given channel capacity with a non-fading channel with the
same channel capacity.

• For binary erasure channels as a result of (42) and (43)
the channel capacity of a FBEC V is equal to the channel
capacity of a non-fading BEC W , iff the average erasure
probability h̄ of V is equal to the erasure probability h
of W . Thus as a result of (46), the SPE of V is equal
to the SPE of W . Recall that BEC has the largest SPE
among all binary input symmetric channels with the same
channel capacity by [18]–[20].

• The channel capacity of BSC with crossover probability
0.1 is equal to the channel capacity of FBSC with
g(0) = 0.531 and g(0.5) = 0.469. The SPEs of these
channels are plotted in Figure 2, revealing that for all
rates less than the channel capacity, the SPE of the fading
BSC is larger than the SPE of the non-fading BSC with
the same channel capacity. Qualitatively, this is expected
because BSC has the smallest SPE among all binary input
symmetric channels with the same channel capacity by
[18]–[20].

V. DISCUSSION

Lemma 1, establishing the necessary and sufficient condi-
tions for the decomposition of the tilted channel is stated and
proved for fast-fading DMCs to keep the presentation and the
analysis brief and simple. However, the results reviewed in §II
have already been generalized to more abstract channel models
in [30]. Using the results of [30], one can generalize not only
Lemma 1, but also the resulting parametric characterization of
SPE given in (37), (38), (39) to more abstract channel models.
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