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Abstract—A new method to characterize Augustin information
and mean is proposed. The proposed method allows for briefer
and more direct proofs for the previously known results and
leads to new observations related to this new characterization for
classical channels. For classical-quantum channels, the proposed
method extends the results, such as the existence of Augustin
mean and Augustin fixed point property, to models with separable
Hilbert spaces at the output.

I. INTRODUCTION

The sphere packing, random coding, and strong converse
exponents for channel coding problem have been characterized
in terms of the Augustin information and capacity [1]–[14].
Similar to the characterizations in Haroutunian form [15]–
[17], these characterizations work for the cost-constrained
and the composition-constrained cases without the help of
Lagrange multipliers techniques, see [1]–[10]. Furthermore,
with the help of Augustin mean, they have been used to
establish refined sphere packing bounds [5], [6] and refined
strong converses [7], both for constant composition codes on
general channels and for general channel codes on channels
with certain symmetries.

For a channel W and input distribution p, the order α
Augustin information is defined in terms of the order α
conditional Rényi divergence as

Iα(p;W):= infq∈P(Y) Dα(W ∥q |p), (1)

where P(Y) is the set of all probability measures on the output
space (Y,Y), which is a measurable space, and Dα(W ∥q |p)
is the expected value of Dα(W (X)∥q) for the case when X
has the distribution p. The primary challenge in working with
Augustin information is that neither the minimizer nor the
infimum value in (1), has general closed form expressions
that are valid for all channels and input distributions, except
for the α= 1 case, in which case the infimum is the mutual
information and the unique minimizer is the output distribution
of the channel W for the input distribution p.

The minimizer in (1) is called an Augustin mean; its exis-
tence and uniqueness is established for input distributions with
a finite support set on arbitrary classical channels in [1], [13],
and on classical-quantum channels with finite-dimensional
Hilbert spaces at the output in [3], [9]. For arbitrary input
distributions on classical channels with countably-generated
output σ-algebras, the existence of a unique Augustin mean
is established in [18] under the finite Augustin information
hypothesis. In all of the cases mentioned above, the Augustin

mean satisfies a fixed point property, that not only provides an
alternative characterization that does not refer to (1) explicitly,
but also plays a critical role in establishing refined converses,
[5]–[7].

If the output set Y is finite, then P(Y) is a compact set
and the existence of the order α Augustin mean follows from
the extreme value theorem and the lower semicontinuity of the
Rényi divergence. In [1], [13], to establish the existence of the
Augustin mean for arbitrary output spaces, first, a compact
subset of P(Y) on which the infimum in (1) is achieved is
found. To address the same technical challenge, instead of
finding the minimizer in (1), we characterize the maximizer of
another optimization problem through a fixed point property
and show that the maximizer of the new problem determines
the minimizer in (1). Furthermore, the new problem is a
finite-dimensional optimization problem as long as the support
of the input distribution p is a finite set, no matter what
the output space of the channel is. This feature of the new
characterization allows us to apply it, not only to the classical
channels with arbitrary output spaces, but also to the classical-
quantum channels with separable Hilbert spaces at the output.

We will present the alternative characterization of the
Augustin information and mean and associated new results
first for classical channels in §II, then for classical-quantum
channels in §III. Before we start our discussion in earnest, let
us point out a few notational conventions we will adhere to
throughout the manuscript.

For any set X, we denote the set of all mass (i.e., non-
negative) functions on X with a countable support set, and
the set of all probability mass function on X by M

+

(X), and
P(X). For any p ∈M

+

(X), we denote the set of all extended
real valued functions that are finite on the support of p by Fp .
The constant function with the value one is denoted by 1. For
any |X|-by-|X| positive semidefinite matrix Λ, we define the
inner product ⟨·, ·⟩Λ and the norm ∥·∥Λ as

⟨f , g⟩Λ :=f TΛg ∀f , g ∈ RX,

∥f ∥Λ :=(⟨f , f ⟩Λ)
1/2 ∀f ∈ RX.

