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The Rényi Capacity and Center
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Dedicated to the memory of my dear aunt Fatma Nakiboğlu Aydiç.

Abstract—Rényi’s information measures —the Rényi informa-
tion, mean, capacity, radius, and center— are analyzed relying on
the elementary properties of the Rényi divergence and the power
means. The van Erven-Harremoës conjecture is proved for any
positive order and for any set of probability measures on a given
measurable space and a generalization of it is established for the
constrained variant of the problem. The finiteness of the order
α Rényi capacity is shown to imply the continuity of the Rényi
capacity on (0, α] and the uniform equicontinuity of the Rényi
information, both as a family of functions of the order indexed
by the priors and as a family of functions of the prior indexed by
the orders. The Rényi capacities and centers of various families
of Poisson processes are derived as examples.
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I. INTRODUCTION

Information transmission problems are often posed on mod-

els with finite sample spaces or on models with specific noise

structures, such as Gaussian or Poisson models. As a result,

certain fundamental observations such as the minimax theorem

for the Shannon capacity in terms of the Kullback-Leibler

divergence or the existence of a unique “capacity achieving

output distribution”, i.e. the existence of a unique Shannon

center, are established either for models with finite sample

spaces or for specific noise structures. In [56], Kemperman

proved these assertions far more generally by interpreting the

channel as a set of probability measures on a given measurable

space.

In a sense, Kemperman tacitly suggests a purely measure

theoretic understanding of the Shannon capacity and center

that is separated from their significance in the information

transmission problems. Even without the generality afforded

by the measure theoretic framework, such an understanding

is appealing because Shannon capacity and center come up in

various information transmission problems, with very different

operational meanings. Consider for example a finite set W of

probability mass functions on a finite output set Y.

• If we interpret W as a discrete channel that is to be used

multiple times, then the Shannon capacity of W is the

largest rate at which one can communicate reliably via

the channel W, [87].

• If we interpret W as a collection of sources that is to

be encoded by a lossless variable length source code,

then the Shannon capacity is a lower bound on the worst

redundancy among the members of W, which is off at

most by one for some lossless variable length source

code, [29], [36], [81].

In this paper we propose an analogous measure theoretic

understanding for the Rényi capacity and center. Our interest

in these concepts stems from their operational significance

in the channel coding problem; we elucidate that operational

significance in our concurrent paper [73]. Because of the

generality of the measure theoretic model we adopt in this

paper, we can discuss in [73] the operational significance of

these concepts for a diverse family of channels in a unified

framework. In the current paper our main aim is to present

an analysis starting from the measure theoretic first principles

and the elementary properties of the Rényi divergence. We

will first present a brief overview of the Rényi information,

divergence, and mean. Then we proceed with the analysis of

the Rényi capacity and center.

Deriving the technical results employed in [73] is one of

the main aims of the current paper; however, the scope of

our analysis is not restricted to the needs of the particular
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analysis we present in [73]. We aim to build a more complete

understanding of Rényi’s information measures that might lead

us to new analysis techniques for the problems we investigate

in [73] or for other information transmission problems involv-

ing Rényi’s information measures. Our abstract and general

framework is conducive to this purpose; in addition it allows

us to observe certain phenomena that cannot be observed in

simpler models. For example,1 the Rényi capacity is either

a continuous function of the order on (0,∞) or a finite and

continuous function of the order on (0, φ] that is infinite on

(φ,∞) for some φ ∈ [1,∞). This dichotomy, however, cannot

be observed with models with finite W or finite Y because the

Rényi capacity is bounded if either W or Y is finite.

In [79], Rényi provided an axiomatic characterization of

a family of divergences for pairs of probability mass func-

tions on a given finite sample space; the resulting family

of divergences, parametrized by positive real numbers, are

named after him. The definition of the Rényi divergence has

been extended to pairs of probability measures. Recently, van

Erven and Harremoës provided a comprehensive investigation

of various properties of the Rényi divergence in [31]. For any

α in [0,∞], the order α Rényi divergence between probability

measures w and q , denoted by Dα(w‖ q), is zero when w

is equal to q and non-negative when w is not equal to q .

Hence, given a measurable space (Y,Y) we can use the order

α Rényi divergence to measure the spread of any set of

probability measures W relative to any probability measure

q on (Y,Y) as follows:

Sα,W(q) , supw∈W Dα(w‖ q) . (1)

Sα,W(q) is called the order α Rényi radius of W relative

to q . By taking the infimum of Sα,W(q) over all probability

measures q on (Y,Y), we get an absolute measure of the

spread of W, called the order α Rényi radius of W,

Sα,W , infq∈P(Y) supw∈WDα(w‖ q) . (2)

Any probability measure q on the measurable space (Y,Y)
satisfying Sα,W(q) = Sα,W, is called an order α Rényi center

of W. The order one Rényi divergence is the Kullback-Leibler

divergence; hence the order one Rényi radius and center are

the Shannon radius and center referred to in [56].

The Shannon capacity, defined as the supremum of the

mutual information, is another measure of the spread of a

set of probability measures on a given measurable space.

In order to have a parametric generalization of the Shannon

capacity, similar to the one provided by the Rényi radius to

the Shannon radius, we need a parametric generalization of

the mutual information. Sibson [94] proposed one such para-

metric generalization using the Rényi divergence, called the

Rényi information, see Definition 4. For any set of probability

measures W on a given measurable space (Y,Y), probability

mass function p on W, and positive real number α, Iα(p;W)
is the order α Rényi information2 for prior p. The order one

Rényi information equals to the mutual information. For other

1This dichotomy is an immediate consequence of Lemma 15, see page 11.
2Sibson defines “the information radius of order α” through an infimum

and then derives a closed form expression for it in [94, Thm. 2.2]. We take
that closed form expression as the definition of the order α Rényi information.

positive real orders, the order α Rényi information can be

described in terms of Gallager’s function introduced in [35]:

Iα(p;W) = E0(ρ,p)
ρ

∣∣∣
ρ= 1−α

α

∀α ∈ R+ \ {1} (3)

where Gallager’s function E0(ρ, p) is defined for ρ > −1 as

E0(ρ, p) , − ln

∫ (∑
w
p(w)(dwdν )

1
1+ρ

)1+ρ
ν(dy). (4)

The order α Rényi capacity Cα,W is defined as the supremum

of the order α Rényi information Iα(p;W) over all priors p.

There are at least two other ways to define the Rényi in-

formation for which the order one Rényi information is equal

to the mutual information: one by Arimoto [4] and another

one by Augustin [6] and Csiszár [25]. A review of these

three definitions of the Rényi information has recently been

provided by Verdú [105]. Assuming W and Y to be finite sets,

Csiszár showed that the order α Rényi capacity for all three

definitions of the Rényi information are equal to one another

and to the order α Rényi radius, [25, Prop. 1].

The extension of Kemperman’s result [56, Thm. 1] about the

Shannon capacity and center given in Theorem 1, presented

in the following, is among the most important observations

about the Rényi capacity and center. Theorem 1 establishes the

equality of Cα,W and Sα,W for any positive order α and set of

probability measures W. Furthermore, it asserts the existence

of a unique order α Rényi center qα,W whenever Cα,W is finite

and characterizes the unique order α Rényi center in terms of

the order α Rényi means. These observations, however, have

been reported in various forms before, at least partially. In

[5], Augustin considered the orders in (0, 1), proved a result

equivalent to Theorem 1 for finite W’s and described how

this result can be extended to arbitrary W’s. Later, Augustin

established a result, [6, Thm. 26.6′], that implies Theorem 1

for all orders in α in (0, 2). Csiszár [25, Prop. 1] proved the

equality Cα,W = Sα,W for arbitrary positive order α assuming

W and Y are finite sets.

The equality of capacity to radius and the existence of

a unique center, are phenomena that have been observed

repeatedly in various contexts. In order to clarify the standing

of Theorem 1 among these results, we provide a more compre-

hensive discussion of the previous work on these fundamental

observations in §I-A.

The current paper and the concurrent paper [73] grew out of

a desire to understand Augustin’s proofs of the sphere packing

bound given in [5] and [6] more intuitively. Augustin’s proofs

are important because, among other things, they are the only

proofs of the sphere packing bound for non-stationary product

channels, even for the case of discrete channels. Concepts of

Rényi capacity, radius, and center provide a way to express

the principal novelty of Augustin’s method in a succinct and

intuitive way. We discuss the novel observation underlying

Augustin’s method and its promise briefly in §I-B.

Similar to Theorem 1, some of the observations that we

discuss in the paper have been reported before either in terms

of Rényi’s information measures [25], [94] or in terms of other

related quantities, such as Gallager’s function, [5], [6], [35],

[37]. But we also have a number of new observations that
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have not been reported before. We provide a tally of our most

important contributions in §I-C.

We conclude the current section with a summary of our

notational conventions presented in §I-D. It is worth mention-

ing that only §I-D is necessary to understand the rest of the

paper; readers may bypass other parts of the current section

depending on their interest and background.

The Rényi entropy [79] is another information measure, that

is intimately related to the information measures discussed in

this paper. The Rényi entropy [7], [77] and its variants [4],

[33], [84], [98] are of interest by themselves [14], [45], [52],

[78]; in addition they have been used to pose projection prob-

lems [61]–[63] related to guessing [3], [85], [96] and various

questions about the information transmission problems [10],

[12], [97]. Recently, there has been a revived interest in Rényi’s

information measures and their operational significance [11],

[15]–[17], [27], [34], [91], [100], [104], in general.

A. Radius, Center, and Capacity

The concepts of radius and center, as we use them, are

analogous to their counter parts in Euclidean geometry. Let

W be a set of points in the n dimensional Euclidean space

Rn and q be a point in the same space. Then one measure of

the spread of W relative to q is the infimum of the radii of

the q-centered spheres including all points of W, called the

Chebyshev radius of W relative to q:

SW(q) , supw∈W ‖w − q‖2 ∀W ⊂ Rn , q ∈ Rn .

If we do not require the centers of the spheres to be at a given

point q , then we get an absolute measure of the spread of W,

called the Chebyshev radius of W:

SW , infq∈Rn supw∈W ‖w − q‖2 ∀W ⊂ Rn .

If SW is finite, then there exists3 a unique Chebyshev center

qW satisfying SW(qW) = SW.

For any set of points in a metric space (X , d), one can

define the Chebyshev radius by replacing Rn with X and

‖w − q‖2 with d(w , q) in the definition. However, neither

the existence nor the uniqueness of the Chebyshev center is

a foregone conclusion for such generalizations. Garkavi [39,

Thm. 1] provides a three point set in a Banach space that

does not have a Chebyshev center. In the Hamming space of

length two binary strings, both (0, 0) and (1, 1) are Chebyshev

centers of the set W = {(0, 1), (1, 0)}. See [2, Ch. 15], for a

discussion of these concepts on the inner product spaces.

The Chebyshev radius is, in a sense, special because it is

defined via the distance measure —the metric corresponding

to the norm of the space for normed spaces and the metric of

the space for metric spaces— that is a part of the description

of the space. In principle, one can measure the relative and

the absolute spread of the subsets of X using any non-negative

function g on X×X satisfying g(x , x ) = 0 for all x ∈ X and

define a center accordingly. However, neither the existence nor

the uniqueness of such a center is guaranteed.

3The existence follows from the extreme value theorem for lower semi-
continuous functions. The uniqueness is a result of the uniform convexity of
finite dimensional Euclidean spaces.

When X in the above formulation is the space of all

probability measures P(Y) on a measurable space (Y,Y), one

can measure the spread of a subset W of P(Y) using the

Kullback-Leibler divergence. The resulting radius is nothing

but the Shannon radius of W and whenever the Shannon radius

is finite the existence of a unique Shannon center follows

from Kemperman’s result [56, Thm. 1]. The other assertion

of Kemperman’s result [56, Thm. 1] is the equality of the

Shannon radius of W and the Shannon capacity of W, defined

as the supremum of the mutual information I (p;W) over all

probability mass functions p on W. For the case where both W

and Y are finite sets, Kemperman’s result was already known

at the time [37, Thm. 4.5.1]; in [56] Kemperman attributes this

special case to Shannon [89]. For the case when Y is a finite

set, first Gallager [36, Thm. A] and then Davisson and Leon-

Garcia [29, Thm. 3] proved results equivalent to Kemperman’s.

Later, Haussler [49] proved Kemperman’s result assuming Y

to be a complete separable metric space, i.e. Polish space, and

Y to be the associated Borel σ-algebra.

Theorem 1, which we prove in the following, extends

Kemperman’s result to the Rényi capacity and center of other

orders. The existence of a unique center under the finite

capacity hypothesis and the equality of the capacity and the

radius have been confirmed in other contexts, as well.

1) Radius for f -Divergence: Csiszár [19], [21], Morimoto

[65], and Ali and Silvey [1] defined the f -divergence using

convex functions, satisfying f (1) = 0. The Kullback-Leibler

divergence4 is the f -divergence corresponding to the function

f (x ) = x ln x . For any convex function f satisfying f (1) = 0,

the absolute and relative f -radius are defined in terms of the

corresponding f -divergence as follows:

Sf ,W(q) , supw∈W Df (w‖ q) ,
Sf ,W , infq∈P(Y) supw∈WDf (w‖ q) .

The f -information and the f -capacity are defined in terms of

corresponding f -divergence as follows

If (p;W) , infq∈P(Y)Df (p⊛W‖ p ⊗ q) ,

Cf ,W , supp∈P(W) If (p;W)

where p⊛W is the probability measure whose marginal dis-

tribution on the support of p is p and whose conditional

distribution is w and p ⊗ q is the product measure.

The mutual information5 is the f -information corresponding

to f (x ) = x ln x . For W’s that are finite, Csiszár proved the

following two assertions, see [23, Thm. 3.2]:

• Cf ,W = Sf ,W for any f that is strictly convex at 1.

• There exists a unique f -center for any f that is strictly

convex, provided that Sf ,W is finite.

For f ’s that are strictly convex, it seems both assertions of

Csiszár [23, Thm. 3.2] can be extended to arbitrary W’s

4For positive finite orders other than one the Rényi divergence is not
an f -divergence itself; but it can be written in terms of an f -divergence:

Dα(w‖ q)= 1
α−1

ln(1+(α−1)Df (w‖ q)) for f (x)= xα−1
α−1

, as previously

pointed out in [20, (14)], [21, (1.10)], [22, (6)], [82, (1)], [83, (80)].
5For positive finite orders other than one the Rényi information can

be written in terms of an f -information, using the analogous relation for

divergences: Iα(p;W)= 1
α−1

ln(1+(α−1)If (p;W)) for f (x)= xα−1
α−1

.
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using the technique employed by Kemperman, as Kemperman

himself suggested in [56]. Gushchin and Zhdanov [44] proved

that Cf ,W equals to Sf ,W for any convex function f and

any set of probability measures W provided that Y is a

complete separable metric space, i.e. Polish space, and Y is

the associated Borel σ-algebra.

2) Radius in Quantum Information Theory: In this paper,

we assume W to be a set of probability measures on a given

measurable space. This is a generalization of the case when W

is a set of probability mass functions on a given finite set Y,

i.e. the finite sample space case. Another generalization of the

finite sample space case is obtained by assuming W to be a

set of |Y|-by-|Y| positive semidefinite, trace one, Hermitian

matrices. In quantum information theory such matrices are

called the density matrices; they represent the states of a

|Y| dimensional Hilbert space H, [51, §1.2]. The set of

all such states is denoted by S(H). There is a one-to-one

correspondence between the diagonal members of S(H) and

the probability mass functions on Y. As a result, statements

about subsets of S(H) can be interpreted as generalizations

of the corresponding statements about sets of probability mass

functions on Y.

The definition of the Kullback-Leibler divergence has been

extended to the members of S(H); it is, however, customarily

called the quantum relative entropy [51, §3.1.1]:

D(w‖ q) , Trw(lnw − ln q) ∀w , q ∈ S(H). (5)

This definition can be interpreted as an extension because for

the diagonal members of S(H), the quantum relative entropy

as defined in (5) is equal to the Kullback-Leibler divergence

between the corresponding probability mass functions. For any

subset W of S(H), the quantum Shannon radius is defined as

infq∈S(H) supw∈W D(w‖ q).
The definition of mutual information has been extended as

well, but it is called the transmission information [51, §4.1.1]:

I(p;W) ,
∑

w∈W
p(w)D(w‖ qp) ∀p ∈ P(W) (6)

where qp =
∑

w∈W
p(w)w . Note that when W includes only

diagonal members of S(H), the above quantity equals to the

mutual information for the prior p on the corresponding set of

probability mass functions. The quantum Shannon capacity is

defined as the supremum of I(p;W) over all probability mass

functions p on W with finite support.

The quantum Shannon capacity and radius are equal to one

another for arbitrary W ⊂ S(H) provided that H is a finite

dimensional Hilbert space,6 [51, Thm. 4.1], [74, Thm. 3.5],

[86, (19)]. This implies the equality of Shannon capacity and

radius in the classical case provided that Y is a finite set.

However, neither Kemperman’s result in [56] nor the weaker

result by Haussler in [49] require Y to be finite. Thus those

results are not subsumed by the quantum Information theoretic

versions of Kemperman’s result presented in [51], [74], [86].

6Results in [74] and [86] were proved with additional assumptions. In
[74], Ohya, Petz, and Watanabe assumed W to be the image of an arbitrary
Hilbert space under the channeling transformation. In [86], Shumacher and
Westmoreland assumed W to be a closed convex set. The existence of a unique
quantum Shannon center is implicit in both [74] and [86].

The situation is similar for the quantum Rényi capacity,

radius, and center. All the results on the equality of the

quantum Rényi capacity and radius that we are aware of [27,

Thm. 6], [51, (4.74)], [58, Lemma I.3], [66, Thm. IV.8], [67,

Prop. 4.2], [106, Lemma 14] assume W to be a subset of S(H)
for a finite dimensional Hilbert space H. Hence, to the best

of our knowledge, Theorem 1 is not subsumed by any of the

known results in quantum information theory.

B. Augustin’s Method and the Rényi Center

Augustin’s proof of the sphere packing bound in [5] is

one of the first few complete proofs of the sphere packing

bound. Unlike its contemporaries by Shannon, Gallager and

Berlekamp in [88] and by Haroutunian in [46], Augustin’s

proof does not assume either the stationarity of the channel or

the finiteness of the input set because it does not rely on a type

based expurgation (i.e. a fixed composition argument). After

decades, Augustin’s proofs in [5] and [6] are still the only

proofs of the sphere packing bound for non-stationary product

channels, even in the finite input alphabet case. Augustin’s

method has been applied to problems with feedback, as well.

Using a variant of his method, Augustin provides a proof

sketch for the derivation of the sphere packing bound for codes

on discrete stationary product channels with feedback in [6];

see [72] for a complete proof following this proof sketch. What

we call the discrete stationary product channels with feedback

are customarily called DMCs with feedback.

Despite their strength and generality, Augustin’s derivations

of the sphere packing bound is scarcely known to date, even

among the specialists working on related problems. In [73,

§IV], we derive sphere packing bounds using Augustin’s

method in a way that makes the roles of the Rényi capacity

and center more salient and precise. Our bound for the product

channels is sharper than the corresponding bounds in [5] and

[6]. In [73, §V], we present a new proof of the sphere packing

bound for the discrete product channels with feedback that

facilitates the ideas of Haroutunian [47] and Sheverdyaev [92],

as well as Augustin [5], [6]. Our new proof for the case with

feedback holds for non-stationary channels satisfying certain

stationarity hypothesis. In [73, Appendix B], we discuss other

aspects of the operational significance of Rényi capacity and

information for the channel coding problem.

