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Abstract—A judicious application of the Berry-Esseen theorem
via the concepts of Augustin information and mean is demon-
strated to be sufficient for deriving the sphere packing bound
with a prefactor that is Ω

(
n−0.5(1−E ′sp(R,W ,p))

)
for the constant

composition codes. The resulting non-asymptotic bounds have
definite approximation error terms.

I. INTRODUCTION

The decay of the optimal error probability with the block
length for rates below the channel capacity has been studied
since the early days of information theory. For certain channels
and for certain values of the rate, sharp bounds were found
early on. For the binary symmetric channel [1], for the Gaus-
sian channel [2], and for the discrete channels with certain
symmetries [3] —see the original publication in Russian so as
to avoid typos in the translation—

P (n)
e =Θ

(
n−

1−E′sp(R)

2 e−nEsp(R)

)
∀R∈ [Rcrit,C] (1)

where1 an = Θ (bn) iff 0< lim inf
n→∞

∣∣∣an

bn

∣∣∣≤ lim sup
n→∞

∣∣∣an

bn

∣∣∣<∞,

Esp(·) is the sphere packing exponent of the channel, E ′sp(·) is
its derivative, Rcrit is the rate at which the slope of the sphere
packing exponent curve is minus one, i.e. E ′sp(Rcrit) = −1,
and C is the capacity of the channel. For the binary erasure
channels [1], on the other hand,

P (n)
e =Θ

(
n−

1
2 e−nEsp(R)

)
∀R∈ [Rcrit,C]. (2)

Neither (1), nor (2), holds for rates below the critical rate. If,
however, we replace the equality sign with the greater than or
equal to sign, then both (1) and (2) hold for all rates below the
channel capacity. These lower bounds are customarily called
sphere packing bounds (SPBs) because of the techniques used
in their derivation.

Derivations of the SPB in [1]–[3] relied on the geometric
structure of the output space of the channel and parameters
that are defined only for certain models. The resulting bounds
were expressed in terms of these parameters, as well. Thus
it was not even clear that SPBs in [1]–[3] can be seen as
special cases of a general bound. The evidence for such an
understanding came not from a breakthrough about the lower

1We suppress the dependence of the sphere packing exponent to the channel
in our notation and denote it with Esp(R), rather than Esp(R,W ), in §I.

bounds on the error probability but from a breakthrough about
the upper bounds. Gallager’s seminal work [4] unified and
generalized the upper bounds on the error probability —at
least in terms of the exponent— in all the previous works. It
is only with Gallager’s formulation in [4] that one can express
the bounds in [1]–[3] as (1) and (2).

The first complete proof of the SPB for arbitrary discrete
stationary product channels2 (DSPCs) was presented in [5].
According to [5, Thm. 2]

P (n)
e ≥e−n[Esp(R−O(n

−1/2))+O(n−1/2)] ∀R∈(0,C) (3)

where an = O (bn) iff there exists a K ∈ R+ such that
|an | ≤ Kbn for large enough n . In the following two years, the
SPB was proved first for stationary product channels with finite
input sets in [6] and then for (possibly) non-stationary product
channels in [7]. The SPB has been proven for various channel
models [8]–[13], including certain quantum information the-
oretic ones. It is worth mentioning that a general proof that
holds for both Gaussian channels [2] and for arbitrary DSPCs
[5] was absent until recently, see [11]. These later works on
the SPB [5]–[13] were primarily interested in establishing the
right exponent; thus they were content with prefactors of the
form e−O(n

1/2). Some authors did obtain prefactors of the
form e−O(lnn) but obtaining the best possible, if not tight,
prefactor was not really a concern.

The quest for deriving SPBs with tight prefactors was put
on the map again by Altuğ and Wagner in [14] and [15].
According to [14, Thm. 1] for any DSPC with a positive
and symmetric3 probability transition matrix W and rate R
in (0,C), there exists a K ∈ R+ such that for any ε > 0

P (n)
e ≥ Kn−

1−(1+ε)E′sp(R)

2 e−nEsp(R) ∀n ≥ n0 (4)

for some n0 determined by W , R, and ε. The same result was
established for the constant composition codes on arbitrary
DSPCs in [15, Thm. 1]. These results are generalized to

2These channels are customarily called discrete memoryless channels, i.e.
DMCs. We call them DSPCs in order to underline the stationarity of the
channel and the absence of any constraints on its input set. Such constraints
might exist and stationarity might be absent in a discrete channel which is
memoryless.