We employ the same notation when either f , or g , or both are
parametrized by another variable, say α or y . When Λ is the
identity matrix, we denote the inner product by ⟨·, ·⟩ and the
norm by ∥·∥. We denote ℓ1 and L1 norms by ∥·∥1. We use
a ∧ b to denote the minimum between scalars a and b.
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II. AUGUSTIN DUAL STATIONARITY: A NEW
CHARACTERIZATION OF AUGUSTIN INFORMATION AND

MEAN

Definition 1. For any order α∈R+ , channel W :X→P(Y),
mass function p∈M

+

(X) with a finite support set, and function
f ∈Fp , the (adjusted) power mean µf

α,p is defined as
dµf

α,p

dν :=
(〈

p, e(1−α)f
(
dW
dν

)α〉)1/α

, (2)

where ν is any σ-finite reference measure such that W (x ) is
absolutely continuous with respect to ν, p-almost everywhere.

In [19], the power mean is defined for the case when f = 0
and denoted by µα,p . We will adhere to the same notational
convention and use µα,p for the case when f = 0 holds p-.a.e..

One can confirm by substitution that

µf+τ
α,γp=γ

1
α e

1−α
α τµf

α,p , ∀γ ∈ R+ , τ ∈ R . (3)

Furthermore, the log of the Radon-Nikodym derivative of the
power mean with respect to any σ-finite reference measure
ν satisfies the following pointwise convexity by the Hölder’s
inequality:

ln
dµ

fβ
α,p

dν ≤ β ln
dµf1

α,p

dν + (1− β) ln
dµf0

α,p

dν ν-a.e., (4)

for all β ∈ (0, 1) where fβ = βf1+(1−β)f0. Furthermore, (4)
holds as an equality for a y∈Y iff there exists τ ∈R for which
f1(x )= f0(x )+τ holds for all x satisfying

(
dW (x)

dν (y)
)
p(x )>0.

Using Hölder’s inequality once more one can extend the
log-convexity to the L1 norm of the power mean:

ln
∥∥∥µfβ

α,p

∥∥∥
1
≤ β ln

∥∥µf1
α,p

∥∥
1
+ (1− β) ln

∥∥µf0
α,p

∥∥
1
, (5)

for all β ∈ (0, 1) and the inequality is strict unless f1 = f0+ τ
holds p-a.e. for some τ ∈ R .

Definition 2. For any α∈R+ , W :X→P(Y), p∈M
+

(X) with
a finite support set, and f ∈Fp , the (adjusted) Gallager’s func-
tion Aα(p,f) and the maximal (adjusted) Gallager’s function
Aα(p) are defined as

Aα(p,f):=
1−α
α ⟨p, f ⟩−⟨p,1⟩ ln

∥∥µf
α,p

∥∥
1
, (6)

Aα(p):= supf∈Fp
Aα(p,f). (7)

Then Aα(p,f) satisfies the following shift invariance property

Aα(p,f) = Aα(p,f + τ) ∀τ ∈ R . (8)

The norm log-convexity of the power mean µf
α,p in f implies

the concavity of the Gallager’s function in f , i.e., (5) implies

Aα(p,fβ) ≥ βAα(p,f1) + (1− β)Aα(p,f0) (9)

for all β ∈ (0, 1) and the inequality is strict unless f1 = f0+ τ
holds p-a.e. for some τ ∈ R , where fβ = βf1 +(1−β)f0. For
any α∈R+ , the usual definition of the order α Rényi diver-
gence, e.g., [20], can be extended as follows for any probability
measure w ∈P(Y) and finite measure q∈M+

(Y)

Dα(w∥q)=


1

α−1 ln

∫ (
dw
dν

)α(dq
dν

)1−α

dν α ̸= 1∫
dw
dν

(
ln dw

dν − ln dq
dν

)
dν α = 1

. (10)

Definition 3. For any α ∈ R+ , W : X → P(Y), p ∈ M
+

(X)
with a finite support set and n ∈ Z+ , the power mean operator
Mα,p(·) :Fp→Fp is defined as

Mα,p(f ):=Dα

(
W

∥∥µf
α,p

)
(11)

Note that the definition of Mα,p(f ), (3), and (10) imply

Mα,γp(f +τ)=Mα,p(f )+
α−1
α τ− 1

α ln γ, (12)

for all γ ∈ R+ and τ ∈R .