The generality and strength of Augustin’s results compel

one to ask: What is the principle behind Augustin’s proofs of

the sphere packing bound? A succinct answer exists for those

who are already familiar with the concepts of Rényi capacity,

radius and center.7 In our judgment, the novel observation

behind Augustin’s proofs is the following:

limφ→α Sα,W(qφ,W) = Cα,W.

In words, by choosing φ close enough to α, the order α
Rényi radius relative to the order φ Rényi center can be made

arbitrarily close to the order α Rényi capacity, which equals

7To be precise, Augustin does not work with Rényi’s information measures
either in [5] or in [6]. It is, however, possible to restate his observations
in terms of Rényi ’s information measures. His approach is eloquent and
insightful, irrespective of the terms he chose to employ.
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to the order α Rényi radius. This observation seems benign

enough to hold for other parametric families of divergences

and corresponding capacities, radii, and centers. Thus we

believe that Augustin’s method can probably be used to derive

tight outer bounds in other information transmission problems.

C. Main Contributions

(1) If W and Y are finite sets, the continuity of the Rényi in-

formation is evident, both as a function of the order and as

a function of the prior. In their proof of the sphere packing

bound [88, p. 101], while proving the continuity of the

Rényi capacity in the order on (0, 1) —for the finite W

and Y case— Shannon, Gallager, and Berlekamp asserted

that the Rényi information is in fact equicontinuous as

a family of functions of the order on (0, 1) indexed by

the priors. We strengthen their assertion by replacing the

finiteness hypothesis on the sets W and Y with a finiteness

hypothesis for the Rényi capacity, including orders greater

than one, and establishing uniformity of the equiconti-

nuity, see Lemma 16-(f). Furthermore, we show that the

Rényi information is, also, uniformly equicontinuous when

considered as a family of functions of the prior indexed

by the orders, see Lemma 16-(e).

(2) Reflecting on [31, Thm. 37] for countable Y’s at α=∞,

van Erven and Harremoës conjectured the following:

Conjecture ( [31, Conjecture 1]). If Sα,W < ∞ for an

α in (0,∞] and a W⊂P(Y) then there exists a unique

qα,W ∈ P(Y) satisfying Sα,W = supw∈W Dα(w‖ qα,W).
Furthermore, for all q ∈ P(Y) we have

supw∈WDα(w‖ q) ≥ Sα,W +Dα(qα,W‖ q) .

This conjecture is confirmed in Lemma 19 for the first

time.8 Lemma 19 implicitly asserts the existence of a

unique qα,W, which is proved in Theorem 1. This asser-

tion, however, is not entirely new; Augustin proved an

equivalent assertion for orders in (0, 2) in [6, Thm. 26.6′]
and gave a proof sketch for an equivalent assertion for

orders in (0, 1) in [5].

In Appendix A, we define Cα,W,A as the supremum

of Iα(p;W) over all priors p in A and generalize the

van Erven-Harremoës bound to the convex A case, see

Definition 10 and Lemma 25.

(3) Our framework allows us to pose and answer certain

questions that are non-trivial only for infinite W’s, i.e.

infinite subsets of P(Y).
(a) There exists a countable subset W′ of W such that

Cα,W′ = Cα,W for all α in [0,∞], Lemma 15-(b).

(b) If Cη,W is finite, then for all ǫ > 0 there exists a finite

subset W′ of W such that Cα,W′ > Cα,W − ǫ for all

α in [ǫ, η], Lemma 15-(g).

(c) Cα,clW = Cα,W for all α in (0,∞] where clW is

the closure of W in the topology of setwise conver-

gence, Lemma 24-(b). This has been pointed out by

8We were notified in [48] that van Erven and Harremoës had a proof
establishing their conjecture in [31] under some regularity conditions, at the
time.

Csiszár and Körner for α equals one case for finite Y

in [26, Problem 8.10(b)].

D. Notational Conventions

For any set Y, we denote the set of all subsets of Y by 2Y

and the set of all probability measures on finite subsets of Y

by P(Y). For each p ∈ P(Y), i.e. for each probability mass

function (p.m.f.), we denote the set of all y’s in Y for which

p(y) > 0, by supp(p) and call it the support of p.

We call the pair (Y,Y) a measurable space iff Y is a σ-

algebra of the subsets of Y. On a measurable space (Y,Y), we

denote the set of all finite signed measures by M(Y), the set

of all finite measures by M+

0(Y), the set of all non-zero finite

measures by M+

(Y), and the set of all probability measures

by P(Y). A countable collection E of the subsets of Y is called

a Y-measurable partition of Y iff ∪E∈E = Y, ∅ /∈ E , E∩ Ẽ = ∅
for all E, Ẽ ∈ E , and E ⊂ Y , [8, Def. 10.8.1].

A measure µ on the measurable space (Y,Y) is absolutely

continuous with respect to another measure ν on (Y,Y), i.e.

µ≺ν, iff µ(E) = 0 for any E ∈ Y such that ν(E) = 0.

Measures µ and ν are equivalent, i.e. µ ∼ ν, iff µ≺ν and

ν≺µ. Measures µ and ν are singular, i.e. µ ⊥ ν, iff there

exists an E ∈ Y such that µ(E) = ν(Y \ E) = 0.

A subset W of M+

(Y) is absolutely continuous with respect

to a measure ν, i.e. W≺ν, iff w≺ν for all w ∈ W. A σ-finite

measure ν is a reference measure for W iff W≺ν. A subset

W of M+

(Y) is uniformly absolutely continuous with respect

to ν, i.e. W≺uniν, iff for every ǫ > 0 there exists a δ > 0
such that w(E) < ǫ for all w ∈ W provided that ν(E) < δ.

By [93, p. 366 & Thm. 2], µ≺ν iff {µ}≺uniν. Two subsets

W and U of P(Y) are singular, i.e. W ⊥ U, iff there exists an

E ∈ Y such that w(E) = 0 for all w ∈ W and u(Y \ E) = 0
for all u ∈ U.

We denote the Borel σ-algebra for the usual topology of the

real numbers by B(R). We denote the essential supremum of

a Y-measurable, i.e. (Y,B(R))-measurable, function f for the

measure ν on (Y,Y) by ess supν f (y), i.e.

ess supν f , inf{γ : ν({y : f (y) > γ}) = 0}.
We denote the integral of a measurable function f on (Y,Y)
with respect to the measure ν by

∫
f ν(dy) or

∫
f (y)ν(dy).

We denote the integral by
∫
f dy or

∫
f (y)dy , as well, if it is

on the real line and with respect to the Lebesgue measure. If

ν is a probability measure, then we also call the integral of f

with respect to ν the expectation of f or the expected value

of f and denote it by Eν [f ] or Eν [f (Y)].
While discussing the continuity of measure valued functions

and functions defined on sets of measures, we use either

the topology of setwise convergence or the total variation

topology. The topology of setwise convergence is the topology

generated by the sets of the form {µ : |µ(E)− t | < ǫ} for

some E ∈ Y , t ∈ R+ , ǫ ∈ R+ ; see [8, §4.7(v)] for a more

detailed discussion. The total variation topology is the metric

topology generated by the total variation norm. For any µ in

M(Y) the total variation norm of µ is defined as

‖µ‖ , supE∈Y µ(E) − µ(Y \ E).
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As a consequence of the Lebesgue decomposition theorem [30,

5.5.3] and the Radon-Nikodym theorem [30, 5.5.4] we have

‖µ‖ =

∫ ∣∣∣dµdν
∣∣∣ν(dy) ∀µ, ν : µ≺ν.

Our notation will be overloaded for certain symbols; how-

ever, the relations represented by these symbols will be clear

from the context. We denote the products of topologies [30,

p. 38], σ-algebras [30, p. 118], and measures [30, Thm. 4.4.4]

by ⊗. We denote the Cartesian product of sets [30, p. 38] by

×. We denote the absolute value of real numbers and the size

of sets by |·|. For extended real valued functions f and g on

Y, f ≤ g iff f (y) ≤ g(y) for all y ∈ Y. For measures µ and

ν on (Y,Y), µ ≤ ν iff µ(E) ≤ ν(E) for all E ∈ Y .

For x , y ∈ R , x∧y is the minimum of x and y . For extended

real valued functions f and g on Y, f ∧ g is the pointwise

minimum of f and g . For µ,w ∈ M(Y), µ∧w is the unique

measure satisfying dµ∧w

dν = dµ
dν ∧ dw

dν for any ν satisfying µ≺ν
and w≺ν. If F is a set of real valued functions, then ∧f ∈Ff

is the extended real valued function obtained by taking the

pointwise infimum of f ’s in F. For a U ⊂ M(Y) satisfying

w ≤ u for all u ∈ U for some w ∈ M(Y), ∧u∈Uu is the

measure which is the infimum of U with respect to the partial

order ≤. The existence of a unique infimum is guaranteed by

[8, Thm. 4.7.5]. We use the symbol ∨ analogously to ∧ but

we represent maxima and suprema with it, rather than minima

and infima.

II. PRELIMINARIES

We commence our discussion by defining the mean measure

and analyzing it, first as a function of the order for a given

prior then as a function of the prior for a given order. After

that we define the Rényi information using the mean measure

and analyze it as a function of the order and the prior

using the analysis of the mean measure. Then we define the

Rényi divergence and review those features of it that will be

needed in our analysis. We conclude the current section by

defining the Rényi mean and deriving an alternative expression

for the Rényi information in terms of the Rényi divergence

using the Rényi mean.

A. The Mean Measure

The weighted power means are generalizations of the

weighted arithmetic mean. For any positive real number α
and p.m.f. p on non-negative real numbers, the order α mean

for the prior p is (
∑

x p(x )x
α)

1/α. For any prior p, the

order α weighted mean is a nondecreasing and continuously

differentiable function of α on R+ . Hence we can calculate its

limit as α approaches zero, or infinity, using the L’Hospital’s

rule [80, Thm. 5.13]:

limα↓0
(∑

x
p(x )xα

)1/α

=
∏

x
x p(x)

limα↑∞
(∑

x
p(x )xα

)1/α

= maxx :p(x)>0 x .

The order α mean of measures for the prior p is defined

via the pointwise order α mean of their Radon-Nikodym

derivatives for the prior p. In the following, we confine our

discussion to the means of probability measure.

Definition 1. Let p be a p.m.f. on P(Y) and ν be a reference

measure for w ’s with positive p(w). Then the order α mean

of the Radon-Nikodym derivatives for the prior p is9

dµα,p

dν ,





∏
w :p(w)>0

(
dw
dν

)p(w)
if α = 0

(∑
w p(w)

(
dw
dν

)α)1/α

if α ∈ R+

maxw :p(w)>0
dw
dν if α = ∞

ν-a.e. (7)

The order α mean measure for the prior p is defined as

µα,p(E) ,

∫

E

dµα,p

dν ν(dy) ∀E ∈ Y. (8)

In (7) and throughout this section sums of the form
∑

w

stands for sums of the form
∑

w :p(w)>0. In (7), w is a dummy

variable used to express the elements of P(Y), i.e. probability

measures on (Y,Y). The probability mass assigned to each w

by p is denoted by p(w). The reference measure ν is absent

from the symbol for the mean measure because mean measure

does not depend on the choice of the reference measure: Let

µ̃α,p be the mean measure obtained using a reference measure

ν̃ instead of ν; then

µα,p(E) = µ̃α,p(E) ∀α ∈ [0,∞] and ∀E ∈ Y.

This follows from a standard application of the Lebesgue

decomposition theorem and the Radon-Nikodym theorem.

We are interested in the mean measure primarily as a tool

to define and analyze the Rényi information. In [6, §26],

Augustin introduced the mean measure and derived some

of the observations we present in Lemmas 1-4, albeit for

different parametrizations of the order. Augustin, however, did

not define or analyze the Rényi information in [6]. Proofs of

Lemmas 1-4 are presented in Appendix D.

Lemma 1. Let p be a p.m.f. on P(Y).
(a) µα,p ∼ µ1,p and |supp(p)|− 1

α ≤ ‖µα,p‖ ≤ |supp(p)| for

any α ∈ (0,∞]. Furthermore, ‖µ1,p‖ = 1.

(b) µ0,p≺w for any w ∈ supp(p) and ‖µ0,p‖ ≤ 1.

The main consequence of Lemma 1 is that µα,p≺µ1,p for

all α ∈ [0,∞]. Hence, we can describe and analyze the mean

measures via their Radon-Nikodym derivatives with respect to

the order one mean measure. We build our analysis of the mean

measure as a function of the order around this observation.

First, we analyze
dµα,p

dµ1,p
as a function the order α in Lemma

2; then use the dominated convergence theorem to obtain the

corresponding results for µα,p in Lemma 3.

Definition 2. Let p be a p.m.f. on P(Y) and α be in [0,∞].
Then the order α density for the prior p is

πα,p ,
dµα,p

dµ1,p
. (9)

9For each w with positive p(w), dw
dν

exists for all y except for a ν-
measure zero set by the Radon-Nikodym theorem [30, 5.5.4]. Since there are

only finite number of w ’s with positive p(w),
dµα,p

dν
exists as a function of

α from [0,∞] to R≥0 for all y except for a ν-measure zero set.
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Note that for any p.m.f. p on P(Y), the order α density for

the prior p is a Y-measurable function from Y to R by the

Radon-Nikodym theorem [30, 5.5.4].

The order α posteriors defined in the following provides us

an alternative way to express πα,p and its derivatives.

Definition 3. Let p be a p.m.f. on P(Y) and α be a positive

real number. Then for each y ∈ Y the order α posterior p[α]
is a p.m.f. on P(Y) given by

p[α](w |y) ,
{
p(w)

(
dw

dµα,p

)α
if p(w) > 0

0 else
. (10)

The order α posterior p.m.f. p[α] is a Y-measurable function

for each w . The order one posterior p.m.f. p[1] is also called

the posterior p.m.f., in accordance with the usual terminology.

Lemma 2. For any p.m.f. p on P(Y) the following statements

hold for µ1,p-almost every y .

(a) δ
1−α
α ≤ πα,p ≤ 1 for α ∈ (0, 1] and 1 ≤ πα,p ≤ δ

1−α
α for

α ∈ [1,∞) where δ = minw :p(w)>0 p(w). Furthermore,

πα,p(y)=






∏
w :p(w)>0

(
p[1](w|y)

p(w)

)p(w)

α=0
(∑

w

p[1](w |y)αp(w)1−α
)1/α

α∈R+

maxw :p(w)>0
p[1](w|y)

p(w) α=∞

.

p[α](w |y)=
{

p[1](w|y)αp(w)1−α

πα,p
α if p(w) > 0

0 else
.

(b) πα,p is a smooth function of α on R+ . Furthermore, the

first two derivatives of πα,p are given by

d
dαπα,p =

πα,p

α2

∑
w
p[α](w |y) ln p[α](w|y)

p(w) .

d2

dα2 πα,p = 1−α
πα,p

(
d
dαπα,p

)2 − 2
α

d
dαπα,p

+
πα,p

α3

∑
w
p[α](w |y)

(
ln

p[α](w|y)
p(w)

)2
.

(c) (πα,p)
α is log-convex10 in α on R+ , i.e. for any β ∈ (0, 1)

and α0, α1 ∈ R+

(παβ ,p)
αβ ≤ (πα1,p)

βα1(πα0,p)
(1−β)α0

where αβ = βα1 + (1− β)α0. Furthermore, for α1 6= α0

the inequality is strict iff there exist w , w̃ ∈ supp(p) such

that
p[1](w|y)

p(w) > p(w̃ |y)
p(w̃) > 0.

(d) If there exists a w such that p[1](w |y) > p(w), then

πα,p(y) is bounded, continuous, and monotone increasing

in α on [0,∞], else πα,p(y) = 1 for all α in [0,∞].

Lemma 2 establishes the density πα,p as a smooth function

µ1,p-a.e. and provides expressions for its first two derivatives.

These derivatives are Y-measurable functions because πα,p

10Both of the following statements are equivalent to the log-convexity of
(πα,p)α in α: “π 1

1+ρ
,p is log-convex in ρ” and “For any β ∈ [0, 1] and

α0, α1 ∈ (0,∞], παβ,p ≤ (πα0,p)
1−β(πα1,p)

β where αβ is αβ = [(1−

β)(α0)−1 + β(α1)−1]−1.”

and p[α] are Y-measurable. Then using their µ1,p-integrals we

can define two mappings:

µ′
α,p(E) ,

∫

E

(π′
α,p)µ1,p(dy) ∀E ∈ Y, (11)

µ′′
α,p(E) ,

∫

E

(π′′
α,p)µ1,p(dy) ∀E ∈ Y (12)

where π′
α,p and π′′

α,p are shorthands for d
dαπα,p and d2

dα2 πα,p .

Note that we have not claimed that either of these mappings

is defining a measure for each α. Lemma 3 given in the

following establishes that fact and analyzes the mean measure

µα,p as a function of the order α.

Lemma 3. For any p.m.f. p on P(Y).
(a) µα,p is a continuous function of α from [0,∞] with

its usual topology to M+

0(Y) with the total variation

topology.

(b) µ′
α,p is a continuous function of α from (0,∞) with

its usual topology to M+

0(Y) with the total variation

topology. Furthermore, d
dαµα,p = µ′

α,p in the sense that

d
dαµα,p(E)

∣∣
α=φ

= µ′
φ,p(E) ∀E ∈ Y, ∀φ ∈ (0,∞).

(c) µ′′
α,p is a continuous function of α from (0,∞) with its

usual topology to M(Y) with the total variation topology.

Furthermore, d
dαµ

′
α,p = µ′′

α,p in the sense that

d
dαµ

′
α,p(E)

∣∣
α=φ

= µ′′
φ,p(E) ∀E ∈ Y, ∀φ ∈ (0,∞).

(d) ‖µα,p‖α is a log-convex function of α on (0,∞) such that

limα↓0 ‖µα,p‖α = ess supµ1,p

∑
w :p[1](w|y)>0

p(w).

The log-convexity is strict everywhere on (0,∞), unless

there exists a γ ≥ 1 satisfying µ1,p(A(p, γ)) = 1 for

A(p, γ) = {y :
p[1](w|y)

p(w) = γ, ∀w : p[1](w |y) > 0}. If

there exists such a γ, then ‖µα,p‖ = γ
α−1
α .

(e) ‖µα,p‖ is a continuous and nondecreasing function of

α from [0,∞] to [0, |supp(p)|]. If there exist w , w̃ in

supp(p) such that w 6= w̃ , then ‖µα,p‖ is monotone

increasing everywhere on (0,∞), else ‖µα,p‖ = 1 for

all α in [0,∞].

Lemma 3 described the properties of the mean measure as

a function of the order for a fixed prior. Lemma 4, given in

the following, describes the properties of the mean measure

as a function of the prior for a fixed order.

Lemma 4. Let (Y,Y) be a measurable space.

(a) If α ∈ [0, 1], then µα,p and ‖µα,p‖ are convex functions

of p from P(P(Y)) to M+

0(Y) and [0, 1], respectively.

(b) If α∈ [1,∞], then µα,p and ‖µα,p‖ are concave functions

of p from P(P(Y)) to M+

(Y) and [1,∞), respectively.