3A W is symmetric if it satisfies the condition given in [8, p. 94].
The binary symmetric channel, the binary erasure channel, and channels
considered in [3] are symmetric according this definition.
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classical quantum channels in [16, Thms. 8, 14], with a slight
improvement, allowing ε = 0 for the symmetric channels.

The primary tool for the deviations in [14]–[16], is the
Berry-Esseen theorem, albeit through auxiliary results [14,
(74)], [15, Proposition 5], [16, Thm. 17] inspired by a theorem
of Bahadur and Rao [17]. Our main aim is to demonstrate
that a more judicious application of the Berry-Esseen theorem
via the concepts of Augustin information and mean leads
to a simpler analysis and a stronger result for the constant
composition codes, see Theorem 1 and its proof in §V. Under
various symmetry hypotheses a similar approach employing
Augustin capacity and center leads to analogous results, [18].

[1] and [2] not only established (1) and (2) but also
obtained closed form expressions for the upper and lower
bounds implicit in (1) and (2). Dobrushin went one step
further and calculated the exact asymptotic behavior of the
SPB and the random coding bound by analyzing the lattice
and non-lattice cases separately in [3, (1.32), (1.33), (1.34)].
Recently, the saddle point approximation is used to derive
the SPB with the same asymptotic prefactor [19, Cor. 2],
under weaker symmetry hypothesis4 albeit by assuming a
common support for all output distributions of the channel
and a non-lattice structure for the random variables involved.5

The main drawback of the analysis in [19] is the technical
conditions that need to be confirmed for applying the saddle
point approximation via [20, Proposition 2.3.1].

Let us finish this section with an overview of the paper.
In §II, we describe our notation. In §III, we first recall the
connection between the hypothesis testing problem and the
tilting, and then derive our primary technical tool using the
Berry-Esseen theorem. In §IV, we review the concepts of
Augustin information, Augustin mean, and the sphere packing
exponent. In §V, we state and prove a refined SPB for
the constant composition codes using Lemma 2 of §III and
the observations recalled in §IV. In §VI, we discuss the
generalizations and the weaknesses of our main result.

II. MODEL AND NOTATION

For any set X, we denote the set of all probability mass
functions that are non-zero only on finitely many elements of
X by P(X). For any measurable space (Y,Y), we denote the
set of all probability measures on it by P(Y). We denote the
expected value a measurable function f under the probability
measure µ by Eµ[f ] or Eµ[f (Y)]. Similarly we denote the
variance of f under µ, i.e. Eµ

[
(f −Eµ[f ])

2
]
, by Vµ[f ].

For sets X1, . . . ,Xn we denote their Cartesian product, i.e.
n
t=1 Xt , by Xn

1 and for σ-algebras Y1, . . . ,Yn we denote
their product, i.e.

⊗n
t=1 Yt , by Yn

1 . We use the symbol ⊗ to
denote the product of measures, as well.

A channel W is a function from the input set X to the set
of all probability measures on the output space (Y,Y):

W : X→ P(Y). (5)

4The binary input Gaussian channel and the binary erasure channel satisfy
the symmetry hypothesis of [19], but not that of [3].

5Neither of these assumptions was needed while deriving this result in [3].

A channel W is called a discrete channel if both X and Y are
finite sets. The product of Wt :Xt→P(Yt) for t ∈ {1, . . . ,n}
is a channel of the form W[1,n] : X

n
1 → P(Yn

1 ) satisfying

W[1,n](x
n
1 ) =

⊗n

t=1
Wt(xt) ∀xn

1 ∈ Xn
1 . (6)

Any channel obtained by curtailing the input set of a length n
product channel is called a length n memoryless channel. A
product channel W[1,n] is stationary iff Wt = W for all t’s for
some W. On a stationary channel, we denote the composition
(i.e. the empirical distribution, type) of each xn

1 by Υ (xn
1 );

thus Υ (xn
1 ) ∈ P(X).

The pair (Ψ,Θ) is an (M,L) channel code on W[1,n] iff
• The encoding function Ψ is a function from the message

set M , {1, 2, . . . ,M} to the input set Xn
1 .

• The decoding function Θ is a Yn
1 -measurable function

from the output set Yn
1 to the set M̂ , {L : L ⊂

M and |L| ≤ L}.
Given an (M,L) channel code (Ψ,Θ) on W[1,n], the condi-
tional error probability Pm

e for m ∈M and the average error
probability Pe are given by

Pm
e , EW[1,n](Ψ(m))

[
1{m /∈Θ(Yn

1 )}
]
,

Pe , 1
M

∑
m∈M

Pm
e .