Theorem 1. For any α∈R+ , W :X→P(Y), p∈M
+

(X) with
a finite support set, the power mean operator Mα,p(·) has a
unique fixed point fα,p , called the order α Augustin dual for
the input distribution p, satisfying

fα,p=Mα,p(fα,p). (13)

The Augustin dual fα,p satisfies∥∥µfα,p
α,p

∥∥
1
=⟨p,1⟩. (14)

fα,p is a maximizer of Aα(p,·), i.e., Aα(p) = Aα(p,fα,p), hence

Aα(p)=
1−α
α ⟨p, fα,p⟩ − ⟨p,1⟩ ln⟨p,1⟩. (15)

Furthermore, maximizers of Aα(p,·) are characterized by the
condition f = fα,p + τ holds p-.a.e. for some τ ∈ R , i.e,

Aα(p)=Aα(p,f) ⇔ ∃τ ∈ R : f = fα,p + τ p-a.e. (16)

Proof of Theorem 1. First confirm by substitution that

µf
α,p=µα,u f

α,p
and D1

(
p

⟨p,1⟩

∥∥∥uf
α,p

)
=

(α−1)⟨p,f ⟩
⟨p,1⟩ −ln⟨p,1⟩

where uf
α,p :=pe(1−α)f . Thus

Aα(p,f)=−⟨p,1⟩
D1

(
p

⟨p,1⟩

∥∥∥u f
α,p

)
+ln⟨p,1⟩

α − ⟨p,1⟩ ln
∥∥∥µα,u f

α,p

∥∥∥
1

Furthermore, f uα,p :=
1

1−α ln
(

u
p

)
satisfies uf

α,p |f=f u
α,p

= u .
Hence there is a one-to-one correspondence between functions
defined on the support of p and the mass functions that have
the same support with p. Thus,

Aα(p)=
−⟨p,1⟩

α inf
u∈M

+(X):u∼p
D1

(
p

⟨p,1⟩

∥∥∥u)+ln
(
⟨p,1⟩∥µα,u∥α1

)
,

where u ∼ p stands for the equivalence of p and u , i.e., the
support of u being equal to the support of p in this case. On
the other hand, the function minimized on the right hand side
is invariant under scaling of u by a positive constant γ by (3)
and (10). Hence, for Up={u ∈ P(X) : u ∼ p}, we have

Aα(p)=
−⟨p,1⟩

α infu∈Up
D1

(
p

⟨p,1⟩

∥∥∥u)+ln
(
⟨p,1⟩∥µα,u∥α1

)
.

Note that ∥µα,u∥1 is continuous in u by [19, Lemma 4-
(d), Lemma 16-(c)] and the triangle inequality. On the other
hand, D1

(
p

⟨p,1⟩

∥∥∥u) is continuous in u on P(supp(p)), by [20,
Theorem 18]. Thus the infimum value will not change, if we
replace Up with its closure cl(Up) = P(supp(p)), i.e.,

Aα(p)=
−⟨p,1⟩

α infcl(Up) D1

(
p

⟨p,1⟩

∥∥∥u)+ln
(
⟨p,1⟩∥µα,u∥α1

)
.
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Since the set of all probability mass functions on a finite set
is compact, using the extreme value theorem we can assert
that there exists a u∗ achieving the infimum. Furthermore, p
is absolutely continuous in u∗ because otherwise D1

(
p

⟨p,1⟩

∥∥∥u)
will be infinite. Thus Aα

(
p; f u∗

α,p

)
= Aα(p) holds for the

corresponding f u∗
α,p .