(c) For any p1, p2 ∈ P(P(Y)) such that p1 6= p2, let s∧,

s1 and s2 be s∧ , 2 p1∧p2

2−‖p1−p2‖ , s1 , 2p1−p1∧p2

‖p1−p2‖ , and

s2 , 2p2−p1∧p2

‖p1−p2‖ . Then s∧, s1, s2 ∈ P(P(Y)) and

p1 = (1− ‖p1−p2‖
2 )s∧ + ‖p1−p2‖

2 s1,

p2 = (1− ‖p1−p2‖
2 )s∧ + ‖p1−p2‖

2 s2,

s1 ⊥ s2.
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(d) If α ∈ (0, 1], then for any p1, p2 ∈ P(P(Y)) we have

‖µα,p1 − µα,p2‖ ≤ 1
α‖p1 − p2‖.

Hence µα,p is a Lipschitz continuous function of p for the

total variation topology for α ∈ (0, 1].
(e) If α ∈ [1,∞), then for any p1, p2 ∈ P(P(Y)) we have

‖µα,p1−µα,p2‖ ≤ (12‖p1−p2‖)
1
α ‖µα,s1−µα,s2‖.

B. The Rényi Information

Definition 4. Let W be a subset of P(Y) and p be a p.m.f.

on W. Then the order α Rényi information for the prior p is

Iα(p;W),






ess inf
µ1,p

ln 1∑
w

1{p[1](w|y)>0}p(w) α=0

α
α−1 ln ‖µα,p‖ α∈R+\{1}
Eµ1,p

[∑
w

p[1](w |y) ln p[1](w|y)
p(w)

]
α=1

ln ‖µ∞,p‖ α=∞

(13)

Sibson introduced this quantity11 in [94] using works of

Rényi [79] and Csiszár [21], [22]. Prior to [94] in [35],

Gallager introduced E0(ρ, p), which is nothing but a scaled

version of the Rényi information; see (3) and (4).

Note that Iα(p;W) has the same value for all W’s for

which p is in P(W). Hence, in principle, one can use Iα(p)
rather than Iα(p;W) to denote the Rényi information. Although

this unconventional symbol would be more coherent with the

one we use for the mean measure, we refrain from using

it for the fear of alienating readers who prefer the custom-

ary symbol. Another justification for using the conventional

notation is the effect of the richness of W — as measured

by supp∈P(W) Iα(p;W)— on the continuity of Iα(p;W) as a

function of p, see Lemma 16-(e).

Properties of the Rényi information as a function of the

order for fixed prior and as a function of the prior for fixed

order are presented in Lemmas 5 and 6, respectively. Proofs

of Lemmas 5 and 6 are presented in Appendix E.

Lemma 5. For any subset W of P(Y) and p.m.f. p on

W, I∞(p;W) ≤ ln |supp(p)| and Iα(p;W) is a non-negative

continuously differentiable nondecreasing function of α on R+

such that

I0(p;W) = limα↓0 Iα(p;W) , (14)

I∞(p;W) = limα↑∞ Iα(p;W) , (15)

d
dα Iα(p;W) =





α
α−1

‖µ′
α,p‖

‖µα,p‖ − ln ‖µα,p‖
(α−1)2 α∈R+\{1}

µ′′
1,p(Y)+2‖µ′

1,p‖−‖µ′
1,p‖2

2 α = 1
. (16)

If µ1,p(A(p, γ)) = 1 for some γ ≥ 1, then Iα(p;W) = ln γ for

all α ∈ [0,∞], else d
dα Iα(p;W) > 0 for all α ∈ R+ , where

A(p, γ) , {y :
p[1](w|y)

p(w) = γ ∀w with positive p[1](w |y)}.

11Sibson called infq∈P(Y) Dα(p⊛W‖ p ⊗ q) “the information radius of
order α” and proved that it equals to the expression given in Definition 4
in [94, Thm. 2.2]. Our presentation is different: Definition 4 does not refer
to any infimum; equivalence of the alternative definition is established in
Lemma 14. This is similar to the way things are, usually, handled for the
mutual information: the mutual information is defined without any reference
to an infimum [18, (2.28)], later it is shown to be equal to the infimum of
certain Kullback-Leibler divergence [18, Lemma 10.8.1].

Using the definitions of µ′
α,p and µ′′

α,p , given in (11) and

(12), together with Lemma 2-(b), we get the following two

alternative expressions for the derivative of Iα(p;W) with

respect to the order on R+

d
dαIα(p;W)=






1
(α−1)αE̟α

[
ln

p[α](w|y)
p(w) −Iα(p;W)

]
α 6=1

1
2E̟1

[(
ln

p[1](w|y)
p(w) −I1(p;W)

)2]
α=1

(17)

=





1
(α−1)2E̟α

[
ln

p[α](w|y)πα,p

p[1](w|y)‖µα,p‖

]
α 6=1

1
2E̟1

[(
ln

p[1](w|y)
p(w) −I1(p;W)

)2]
α=1

(18)

where ̟α is a probability measure on Y ⊗ 2 supp(p) whose Y

marginal is
µα,p

‖µα,p‖ and whose conditional distribution is p[α].

The continuity and the convexity properties of the Rényi in-

formation in the prior follow from the corresponding properties

of the mean measure described in Lemma 4.

Lemma 6. Let W be a subset of P(Y).
(a) If α ∈ [0, 1), then Iα(p;W) is a non-negative quasi-

concave function of p on P(W) that is continuous for

the total variation topology on P(W).
(b) If α ∈ [1,∞], then Iα(p;W) is a non-negative concave

function of p on P(W).

Gallager [35, p. 18] and Csiszár [23, Lemma 3.2] estab-

lished the continuity of Iα(p;W) in p on P(W), for finite W’s.

For arbitrary W’s, however, Iα(p;W) is continuous only for

orders in (0, 1); for orders in [1,∞], Iα(p;W) is continuous in

p on P(W) iff supp∈P(W) Iα(p;W) is finite, see Lemma 16-(d).

The finiteness of supp∈P(W) Iα(p;W) also implies the uniform

equicontinuity of the Rényi information, see Lemma 16-(e,f).

The discontinuity of various Shannon information measures

for countably infinite output sets have previously been pointed

out by Ho and Yeung in [53].

C. The Rényi Divergence

Definition 5. Let w and q be two non-zero finite measures

on the measurable space (Y,Y); then the order α Rényi diver-

gence between w and q is

Dα(w‖ q),






− ln q
(
dw
dν > 0

)
α=0

1
α−1 ln

∫ (
dw
dν

)α (dq
dν

)1−α
ν(dy) α∈ R+\{1}

∫
dw
dν

(
ln dw

dν −ln dq
dν

)
ν(dy) α=1

ln ess supν
dw
dν /

dq
dν α=∞

(19)

where ν is any measure satisfying w≺ν and q≺ν.

The Rényi divergence is usually defined for probability

measures; the inclusion of finite measures allows us to express

certain observations, such as Lemma 8 given in the following,

more succinctly.12 Nonetheless, the propositions derived for

the usual definition with probability measures suffice for our

purposes most of the time. We appropriate all the propositions

we need for our analysis, except Lemma 8, from the recent

12It is also convenient while studying the concept of the Rényi-Gallager
information and capacity, see [69] and [70].
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paper of van Erven and Harremoës [31]. The equivalence of

Definition 5 and the one used by van Erven and Harremoës in

[31] for probability measures follows from [31, Thm. 4-6].

Lemma 7 ( [31, Thm. 3, Thm. 7]). For all w , q ∈ P(Y),
Dα(w‖ q) is a nondecreasing and lower semicontinuous func-

tion of α on [0,∞] that is continuous on [0, (1∨χw,q)] where

χw,q , sup{α : Dα(w‖ q) <∞}.

Lemma 8 is evident from the definition of Rényi divergence.

Lemma 8. Let w , q , v be non-zero finite measures on (Y,Y)
and α be an order in [0,∞].

• If v ≤ q , then Dα(w‖ q) ≤ Dα(w‖ v).
• If q = γv for some γ ∈ R+ and either w is a probability

measure or α 6= 1, then Dα(w‖ q) = Dα(w‖ v)− ln γ.

Let w and q be two probability measures on the measurable

space (Y,Y) and G be a sub-σ-algebra of Y . Then the identities

w|G(E) = w(E) for all E ∈ G and q|G(E) = q(E) for all E ∈ G
uniquely define probability measures w|G and q|G on (Y,G).
In the following, we denote Dα

(
w|G
∥∥ q|G

)
by DG

α (w‖ q).
Lemma 9 ( [31, Thm. 9]). For any α ∈ [0,∞], probability

measures w and q on (Y,Y) and sub-σ-algebra G ⊂ Y

Dα(w‖ q) ≥ DG
α (w‖ q) .

Lemma 10 ( [31, Thm. 3, Thm. 31]). For any α ∈ [0,∞],
probability measures w and q on (Y,Y)

Dα(w‖ q) ≥ 1∧α
2 ‖w − q‖2. (20)

For orders in (0, 1], the bound given in (20) is called the

Pinsker’s inequality; it has been proved by Csiszár [21] for

α = 1 case and by Augustin13 [6] and Gilardoni [42] for α ∈
(0, 1) case. Furthermore the constant α/2 is the best possible:

for any γ < α/2 there are probability measures w and q such

that γ‖w − q‖2 > Dα(w‖ q). Determination of best lower

bound on the Rényi divergence in terms of the total variation

is an interesting and important problem but it is beyond the

scope of the current manuscript.

Remark 1. Kullback [59], [60] bounded D1(w‖ q) from

below by ‖w − q‖2/2+ ‖w − q‖4/36. Hence, Pinsker’s inequality

is tight only for ‖w − q‖ ≈ 0. Vajda [103] established

D1(w‖ q) ≥ ln(2+‖w−q‖
2−‖w−q‖ ) −

2‖w−q‖
2+‖w−q‖ . Vajda’s inequality is

tight not only for ‖w − q‖ ≈ 0 but also for ‖w − q‖ ≈ 2.

Fedotov, Harremoës , and Topsøe [32] determined the tight

lower bound on D1(w‖ q) in terms of ‖w − q‖ in a parametric

form. Gilardoni [40], [41] proved an equivalent result for

f -divergences for twice differentiable f ’s. Gilardoni’s result

implies tight bounds for Rényi divergences, which are recently

derived in a more explicit form by Sason [82, Prop. 1]. The

core observation in the derivation of tight Vajda’s inequalities

is the sufficiency of the probability measures on binary alpha-

bets. Guntuboyina, Saha, and Schiebinger [43] have recently

generalized this observation considerably and explained how

one can determine tight bounds on an f -divergence when its

13 ‖w−q‖2

2
≤ 1−e(α−1)Dα(w‖q)

α(1−α)
for all w , q ∈ P(Y) and α ∈ [−1, 2] by

[6, Lemma 26.5a]. This implies (20) for α ∈ (0, 1) via e−x ≥ 1− x .

arguments are constrained in terms of other f -divergences.

Recall that the total variation distance is the f -divergence for

f (x ) = |x − 1|.
Lemma 11 ([31, Thm. 12]). For any order α ∈ [0,∞], the

order α Rényi divergence is convex in its second argument

for probability measures, i.e. for all w , q0, q1 ∈ P(Y) and

β ∈ (0, 1) we have

Dα(w‖ qβ) ≤ βDα(w‖ q1) + (1− β)Dα(w‖ q0)
where qβ = βq1 + (1− β)q0.

Lemma 12 ( [31, Thm. 13]). For any order α ∈ [0,∞],
the order α Rényi divergence is jointly quasi-convex in its

arguments for probability measures, i.e. for all w0, w1, q0, q1
in P(Y) and β ∈ (0, 1) we have

Dα(wβ‖ qβ) ≤ Dα(w1‖ q1) ∨Dα(w0‖ q0)
where wβ = βw1 + (1− β)w0 and qβ = βq1 + (1− β)q0.

Lemma 13 ( [31, Thm 15]). For any order α ∈ (0,∞],
Dα(w‖ q) is a lower semicontinuous function of the pair

of probability measures (w , q) in the topology of setwise

convergence.

The preceding lemmas discuss only the aspects of the

Rényi divergence that are useful for our discussion. A more

comprehensive discussion can be found in [31].

D. The Rényi Mean

We have defined the Rényi information using a closed form

expression. However, the original definition of the Rényi in-

formation by Sibson is in terms of an optimization of the

Rényi divergence over a set of probability measures. These

two definitions are equivalent, as it has already been shown

by Sibson [94, Thm. 2.2]. In the following, we establish this

equivalence and briefly discuss an alternative definition of the

Rényi information related to the aforementioned characteriza-

tion in terms of the Rényi divergence.

Definition 6. Let p be a p.m.f. on P(Y); then the order α
Rényi mean for prior p is

qα,p ,





e
−D1(p[0]‖p[1])

1{ϑp(y)=ϑ̄p}
µ1,p

∫
e
−D1(p[0]‖p[1])

1{ϑp(y)=ϑ̄p}
µ1,p(dy)

α=0

µα,p

‖µα,p‖ α∈(0,∞]

(21)

where ϑp(y),
∑

w p(w)1{p[1](w|y)>0}, ϑ̄p , ess supµ1,p
ϑp ,

and p[0](w |y), p(w)1{p[1](w|y)>0}∑
u p(u)1{p(u|y)>0}

.

Then the following identity can be confirmed by substitution

using (19): For any α in (0,∞], p in P(W), and q in P(Y),
Dα(p⊛W‖ p⊗q)=Dα(p⊛W‖ p⊗qα,p)+Dα(qα,p‖ q) . (22)

This identity was first pointed out by Sibson in [94, p. 153],

then by others [25, (12)] [50, (43)] [75, (38)] [90, Lemma 3]

[105, (52)]. For α = 1 case, it had been used by Topsøe in

[101], even before Sibson [94], and in [102].

On the other hand, one can also confirm by substitution that

Iα(p;W) = Dα(p⊛W‖ p ⊗ qα,p) for all positive values of α.
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These two observations lead to the alternative characterization

of the order α Rényi information in terms of the order α
Rényi divergence presented in the following lemma, which is

valid for all non-negative orders.

Lemma 14. Let W be a subset of P(Y), p be a p.m.f. on W,

and α be an order in [0,∞]; then

Iα(p;W)=Dα(p⊛W‖ p ⊗ qα,p) (23)

= inf
q∈P(Y)

Dα(p⊛W‖ p ⊗ q) (24)

= inf
q∈P(Y)

Dα(µα,p‖ q) α∈(0,∞]\{1} (25)

where p⊛W is the probability measure on 2 supp(p)⊗Y whose

marginal distribution on supp(p) is p and whose conditional

distribution is w .

Proof of Lemma 14 is presented in Appendix F. For any

positive order α and prior p, the only probability measure q

satisfying Dα(p⊛W‖ p ⊗ q) = Iα(p;W) is qα,p as a result

of (22) and Lemmas 10, 14. In other words, the order α
Rényi mean for prior p is the unique minimizer for the

infimum given in (24) for positive orders α. For α = 0, the

order zero Rényi mean is still a minimizer by Lemma 14 but

it is not necessarily the unique minimizer. Any probability

measure q that is absolutely continuous in the q0,p satisfies

D0(p⊛W‖ p ⊗ q) = I0(p;W).
The definition of Rényi information we have adopted is

not the only definition of Rényi information. The following

definition is first proposed by Augustin in [6, §34] and later

popularized by Csiszár [25]

I c

α(p;W) , inf
q∈P(Y)

∑
w
p(w)Dα(w‖ q) . (26)

Unlike the definition we have adopted, the one given in (26)

does not have an equivalent closed form expression. But for

any finite positive order α, the infimum in (26) has a unique

minimizer, which is a fixed point of an operator defined

using α and p, [70]. These properties were first proved by

Augustin for orders between zero and one in [6]. Thus we

have called the quantity defined in (26), the order α Augustin

information in [69]. We present a more detailed discussion of

the properties of the Augustin information and its relation to

the Rényi information in [70].

Arimoto proposed a third definition for the Rényi informa-

tion in [4]. Recently, Verdú has provided a discussion of the

Rényi entropy and these three definitions of the Rényi infor-

mation in [105].

III. THE RÉNYI CAPACITY

Definition 7. Let α be an order in [0,∞] and W be a subset

of P(Y); then the order α Rényi capacity of W is

Cα,W , supp∈P(W) Iα(p;W) . (27)

Unlike the Rényi information, the Rényi capacity is not a

quantity that is introduced or discussed by Sibson in [94]. In

the spirit of his earlier work on f -divergences [23], Csiszár in-

troduces it in [25]. Prior to either work, Shannon, Gallager,

and Berlekamp had introduced a ‘capacity’, i.e. E0(ρ,W),
using E0(ρ, p) in [88]. E0(ρ,W) is a scaled version of the

Rényi capacity; in particular E0(ρ,W) = ρC 1
1+ρ ,W

for all

non-zero ρ greater than minus one by (3).

Using the alternative characterization of the Rényi informa-

tion given in (24), we get the following expression for the

order α Rényi capacity for all α in [0,∞]

Cα,W = supp∈P(W) infq∈P(Y)Dα(p⊛W‖ p ⊗ q) . (28)

For finite orders the Rényi capacity does not have a closed

form expression. The supremum given in the definition of the

Rényi capacity need not to be finite, see Examples 6 and 7.

Even when the supremum is finite it might not be achieved by

any prior, i.e. there are W’s for which Iα(p;W) < Cα,W for

all p ∈ P(W), see Examples 2 and 4. When the supremum

is achieved, the optimal prior might not be unique, i.e. there

are W’s for which Iα(p1;W) = Iα(p2;W) = Cα,W for p1 6= p2
both of which are in P(W), see Example 3. These subtleties,

however, do not constitute a serious impediment for analyzing

the Rényi capacity.

In §III-A, we analyze the Rényi capacity as a function of the

order. In §III-B, we determine necessary and sufficient condi-

tions for the finiteness of the Rényi capacity and investigate

the implications of the finiteness of the Rényi capacity on the

continuity of the mean measure and the Rényi information.

A. The Rényi Capacity as a Function of the Order

We are interested in characterizing the behavior of the

Rényi capacity as a function of the order because the op-

erational significance of the Rényi capacity —at least for the

channel coding problem and the sphere packing bound— is not

through its value at a specific order but through its behavior

as a function of the order. Parts (a,c,d,e,f) of Lemma 15

characterize the behavior of the Rényi capacity for an arbitrary

W as a function of the order. In our analysis relying on the

Rényi capacity some of our results might be valid only for

countable or finite W’s rather than arbitrary W’s. Parts (b,g)

of Lemma 15 are useful in such situations.14 See the proof of

[71, Corollary 2] for such a situation for the Augustin capacity.

Lemma 15. Let W be a subset of P(Y).
(a) Cα,W is nondecreasing and lower semicontinuous in α on

[0,∞].
(b) There exists a countable subset W′ of W satisfying

Cα,W′ = Cα,W for all α ∈ [0,∞].
(c) 1−α

α Cα,W is nonincreasing and continuous in α on (0, 1)
and Cα,W is continuous in α on (0, 1].

(d) (α − 1)Cα,W is convex in α on (1,∞).
(e) If Cη,W < ∞ for an η ∈ (0, 1), then Cα,W is finite for

all α ∈ [0, 1).
(f) If Cη,W < ∞ for an η ∈ (0,∞], then Cα,W is nonde-

creasing and continuous15 in α on (0, η].
(g) If Cη,W < ∞ for an η ∈ (0,∞], then ∀ǫ > 0, ∃ a finite

subset W′ of W such that Cα,W′ > Cα,W − ǫ for all

α ∈ [ǫ, η].

14As pointwise statements, i.e. as statements for a given order, Lemma
15-(b,g) follow trivially from the definition of the Rényi capacity. They are
non-trivial only because their assertions hold for all orders for the same W′.