A code is called a constant composition code iff all of its
codewords have the same composition, i.e. there exists a p in
P(X) satisfying Υ (Ψ(m)) = p for all m ∈M.

III. HYPOTHESIS TESTING PROBLEM AND
BERRY-ESSEEN THEOREM

The primary aim of this section is to derive an outer
bound for the hypothesis testing problem between product
measures using the Berry-Esseen theorem. To that end let us
first recall the definitions of the Rényi divergence and the tilted
probability measure.

Definition 1. For any α ∈ R+ and w , q ∈ P(Y), the order α
Rényi divergence between w and q is

Dα(w‖ q) ,

{
1

α−1 ln
∫
(dwdν )

α(dqdν )
1−αν(dy) α 6= 1∫

dw
dν

[
lndw

dν − lndq
dν

]
ν(dy) α = 1

(7)

where ν is any measure satisfying w≺ν and q≺ν.

The order one Rényi divergence is the Kullback-Leibler
divergence. For other orders, the Rényi divergence can be
characterized in terms of the Kullback-Leibler divergence too:

(1−α)Dα(w‖ q)= inf
v∈P(Y)

αD1(v‖w) + (1−α)D1(v‖ q) (8)

with the convention that αD1(v‖w) + (1−α)D1(v‖ q) = ∞
if it would be otherwise undefined, see [21, Thm. 30]. The
characterization given in (8) is related to another key concept
for our analysis: the tilted probability measure.

Definition 2. For any α ∈ R+ and w , q ∈ P(Y) satisfying
Dα(w‖ q) <∞, the order α tilted probability measure wq

α is
dwq

α

dν , e(1−α)Dα(w‖q)(dwdν )
α(dqdν )

1−α. (9)
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If either α is in (0, 1) or D1(w
q
α‖w) is finite, then the

tilted probability measure is the unique probability measure
achieving the infimum in (8) by [21, Thm. 30], i.e.

(1−α)Dα(w‖ q)=αD1(w
q
α‖w) + (1−α)D1(w

q
α‖ q) . (10)

Furthermore, under the same hypothesis

ln
dwq

α

dq −D1(w
q
α‖q)=α

(
lndwac

dq −Ewq
α

[
lndwac

dq

])
(11)

ln
dwq

α

dw −D1(w
q
α‖w)=(α−1)

(
lndwac

dq −Ewq
α

[
lndwac

dq

])
(12)

where wac is the component of w that is absolutely continuous
in q .

Let us proceed with recalling the Berry-Esseen theorem.

Lemma 1 ( [22]). Let {ξt}t∈Z+ be independent zero mean
random variables satisfying

∑n
t=1 E

[
ξt

2
]
< ∞. Then there

exists an absolute constant ω ≤ 0.5600 such that∣∣∣P[∑n

t=1
ξt < τ

]
− Φ

(
τ√
a2n

)∣∣∣ ≤ ω a3

a2
√
a2n

where aκ = 1
n

∑n
t=1 E[|ξt |

κ
] and Φ (s) = 1√

2π

∫ s

−∞ e−z2/2dz .

Lemma 2, in the following, is an impossibility result for the
hypothesis testing problem with independent samples in the
spirit of [5, Thm. 5], which is proved using the Chebyshev’s
inequality. Lemma 2, on the other hand, is proved using the
Berry-Esseen theorem instead.

Lemma 2. For any α ∈ (0, 1), n ∈ Z+ , wt , qt ∈ P(Yt), let
wt,ac be the component of wt that is absolutely continuous in
qt and let a2 and a3 be

a2 , 1
n

∑n

t=1
Ewq

α

[∣∣∣lndwt,ac

dqt
−Ewq

α

[
ln

dwt,ac

dqt

]∣∣∣2] (13)

a3 , 1
n

∑n

t=1
Ewq

α

[∣∣∣lndwt,ac

dqt
−Ewq

α

[
ln

dwt,ac

dqt

]∣∣∣3] (14)

where w =⊗n
t=1wt and q =⊗n

t=1qt . Then for any E ∈ Yn
1 ,

and γ ∈ R+ satisfying q(E) = γe−D1(w
q
α‖q) we have

w(Yn
1 \ E) ≥

2−γ

e
(1−α)2

√
2πe(0.56 a3

a2
+
√

a2)
n−

1
2α e−D1(w

q
α‖w) (15)

provided that
√

a2n − lnn
2α ≥ 2

√
2πe

(
0.56a3

a2
+
√

a2

)
.