On the other hand,

∂
∂f (x)Aα(p,f)=

(
1− ⟨p,1⟩ e

(1−α)[f (x)−Mα,p(f )(x)]

∥µf
α,p∥

1

)
1−α
α p(x ).

Thus the optimality condition ∂
∂f Aα(p,f)

∣∣∣
f=fα,p

=0 implies that

f u∗
α,p−Mα,p

(
f u∗
α,p

)
= τ holds p-a.e. for some τ ∈R . Then (13),

(14), (15), and (16) holds for fα,p= f u∗
α,p−ατ by (2) and (12).

To prove the uniqueness of the Augustin dual fα,p , let
us assume that there exist two distinct functions, f1 and f0,
satisfying (13). Then f1 and f0 will both be maximizers of
Aα(p; ·) because they will both satisfy the optimality condition.
Consequently, f1 = f0 + τ should p-a.e. for some τ ∈ R by
the equality condition for (9). Then only one of f1 and f0 can
satisfy (13) as a result of (12).

The Augustin mean is customarily defined as the minimizer
in the definition of Augustin information given in (1), see [1],
[13]. In the following, we define Augustin mean as a function
of the Augustin dual, which is the unique fixed point of the
power mean operator by Theorem 1. Theorem 2 given in the
following establish the equivalence of these two definitions.

Definition 4. For any α ∈ R+ , W : X → P(Y), p ∈ M
+

(X)
with a finite support set, the Augustin mean qα,p ∈ M+

(Y)
and the Augustin channel Wα,p : Xα,p→P(Y) are defined as

qα,p :=µfα,p
α,p , (17)

dWα,p

dν :=
(
dW
dν

)α(dqα,p

dν

)(1−α)

e(1−α)Mα,p(fα,p), (18)

where Xα,p :={x ∈ X : Dα(W (x )∥qα,p) < ∞} and ν is any
σ-finite reference measure.

Note that as a result of (2), we have〈
p,

dWα,p

dν

〉
=

(
dµ

Mα,p(fα,p)
α,p

dν

)α(
dqα,p

dν

)(1−α)

ν-a.e.. (19)

Thus as a result of (13) and (17), we have

dqα,p

dν =
〈
p,

dWα,p

dν

〉
ν-a.e.. (20)

On the other hand fα,p = Dα(W ∥qα,p) by (11), (13), and (17).
Thus as a result of Theorem 1, we have

Aα(p)=
1−α
α Dα(W ∥qα,p |p)− ⟨p,1⟩ ln⟨p,1⟩, (21)

where Dα(W ∥q |p) stands for
∑

x p(x )Dα(W (x )∥q).

Theorem 2. For any α∈R+ \ {1}, W :X→P(Y), p ∈P(X)
with a finite support set,

Iα(p;W)=Dα(W ∥qα,p |p) (22)
D1∨α(qα,p∥q)≥Dα(W ∥q |p)−Iα(p;W)≥D1∧α(qα,p∥q) (23)

Proof. Note that (15) and (21) imply

Dα(W ∥q |p)−Dα(W ∥qα,p |p)=⟨p,Dα(W ∥q)− fα,p⟩.

Using (10), (13), and (18), we get

⟨p,Dα(W ∥q)− fα,p⟩= 1
α−1

〈
p, lnEWα,p

[(
dq

dqα,p

)1−α
]〉

.

Using Jensen’s inequality to move ln(·) inside expectation for
α ∈ (1,∞) case and the summation over x inside ln(·) for
α ∈ (0, 1) case and invoking (20), we get

Dα(W ∥q |p)−Dα(W ∥qα,p |p) ≥ D1∧α(qα,p∥q).

Thus (22) follows from (1) because D1∧α(qα,p∥q)> 0 when
qα,p ̸= q by [20, Theorem 8]. To establish the upper bound
in (23), we switch the operations done for α > 1 and α < 1
cases above.

We can also bound from below the decrease in Aα(p,f) due
to using a suboptimal f as follows.