15We are unable to establish the continuity of Cα,W at α = 0 for arbitrary
W. For finite W, Sion’s minimax theorem implies the continuity of Cα,W at
α = 0, see Lemma 16-(g).

10



The Rényi information Iα(p;W) is continuous in α for any p

in P(W) by Lemma 5, however the Rényi capacity Cα,W is not

necessarily continuous in α. Yet, if the Rényi capacity Cα,W
is not continuous in α on (0,∞], then it has a very specific

shape as a result of Lemma 15: there exists a φ ∈ [1,∞) such

that Cα,W is bounded and continuous on (0, φ] and infinite on

(φ,∞]. In order to see why, first note that if C1/2,W = ∞, then

Cα,W = ∞ for all α in (0,∞] by Lemma 15-(a,e) and Cα,W is

continuous on (0,∞]. On the other hand, if C∞,W <∞, then

Cα,W is continuous on (0,∞] by Lemma 15-(f). Hence, Cα,W
can fail to be continuous on (0,∞] only when C1/2,W < ∞
and C∞,W = ∞. Let χW be the set of all orders α for which

Cα,W is finite, i.e.

χW , {α ∈ R+ : Cα,W <∞}.
χW is either of the form (0, φ) for a φ ∈ [1,∞] or of the

form (0, φ] for a φ ∈ [1,∞) because Cα,W is nondecreasing

by Lemma 15-(a) and finite on (0, 1) by Lemma 15-(e). If

χW = (0, φ) for some φ ∈ [1,∞], then Cα,W is continuous

on (0, φ] by Lemma 15-(a,f), Cα,W is infinite on [φ,∞] by

the hypothesis, and hence Cα,W is continuous on (0,∞] by

the pasting lemma [68, Thm. 18.3]. —Example 6 provides a

W for each φ ∈ (1,∞) such that χW = (0, φ).— Thus unless

χW = (0, φ] for some φ ∈ [1,∞), Cα,W is continuous on

(0,∞]. If χW = (0, φ], then Cα,W is bounded and continuous

on (0, φ] and infinite on (φ,∞]. Hence the Rényi capacity has

a unique discontinuity on (0,∞], which is at φ. —Example

7 provides a W for each φ ∈ [1,∞) such that Cα,W has its

unique discontinuity at φ.—

Proof of Lemma 15.

(a) The pointwise supremum of a family of nondecreasing

(lower semicontinuous) functions is nondecreasing (lower

semicontinuous). Then Cα,W is nondecreasing and lower

semicontinuous in α on [0,∞] because Cα,W is the

pointwise supremum of the family {Iα(p;W)}p∈P(W) and

Iα(p;W) is nondecreasing and continuous in α for each

p∈P(W) by Lemma 5.

(b) The Rényi capacity is a nondecreasing and lower semi-

continuous function of the order by part (a). Then

Cη,W = supα∈(0,η)∩Q Cα,W ∀η ∈ (0,∞].

Consequently, Cα,W′ = Cα,W for all α in [0,∞] if

Cα,W′ = Cα,W for all α ∈ Q≥0 . Choose a sequence of

p.m.f.’s {p(α,ı)}ı∈Z+ satisfying Iα
(
p(α,ı);W

)
↑ Cα,W for

each α ∈ Q≥0 . Let W′ be ∪α∈Q≥0
∪ı∈Z+ supp(p(α,ı)).

Then Cα,W′ = Cα,W for all α ∈ Q≥0 ; hence for all α
in [0,∞]. W′ is countable because countable union of

countable sets is countable.

(c) The definitions of Iα(p;W) and Cα,W imply

1−α
α Cα,W = supp∈P(W) ln

1
‖µα,p‖ ∀α ∈ (0, 1).

Furthermore, ‖µα,p‖ is nondecreasing and continuous

in α, by Lemma 3-(e). Then 1−α
α Cα,W is nonincreas-

ing and lower semicontinuous in α on (0, 1) because

the pointwise supremum of a family of nonincreasing

(lower semicontinuous) functions is nonincreasing (lower

semicontinuous). Thus 1−α
α Cα,W and Cα,W are both

continuous from the right on (0, 1). On the other hand

Cα,W and 1−α
α Cα,W are both continuous from the left

on (0, 1) because Cα,W is nondecreasing and lower

semicontinuous on (0, 1) by part (a). Consequently, Cα,W
and 1−α

α Cα,W are both continuous on (0, 1). Further-

more, Cα,W is continuous on (0, 1] because Cα,W is

nondecreasing and lower semicontinuous by part (a).

(d) ‖µα,p‖α is log-convex in α by Lemma 3-(d). On the other

hand, the definitions of Iα(p;W) and Cα,W imply

(α− 1)Cα,W = supp∈P(W) α ln ‖µα,p‖ ∀α ∈ (1,∞).

Then (α−1)Cα,W is convex in α because the pointwise

supremum of a family of convex functions is convex.

(e) If Cη,W is finite, then so is Cα,W for all α in [0, η]
because Cα,W is nondecreasing in α by part (a). Fur-

thermore, if Cη,W is finite, then so is Cα,W for all α in

[η, 1) because 1−α
α Cα,W is nonincreasing in α on (0, 1)

by part (c).

(f) Cα,W is continuous in α on (0, 1] by part (c). Thus we

only need to prove the claim for the case when η > 1
on [1, η]. We prove the continuity of Cα,W in α first on

(1, η], and then from the right at α = 1. If Cη,W is finite

for an η in (1,∞), then (α−1)Cα,W is finite and convex

in α on [1, η] by parts (a) and (d). Then the continuity

of (α − 1)Cα,W, and hence the continuity of Cα,W, in

α on (1, η) follows from [30, Thm. 6.3.3]. On the other

hand Cα,W is continuous from the left because Cα,W is

nondecreasing and lower semicontinuous in α by part (a).

Hence, Cα,W is continuous in α on (1, η].

If C∞,W is finite, then Cη,W is finite for all η ∈R+ by

part (a) and Cα,W is continuous in α on R+ because

the continuity of a function on a collection of open set

implies its continuity on their union, [68, Thm. 18.2].

This implies the continuity on (0,∞] because Cα,W is

nondecreasing and lower semicontinuous inαby part (a).

To prove the continuity of Cα,W from the right at one, we

first prove that {Iα(p;W)}p∈P(W) is equicontinuous from

the right at α= 1. The definitions of µ′
α,p and Iα(p;W)

given in (11) and (13) and Lemma 2-(b) imply

Iα(p;W)− I1(p;W) =
α ln ‖µα,p‖−(α−1)‖µ′

1,p‖
α−1

for all α in (1, η] and p in P(W). The expression in

the numerator is differentiable in α because ‖µα,p‖ is

differentiable by Lemma 3-(b). Furthermore, d
dα‖µα,p‖ =∥∥µ′

α,p

∥∥ by Lemma 3-(b) and the numerator is zero at

α = 1. Then by the mean value theorem [80, 5.10], there

exists a φ ∈ (1, α) such that

Iα(p;W)− I1(p;W) = ln ‖µφ,p‖+ φ
‖µ′

φ,p‖
‖µφ,p‖ −

∥∥µ′
1,p

∥∥.

The expression on the right hand side is differentiable in

φ because d
dφ‖µφ,p‖ =

∥∥∥µ′
φ,p

∥∥∥ and d
dφ

∥∥∥µ′
φ,p

∥∥∥ = µ′′
φ,p(Y)

by Lemma 3-(b,c). On the other hand, ‖µφ,p‖ > 0 for

φ ∈ R+ and ‖µ1,p‖ = 1 by Lemma 1-(a). Then the

expression on the right hand side is zero at φ = 1. Hence,
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using the mean value theorem [80, 5.10] once again we

can conclude that there exists a β ∈ (1, φ) such that

Iα(p;W)−I1(p;W)
φ−1 = 2

‖µ′
β,p‖

‖µβ,p‖ + β
µ′′
β,p(Y)

‖µβ,p‖ − β
‖µ′

β,p‖2

‖µβ,p‖2 . (29)

On the other hand, using the definition of µ′′
α,p given in

(12) together with Lemma 2-(b) and β > 1 we get

µ′′
β,p(Y)

‖µβ,p‖ ≤ Eqβ,p

[∑
w

p[β](w|y)
β3 ln2

p[β](w|y)
p(w)

]
− 2‖µ′

β,p‖
β‖µβ,p‖ .

Then using Lemma 2-(a) and (29) we get

Iα(p;W)−I1(p;W)
φ−1 ≤Eqβ,p

[∑
w

p[β](w|y)
β2 ln2

p[β](w|y)
p(w)

]

=Eqβ,p

[∑
w
p(w)

[
p[1](w|y)
p(w)πβ,p

]β
ln2

p[1](w|y)
p(w)πβ,p

]
.

Recall that xβ ln2 x ≤ ( 2
βe)

2 for all x ∈ [0, 1] and β > 0

and ln2
x ≤ ( 2

ǫe)
2x ǫ for all x ≥ 1 and ǫ > 0. Thus

Iα(p;W)−I1(p;W)
φ−1 ≤ Eqβ,p

[
( 2
βe)

2 + ( 2
ǫe)

2(
πβ+ǫ,p

πβ,p
)β+ǫ

]
.

Since (πα,p)
α is log-convex in α by Lemma 2-(c),

(πβ+ǫ,p)
β+ǫ ≤ (πβ,p)

β+ǫ−1π β
1−ǫ ,p

∀ǫ ∈ (0, 1), β > 1.

Then using the fact that ‖µβ,p‖ ≥ ‖µ1,p‖ = 1 we get

Iα(p;W)−I1(p;W)
φ−1 ≤

[
( 2
βe)

2 + ( 2
ǫe)

2
∥∥∥µ β

1−ǫ ,p

∥∥∥
]
.

Note that

∥∥∥µ β
1−ǫ ,p

∥∥∥ ≤
∥∥∥µ α

1−ǫ ,p

∥∥∥ because ‖µα,p‖ is

nondecreasing in α by Lemma 3-(e). Then the definition

of Rényi information, β > 1, and φ ∈ (1, α) imply for

any ǫ ∈ (0, η−1
η ), α ∈ [1, (1− ǫ)η] and p ∈ P(W) that

Iα(p;W) − I1(p;W) ≤ 8(α−1)
ǫ2e2 e

α−1+ǫ
α I α

1−ǫ
(p;W)

≤ 8(α−1)
ǫ2e2 e

η−1
η Iη(p;W). (30)

Then for any ǫ ∈ (0, η−1
η ) and α ∈ [1, (1− ǫ)η] we have

Cα,W ≤ supp∈P(W) I1(p;W) + 8(α−1)
ǫ2e2 e

η−1
η Iη(p;W)

≤ C1,W + 8(α−1)
ǫ2e2 e

η−1
η Cη,W .

Hence, Cα,W is continuous from the right at α = 1 if

Cη,W <∞ for an η > 1.

(g) Let us first consider η ∈ R+ case and construct a

sequence {Wı}ı∈Z+ of finite subset of W, such that

Cα,Wı ↑Cα,W for all α ∈ (0, η]. Choose a p(ı,) in P(W)
such that I2−ı

(
p(ı,);W

)
≥ C2−ı,W−1/2ı for each ı ∈ Z+

and non-negative integer  not exceeding 2ıη. Let W0 be

the empty set and Wı be Wı−1 ∪⌊2ıη⌋
=0 supp(p(ı,)) for

each ı ∈ Z+ . Then

Cα,Wı ≥ Cα,Wı−1 ∀α ∈ [0,∞], ı ∈ Z+

Cα,Wı ≥ Cα,W − 1/2ı ∀α ∈ { 0
2ı , . . . ,

⌊η2ı⌋
2ı }, ı ∈ Z+ .

Then Cα,Wı ↑ Cα,W for all dyadic rational numbers α
less than η. Therefore Cα,Wı ↑ Cα,W for all α ∈ [0, η]
because the Rényi capacity is nondecreasing and lower

semicontinuous. Since Cη,Wı ≤ Cη,W < ∞, Cα,Wı’s

and Cα,W are continuous in α on (0, η] by part (f). Then

as a result of Dini’s theorem [30, 2.4.10], {Cα,Wı}ı∈Z+

converges to Cα,W uniformly on [ǫ, η], i.e. for all ε > 0,

there exists an ı such that supα∈[ǫ,η]

∣∣Cα,W − Cα,W

∣∣ < ε
for all  > ı.

For η = ∞ case, let κı be the smallest integer satisfying

C∞,W ≤ Cκı/2ı,W + 1/2ı for each ı ∈ Z+ . We employ

the construction described above for ’s not exceeding κı
rather than ’s not exceeding ⌊2ıη⌋.

B. Finiteness of the Rényi Capacity

If W is a finite set, then P(W) is compact for the total

variation topology and various results relying on the compact-

ness can be invoked while analyzing the Rényi information.

For example if W is finite, then the compactness of P(W)
and Sion’s minimax theorem imply the continuity of the

Rényi capacity in the order on [0,∞], see Lemma 16-(g).

When W is an infinite set, however, P(W) is not compact.

The finiteness of the Rényi capacity emerges as a shrewd

substitute for the compactness of P(W) that allows us to assert

the continuity of the Rényi information, see Lemma 16-(e,f).

Lemma 16-(a-d) characterize the finiteness of the order α
Rényi capacity in terms of the properties of the order α mean

measure or Rényi information. These equivalent conditions

might be easier to confirm or reject for certain W’s. The

equicontinuity results given in Lemma 16-(e,f) imply that if

γ1 ≤ Iα(p;W) ≤ γ2 for all p ∈ A for some α in (0, η) and γ1
and γ2 in [0,Cη,W], then for any ǫ > 0 there exists a δ > 0
such that γ1−ǫ ≤ Iφ(s ;W) ≤ γ2+ǫ for all φ in [α−δ, α+δ] and

s in P(W) satisfying infp∈A ‖p − s‖ ≤ δ. This observation

(or its variants, which can be obtained by employing either part

(e) or (f) on its own) might be helpful when we are trying to

bound the Rényi information or a related function uniformly

over the orders and priors through a case by case analysis on

a subset of P(W) or on its neighborhoods.

Lemma 16. Let W be a subset of P(Y).
(a) For α ∈ (0, 1), Cα,W = ∞ iff there exists a sequence

{pı}ı∈Z+ ⊂ P(W) such that limı→∞ ‖µα,pı‖ = 0.

(b) For α ∈ (1,∞], Cα,W = ∞ iff there exists a sequence

{pı}ı∈Z+ ⊂ P(W) such that limı→∞ ‖µα,pı‖ = ∞.

(c) For α∈(1,∞), Cα,W<∞ iff µα,p is uniformly continuous

in p for the total variation topology.16

(d) For α∈ [1,∞], Cα,W<∞ iff Iα(p;W) is continuous in p

on P(W) for the total variation topology.

(e) For η ∈ R≥0 , if Cη,W < ∞, then {Iα(p;W)}α∈[0,η] is

uniformly equicontinuous,17 in p on P(W).

(f) For η ∈ R+ , if Cη,W < ∞, then {Iα(p;W)}p∈P(W) is

uniformly equicontinuous in α on every compact subset

of (0, η).18

(g) If |W|<∞, then Cα,W is nondecreasing and continuous

in α on [0,∞].

16For α ∈ (0, 1], µα,p is uniformly continuous in p, even when Cα,W =
∞, because µα,p is Lipschitz continuous on P(P(Y)) by Lemma 4-(d).

17For α ∈ (0, 1), Lemma 6-(a) has established the continuity of Iα(p;W)
in p without assuming Cα,W to be finite; but the continuity is not uniform.

18In order to prove the uniform equicontinuity on compact subsets of (0, η),
we prove the following stronger statement: On every compact subset of (0, η),
{Iα(p;W)}p∈P(W) is a family of Lipschitz continuous functions of α with a
common Lipschitz constant, see (A.24).
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Proof of Lemma 16 is deferred to Appendix C. For W’s

with infinite Cα,W, the proof of part (d) establishes the dis-

continuity at every p in P(W). For order one the discontinuity

of I1(p;W) was observed by Ho and Yeung [53, Thm. 3] for

a different topology for some W. For the same topology they

established the continuity of I1(p;W) whenever Y is finite

[53, Corollary 8]. They, however, did not characterize the

conditions for the continuity of I1(p;W) in their framework.

IV. THE RÉNYI CENTER

The primary focus of this section is Theorem 1, given in the

following, and its applications. In §IV-A we prove Theorem

1 and discuss alternative proofs based on Sion’s minimax

theorem. In §IV-B we first prove a lower bound on Sα,W(q),
i.e. the van Erven-Harremoës bound, then we use this bound

to establish the continuity of the Rényi center as a function

of the order. §IV-C is composed of various applications of

Theorem 1 and the van Erven-Harremoës bound.

Theorem 1. For any α ∈ (0,∞] and W ⊂ P(Y)
Cα,W = supp∈P(W) infq∈P(Y)Dα(p⊛W‖ p ⊗ q) (31)

= infq∈P(Y) supp∈P(W) Dα(p⊛W‖ p ⊗ q) (32)

= infq∈P(Y) supw∈W Dα(w‖ q) . (33)

If Cα,W <∞, then there exists a unique qα,W in P(Y), called

the order α Rényi center, such that

Cα,W = supp∈P(W)Dα(p⊛W‖ p ⊗ qα,W) (34)

= supw∈W Dα(w‖ qα,W) . (35)

Furthermore, for every sequence of priors {pı}ı∈Z+ satisfying

limı→∞ Iα(pı;W) = Cα,W, the corresponding sequence of

order α Rényi means {qα,pı}ı∈Z+ is a Cauchy sequence for

the total variation metric on P(Y) and qα,W is the unique

limit point of that Cauchy sequence.

Theorem 1 is stated for p’s that are probability mass

functions on W. However, the interpretation of the capacity

as the radius implicit in (33) and (35) can be used to extend

Theorem 1 to the case when p’s are appropriately defined

probability measures, see Theorem 3 in Appendix B.

For finite orders, neither the Rényi capacity nor the

Rényi center has a closed form expression; this, however, is

not the case for order infinity. The following expressions can

be confirmed using the observation described in (39) by the

interested reader.

C∞,W = ln
∥∥∥
∨

w∈W
w

∥∥∥, (36)

q∞,W =
(∨

w∈W
w
)
e−C∞,W. (37)

Before presenting the proof and applications of Theorem 1,

let us make a brief digression and discuss what is achieved by

Theorem 1 itself.

The expression in (33) is nothing but the definition of the

order α Rényi radius Sα,W. Hence, Theorem 1 establishes

the equality of the order α Rényi capacity and the order α
Rényi radius. We prefer to express the equality of Cα,W and

Sα,W as a minimax equality because unlike the equality of

Cα,W and Sα,W itself, the minimax equality continues to hold

in the constrained variant of the problem, see Theorem 2 of

Appendix A.

Theorem 1 strengthens this minimax equality by as-

serting the existence of a unique Rényi center that is

achieving the infimum in (32). Recall that we have al-

ready established, in Lemma 14, the existence of a unique

Rényi mean qα,p achieving the infimum in (31) for any p

in P(W). The suprema in (31) and (32), however, cannot

be replaced by maxima in general. Example 4 provides

a W for which infq∈P(Y)Dα(p⊛W‖ p ⊗ q) < Cα,W and

Dα(p⊛W‖ p ⊗ qα,W) < Cα,W for all p in P(W). Evidently,

this subtlety exists only for infinite W’s; for finite W’s

the compactness of P(W) and the extreme value theorem

guarantees the existence of a p achieving the supremum.