Lemma 2 states just a lower bound because that suffices for
our purposes. For each α in (0, 1), however, a matching upper
bound can be derived using the Berry-Esseen theorem, as well.
That is, the lower bound given in Lemma 2 is tight up to some
multiplicative constant. For the stationary case —i.e. assuming
wt = w1, qt = q1 for all t— with γ = 1, Csiszár and Longo
[23] described how (11) and (12) can be used together with
an earlier result by Strassen [24, Thm. 1.1] to obtain the exact
value of the constant.6 The Berry-Esseen theorem, however,
is not sufficient for deriving the exact value of the constant;

6We believe the approach of [23] is sound. Its calculations, however, seem
to have some mistakes. Repeating the calculations as described in [23] we
recover the second line of [23, (33)] as ln α?

1−α? − lnS1
√

2π
α?

+ o (1). With
this modification [23, Thm. 2] is consistent with the intimately related results
about the SPB proved earlier [3, (1.32), (1.33)] and since then [19, (38)].

one needs to invoke either finer results on the asymptotic
behavior of sums of independent random variables such as
the ones in [25, §IV.2,§IV.3], [26, §42,§43] or apply other
techniques, such as the saddle point approximation in [20,
Prop. 2.3.1], both of which require stronger hypotheses. The
situation is similar for other values of α but of no interest for
our discussion of the sphere packing bound.

Proof of Lemma 2. Let the random variables ξt and ξ and the
event B be

ξt , ln
dwt,ac

dqt
−Ewq

α

[
ln

dwt,ac

dqt

]
,

ξ ,
∑n

t=1
ξt ,

B , {yn
1 :τ0 ≤ ξ ≤ τ1} .

The definitions of ξt , ξ, B when considered together with (11)
and (12) imply that

B =
{

yn
1 :ατ0 ≤ ln

dwq
α

dq −D1(w
q
α‖ q) ≤ ατ1

}
=
{

yn
1 : (1−α)τ0≤D1(w

q
α‖w)− ln

dwq
α

dw ≤(1−α)τ1
}
.

Thus for any E ∈ Yn
1 we have

wq
α(E ∩B) ≤ q(E)eD1(w

q
α‖q)+ατ1 , (16)

w(Yn
1 \ E) ≥ wq

α(B \ E)e−D1(w
q
α‖w)+(1−α)τ0 . (17)

On the other hand, as a result of the Berry-Esseen theorem
given in Lemma 1 we have

wq
α(B) ≥ Φ

(
τ1√
a2n

)
− Φ

(
τ0√
a2n

)
− 2 0.56√

n
a3

a2
√
a2

= 1√
2π

∫ τ1√
a2n

τ0√
a2n

e−z2/2dz − 2 0.56√
n

a3

a2
√
a2

≥ e
− (|τ0|∨|τ1|)

2

2na2√
2π

τ1−τ0√
a2n
− 2 0.56√

n
a3

a2
√
a2
.

If we set τ0= − lnn
2α −2

√
2πe

(
0.56a3

a2
+
√

a2

)
and τ1= − lnn

2α ,
then −√a2n ≤ τ0 ≤ τ1 ≤ 0 by the hypothesis and

wq
α(B) ≥ 2√

n
.

Furthermore, wq
α(E∩B)≤ γ√

n
as a result of (16), τ1= − lnn

2α ,
and the hypothesis q(E)=γe−D1(w

q
α‖q). Thus using (17) and

τ1=
− lnn
2α we get

w(Yn
1 \ E) ≥

2−γ√
n
e−D1(w

q
α‖w)+(1−α)τ0

= 2−γ
e(1−α)(τ1−τ0) n−

1
2α e−D1(w

q
α‖w).

Then (15) follows from τ1 − τ0 = 2
√
2πe

(
0.56a3

a2
+
√

a2

)
,

which is an immediate consequence of the definitions of τ0
and τ1.

Remark. While deriving similar bounds, the constants τ0 and
τ1 are usually assumed to satisfy τ0 =−τ1, see for example
[5, Thm. 5] or [16, Thm. 11]. Such a choice, however, does
not lead to tight bounds in our case.
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IV. AUGUSTIN INFORMATION, AUGUSTIN MEAN AND THE
SPHERE PACKING EXPONENT

The ultimate aim is this section is to define the sphere
packing exponent and review the properties of it that will be
useful in our analysis. For that we first recall the definitions of
Augustin information and mean and review their elementary
properties. Let us define the conditional Rényi divergence first.