Lemma 1. For any α∈R+ \ {1}, W :X→P(Y), p ∈P(X)
with a finite support set, there exists δ > 0 and γ > 0 s.t.

Aα(p)−Aα(p,f) ≥

{
γ∥f − fα,p∥2ξp if ∥f − fα,p∥ξp ≤ δ

γδ∥f − fα,p∥ξp if ∥f − fα,p∥ξp > δ

=γ∥f − fα,p∥ξp
(
δ ∧ ∥f − fα,p∥ξp

)
for all f ∈Fp , satisfying ⟨p, f ⟩ = ⟨p, fα,p⟩, where only non-
zero entries of ξp are ones at the diagonal entries for x ’s with
positive p(x ), i.e.,

[
ξp
]
x ,z

= 1{x=z}1{x∈supp(p)}.

Proof. The value Aα(p,f) depends only on the value of f on the
support of p. Thus in the following we interpret f and fα,p as
functions on supp(p) and ξp as a supp(p)-by-supp(p) matrix.

∇Aα(p,f)|f=fα,p
=0,

∇T∇Aα(p,f)
∣∣
f=fα,p

= (1−α)2

α2

(
ppT

⟨p,1⟩ − ξα,p

)
where ξα,p :=αdiag(p) + (1− α)diag(p)Λα,pdiag(p) and[

Λα,p

]
x ,z

=

∫
dWα,p(x)

dqα,p

dWα,p(z)
dqα,p

dqα,p .

ξα,p is positive definite. For α∈(0, 1) case, this is evident be-
cause ξα,p is the sum of a positive definite matrix and a positive
semi-definite matrix. For α∈(1,∞) case, we first observe that
considering ⟨p,1⟩=1 case suffices because ξα,γp=γξα,p for
all γ > 0. Then the proof follows from expressing f T ξα,pf as
the weighted sum of conditional variance of f and expectation
of the square of the conditional expectation of f .

Consider the Taylor series expansion of Aα(p,f) around the
point f = fα,p . Since ξα,p is positive definite, for small enough
neighborhoods of fα,p the error term in the second order Taylor
expansion will contribute less than the half of the second order
term. Thus

Aα(p)−Aα(p,f) ≥ (1−α)2

4α2 ∥f − fα,p∥2ξα,p

for all f satisfying ∥f − fα,p∥ ≤ δ for some δ > 0.
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For f for which ∥f − fα,p∥ > δ, first note that as a result
of (9) and (13) for any β ∈ (0, 1), we have

Aα(p)−Aα(p,f) ≥ 1
β (Aα(p)−Aα(p,(1− β)fα,p + βf)),

= 1
β (Aα(p)−Aα(p,fα,p + (f − fα,p)β)).

If set β = δ
∥f−fα,p∥ desired result for ∥f − fα,p∥ > δ case

follows from the case when ∥f − fα,p∥ ≤ δ.

For α < 1 case, to calculate qα,p and Iα(p;W), Augustin
applied an operator repeatedly to an appropriately chosen
initial output distribution, say q1,p , see [1, Lemma 34.2].
The resulting sequence output distributions {qn}n∈Z+ satisfy
limn→∞Dα(W ∥qn |p)= Iα(p;W) by the lower semicontinuity
of the Rényi divergence because {qn}n∈Z+ converges to qα,p ,
as a result of [13, B.4] and Pinsker’s inequality. The bound
given in [18, Lemma 6] can replace [13, B.4] in the above
argument for the case when α > 1. Lemma 2 given in
the following can be used in a similar argument to prove
limn→∞ Aα(p,fn) = Aα(p) where fn+1 = Mα,p(fn) for n ∈ Z+

and f0 = f . Recently, other iterative methods for calculating
Iα(p;W) have been studied in [21] and [22]. We define q fα,p as

dq f
α,p

dν :=

〈
p,

(
dW
dν

)α(dµf
α,p

dν

)1−α

e(1−α)Dα(W∥µf
α,p)

〉
. (24)