The last assertion of Theorem 1, relating the problem of

determining the Rényi capacity to the problem of determining

the Rényi center, is important because of its potential in

simplifying the problem of determining the Rényi center —

defined as the unique qα,W satisfying (35).

In addition, Theorem 1 provides a necessary and sufficient

condition for a prior p to satisfy Iα(p;W) = Cα,W. That is

important because we do not have a closed form expression

for the order α Rényi capacity, yet occasionally the symmetries

of the elements of W or numerical calculations suggest a prior

p that might satisfy Iα(p;W) = Cα,W.

Iα(p;W) = Cα,W iff Sα,W(qα,p) ≤ Iα(p;W) . (38)

In order to see why (38) holds, note that if Iα(p;W) = Cα,W
then considering the sequence {pı}ı∈Z+ where pı = p we

can conclude that qα,p = qα,W. Then Sα,W(qα,p) ≤ Iα(p;W)
by (35). On the other hand, if Sα,W(qα,p) ≤ Iα(p;W) for

some p in P(W), then Iα(p;W) = Cα,W by (33) because

Iα(p;W) ≤ Cα,W and Sα,W ≤ Sα,W(qα,p) by the definitions

of Rényi capacity and center.

Following a similar reasoning one can show that {pı}ı∈Z+

is optimal iff Sα,W(limı→∞ qα,pı) ≤ limı→∞ Iα(pı;W). We

chose the following less explicit characterization over the

aforementioned one in order to avoid ensuring the convergence

of probability measures formally.19

lim
ı→∞

Iα(pı;W)=Cα,W iff ∃q : Sα,W(q)≤ lim
ı→∞

Iα(pı;W) (39)

where q ∈ P(Y) is implicit for the latter statement. We

determine the Rényi capacity in Examples 1, 3, 4 using (38)

and in Examples 2, 9 and in Appendix G using (39).

(34) of Theorem 1 and (22) imply that

Dα(qα,p‖ qα,W) ≤ Cα,W − Iα(p;W) ∀p ∈ P(W). (40)

Consequently, Dα(qα,p‖ qα,W) is close to zero whenever

Iα(p;W) is close to Cα,W.

19We only need Cα,W ≤ Sα,W, but not Cα,W = Sα,W, in order to
deduce Iα(p;W) = Cα,W from Sα,W(qα,p) ≤ Iα(p;W). The sufficiency
of the conditions given in (38) and (39) for the optimality follows from the
max-min inequality and the definitions of radius and capacity without invoking
Theorem 1. We need Theorem 1 in order to assert their necessity.
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A. Minimax Theorems and the Relative Compactness

We start by proving Theorem 1 for finite W case. In this case

Theorem 1 can be strengthened slightly because the existence

of an optimal prior is guaranteed. The optimal prior, however,

is not necessarily unique, see Example 3; even then, all such

p’s have exactly the same Rényi mean. For finite Y case,

Lemma 17 is well-known, though in a slightly different form,

see [26, p. 128], [37, Thm. 4.5.1] for α = 1 case and [26, p.

172], [37, Thm. 5.6.5] for α ∈ (0, 1) case. [23, Thm. 3.2] of

Csiszár implies Lemma 17 for α’s in R+ .

Lemma 17. For any α in [0,∞] and finite subset W of P(Y),
∃p̃ ∈ P(W) such that Iα(̃p;W) = Cα,W. If α is in (0,∞], then

∃!qα,W ∈ P(Y) such that,

Dα(qα,p‖ qα,W) ≤ Cα,W − Iα(p;W) ∀p ∈ P(W). (41)

Hence, qα,p̃ = qα,W for all p̃ such that Iα (̃p;W) = Cα,W.

Proof. (i) ∃p̃ ∈ P(W) such that Iα(̃p;W) = Cα,W: Since

|supp(p)| ≤ |W| for all p ∈ P(W), Cα,W ≤ ln |W|
by Lemma 5. Then Iα(p;W) is continuous on P(W) by

Lemmas 6-(a) and 16-(d). Then there exists a p̃ achieving

the supremum by the extreme value theorem, [68, 27.4]

because P(W) is compact for finite W.

(ii) If Iα(̃p;W) = Cα,W for an α ∈ (0,∞], then

Dα(qα,p‖ qα,p̃) ≤ Cα,W − Iα(p;W) for all p ∈ P(W):
Let p̃ ∈ P(W) be such that Iα(̃p;W) = Cα,W, p be any

member of P(W) and pı be pı =
ı−1
ı p̃+ 1

ı p for ı ∈ Z+ .

For α = ∞ using Lemma 14 we get

I∞(pı;W) = [I∞(̃p;W) +D∞(q∞,p̃‖ q∞,pı)]

∨ [I∞(p;W) +D∞(q∞,p‖ q∞,pı)] .

Then D∞(q∞,p̃‖ q∞,pı) = 0 because I∞(pı;W) ≤ C∞,W

and I∞ (̃p;W) = C∞,W. Consequently q∞,p̃ = q∞,pı and

I∞(pı;W) = C∞,W. Thus

I∞(p;W) +D∞(q∞,p‖ q∞,p̃) ≤ C∞,W. (42)

For α = 1 and α ∈ R+ \ {1} we have

I1(pı;W) = ı−1
ı [I1(̃p;W) +D1(q1,p̃‖ q1,pı)]

+ 1
ı [I1(p;W) +D1(q1,p‖ q1,pı)] ,

Iα(pı;W) = 1
α−1 ln

[
ı−1
ı e

(α−1)(Iα(̃p;W)+Dα(qα,p̃‖qα,pı))

+ 1
ı e

(α−1)(Iα(p;W)+Dα(qα,p‖qα,pı ))
]
.

Then using Iα(pı;W) ≤ Cα,W, Iα(̃p;W) = Cα,W, and

Dα(qα,p̃‖ qα,pı)≥0 we get the following identity

Iα(p;W) +Dα(qα,p‖ qα,pı) ≤ Cα,W.

Similarly, using Iα(pı;W) ≤ Cα,W, Iα (̃p;W) = Cα,W,

Iα(p;W) ≥ 0, and Dα(qα,p‖ qα,pı) ≥ 0 we get

Dα(qα,p̃‖ qα,pı)≤
{

1
α−1 ln

ı−e(1−α)Cα,W

ı−1 α∈R+ \{1}
Cα,W

ı−1 α=1
.

Then qα,pı → qα,p̃ in the total variation topology by

Lemma 10. Thus

Dα(qα,p‖ qα,p̃) ≤ lim infı→∞ Dα(qα,p‖ qα,pı)

by Lemma 13. Then

Iα(p;W) +Dα(qα,p‖ qα,p̃) ≤ Cα,W ∀α ∈ R+ . (43)

(iii) If α ∈ (0,∞], then ∃!qα,W ∈ P(Y) satisfying (41) such

that qα,p = qα,W for all p with Iα(p;W) = Cα,W: (42),

(43) and Lemma 10 implies that

Iα(p;W) + α∧1
2 ‖qα,p − qα,p̃‖2 ≤ Cα,W.

Then qα,p̃ = qα,p for any p satisfying Iα(p;W) = Cα,W.

When W is not a finite but an arbitrary subset of P(Y),
we cannot invoke the extreme value theorem to establish the

existence an optimal prior p satisfying Iα(p;W) = Cα,W
because P(W) is not compact. Assuming Cα,W to be finite,

Theorem 1 recovers all assertions of Lemma 17, but the

existence of an optimal prior, albeit in a weaker form.

Proof of Theorem 1. For all p ∈ P(W) and q ∈ P(Y), (19)

implies Dα(p⊛W‖ p ⊗ q) ≤ maxw∈supp(p) Dα(w‖ q). Then

considering p’s satisfying p(w) = 1 for a w in W we get

supw∈WDα(w‖ q) = supp∈P(W)Dα(p⊛W‖ p ⊗ q) (44)

for all q ∈ P(Y). Note that (32) implies (33) and (34) implies

(35) because of (44). Furthermore, (31) is nothing but (28)

and expression on the right hand side of (31) is bounded

from above by the expression in (32) as a result of max-min

inequality. Thus when Cα,W is infinite, (32) holds trivially.

When Cα,W is finite, the converse of max-min inequality, and

hence (32), follows from (34). Thus, we can assume Cα,W to

be finite and prove the claims about qα,W in order to prove

the theorem.

(i) If Cα,W < ∞ and limı→∞Iα(pı;W) = Cα,W, then

{qα,pı}ı∈Z+ is a Cauchy sequence in P(Y) for the

total variation metric: For any sequence {pı}ı∈Z+ of

members of P(W) satisfying limı→∞ Iα(pı;W) = Cα,W,

let {Wı}ı∈Z+ be a nested sequence of finite subsets of

W defined as follows,

Wı , ∪ı=1 supp(p).

Then for any ı ∈ Z+ , there exists a unique qα,Wı satis-

fying (41) by Lemma 17. Furthermore, P(W) ⊂ P(Wı)
for any ı,  ∈ Z+ such that  ≤ ı. In order to bound∥∥qα,p − qα,pı

∥∥ for positive integers  < ı, we use the

triangle inequality for qα,p , qα,pı , and qα,Wı :
∥∥qα,p−qα,pı

∥∥≤
∥∥qα,p−qα,Wı

∥∥+‖qα,pı−qα,Wı‖. (45)

Let us proceed with bounding
∥∥qα,p − qα,Wı

∥∥.

∥∥qα,p − qα,Wı

∥∥2 (a)

≤ 2
α∧1Dα

(
qα,p

∥∥ qα,Wı

)

(b)

≤ 2
α∧1 [Cα,Wı − Iα(p;Wı)]

(c)

≤ 2
α∧1 [Cα,W − Iα(p;W)] .

where (a) follows from Lemma 10, (b) follows from

Lemma 17 because p̃ ∈ P(Wı), and (c) follows from the

identities Iα(p;Wı) = Iα(p;W) and Cα,Wı ≤ Cα,W. We
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can obtain a similar bound on ‖qα,pı − qα,Wı‖2. Then

{qα,pı} is a Cauchy sequence by (45).

(ii) If Cα,W < ∞, then ∃! qα,W in P(Y) satisfying

limı→∞ ‖qα,W − qα,pı‖ = 0 for all {pı}ı∈Z+ satisfying

limı→∞ Iα(pı;W) = Cα,W: Note that M(Y) is a com-

plete metric space for the total variation metric, i.e. every

Cauchy sequence has a unique limit point in M(Y),
because M(Y) is a Banach space for the total variation

topology [8, Thm. 4.6.1]. Then {qα,pı}ı∈Z+ has a unique

limit point qα,W in M(Y). Since P(Y) is a closed set

for the total variation topology and qα,pı ∈ P(Y) for all

ı ∈ Z+ , the limit point qα,W is in P(Y) by [68, Thm.

2.1.3].

We have established the existence of a unique limit point

for any {pı}ı∈Z+ satisfying limı→∞ Iα(pı;W) = Cα,W.

However, we have not ruled out the possibility of distinct

limit points for different sequences satisfying the con-

straint. Let {pı}ı∈Z+ and {p̃ı}ı∈Z+ be two sequences sat-

isfying limı→∞ Iα(pı;W) = limı→∞ Iα(̃pı;W) = Cα,W,

with limit points qα,W and q̃α,W. Let {p̂ı}ı∈Z+ be

a sequence whose elements for the odd indices are

the elements of {pı}ı∈Z+ and whose elements for

the even indices are the elements of {p̃ı}ı∈Z+ . Then

limı→∞ Iα(̂pı;W) = Cα,W; consequently the sequence

{qα,p̂ı}ı∈Z+ is Cauchy. Thus {qα,p̂ı}ı∈Z+ and all of its

subsequences has the same unique limit point q̂α,W. Then

qα,W = q̂α,W = q̃α,W.

(iii) qα,W satisfies the equality given in (34): For any p in

P(W), let us consider a sequence {pı}ı∈Z+ satisfying

both p1 = p and limı→∞ Iα(pı;W) = Cα,W. Then p ∈
P(Wı) for all ı ∈ Z+ . Then using the inequality given

in (41) of Lemma 17 together with (22) we get

Dα(p⊛W‖ p ⊗ qα,Wı) ≤ Cα,Wı ∀ı. (46)

Since Wı is a finite set, ∃p̃ı ∈ P(Wı) satisfying

Iα(̃pı;Wı) = Cα,Wı and qα,p̃ı
= qα,Wı by Lemma 17.

Then Iα(̃pı;Wı) ≥ Iα(pı;Wı) because pı ∈ P(Wı) by

construction. Consequently limı→∞ Iα(̃pı;W) = Cα,W.

We have already established that for such a sequence

qα,p̃ı
→ qα,W in the total variation topology, and hence

in the topology of setwise convergence. Then the lower

semicontinuity of the Rényi divergence, i.e. Lemma 13,

the identity Cα,Wı ≤ Cα,W, and (46) imply

Dα(p⊛W‖ p ⊗ qα,W) ≤ Cα,W.

Thus using (24) we get

Iα(p;W) ≤ Dα(p⊛W‖ p ⊗ qα,W) ≤ Cα,W ∀p ∈ P(W).

Then (34) follows the definition of Cα,W.

Theorem 1 is not just a minimax theorem, the assertions

about the Rényi center are crucial. But those assertions can be

derived separately, if need be. Leaving them aside, we discuss

in the rest of this subsection when (32) can be proved using

Sion’s minimax theorem [57], [95].

Note that P(W) is compact iff W is a finite set and P(Y)
is compact iff Y is a finite set. Consequently, when either W

or Y is finite, (32) is an immediate consequence20 of Sion’s

minimax theorem [57], [95]. When W and Y are both infinite

sets, however, neither P(W) nor P(Y) is compact —for the

total variation topology— and we cannot directly apply Sion’s

minimax theorem. Yet, it is possible to recover partial results

using the concept of relative compactness. Recall that a set of

points in a topological space is called relatively compact if it

has a compact closure.

First note that as a result of Lemma 14

Iα(p;W) = infq∈clQα,W
Dα(p⊛W‖ p ⊗ q) (47)

for all p’s in P(W) and α’s in R+ where Qα,W is the convex

hull of the set of all order α Rényi means:

Qα,W , ch{qα,p : p ∈ P(W)}.
If Qα,W is relatively compact in the topology of setwise

convergence, Sion’s minimax theorem imply that

supp∈P(W) infq∈clQα,W
Dα(p⊛W‖ p ⊗ q)

= infq∈clQα,W
supp∈P(W) Dα(p⊛W‖ p ⊗ q) . (48)

We can replace clQα,W by P(Y) in the expression on the

left hand side without changing its value as a result of (47).

However, that operation can decrease the value of the right

hand side because clQα,W ⊂ P(Y). Thus we get,

supp∈P(W) infq∈P(Y)Dα(p⊛W‖ p ⊗ q)

≥ infq∈P(Y) supp∈P(W)Dα(p⊛W‖ p ⊗ q) .

The reverse inequality is the max-min inequality, which is

always valid. Thus (32) holds.

A set of finite measures W is relatively compact in the

topology of setwise convergence iff there exists a ν ∈ P(Y)
such that W≺uniν by a version of the Dunford-Pettis theorem

[8, 4.7.25]. Using de la Vallée Poussin’s characterization of the

uniform integrability [8, Thm. 4.5.9] and monotonicity of the

order α mean measure µα,p in the order, i.e. Lemma 3-(b), we

can obtain sufficient conditions for the relative compactness of

Qα,W in the topology of setwise convergence for any α ∈ R+ .

As a result we get the following partial result:

Lemma 18. Let W be subset of P(Y).
(i) If ∃ν ∈ P(Y) such that W≺uniν and Sη,W <∞ for an

η ∈ (0, 1), then (32) holds ∀α ∈ (0, 1).
(ii) If Sη,W<∞ for an η∈ [1,∞], then (32) holds ∀α∈(0, η].

B. The Rényi Center as a Function of the Order

Sα,W is defined as the greatest lower bound of Sα,W(q).
Then Theorem 1 implies, by establishing Cα,W = Sα,W, that

Sα,W(q) ≥ Cα,W ∀q ∈ P(Y).
Van Erven and Harremoës have conjectured that a better lower

bound on Sα,W(q) should hold, [31, Conjecture 1]. Van Erven

and Harremoës proved their claim for α = ∞ case assuming

that Y is countable, [31, Thm. 37]. Lemma 19 establishes

20Immediate after establishing that Dα(p⊛W‖ p ⊗ q) is upper semicon-
tinuous and quasi-concave in p. The lower semicontinuity and the quasi-
convexity of Dα(p⊛W‖ p ⊗ q) in q follow from Lemmas 11 and 13.
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the van Erven-Harremoës bound for any positive order α and

W satisfying Cα,W < ∞, using Theorem 1. A constrained

generalization, i.e. Lemma 25, can be found in Appendix A.

Lemma 19. For any α ∈ (0,∞], W ⊂ P(Y) satisfying

Cα,W <∞, and q ∈ P(Y),
supw∈W Dα(w‖ q) ≥ Cα,W +Dα(qα,W‖ q) . (49)

Lemma 19 quantifies how loose Sα,W(q) —defined in (1)—

is as an upper bound to Cα,W, as surmised by van Erven and

Harremoës in [31].

Proof of Lemma 19. As a result of (22) and (23) we have,

sup
p̃∈P(W)

Dα(p̃⊛W‖ p̃ ⊗ q) ≥ Dα(p⊛W‖ p ⊗ q)

= Iα(p;W) +Dα(qα,p‖ q) (50)

for all p ∈ P(W). Let {pı}ı∈Z+ be a sequence of elements

of P(W) such that limı→∞ Iα(pı;W) = Cα,W. Then the

sequence {qα,pı}ı∈Z+ is a Cauchy sequence with the unique

limit point qα,W by Theorem 1. Since {qα,pı} → qα,W in total

variation topology, same convergence holds in the topology of

setwise convergence because every open neighborhood in the

latter includes an open neighborhood in the former by the

definitions of these topologies. On the other hand, the order

α Rényi divergence is lower semicontinuous for the topology

of setwise convergence by Lemma 13. Thus we have

lim inf
ı→∞

[Iα(pı;W) +Dα(qα,pı‖ q)] ≥ Cα,W +Dα(qα,W‖ q) .

Then (49) follows from (44) and (50).

The van Erven-Harremoës bound allows us to use the

continuity of Cα,W in α and Pinsker’s inequality to establish

the continuity of qα,W in α for the total variation topology.

Lemma 20. For any W ⊂ P(Y) and η ∈ (0,∞] such that

Cη,W <∞,

Cφ,W − Cα,W ≥ Dα(qα,W‖ qφ,W) (51)

for all α and φ satisfying 0 < α < φ ≤ η. Furthermore, qα,W
is a continuous function of α on (0, η] for the total variation

topology on P(Y).
The continuity of the Rényi center as a function of the

order is important because it allows us to the interpret the

Rényi centers as a transition probability from the interval

on which the Rényi capacity is finite to (Y,Y) and apply

Augustin’s method, see [73, §III-A] for a more detailed

discussion.

Proof of Lemma 20. For q=qφ,W, Lemma 19 implies

supw∈W Dα(w‖ qφ,W) ≥ Cα,W +Dα(qα,W‖ qφ,W) . (52)

Since Dα(w‖ qφ,W) is nondecreasing in α by Lemma 7,

Dφ(w‖ qφ,W) ≥ Dα(w‖ qφ,W) ∀w ∈ W, φ ∈ [α, η]. (53)

On the other hand by (35) of Theorem 1 we have

Cφ,W = supw∈W Dφ(w‖ qφ,W) ∀φ ∈ (0, η]. (54)

(51) follows from (52), (53), and (54).