Definition 3. For any α ∈ R+ , W : X → P(Y), q ∈ P(Y),
and p ∈ P(X) the order α conditional Rényi divergence for
the input distribution p is

Dα(W‖ q | p) ,
∑

x∈X
p(x )Dα(W (x )‖ q) . (18)

Definition 4. For any α∈R+ , W :X→P(Y), and p ∈P(X)
the order α Augustin information for the input distribution p
is

Iα(p;W) , infq∈P(Y) Dα(W‖ q | p) . (19)

The infimum in (19) is achieved by a unique probability
measure7 qα,p , called the order α Augustin mean for the input
distribution p, by [27, Lemma 13]. Furthermore,

Dα(W‖ q | p)−Iα(p;W)≥D1∧α(qα,p‖ q) (20)

for all q ∈ P(Y) by [27, Lemma 13], as well.
The Augustin information is continuously differentiable in

its order on R+ and its derivative is given by

∂
∂α Iα(p;W) =

{
1

(α−1)2 D1

(
W

qα,p
α

∥∥W
∣∣ p) α 6= 1∑

x
p(x)
2 VW (x)

[
ln dW (x)

dq1,p

]
α = 1

(21)

by [27, Lemma 17-(e)], where W
qα,p
α is the tilted channel

defined as follows.

Definition 5. For any α ∈ R+ , W : X → P(Y) and
q ∈P(Y), the order α tilted channel W q

α is a function from
{x : Dα(W (x )‖ q) <∞} to P(Y) given by

dW q
α(x)
dν , e(1−α)Dα(W (x)‖q)(dW (x)

dν )α(dqdν )
1−α. (22)

The concept of tilted channel can also be used to express
Iα(p;W) in terms of the Kullback-Leibler divergences. In
particular, (10) and Iα(p;W) = Dα(W ‖ qα,p | p) imply that

Iα(p;W)= α
1−αD1(W

qα,p
α ‖W | p)+D1(W

qα,p
α ‖ qα,p | p). (23)

Furthermore, the Augustin mean satisfies∑
x

p(x )W qα,p
α (x ) = qα,p (24)

and Augustin mean is the only probability measure satisfying
both q1,p≺q and

∑
x p(x )W q

α (x ) = q by [27, Lemma 13].
Thus for all α∈R+ we have

D1(W
qα,p
α ‖ qα,p | p) = I1(p;W

qα,p
α ) . (25)

A more comprehensive discussion of Augustin’s information
measures can be found in [27].

7We refrain from including the channel symbol W in the symbol for the
mean because the channel will be clear from the context.

Definition 6. For any W :X→ P(Y), p∈P(X), and R∈R+ ,
the sphere packing exponent (SPE) is

Esp(R,W, p) , supα∈(0,1)
1−α
α (Iα(p;W)− R) . (26)

Note that since Iα(p;W) is continuously differentiable in α
by [27, Lemma 17-(e)], we can apply the derivative test to
find the optimal α in (26): Using (21) and (23) we get

∂
∂α

1−α
α (Iα(p;W)−R)= 1

α2 (R−D1(W
qα,p
α ‖ qα,p | p)) . (27)

On the other hand, either D1

(
W

qα,p
α

∥∥ qα,p
∣∣ p) = I1(p;W)

for all positive α, or D1

(
W

qα,p
α

∥∥ qα,p
∣∣ p) is increasing and

continuous in α on R+ by [27, Lemma 17-(f)]. Further-
more, D1

(
W

q1,p
1

∥∥ q1,p
∣∣ p) is equal to I1(p;W) by definition

and limα↓0 D1

(
W

qα,p
α

∥∥ qα,p
∣∣ p) is equal to limα↓0 Iα(p;W)

by (25) and [27, Lemma 17-(g)]. Thus for any rate R in
(limα↓0Iα(p;W), I1(p;W)), there exists an η∈(0, 1) satisfying

R = D1

(
W qη,p
η

∥∥ qη,p
∣∣ p) (28)

by the intermediate value theorem [28, 4.23]. The η satisfying
(28) is unique because D1

(
W

qα,p
α

∥∥ qα,p
∣∣ p) is increasing in α.