Then q fα,p ∈P(Y) and q fα,p satisfies the following identity as
result of definitions of power mean and power mean operator,

dq f
α,p

dν =

(
dµ

Mα,p(f )
α,p

dν

)α(
dµf

α,p

dν

)1−α

. (25)

Lemma 2. For any α > 1, W :X→P(Y), p ∈P(X) with a
finite support set,

Aα(p,Mα,p(f ))≥Aα(p,f)+
α−1
α D 1

α

(
q fα,p

∥∥∥∥ µf
α,p

∥µf
α,p∥

1

)
≥Aα(p,f),

both inequalities are strict unless f = fα,p+τ for some τ ∈R .

Proof.
Aα(p,Mα,p(f ))−Aα(p,f)

= −1
α

〈
p, ln

∫ (
dW
dν

)α
e(1−α)f

(
dµf

α,p

dν

)1−α

dν

〉
+ln

∥µf
α,p∥1∥∥∥µMα,p(f )

α,p

∥∥∥
1

(a)

≥ −1
α ln

∫ 〈
p,

(
dW
dν

)α
e(1−α)f

〉(
dµf

α,p

dν

)1−α

dν+ln
∥µf

α,p∥1∥∥∥µMα,p(f )
α,p

∥∥∥
1

(b)
=
(
α−1
α

)(
ln
∥∥µf

α,p

∥∥
1
+ α

1−α ln
∥∥∥µMα,p(f )

α,p

∥∥∥
1

)
(c)
=
(
α−1
α

)
D 1

α

(
q fα,p

∥∥∥(∥∥µf
α,p

∥∥
1
)−1µf

α,p

)
(d)

≥ 0

where (a) follows from Jensen’s inequality and concavity of
the natural logarithm function and the inequality is strict unless
there exits a τ̃ satisfying f = Mα,p(f ) + τ̃ p-a.e., (b) follows
from (2), (c) follows from (10) and (25), and (d) follows from
[20, Theorem 8] and the inequity is strict unless µ

Mα,p(f )
α,p =

(
∥∥µf

α,p

∥∥
1
)−

1/αµf
α,p by (25), i.e., unless there exits a τ̃ satisfying

f = Mα,p(f ) + τ̃ p-a.e. by (4).

On the other hand, if f =Mα,p(f )+τ̃ holds p-a.e., then f −ατ̃
is a fixed point of Mα,p(·) by (12); and f = fα,p+ατ̃ holds p-a.e.
because fα,p is the unique fixed point of Mα,p(·) by Theorem 1.
Thus both the inequality in (b) and the inequality in (d) are
strict unless there exists a τ̃ satisfying f = Mα,p(f ) + τ̃ .

III. QUANTUM SETTING

Let H be a separable (possibly infinite-dimensional) Hilbert
space, and S(H) be the set of density operators (i.e., positive
semi-definite operators with unit trace) on H. For a bounded
linear operator T on H, the trace norm of T is defined as

∥T∥1:=Tr
[√

T ∗T
]
, (26)

where T ∗ is the adjoint of T .
A classical-quantum channel W : X → S(H) maps each

letter of the input alphabet X to a density operator on the
output Hilbert space H.

Definition 5. For any order α∈R+ , classical-quantum channel
W :X→S(H), mass function p∈M

+

(X) with a finite support
set, and function f ∈Fp , the (adjusted) power mean µf

α,p is

µf
α,p :=

(∑
x∈X

p(x )e(1−α)f (x)W (x )α
)1/α

. (27)

By substitution, one can confirm that (3) continues to hold
for W :X→S(H) case, as well.

Lemma 3. For any α∈R+ , W :X→S(H), and p ∈M
+

(X)
with a finite support set,

∥∥µf
α,p

∥∥
1

is log-convex in f , i.e.,

ln
∥∥∥µfβ

α,p

∥∥∥
1
≤ β ln

∥∥µf1
α,p

∥∥
1
+ (1− β) ln

∥∥µf0
α,p

∥∥
1
, (28)

for all β ∈ (0,1) with fβ = βf1+(1−β)f0. Furthermore, the
inequality is strict unless f1= f0+τ holds p-a.e. for some τ ∈R .