Using Lemma 10 and (51) we get21

√
2
φ∧1 (Cφ,W − Cα,W) ≥ ‖qφ,W − qα,W‖. (55)

Then, for the total variation topology on P(Y), the continuity

of qα,W in α follows from the continuity Cα,W in α on (0, η],
i.e. Lemma 15-(f).

Lemma 20 establishes the continuity of the Rényi center in

the order for the total variation topology. We suspect a much

stronger statement is true.

Conjecture 1. For any W ⊂ P(Y) and η ∈ (0,∞]. satisfying

Cη,W <∞,

µφ,W ≤ µη,W ∀φ ∈ (0, η] (56)

where µφ,W , e
φ−1
φ Cφ,Wqφ,W for all φ ∈ (0, η].

For any W using the continuity of the Rényi center in the

order, one can prove that there exists a ν in P(Y) such that

{qα,W : Cα,W < ∞}≺ν. However, the continuity of the

Rényi center as a function of the order for the total variation

topology does not imply the continuity of corresponding

Radon-Nikodym derivative
dqα,W

dν as a function of α for ν-

almost everywhere. If Conjecture 1 is correct, then it will

imply the continuity of Radon-Nikodym derivative
dqα,W

dν as

a function of α for ν-almost everywhere.

Remark 2. The continuity in the total variation topology does

not imply the continuity of the corresponding Radon-Nikodym

derivative: Let the output space be the real numbers between

−1 and 2, and the Radon-Nikodym derivative of qα with

respect to the Lebesgue measure l be

dqα
dl = 1{sin( 1

t−α )≤y≤sin( 1
t−α )+|α−t |} + 1{0≤y≤1}(1 − |α− t |)

for a t ∈ (0, 1). Evidently limη→α ‖qα − qη‖ = 0 for all α in

(0, 1). But dqα
dl is not continuous in α for any y ∈ (0, 1) at t .

C. The Unions, Cartesian Products, Closures, and More

This subsection is composed of applications of Theorem 1

and Lemma 19. Lemma 21, in the following, bounds from

below and from above the Rényi capacity of a union of sets

in terms of the Rényi capacities of the sets in the union.

Lemma 22 establishes that the Rényi capacity of a Cartesian

product is equal to the sum of the Rényi capacities of its

components. Lemma 23 shows that for any positive ǫ the

order α Rényi capacity of the set of w ’s in W satisfying

Dα(w‖ qα,W) ≥ Cα,W − ǫ is equal to Cα,W. Lemma 24

establishes the invariance of Cα,W under the closure and

convexification operations on W and characterizes the relative

compactness of W in terms of its Rényi capacity. Proofs of

these lemmas are presented in Appendix C.

21For proving a similar continuity result in [6], instead of (51), Augustin
uses the inequality given in the following —which can be proved using (13),
(19), Lemma 3-(b), and Theorem 1: If either α ∈ [φ, η] and φ < 1 or
α ∈ (0, φ] and φ > 1 then

Dφ

(

qα,p‖ qφ,W
)

≤ Cφ,W − φ
φ−1

ln ‖µα,p‖ ∀p ∈ P(W).
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Lemma 21. For any α ∈ (0,∞] and W ⊂ P(Y) satisfying

W = ∪ı∈TWı for some Wı ⊂ P(Y) with finite Cα,Wı ’s,

supı∈T Cα,Wı ≤ Cα,W ≤ ln
∑

ı∈T
eCα,Wı . (57)

Furthermore,

• Cα,Wı = Cα,W iff Sα,W(qα,Wı) ≤ Cα,Wı .

• If Cα,Wı = Cα,W, then qα,W = qα,Wı .

• Cα,W = ln
∑
ı∈T

eCα,Wı and Cα,W is finite iff T is finite

and qα,Wı ⊥ qα,W for all ı 6=  in T.

• If T is finite and qα,Wı ⊥ qα,W for all ı 6=  in T, then

qα,W = (
∑

∈T
eCα,W )−1

∑
ı∈T

eCα,Wı qα,Wı .

One might think that qα,Wı ⊥ qα,W iff Wı ⊥ W. This,

however, is true only for α’s in [1,∞]. For α’s in (0, 1), Wı ⊥
W is a sufficient condition for qα,Wı ⊥ qα,W , but it is not

a necessary condition, see Examples 1 and 2. Augustin [6] is

the first one to point out this subtlety and to present necessary

and sufficient conditions for Cα,W = ln
∑

ı∈T e
Cα,Wı , to the

best of our knowledge. Bounds given in (57) is well known

[37, p. 535, ex. 5.17]. We use the van Erven-Harremoës bound

in order to characterize the necessary and sufficient conditions

for supı∈T Cα,Wı = Cα,W and Cα,W = ln
∑

ı∈T
eCα,Wı .

Let T be a finite set. For each t ∈ T, let (Yt ,Yt ) be

a measurable space and wt be a probability measure on

(Yt ,Yt ). Then there exists a unique product measure
⊗

t∈T
wt

on the measurable space (
t∈T

Yt ,
⊗

t∈T
Yt ) by [30, Thm.

8.2.2].22 Let Wt be a subset of P(Yt ) for each t ∈ T.

Then using the existence of a unique product measure we

can map the Cartesian product of the sets Wt uniquely to

a subset of P(
⊗

t∈T
Yt ), called the product of Wt ’s. Then

the Rényi capacity of the product is equal to the sum of the

Rényi capacities of its components and the Rényi center of

the product, whenever it exists, is equal to the product of

the Rényi centers of its components. Lemma 22 asserts these

observations formally.

Lemma 22. For any finite index set T, if Y =
t∈T

Yt ,

Y =
⊗

t∈T
Yt , and W =

{
w : w =

⊗
t∈T

wt : wt ∈ Wt

}

for some Wt ⊂ P(Yt ), then

Cα,W =
∑

t∈T
Cα,Wt

∀α ∈ (0,∞]. (58)

Furthermore, if Cα,W <∞, then qα,W =
⊗

t∈T
qα,Wt

.

Quite frequently, the information transmission problems are

analyzed on the product W’s. Lemma 22 is instrumental when

that is the case. The derivation of the sphere packing bound

presented in [73, §IV] is a case in point. The additivity of

the Rényi capacity for products was first reported by Gallager

—in a slightly different form and for finite W and Y case—

in his seminal paper [35, Thm. 5], see also [37, pp. 149-150,

(5.6.59)]. Later, Augustin proved [6, Lemma 26.7a], which

implies Lemma 22; see [5, Lemma 3.6] for finite W case.

One curious question is whether or not one can give a class

of priors for which the lower bound given in (40) is not too

loose. Lemma 23 answers this question in the affirmative.

22The existence of a unique product measure is guaranteed for any finite
collection of σ-finite measures by [30, Thm. 4.4.4] and for any countable
collection of probability measures by [30, Thm. 8.2.2].

Lemma 23. For any α ∈ (0,∞], W ⊂ P(Y) with finite Cα,W,

and ǫ ≥ 0, let Wα,ǫ be

Wα,ǫ , {w ∈ W : Dα(w‖ qα,W) ≥ Cα,W − ǫ} . (59)

Then for any ǫ > 0, we have Cα,Wα,ǫ = Cα,W and23

0 ≤ Cα,W − Iα(p;W) −Dα(qα,p‖ qα,W) ≤ ǫ (60)

for all p in P(Wα,ǫ). Furthermore, if W is a finite set, then

Cα,Wα,0 = Cα,W and (60) holds for ǫ = 0.

The main conclusion of Lemma 23 is the equality

Cα,Wα,ǫ = Cα,W for positive ǫ’s. This is expected for a

general W and evident, even for ǫ = 0 case, for a finite

W because of the existence of an optimal p in P(W) for

finite W’s. One might be tempted to assume the validity of

the assertions for ǫ = 0 case for arbitrary W’s. This, however,

is not true; see Example 4 for a W for which Cα,W > 0
and Cα,Wα,0 = 0. Thus finiteness of W is not a superficial

hypothesis for extending the claims to ǫ = 0 case.

In order to apply certain technical tools, we occasionally

need a given set to be closed, convex, or compact. The

observations presented in Lemma 24, given in the following,

can be helpful in such situations. For example, if we can prove

a statement about Rényi capacity assuming W to be convex,

then we can assert that statement for non-convex W’s using

Lemma 24-(a). Furthermore, in certain situations, calculating

the Rényi capacity might be easier for the convex hull or the

closure of W when compared to W itself, see Example 4.

Lemma 24-(a,b) is helpful in such situations. Note that Lemma

24-(a,b) when considered together with Lemma 21 imply the

equality of the Rényi centers of W, chW, and clW whenever

one of them exists.

Lemma 24. Let W be a subset of P(Y).
(a) Cα,chW = Cα,W for all α ∈ (0,∞] where chW is the

convex hull of W given by chW , {µ1,p : p ∈ P(W)}.

(b) Cα,clW = Cα,W for all α ∈ (0,∞] where clW is the

closure of W in the topology of setwise convergence or a

stronger topology on P(Y).
(c) If Cη,W<∞ for an η≥1, then {µα,p :α∈ [0, η], p∈P(W)}

is uniformly absolutely continuous with respect to qη,W
and relatively compact in both the topology of setwise

convergence and the weak topology.

(d) The following four statements are equivalent:24

(i) limα↑1
1−α
α Cα,W = 0.

(ii) ∃µ ∈ P(Y) such that W≺uniµ.

(iii) W has compact closure in the topology of setwise

convergence.

(iv) W has compact closure in the weak topology.

Each assertion of Lemma 24 is proved using Theorem 1

together with some other observations. The invariance of Cα,W
under the closure and the convexification operations on W,

23For α = ∞, (60) is valid for a broader class of p’s in particular for all
p’s such that (

∑

w∈Wα,ǫ
p(w)) > 0.

24Augustin proves the equivalence of limα↑1
1−α
α

Cα,W = 0 and ∃µ ∈
P(Y) such that W≺uniµ, using Gallager’s inner bound [35, Thm. 1] and a
different characterization of the relative compactness he derives in [6]. Our
proof is measure theoretic and self-contained.
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presented in Lemma 24-(a,b), follow from the lower semicon-

tinuity and the quasi-convexity of the Rényi divergence in its

first argument. Lemma 24-(c) follows from the monotonicity

of µα,p in α and de la Vallée Poussin’s characterization of the

uniform integrability, i.e. [8, Thm. 4.5.9].

Arguably, the most interesting observation of Lemma 24 is

the following: limα↑1
α−1
α Cα,W = 0 iff there exists a µ in

P(Y) satisfying W≺uniµ. This characterization is important

because W is relatively compact, i.e. has a compact closure,

in the topology of setwise convergence iff there exists a µ
in P(Y) satisfying W≺uniµ by [8, Thm. 4.7.25]. Since the

topology of set wise convergence and the weak topology

have exactly the same family of sets as their compact sets

by [8, Thm. 4.7.25], the uniform absolute continuity also

characterizes the relative compactness in the weak topology.

Remark 3. The weak topology on M(Y) is the topology

generated by all continuous linear functions from M(Y) with

the total variation topology to R with its usual topology. Then

the weak topology is weaker than the total variation topology,

i.e. the initial topology. On the other hand, the topology of

setwise convergence on M(Y) is the topology generated by

the functions {fE : E ∈ Y} where fE(µ) =
∫
E
µ(dy) for E in

Y and µ in M(Y). Since fE : M(Y) → R is a continuous

linear function for any E ∈ Y , the weak topology is stronger

than the topology of setwise convergence. Nevertheless, the

weak topology and the topology of setwise convergence have

exactly the same class of compact sets, [8, Thm. 4.7.25].

Our use of the term weak topology is consistent with the

convention used in functional analysis, see [8, pp. 281,291].

While discussing the convergence of measures, however, the

term weak topology is commonly used to describe another

topology. If there is a topology on Y and Y is the resulting

Baire σ−algebra [8, p. 12] of the subsets of Y, then one can

interpret the space of measures as a space of linear functionals

on the space of continuous and bounded functions on Y. The

weak* topology on the space of measures in this setting is

often called the weak topology [8, Def. 8.1.2]. Although it

is a very important and useful concept in general, the weak

topology in this second sense is not relevant in our discussion

because we have not assumed any topological structure on Y.

V. EXAMPLES

The order α Rényi entropy of a binary random variable, de-

noted hα(δ), allows us to write certain expressions succinctly

in some of the examples. For any δ ∈ [0, 1] it is defined as

hα(δ) ,

{
1

1−α ln(δα + (1 − δ)α) α 6= 1

δ ln 1
δ + (1− δ) ln 1

1−δ α = 1
. (61)

A. Probabilities on Discrete Output Spaces

For α ≥ 1, qα,W ⊥ qα,U iff W ⊥ U. For α ∈ (0, 1),
W ⊥ U implies qα,W ⊥ qα,U but the converse is not true, i.e.

qα,W ⊥ qα,U can hold even when W and U are nonsingular.

Examples 1 and 2 provide such sets of probability measures.

Example 1. For a δ ∈ (0, 15 ), let W and U be25

W =




1− δ δ 0 0
δ 1− δ 0 0

1−δ
2

1−δ
2

δ
2

δ
2



 U =

[
0 0 1− δ δ
0 0 δ 1− δ

]

The third member of W is not singular with the members

of U; thus W is not singular with U. We show in the

following that qα,W ⊥ qα,U for all α ∈ (0, f −1( δ
1−δ )] where

f −1 : [0, 14 ] → [0, 1] is the inverse of the bijective decreasing

function f (x ) , (21−x − 1)
1/x .

For U and p = [1/2 1/2] we have

Iα(p;U) = ln 2− hα(δ) qα,p =
[
0 0 1/2 1/2

]

where hα(δ) is defined in (61). On the other hand, both u’s

in U satisfy Dα(u‖ qα,p) = ln 2 − hα(δ) . Then (38) implies

that Cα,U = ln 2− hα(δ) and qα,U =
[
0 0 1/2 1/2

]
.

For W and p̃ = [1/2 1/2 0] we have

Iα(̃p;W) = ln 2− hα(δ) qα,p̃ =
[
1
2

1
2 0 0

]
.

The first two w ’s in W satisfy Dα(w‖ qα,p̃) = ln 2− hα(δ).
The third one satisfy Dα(w‖ qα,p̃)≤ ln 2−hα(δ) if and only if

α≤ f −1( δ
1−δ ). Consequently, (38) implies Cα,W=ln 2−hα(δ)

and qα,W =
[
1/2 1/2 0 0

]
for all α ∈ (0, f −1( δ

1−δ )].

Example 2 provides sets of probability measures that are not

even pairwise disjoint but they have singular Rényi centers for

all orders in (0, 1). Example 2 also demonstrates the possible

absence of an optimal prior for infinite sets of probability

measures.

Example 2. Let (Y,Y) be (Z , 2Z ) and let Wı be

Wı = {w ı, :  ∈ Z}. ∀ı ∈ Z

where w ı,(y) = (1{y=ı} + 1{y=})/2.

For any α in (0, 1) and sequence {pκ}κ∈Z+ ⊂ P(Wı) of

uniform distributions with strictly increasing support qα,pκ

converges to 1{·=ı} in the total variation topology and

limκ→∞ Iα(pκ;Wı) = α ln 2
1−α . Furthermore, if q(·) = 1{·=ı}

then Dα(w‖ q) ≤ α ln 2
1−α for all w ∈ Wı. Thus Cα,Wı =

α ln 2
1−α

and qα,Wı(·) = 1{·=ı} for all α∈(0, 1) by (39).

Note that Wı’s are not singular with one another, in fact

Wı ∩W = {w ı,}. Nonetheless, qα,Wı ⊥ qα,W for all α in

(0, 1) whenever ı 6=  and we can use Lemma 21 to calculate

the Rényi capacity of any finite union of Wı’s. For any finite

set of integers A, let WA be WA = ∪ı∈AWı; then

Cα,WA
= α ln 2

1−α + ln |A| and qα,WA
(y) = |A|−1

1{y∈A}.

Furthermore, for any p ∈ P(WA) using (22) and (23) we get

Dα(p⊛WA‖ p ⊗ qα,WA
) = Iα(p;WA) +Dα(qα,p‖ qα,WA

) .

Recall that Dα(p⊛WA‖ p ⊗ qα,WA
) ≤ Cα,WA

by Theorem 1

and Dα(qα,p‖ qα,WA
) ≥ 0 by Lemma 10. In addition

25When W and Y are finite sets and Y = 2Y, it is customary to describe
W using a matrix. Each row corresponds to an element of W, each column
corresponds to an element of Y and the element on the row w and the column
y is equal to w(y). With a slight abuse of notation we denote the resulting
matrix by W, as well.
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• Dα(p⊛WA‖ p ⊗ qα,WA
) < Cα,WA

for any p ∈ P(WA)
satisfying p(w) > 0 a w such that supp(w) ⊂ A.

• Dα(qα,p‖ qα,WA
) > 0 for any p ∈ P(WA) satisfying

p(w) > 0 a w such that supp(w) * A.

Thus Iα(p;WA) < Cα,WA
for any p ∈ P(WA) and finite A.

In Example 1 the optimal p satisfying Iα(p;W) = Cα,W
was unique. However, this is not the case in general as

demonstrated by Example 3, given in the following.

Example 3. For a δ ∈ [0, 1/2], let W be

W =




δ δ 1/2 − δ 1/2 − δ
1/2 − δ 1/2 − δ δ δ
δ 1/2 − δ 1/2 − δ δ

1/2 − δ δ δ 1/2 − δ


 .

Let pβ be [β/2 β/2 (1 − β)/2 (1 − β)/2] for any β ∈ [0, 1].
Then for all α in R+ and β in [0, 1] we have

Iα(pβ ;W) = ln 2− hα(2δ) qα,pβ
=
[
1/4 1/4 1/4 1/4

]
.

Furthermore, Dα
(
w‖ qα,pβ

)
= Iα(pβ ;W) for all w in W. Thus

Iα(pβ ;W) = Cα,W and qα,W = qα,pβ
for all β in [0, 1] and α

in R+ by (38).

We have demonstrated in Example 2 that for certain infinite

W’s Iα(p;W) < Cα,W for all p in P(W). Example 4,

given in the following, demonstrates that a stronger assertion

“Dα(w‖ qα,W) < Cα,W for all w in W” is true for certain

infinite W’s. Hence, the claims of Lemma 23 about Wα,ǫ

cannot be extended to ǫ = 0 case for infinite W’s, because

for the W given in Example 4 Cα,W > 0 and Wα,0 = ∅.

Example 4. Let us assume γ ∈ (0, 1) and n ∈ Z+ . Let Y be

{0, . . . , n}, Y be 2Y, U and W be

U = {wδ, :  ∈ {1, . . . , n}, δ ∈ [γ, 1]},
W = {wδ, :  ∈ {1, . . . , n}, δ ∈ (γ, 1]}

where wδ,(y) = 1{y=}(1 − δ) + 1{y=0}δ.

Let p ∈ P(U) be p(wδ,) = 1
n
1{δ=γ}. Then

Iα(p;U) =

{
α
α−1 ln

[
γ + (1− γ)n

α−1
α

]
α ∈ R+ \ {1}

(1− γ) lnn α = 1
,

qα,p(y) =
γ1{y=0}

γ+(1−γ)n1−1/α +
∑n

=1

(1−γ)n−1/α
1{y=}

γ+(1−γ)n1−1/α .