The monotonicity of D1

(
W

qα,p
α

∥∥ qα,p
∣∣ p) in α and (27) also

implies Esp(R,W, p) = 1−η
η (Iη(p;W)−R). Thus as a result

of (23), the unique η satisfying (28) also satisfies

Esp(R,W, p) = D1

(
W qη,p
η

∥∥W
∣∣ p) . (29)

Since D1

(
W

qα,p
α

∥∥ qα,p
∣∣ p) is continuous and increasing in

α, its inverse is increasing and continuous, as well. Thus the
definition of SPE given in (26) and the definition of derivative
as a limit imply that for any R in (limα↓0 Iα(p;W) , I1(p;W))
the unique η satisfying (28) also satisfies

∂
∂REsp(R,W, p) = η−1

η . (30)

V. THE REFINED SPHERE PACKING BOUND

Theorem 1. For any W :X→P(Y), M,L,n∈Z+ , p∈P(X)
satisfying limα↓0 Iα(p;W) < 1

n ln M
L < I1(p;W) and np(x ) ∈

Z≥0 for all x ∈ X, the order α , 1

1−E ′sp( 1
n ln M

L ,W ,p)
satisfies

D1(W
qα,p
α ‖ qα,p | p) = 1

n ln M
L . (31)

Furthermore, any (M,L) channel code of length n whose
codewords all have the same composition p satisfies

P (n)
e ≥ n−1/2α

e
(1−α)2

√
2πe[0.56

a3
a2

+
√

a2]
e−nEsp(

1
n ln M

L ,W ,p) (32)

provided that
√

a2n − lnn
2α ≥ 2

√
2πe[0.56a3

a2
+
√

a2] where

a2 = Ep~W
qα,p
α

[∣∣∣ln dW
dqα,p

−EW
qα,p
α

[
ln dW

dqα,p

]∣∣∣2] , (33)

a3 = Ep~W
qα,p
α

[∣∣∣ln dW
dqα,p

−EW
qα,p
α

[
ln dW

dqα,p

]∣∣∣3] . (34)

Theorem 1 proves that

P (n)
e ≥ An

E′sp(R,W ,p)−1

2 e−nEsp(R,W ,p) ∀n ≥ n0 (35)

for constants A and n0 determined by the rate R, the channel
W, and the composition p. Following [14]–[16], we call these
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bounds refined SPBs because of their resemblance to the
standard SPBs, e.g. [6], establishing

P (n)
e ≥ e−nEsp(R,W ,p)−o(n) ∀n ≥ n0. (36)

Proof of Theorem 1. The existence of a unique order α satis-
fying (31) was proved and its value was determined in §IV,
see (28), (29), and (30).

Let probability measures wm , q , and vm in P(Yn
1 ) be

wm ,
⊗n

t=1
W (Ψt(m)),

q ,
⊗n

t=1
qα,p ,

vm ,
⊗n

t=1
W qα,p
α (Ψt(m)).

Then vm is equal to the order α tilted probability measure
between wm and q . Furthermore,

D1(vm‖ q) = nD1(W
qα,p
α ‖ qα,p | p) m ∈M,

D1(vm‖wm) = nD1(W
qα,p
α ‖W | p) m ∈M.

Then by applying Lemma 2 for E = {yn
1 : m ∈Θ(yn

1 )} and
γ = q(m∈Θ)enD1(W

qα,p
α ‖qα,p|p) we get

Pm
e ≥

2−q(m∈Θ)e
nD1(W

qα,p
α ‖qα,p|p)

e
(1−α)2

√
2πe[0.56

a3
a2

+
√

a2]
n−

1
2α e−nD1(W

qα,p
α ‖W |p)

Then (32) follows from the identity
∑
m∈M q(m ∈Θ) ≤ L,

equations (28), (29), (31), and the definition error probability
as the average of the conditional error probabilities.

Remark. Note that the lower bound on Pm
e depends on the

encoding scheme only through the composition of the code
and it is independent of the particular choice of the codeword
for the message m .

VI. DISCUSSION

We have confined our analysis to the constant composition
codes for the sake of brevity. Nevertheless, similar analyses
employing Augustin capacity and center instead of Augustin
information and mean, lead to refined SPBs both on channels
with certain symmetries and on the additive white Gaussian
noise channels with quadratic cost functions. The essential
technical challenge in this line of work is the derivation of
the refined SPB without any symmetry assumptions.

It is worth noting that the refined SPBs of the form (4)
are not always achievable, see for example the binary erasure
channels whose optimal error probability decays according to
(2). The existence of a general proof of the SPB that can
account for the behavior of these channels is not evident to
us. We believe the refined SPBs of the form (4) are the best
possible bounds for derivations of the SPB relying on the
asymptotic behavior of sums of independent random variables.
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