Proof. First recall [14, Prop. 3]: For any α ∈ R+ , positive
semi-definite operator A, bounded operator Z, the function
g(t):=

∥∥∥(Z∗AtZ)
1/α

∥∥∥
1

is log-convex in t on (−∞,∞).
Let A and B be the following the block operator and column

operator, respectively

A=
⊕

x∈supp(p)

Ie(1−α)[f1(x)−f0(x)],

Z=


√

p(1)W(1)αe(1−α)f0(1)√
p(2)W(2)αe(1−α)f0(2)

...

,
where I denotes the identity operator on H. Then for all β in
[0, 1] we have g(β) =

∥∥∥µfβ
α,p

∥∥∥
1
, where fβ = βf1 + (1 − β)f0.

Then the log-convexity of g(t) in t implies (28).
Next, we prove that the log-convexity of g(t) is saturated

iff the operator A is proportional to identity operator on the
support of Z. This then implies that (28) is strict unless f1 =
f0 + τ holds p-a.e. for some τ ∈ R .

SupposeA=γI for some γ∈R+ . Then, for β∈(0,1),
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g(βt1+(1−β)t0)=γ
βt1+(1−β)t0

α ∥(Z∗Z)
r∥1

=γ
βt1
α

∥∥∥(Z∗Z)
1/α

∥∥∥β
1
γ

(1−β)t0
α

∥∥∥(Z∗Z)
1/α

∥∥∥1−β
1

=g(t1)
β · g(t0)1−β ,

proving the sufficient condition.
To show the necessary condition of the above equality for

A and Z, it is sufficient to consider the case that Z commutes
with A and that Z is a projection onto some subspace. Let
X:=(Z∗At0Z)

1/α and Y :=(Z∗At1Z)
1/α. Using the facts that

Z is a projection, X = Z∗A
t0
α Z, and Y = Z∗A

t1
α Z, we have

g(βt1 + (1− β)t0)=
∥∥Xβ · Y 1−β

∥∥
1
.

On the other hand,

g(t1)
βg(t0)

1−β = ∥X∥β1∥Y ∥1−β
1 =

∥∥Xβ
∥∥

1
β

∥∥Y 1−β
∥∥

1
1−β

.

Note that X commutes with Y . By Hölder’s inequality, the
equality g(βt1+(1−β)t0)=g(t1)

βg(t0)
1−β holds only if X∝Y ,

ensuring that A
t0
α ∝A

t1
α on the support of Z. This is possible

only if A∝I on the support ofZ, concluding the proof.

Definition 2 for the (adjusted) Gallager’s function Aα(p,f)
and the maximal (adjusted) Gallager’s function Aα(p) naturally
extend to the case of classical-quantum channels. The only
difference is that now ∥·∥1 stands for the trace norm defined
in (26), rather than the L1 norm.

The log-convexity of the trace norm of the power mean µf
α,p

in f , i.e., Lemma 3, implies the concavity of Aα(p,f) in f as
before; thus (9) holds for classical-quantum channels, as well.

Definition 6. For any order α∈ (0, 1), any density operators
ρ and σ on a separable Hilbert space H, the Petz–Rényi
divergence (see [23]) is defined as

Dα(ρ∥σ):= 1
α−1 log Tr

[
ρασ1−α

]
(29)

for non-orthogonal ρ and σ with α ∈ (0, 1). Otherwise, it is
defined to be infinite.

Definition 3 of the power mean operator can be extended to
classical-quantum channels, using Petz-Rényi divergence [23].
Furthermore, (12) continues to hold, because (3) holds for
classical-quantum channels.