Furthermore, one can confirm by substitution that

Dα
(
wδ,
∥∥qα,p

)
=

{
1

1−α ln
(1+((1/γ)−1)n1−1/α)1−α

δα+(1−δ)α((1/γ)−1)1−αn1−1/α α 6= 1

δ ln δ
γ + (1 − δ) ln (1−δ)n

1−γ α = 1
.

Then Dα(w‖ qα,p) ≤ Iα(p;U) for all w ∈ U and consequently,

Cα,U = Iα(p;U) and qα,U = qα,p by (38).

Since U is the closure of W in the topology of setwise

convergence, Cα,W = Cα,U for all α ∈ R+ by Lemma 24-(b).

Consequently, qα,W = qα,U by Lemma 21 because W ⊂ U.

Then Dα(w‖ qα,W)<Cα,W for all w in W and α in R+ .

Hence Iα(p;W) < Cα,W for all p in P(W) and α in R+ by

Lemma 14 and W(α,0)=∅ for all α in R+ by definition.

B. Shift Invariant Families of Probabilities

The shift invariant sets of probability measures on the unit

interval are relatively easy to analyze. Nevertheless, when

considered as a function of the order the Rényi capacities of

these sets form a diverse collection and it is relatively easy to

construct examples and counterexamples for the behavior of

Rényi capacity as function of the order using this family.

First we consider the set of modular shifts of a probability

measure on the unit interval, which is called “channel with

additive noise on the unit circle” by Agustin in [6].

Example 5. Let Y be [0, 1), Y be B([0, 1)), and f be a non-

negative Lebesgue measurable function such that
∫ 1

0 f (y)dy =
1. Then W[f ] is the set of all probability measures whose

Radon-Nikodym derivatives with respect to the Lebesgue

measure l is a mod one shift of f :

W[f ] ,
{
w : dw

dl = f ◦ Tx for some x ∈ [0, 1)
}

(62)

where Tx (y) , y − x − ⌊y − x⌋.

Let us denote the measure whose Radon-Nikodym deriva-

tive is f by wf . Note that Dα(w‖ l) = Dα(wf ‖l) for any w in

W[f ] and α ∈ (0,∞]. Thus supw∈W[f ] Dα(w‖ l) = Dα(wf ‖l)
for any α ∈ (0,∞].

If Cα,W[f ] is finite for an α ∈ (0,∞], then ∃!qα,W[f ] in

P(Y) such that

Dα
(
w‖ qα,W[f ]

)
≤ Cα,W[f ] ∀w ∈ W[f ]

by Theorem 1. On the other hand qα,W[f ] = qs + qac where

qs ⊥ l and qac≺l , by the Lebesgue decomposition theorem

[30, 5.5.3]. Then Dα
(
w‖ qα,W[f ]

)
= Dα(w‖ qac) for all w in

W[f ] by (19) because w≺l for all w in W[f ] . Thus

Dα(w‖ qac/‖qac‖) = Cα,W[f ] + ln ‖qac‖ ∀w ∈ W[f ] .

If ‖qac‖ < 1, then supw∈W[f ] Dα(w‖ qac/‖qac‖) < Cα,W[f ] .

This, however, is impossible because of Theorem 1. Thus

‖qac‖ = 1, ‖qs‖ = 0 and qα,W[f ]≺l .

Since qα,W[f ]≺l , the Radon-Nikodym derivative
dq

α,W[f ]

dl
exists by the Radon-Nikodym theorem [30, 5.5.4]. Since

W[f ] is invariant under mod one shifts by construction, its

Rényi centers need to be invariant under mods one shift, as

well. Furthermore, l is invariant under mod one shifts. Hence,

dq
α,W[f ]

dl =
dq

α,W[f ]

dl ◦ Tx ∀x ∈ [0, 1)

Thus
dq

α,W[f ]

dl needs to be a constant. That constant is one

because qα,W[f ] is a probability measure. Therefore qα,W[f ] = l

and Cα,W[f ] =Dα(wf ‖l) whenever Cα,W[f ] is finite. When it is

infinite so is Dα(wf ‖l) by Theorem 1 because Dα(w‖l) equals

Dα(wf ‖l) for all w inW[f ] . Hence, Cα,W[f ] =Dα(wf ‖l), i.e.

Cα,W[f ] =





1
α−1 ln

∫
f α(y)dy α ∈ R+ 6= 1∫

f (y) ln f (y)dy α = 1

ln ess supl f (y) α = ∞
. (63)

(63) is derived using the Ergodic theorem in Appendix G.

As a result of Lemma 15, Cα,W is either continuous in α
on (0,∞] or continuous and bounded on (0, φ] and infinite

on (φ,∞] for an φ ∈ [1,∞). The following two examples
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are special cases of Example 5 which demonstrate that the

Rényi capacity can become infinite for some orders larger than

one while being continuous on (0,∞] and the Rényi capacity

can have a discontinuity at any order in [1,∞).

Example 6. fβ(y) = (1− β)y−β and β ∈ (0, 1).

C
α,W[fβ ] =






α ln(1−β)−ln(1−αβ)
α−1 α ∈ [0, 1) ∪ (1, β−1)

β
1−β + ln(1 − β) α = 1

∞ α ∈ [β−1,∞]

C
α,W[fβ ] is continuous on (0,∞] and monotone increasing and

finite on (0, β−1).

Example 7. The existence of the discontinuity is related to the

integrability of f ln f and f α because Cα,W[f ] = Dα(wf ‖l).
• If f (y) = 2

1{0<y<1/e}

y(ln 1
y
)3

, then C1,W[f ] = ln 2
√
e and

Cα,W[f ] = ∞ for all α in (1,∞].

• If f (y) =
y
− 1

φ 1{0<y<1/e}

(ln 1
y
)
∫∞

1− 1
φ

e−z

z
dz

for a φ in (1,∞), then

Cφ,W[f ] =
ln(φ−1)
1−φ − φ

φ−1 ln
∫∞
1− 1

φ

e−z

z
dz and Cα,W[f ] =∞

for all α in (φ,∞].

In all of the examples we have considered thus far the

Rényi capacity is not only continuous but also differentiable

in the order. This, however, is not the case in general.

Example 8. Let F be a family of non-negative Lebesgue

measurable functions such that
∫
f dy = 1 for all f ∈ F.

Then W[F] is the set of all probability measures whose Radon-

Nikodym derivative is a mod one shift of an f in F:

W[F] ,
{
w : dw

dl = f ◦ Tx for some x ∈ [0, 1), f ∈ F
}

(64)

where Tx (y) , y − x − ⌊y − x⌋.

Note that supw∈W[F] Dα(w‖ l)=supf∈F Dα(wf ‖l) because

W[F] =∪f∈FW[f ] and Dα(w‖ l)=Dα(wf ‖l) for all w in W[f ] .

Thus Cα,W[F] ≤supf∈F Dα(wf ‖l) by Theorem 1. On the other

hand, the reverse inequality follows from (63) and Lemma 21.

Thus, Cα,W[F] =supf∈F Dα(wf ‖l), i.e.

Cα,W[F] =






sup
f∈F

1
α−1 ln

∫
f α(y)dy α ∈ R+ 6= 1

sup
f∈F

∫
f (y) ln f (y)dy α = 1

sup
f∈F

ln ess supl f (y) α = ∞
. (65)

If F = {2y, 1
2
√
y
}, then Cα,W[F] is not differentiable at α = 1

2 .

C. Certain Families of Poisson Point Processes

The following examples demonstrate the generality of our

framework by determining the Rényi capacity of various

families of Poisson point processes with integrable intensity

functions, on real line.26 Some of these families have been

considered before in the context of channel coding problems,

26The analysis we present in the following can be applied to the spatial
Poisson processes defined on appropriately chosen subsets of the Euclidean
space without any major modification. We restrict our analysis to the one
dimensional case, because even the one dimensional case has a structure that
is rich enough to demonstrate the generality of our framework.

such as the ones in (70) and (72) in the following (see [13],

[28], [55], [107], [108]), others have not been considered

before, such as the ones in (69), (71), and (91).

The Poisson point processes are, sometimes, formulated

and analyzed via the characterization of the interarrival times

without even mentioning the Radon-Nikodym derivatives, see

[38, Ch. 2]. For many applications such an approach turns out

to be sufficient; as a result, the Radon-Nikodym derivatives

of Poisson point processes are not as well-known as one

would expect. Considering this fact, we follow the approach

of Burnashev and Kutoyants in [13] and start our discussion

with a brief refresher on the Radon-Nikodym derivatives of

the Poisson processes.

For any T ∈ R+ , let XT be the set of all nondecreas-

ing, right-continuous, integer valued functions on (0,T ]. The

sample paths of Poisson point processes are members of XT .

Furthermore, any Poisson point process with deterministic

intensity function f can be represented by a unique probability

measure on the measurable space (Y,Y) for Y = XT when Y
is an appropriately chosen σ−algebra.27

For any sample path y ∈ Y, we denote the th arrival time

by τ(y) and the number of arrivals up to and including time t

by Nt(y). The probability measure associated with a Poisson

process with the intensity function f is denoted by wf . The

probability measure of the Poisson point process with constant

intensity γ is denoted by νγ . If γ = 1, we also use ν to denote

νγ , i.e. ν = ν1.

For any non-negative integrable function f on (0,T ] the

associated probability measures wf is absolutely continuous

with respect to ν and the Radon-Nikodym derivative
dwf

dν is

given by,28 [13, (2.1)], [9, VI.6.T12, p187],

dwf

dν (y) =

(∏
τ(y)≤T

f (τ(y))

)
e
∫

T

0
(1−f (t))dt . (66)

For any non-negative measurable function g , the following

expression for the expectation29 follows from (66), [13, (2.2)]:

∫ (∏
τ(y)≤T

g(τ(y))

)
wf (dy) = e

∫
T

0
(g(t)−1)f (t)dt . (67)

An immediate consequence of (66) and (67) is the following

expression for the Rényi divergence between wf and wg for

27One choice of Y that works is the Borel σ−algebra for the topology
generated by the Skorokhod metric s on XT , denoted by B(XT , s). In
fact, B(XT , s) is rich enough to express the Poisson point processes whose
intensity functions are not deterministic but Markovian, i.e. the intensity at
any t ∈ (0,T ] depends on the previous arrivals. Kabanov’s original work
[55] considers such Poisson point processes, as well.

28
(

∏

τ(y)≤T f (τ(y))
)

stands for 1 for y’s that do not have any arrivals.

29In [13], Burnashev and Kutoyants express the identities given in (66) and
(67) more succinctly and elegantly, as follows:

dwf

dν
(y) = e

∫
T
0 (ln f (t))y(dt)+

∫
T
0 (1−f (t))dt ,

∫

e
∫
T
0 (ln g(t))y(dt)wf (dy) = e

∫
T
0 (g(t)−1)f (t)dt .

In the expressions
∫ T

0
(ln f (t))y(dt) and

∫ T

0
(ln g(t))y(dt), the sample path

y is interpreted as a measure that is equal to the sum of Dirac delta functions
located at the arrival times of the sample path y .
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integrable intensity functions f and g and positive real orders:

Dα(wf ‖wg)=






∫ T

0

(
f αg1−α−f

α−1 − f + g
)
dt α 6= 1

∫ T

0

(
f ln f

g
− f + g

)
dt α = 1

. (68)

For positive real orders other than one (68) follows from (66)

and (67) by substitution, via the definition of the Rényi diver-

gence. On the other hand, D1(wf ‖wg) = limα↑1 Dα(wf ‖wg)
because the Rényi divergence is continuous in order on [0, 1]
by Lemma 7. Then the expression for D1(wf ‖wg) follows

from the dominated convergence theorem [8, 2.8.1] and the ex-

pression for Dα(wf ‖wg) for α ∈ (0, 1) because xα−x
α−1 ↑ x ln x

as α ↑ 1 for any x ≥ 0.

Let us proceed with defining the set of Poisson point

processes we will be investigating.

Definition 8. For any T ∈ R+ and intensity levels a, ̺, b

satisfying 0 ≤ a ≤ ̺ ≤ b ≤ ∞, let ΛT ,a,b,̺, ΛT ,a,b,≤̺,

ΛT ,a,b,≥̺, and ΛT ,a,b be the set of all Poisson point processes

with [a, b] valued deterministic integrable intensity functions

on (0,T ] with an average equal to ̺, less than or equal to ̺,

greater than or equal to ̺, and in [a, b], respectively:

ΛT ,a,b,̺,
{
wf : a ≤ f ≤ b and

∫ T

0
f (t)dt = T̺

}
, (69)

ΛT ,a,b,≤̺,
{
wf : a ≤ f ≤ b and

∫ T

0
f (t)dt ≤ T̺

}
, (70)

ΛT ,a,b,≥̺,
{
wf : a ≤ f ≤ b and

∫ T

0 f (t)dt ≥ T̺
}
, (71)

ΛT ,a,b, {wf : a ≤ f ≤ b} . (72)

The convention proposed in Definition 8 allows us to refer to

various families of Poisson point processes without confusion.

However, explicitly stating the dependence on T , a, and b

is not necessary whenever the values of T , a, and b are

unambiguous. When this is the case we use Λ̺ for ΛT ,a,b,̺,

Λ≤̺ for ΛT ,a,b,≤̺, Λ≥̺ for ΛT ,a,b,≥̺, and Λ for ΛT ,a,b .

In the following, we first determine the Rényi capacity

and center of ΛT ,a,b,̺, and then use these expressions to

calculate the Rényi capacity and center of families described

in Definition 8 and in (91).

Example 9. For any T ∈R+ , a, b∈R≥0 such that a ≤ b, and

̺ ∈ [a, b],

Cα,Λ̺ =

{
α
α−1 (ζα,̺ − ̺)T α 6= 1(
̺−a

b−a
b ln b

̺ + b−̺
b−a

a ln a
̺

)
T α = 1

, (73)

qα,Λ̺ = νζα,̺ , (74)

ζα,̺ ,
(
̺−a

b−a
bα + b−̺

b−a
aα
)1/α

. (75)

An alternative expression for Cα,Λ̺ is the following:

Cα,Λ̺ = ̺−a

b−a
Dα
(
νb‖ νζα,̺

)
+ b−̺

b−a
Dα
(
νa‖ νζα,̺

)
. (76)

If ̺ is equal to a or b, then Λ̺ has just one element;

consequently Cα,Λ̺ is zero and the only element of Λ̺ is

also the Rényi center. For ̺’s in (a, b), we first determine

the Rényi capacity and center assuming that ̺−a
b−a

is a rational

number by giving a sequence of priors {pı} and a probability

measure q satisfying limı→∞ Iα(pı;Λ
̺) = Sα,Λ̺(q). Then

we determine the Rényi capacity of Λ̺ with irrational ̺−a
b−a

using the continuity of the resulting expression in b and the

monotonicity of Cα,W in W.

There exists positive integers ℓ and n such that ̺−a

b−a
= ℓ

n

because ̺−a

b−a
is a rational number and b > ̺ > a. Then there

are
(
n

ℓ

)
length n sequences of a’s and b’s with ℓ b’s and

(n − ℓ) a’s. These sequences will be the building blocks for

f ’s with positive pı(wf ).
For each positive integer ı let us divide the interval (0,T ]

into 2ın half open intervals of the form ( −1
2ın T ,


2ınT ] for

 ∈ {1, . . . , 2ın}. Now consider f ’s such that:

• f is {a, b} valued function that is constant in all intervals

of the form ( −1
2ın T ,


2ınT ] for  ∈ {1, . . . , 2ın}.

• ℓ =
∑n−1

κ=0 1{f ( n−κ
2ın T)=b} for all  ∈ {1, . . . , 2ı}.

For every such f corresponding wf is in Λ̺. Furthermore, there

are
(
n
ℓ

)(2ı)
distinct f ’s. The prior pı has equal probability mass

on all wf ’s with the above described f ’s. Then using (66) we

can calculate the Radon-Nikodym derivative of µα,pı ,

dµα,pı

dν (y) = e(1−̺)T
(
∑(nℓ)

(2ı)

κ=1

(∏
τ(y)≤T fκ(τ(y))

)α

(nℓ)
(2ı)

)1/α

.

For the sample paths, i.e. y’s, that do not have more than one

arrival in any of the intervals of the form ( −1
2ı T , 2ıT ], one

can simplify the expression for the Radon-Nikodym derivative

significantly. In particular,

dµα,pı

dν (y) = e(1−̺)T
(
ℓbα+(n−ℓ)aα

n

)NT (y)−N0(y)

α ∀y ∈ Eı

where Nt (y) is the number of arrivals on (0, t ] for the sample

path y and Eı ∈ Y is defined as

Eı,
{
y :
∣∣∣N 

2ı T
(y)−N −1

2ı T (y)
∣∣∣ ≤ 1 ∀ ∈ {1, . . . , 2ı}

}
.

Since Eı ⊂ Eı+1 the following holds ∀y ∈ ∪ı∈Z+Eı

limı→∞
dµα,pı

dν (y) = e(1−̺)T
(
ℓbα+(n−ℓ)aα

n

)NT (y)−N0(y)

α

.

Using the complete independence of the Poisson processes

on disjoint intervals and the probability mass function of the

counting process, [38, Thm. 2.2.10], [9, II.1.(1.9), p. 22], we

can calculate the probability ν(Eı):

ν(Eı) = (e−
T
2ı + T

2ı e
− T

2ı )(2
ı)

= e−T (1 + T
2ı )

(2ı).

Then limı→∞ ν(Eı) = 1 and consequently ν(∪ı∈Z+Eı) = 1.

Thus convergence on (∪ı∈Z+Eı) implies ν−a.e. convergence:

dµα,pı

dν (y)
ν−a.e−−−−→ e(1−̺)T

(
ℓbα+(n−ℓ)aα

n

)NT (y)−N0(y)

α

.

On the other hand
dµα,pı

dν (y)≤e(1−̺)T bNT (y)

bN0(y) because f (t)≤
b. Furthermore

∫
e(1−̺)T bNT

bN0
ν(dy) = e(b−̺)T . Thus the

dominated convergence theorem [8, 2.8.1] implies that

lim
ı→∞

‖µα,pı‖ = e(1−̺)T
∫ (

ℓbα+(n−ℓ)aα

n

)NT (y)−N0(y)

α

ν(dy)

= e

((
ℓbα+(n−ℓ)aα

n

)1/α
−̺

)
T
.
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Thus using (13) and the fact that ̺−a

b−a
= ℓ

n
we get

limı→∞ Iα(pı;Λ
̺) = α

α−1 (ζα,̺ − ̺)T ∀α 6= 1. (77)

On the other hand for any γ ∈ R+ and f : (0,T ] → [a, b]

satisfying
∫ T

0 f (t)dt = T̺, as a result of (68)

Dα(wf ‖ νγ)=
∫ T

0

[
γ1−α

α−1 f
α(t)− α

α−1 f (t) + γ
]
dt

≤
∫ T

0

γ1−α

α−1

[
f (t)−a

b−a
bα+ b−f (t)

b−a
aα
]
dt− α̺T

α−1+γT

=
[
γ1−α

α−1

(
̺−a

b−a
bα + b−̺

b−a
aα
)
− α

α−1̺+ γ
]
T

= α
α−1 (ζα,̺ − ̺)T +Dα

(
νζα,̺

∥∥ νγ
)

(78)

where the inequality follows from the convexity of the function
xα

α−1 in x and the Jensen’s inequality.