Theorem 1, continues to hold for classical-quantum channels
for α ∈ (0, 1). Even the proof of Theorem 1 directly extends
to classical-quantum channels, using the observations we have
made extended from the classical channels. The only ingredient
of the proof of Theorem 1 that we have not established for the
classical-quantum channels is the continuity of ∥µα,p∥1 in p
for the case when p ∈ P(X) for a finite set X, which was
established in [14, Proposition 4-(c)].

For α ∈ (0, 1), W : X → S(H), and p ∈ P(X), order α
Quantum Augustin information is defined as

Iα(p;W):= infσ∈S(H) Dα(W ∥σ|p). (30)

Customarily, the Augustin mean σα,p is defined as the mini-
mizer of the infimum on the right-hand side, see [3], [9], [14].
However, we define Augustin mean σα,p as

σα,p :=µfα,p
α,p . (31)

Theorem 3, given below, implies the equivalence of these two
definitions. Furthermore, (13), (27) and (31) imply

σα,p=
(∑

x∈X
p(x )e(1−α)Dα(W (x)∥σα,p)W (x )α

)1/α

. (32)

(32), holds for infinite-dimensional separable Hilbert spaces
and it is another way to present the fixed point property given
in (20), see [13, (38)]. Previously, the fixed-point property of
σα,p has only been proved for channels with finite-dimensional
Hilbert spaces H at the output, first by [3, Proposition 2-(b)]
and then by [10, Theorem IV.14].

Theorem 3. For any α ∈ (0, 1), W : X→S(H), p ∈ P(X)
with a finite support set, and a density operator σ on H,

Iα(p;W)=Dα(W ∥σα,p |p), (33)
Dα(W ∥σ|p)−Iα(p;W)≥D1∧α(σα,p∥σ). (34)

Proof. For any x ∈ X satisfying Dα(W (x )∥σα,p) < ∞, let
Wα,p(x ) ∈ S(H) be

Wα,p(x ):=σ
1−α
2

α,p W (x )ασ
1−α
2

α,p e(1−α)Mα,p(fα,p). (35)

Since fα,p=Dα(W ∥σα,p) by (11), (13), (31), we have
Dα(W ∥σ|p)−Dα(W ∥σα,p |p)=⟨p,Dα(W ∥q)− fα,p⟩

= 1
α−1

〈
p, lnTr

[
Wα,p

σ1−α

σ1−α
α,p

]〉
.

Here, we denote a noncommutative quotient for selfad-
joint operator T and positive semi-definite operator M with
supp(T ) ⊆ supp(M) as T

M :=M− 1
2TM− 1

2 .
On the other hand for any α ∈ (0, 1), Jensen’s inequality

and concavity of the logarithmic function imply
1

α−1

〈
p, lnTr

[
Wα,p

σ1−α

σ1−α
α,p

]〉
≥ 1

α−1 ln
〈
p,Tr

[
Wα,p

σ1−α

σ1−α
α,p

]〉
= 1

α−1 ln
〈
p,Tr

[
e(1−α)fα,pW ασ1−α

]〉
(a)
= 1

α−1 lnTr
[
σα
α,pσ

1−α
]

= Dα(σα,p∥σ),

where (a) follows from (32). Thus (33) follows (30) because
Dα(σα,p∥σ)>0 when σα,p ̸=σ by [23], [24].

Lemmas 1 and 2 continue to hold for classical-quantum
channels, as well. Their proofs, however, are more nuanced.

IV. DISCUSSION

The Augustin information and mean have been characterized
in terms of an optimization of a function defined on the input
set before, see [1, Lemma 35.7] and [13, Lemma 18]. The
primary novelty of our approach is the characterization of the
Augustin dual fα,p as the unique fixed point of the Augustin
operator, i.e., Theorem 1 in general and (13) in particular.

For the classical-quantum channels, the natural extension of
the definition of power mean given in (27) works with Petz–
Rényi divergence. For Petz–Rényi divergence operationally
relevant orders are the ones in (0, 1), see [25]. Thus we have
restricted our discussion for the classical-quantum channels to
Petz–Rényi divergence of orders in (0, 1) only.
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