Using (77) and (78) for γ = ζα,̺ we can conclude that

limı→∞ Iα(pı;Λ
̺) = Sα,Λ̺(νζα,̺). Then for α’s other than one

(73) follows from (39) for values of ̺ making ̺−a

b−a
a rational

number. For values of ̺ making ̺−a

b−a
a rational number, (73)

for α = 1 case follows from the expression for α 6= 1 case via

L’Hospital’s rule [80, Thm. 5.13] because the Rényi capacity is

a continuous function of the order on (0, 1] by Lemma 15-(c).

We now prove that (73) holds for values of ̺ for which ̺−a
b−a

is irrational. First note that ΛT ,a,b1,̺ ⊂ ΛT ,a,b2,̺ for any T ,

a, ̺, b1, b2 satisfying b1 ≤ b2, by the definition of ΛT ,a,b,̺

given in (69). Then Cα,ΛT,a,b1,̺ ≤ Cα,ΛT,a,b2,̺ by definition.

Then (73) holds for the case when ̺−a

b−a
is irrational as a result

of the continuity of the expression on the right hand side of

(73) as a function of b for each α ∈ R+ .

For orders other than one (74) follows from Theorem 1

because Sα,Λ̺(νζα,̺) = Cα,Λ̺ by (73) and (78). In order

extend (74) to α = 1 case we invoke the continuity of

Rényi center established Lemma 20.

Example 10. For any T ∈R+ , a, b ∈R≥0 such that a ≤ b,

and ̺ ∈ [a, b],

Cα,Λ≤̺ = Cα,Λ̺∧̺α Cα,Λ≥̺ = Cα,Λ̺∨̺α (79)

qα,Λ≤̺ = qα,Λ̺∧̺α qα,Λ≥̺ = qα,Λ̺∨̺α (80)

where Cα,Λ̺ and qα,Λ̺ are given in (73) and (74) and ̺α is

defined as follows:

̺α ,

{
α

α
1−α ( b−a

bα−aα )
1

1−α + abα−baα

bα−aα α 6= 1

e−1b
b

b−a a− a
b−a α = 1

. (81)

Since Λ≤̺ is the union of Λγ for γ in [a, ̺], Cα,Λ≤̺ equals

Cα,Λ̺∧̺α iff Sα,Λ≤̺(qα,Λ̺∧̺α ) ≤ Cα,Λ̺∧̺α by Lemma 21.

On the other hand when considered together with the

convexity of xα−x
α−1 in x for α 6= 1 case and the convexity

of x ln x in x for α = 1 case, (68) implies

Dα(w‖ νs) ≤ b−γ
b−a

Dα(νa‖ νs) + γ−a

b−a
Dα(νb‖ νs) (82)

for all w in Λγ . Furthermore, the definitions of ζα,γ and ̺α
given in (75) and (81) imply that

Dα
(
νa‖ νζα,γ

)
≤ Dα

(
νb‖ νζα,γ

)
∀γ ∈ [a, ̺α]. (83)

Using (82) and (83) together with the alternative expression

for Cα,Λ̺ given in (76) we get

Sα,Λ≤̺(νζα,̺∧̺α
) ≤ b−̺∧̺α

b−a
Dα
(
νa‖ νζα,̺∧̺α

)

+ ̺∧̺α−a

b−a
Dα
(
νb‖ νζα,̺∧̺α

)

= Cα,Λ̺∧̺α .

Thus Sα,Λ≤̺(qα,Λ̺∧̺α ) ≤ Cα,Λ̺∧̺α follows from (74). Hence

Cα,Λ≤̺ = Cα,Λ̺∧̺α and qα,Λ≤̺ = qα,Λ̺∧̺α by Lemma 21.

Assertions about Λ≥̺ derived similarly using the following

observations: Λ≥̺ is the union of Λγ for γ in [̺, b] and

Dα
(
νa‖ νζα,γ

)
≥ Dα

(
νb‖ νζα,γ

)
∀γ ∈ [̺α, b]. (84)

Example 11. For any T ∈R+ and a, b∈R≥0 such that a ≤ b,

Cα,Λ = Cα,Λ̺α , (85)

qα,Λ = qα,Λ̺α , (86)

where Cα,Λ̺ , qα,Λ̺ , ̺α are described in (73), (74), (81)

because Λ = Λ≤b . By substitution we get the following more

explicitly expressions:

Cα,Λ =






(
(α(b−a)
bα−aα )

1
1−α − α

α−1
abα−baα

bα−aα

)
T α 6= 1(

e−1b
b

b−a a− a
b−a − ab

b−a
ln b

a

)
T α = 1

, (87)

qα,Λ = νζα , (88)

ζα ,

{
α

1
1−α ( b−a

bα−aα )
1

1−α α ∈ R+ \ {1}
e−1b

b
b−a a− a

b−a α = 1
. (89)

One can also confirm ζα = ζα,̺α using (75) and (81). The

following expression for Cα,Λ is equivalent to (87):

Cα,Λ = ̺α−a
b−a

Dα(νb‖ νζα) + b−̺α
b−a

Dα(νa‖ νζα) . (90)

In the preceding examples, we have assumed the intensity

functions are bounded above by a constant; we replace this

constant with an integrable function in Example 12 given in

the following. Let us first give a formal definition.

Definition 9. For any T in R+ , a in R≥0 , and Lebesgue

integrable function g on (0,T ] satisfying g ≥ a, ΛT ,a,g(·)

is the set of all Poisson point processes with deterministic

intensity functions f satisfying a ≤ f ≤ g:

ΛT ,a,g(·) , {wf : a ≤ f (t) ≤ g(t) ∀t ∈ (0,T ]} . (91)

Example 12. For any T ∈ R+ , a ∈ R≥0 , and g ∈ L1(l)
satisfying g(t) ≥ a for all t in (0,T ] we have

Cα,Λ=





∫ T

0

[
(α(g−a)
gα−aα )

1
1−α − α

α−1
agα−gaα

gα−aα

]
dt α 6=1

∫ T

0

[
e−1g

g
g−a a− a

g−a − ag

g−a
ln g

a

]
dt α=1

, (92)

qα,Λ=wζα , (93)

ζα(t),

{
α

1
1−α ( g(t)−a

gα(t)−aα )
1

1−α α 6= 1

e−1[g(t)]
g(t)

g(t)−a a
− a

g(t)−a α = 1
. (94)

If g is a simple function, then we can apply (87) and (88) for

each possible value of g , separately. Then (92) and (93) follow

from Lemma 22 because simple functions can only take finite
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number of distinct values.30 On the other hand, there exists a

sequence of simple functions {g(ı)}ı∈Z+ satisfying a ≤ g(ı)

and g(ı) ↑ g for any measurable g . Evidently C
α,ΛT,a,g(ı)(·) ≤

Cα,ΛT,a,g(·) because ΛT ,a,g(ı)(·) ⊂ ΛT ,a,g(·). Furthermore, if

f satisfies a ≤ f ≤ g , then
∣∣∣α

1
1−α ( f (t)−a

f α(t)−aα )
1

1−α − α
α−1

af α(t)−f (t)aα

f α(t)−aα

∣∣∣ ≤ α
1

1−α g(t).

for all t ∈ (0,T ].
Then the integral on the right hand side of (92) equals to

limı→∞ C
α,ΛT,a,g(ı)(·) by the dominated convergence theorem

[8, 2.8.1]. Hence, it is a lower bound on Cα,ΛT,a,g(·) . It is, also,

an upper bound on Cα,ΛT,a,g(·) by (33) because Dα(w‖wζα)
is bounded from above by it for all w ∈ ΛT ,a,g(·). Then (93)

follows from the uniqueness of the Rényi center.

VI. DISCUSSION

In this paper, we define and analyze the order α Rényi ca-

pacity Cα,W and the order α Rényi radius Sα,W for an arbi-

trary set of probability measures W on an arbitrary measurable

space. Our most important contributions are proving the van

Erven-Harremoës conjecture, i.e. Lemma 19, and two uniform

equicontinuity results on the Rényi information, i.e. Lemma

16-(e,f). We also prove a minimax theorem, i.e. Theorem 1,

which has been previously reported by Augustin in [6] in a

different form and for orders between zero and two. Theorem

1 establishes not only the equality of Cα,W and Sα,W for

any α and W but also the existence of a unique order α
Rényi center whenever Cα,W is finite. Our analysis leads

to certain immediate consequences for two generalizations:

Cα,W,A defined for A ⊂ P(W) and Cα,W defined for

transition probability W . We introduce those generalizations

formally and discuss the implications of our analysis on them

in Appendices A and B.

Results of our analysis, also, encourage one to consider

certain related problems:

• We do not assume any topological structure on the

output space Y. Although this is a strength because

of the generality of our results, it is also a weakness

because of the obliviousness of our analysis towards the

interactions between Rényi’s information measures and

the topological structure of the output space. In almost

all of the applications, Y is a Borel or Baire σ-algebra

of the topological space (Y, τ); usually there is an even

more specific structure. In most of the applications, Y is

the Borel σ-algebra of a complete separable metric space

(Y, d). Thus one can define metrics other than the total

variation metric on W and P(W) using the metric d and

analyze the behavior of Rényi ’s information measures

on the resulting topologies. Such models have already

been considered in the context of the arbitrarily varying

channels [24], [99] and the typicality [54], [64], [76].

• It is easy to confirm that continuity of the order α
Rényi capacity as a function of the order α implies the

30We are not overlooking the issue of contiguity for the inverse of the
image of g because Example 11 holds as is for Poisson processes defined on
any measurable set of Lebesgue measure T , not just the interval (0,T ].

continuity of the corresponding f -capacity Cfα,W as a

function of α where fα(x ) = xα−1
α−1 . The existence of

similar, but more general, continuity results for richer

classes of f -divergences with appropriate topologies is

expected. What is plausible, but not evident, to us is the

existence of a topology on the set of all convex f ’s that

ensures the continuity of the corresponding f -capacities

in f for all W on the region that f -capacities are finite.

The interaction of topologies on the space of convex

functions and corresponding f -capacities seems to be a

fertile subject of inquiry.

• We use the definition of the Rényi information proposed

by Sibson [94]. In (26) we provide the expression for the

alternative definition of the Rényi information proposed

by Augustin [6] and Csiszár [25]. We call this quantity the

Augustin information. Theorems 1, 2, 3, and many of the

other propositions have their analogues for the Augustin

information, see [69], [70]. The Augustin capacity and

center are of interest to us because they are better suited

than the Rényi capacity and center for deriving the sphere

packing bound for memoryless channels, see [69], [71].

We have avoided using information theoretic concepts such as

code, channel, or rate in our discussion because we believe

Rényi’s information measures can and should be defined and

understood on their own as measure theoretic concepts first.

Rényi’s information measures, however, do have operational

meaning in various information transmission problems. We

discuss the case of channel coding problem in [73].

APPENDIX

A. The Constrained Rényi Capacity

Definition 10. For any α∈ [0,∞], W⊂P(Y), A⊂P(W), the

order α Rényi capacity of W for constraint set A is

Cα,W,A , supp∈A Iα(p;W) . (A.1)

Note that Cα,W,P(W)=Cα,W and Cα,W,{p}= Iα(p;W) for

any W and p ∈ P(W). Furthermore, the proof of Theorem

1 works as is for any convex A subset of P(W), not just

P(W) itself. Thus the minimax theorem continues to hold for

Cα,W,A; the alternative expression for Cα,W,A is, however,

no longer (guaranteed to be) equal to the Rényi radius.

Theorem 2. For any α ∈ (0,∞], W ⊂ P(Y), and convex

A⊂P(W),

Cα,W,A = supp∈A infq∈P(Y)Dα(p⊛W‖ p ⊗ q) (A.2)

= infq∈P(Y) supp∈A Dα(p⊛W‖ p ⊗ q) . (A.3)

If Cα,W,A < ∞, then there exists a unique qα,W,A in P(Y),
called the order α Rényi center for constraint set A, such that

Cα,W,A = supp∈A Dα(p⊛W‖ p ⊗ qα,W,A) . (A.4)

Furthermore, for every sequence of priors {pı}ı∈Z+ ⊂ A

satisfying limı→∞ Iα(pı;W) = Cα,W,A, the corresponding

sequence of order α Rényi means {qα,pı}ı∈Z+ is a Cauchy

sequence for the total variation metric on P(Y) and qα,W,A

is the unique limit point of that Cauchy sequence.
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A similar modification is needed for the van Erven-

Harremoës bound, i.e. for Lemma 19, as well.

Lemma 25. For any α∈(0,∞], W⊂P(Y), convex A⊂P(W)
satisfying Cα,W,A <∞, and q ∈ P(Y)
Cα,W,A +Dα(qα,W,A‖ q) ≤ supp∈A Dα(p⊛W‖ p ⊗ q) .

Lemma 20 establishing the continuity of the Rényi centers

in the order holds for the constrained Rényi centers. We prove

it using Theorem 2 and Lemma 25 instead of Theorem 1 and

Lemma 19.

B. The Rényi Capacity of Transition Probabilities

We have defined the order α Rényi information Iα(p;W) for

any p.m.f. p on a set of probability measures W. We show

in the following —using the concept of transition probability

and the expression for Iα(p;W) given in (24)— that for appro-

priately chosen σ-algebra W , one can extend the definition

of Iα(p;W) to p’s that are probability measures on (W,W).
Furthermore, we show that if W is countably separated,31 then

Theorem 1 holds for this more general case, see Theorem 3.

Definition 11. Let (X,X ) and (Y,Y) be measurable spaces.

Then a function W : X × Y → [0, 1] is called a transition

probability (a stochastic kernel / a Markov kernel) from (X,X )
to (Y,Y) if it satisfies the following two conditions:

(i) For all x ∈ X, the function W (·|x ) : Y → [0, 1] is a

probability measure on (Y,Y).
(ii) For all E ∈ Y , the function W (E|·) : X → [0, 1] is a

X -measurable function.

By [8, Thm. 10.7.2.], for any transition probability W

and probability measure p on (X,X ) there exists a unique

probability measure p⊛W on (X× Y,X ⊗ Y) satisfying

p⊛W (Ex × Ey ) =

∫

Ex

W (Ey |x )p(dx )

for all Ex ∈ X and Ey ∈ Y . Now, we can define the order α
Rényi information for p on the transition probability W .

Definition 12. For any α ∈ [0,∞], transition probability

W from (X,X ) to (Y,Y), and p ∈ P(X ), the order α
Rényi information for prior p is defined as

Iα(p;W) , infq∈P(Y)Dα(p⊛W ‖ p ⊗ q) . (A.5)

Definitions 4 and 12 are equivalent because of Lemma 14.

Using the definition of Iα(p;W) we can define the order α
Rényi capacity of a transition probability W .

Definition 13. For any α ∈ [0,∞] and transition probability

W from (X,X ) to (Y,Y), the order α Rényi capacity is

Cα,W , supp∈P(X ) Iα(p;W) . (A.6)

31A σ-algebra X on X is countably separated, [8, Def. 6.5.1], if there exists
an at most countable collection sets {Eı} ⊂ X separating the points of X. A
collection {Eı} of subsets of X is said to be separating the points of X, if for
every pair of distinct points z and x in X there exists an Eı which includes
only one of z and x . The Borel σ-algebra of any separable metric space
is countably separated. The Borel σ-algebra of any separable metric space
is also countably generated, i.e. it is the minimum σ-algebra of a countable
collection of sets.

The analysis of the Rényi capacity for an arbitrary transition

probability W is beyond the scope of this paper. However,

if the σ-algebra X is countably separated, then we can use

Theorem 1 to show that Cα,W = Cα,W for a W ⊂ P(Y).
Theorem 3. For any α ∈ (0,∞] and transition probability W

from (X,X ) to (Y,Y) for a countably separated σ-algebra X
Cα,W = supp∈P(X ) infq∈P(Y)Dα(p⊛W ‖ p ⊗ q) (A.7)

= infq∈P(Y) supp∈P(X )Dα(p⊛W ‖ p ⊗ q) (A.8)

= infq∈P(Y) supw∈W Dα(w‖ q) (A.9)

where W , {W (·|x ) : x ∈ X}. If Cα,W < ∞, then there

exists a unique qα,W in P(Y), called the order α Rényi center,

such that

Cα,W = supp∈P(X )Dα(p⊛W ‖ p ⊗ qα,W ) (A.10)

= supw∈W Dα(w‖ qα,W ) . (A.11)

Proof of Theorem 3. Since X is countably separated, all sin-

gletons are in X by [8, Thm. 6.5.7] and P(X) ⊂ P(X ).
Consequently, using max-min inequality we get

supp∈P(W) infq∈P(Y) Dα(p⊛W‖ p ⊗ q)

≤ supp∈P(X ) infq∈P(Y)Dα(p⊛W ‖ p ⊗ q)

≤ infq∈P(Y) supp∈P(X )Dα(p⊛W ‖ p ⊗ q) (A.12)

On the other hand, for any α ∈ (0,∞] as a result of

Tonelli-Fubini theorem [30, 4.4.5] and the definition of the

Rényi divergence given in (19) we have

Dα(p⊛W ‖ p ⊗ q) ≤ supx∈X Dα(W (·|x )‖ q)
= supw∈W Dα(w‖ q) . (A.13)

Hence,

infq∈P(Y) supp∈P(X )Dα(p⊛W ‖ p ⊗ q)

≤ infq∈P(Y) supw∈W Dα(w‖ q) . (A.14)

Theorem 1 and the inequalities given in (A.12), (A.13), and

(A.14) imply Cα,W =Cα,W and Theorem 3 for qα,W =qα,W.

Theorem 1 and (A.13) imply that Cα,W ≤ Cα,W even when

X is not countably separated.

C. Deferred Proofs

The following parametric function allows us to write certain

expressions succinctly in the proofs:

d(x‖ z ), x ln x
z
+ (1− x ) ln 1−x

1−z
∀x , z ∈ [0, 1]. (A.15)

Proof of Lemma 16.

(a) For any α ∈ (0, 1) the definitions of Iα(p;W) and Cα,W
imply infp∈P(W) ‖µα,p‖ = e

α
α−1Cα,W .

(b) supp∈P(W) ‖µα,p‖ = e
α

α−1Cα,W for any α ∈ (1,∞)

and supp∈P(W) ‖µ∞,p‖ = eC∞,W by the definitions of

Iα(p;W) and Cα,W.

(c) Let us first prove that if Cα,W < ∞, then µα,p is

uniformly continuous in p. Lemma 4-(e) and the triangle

inequality imply

‖µα,p1−µα,p2‖ ≤ ‖p1−p2‖
1
α 2

α−1
α (‖µα,s1‖ ∨ ‖µα,s2‖).
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for all α in [1,∞) and p1, p2 in P(W) where s1 and s2
are members of P(W) determined by the decomposition

given in Lemma 4-(c).

On the other hand ‖µα,s‖ ≤ e
α−1
α Cα,W for any s in P(W)

by the proof of part (b). Thus

‖µα,p1 − µα,p2‖ ≤ ‖p1 − p2‖
1
α e

α−1
α (Cα,W+ln 2)

for all α in [1,∞) and p1, p2 in P(W) Consequently, if

Cα,W is finite, then µα,p is uniformly continuous in p.

We are left with proving that Cα,W = ∞ implies the

absence of uniformly continuity in p for µα,p . For any s

in P(W) let sı be

sı = (1 − 1
ı )s +

1
ı pı ∀ı ∈ Z+

where pı’s are such that ‖µα,pı‖ ≥ ı. The existence of

such pı’s follows from part (b). Then
µα,pı

ı1/α
≤ µα,sı by

the definition of mean measure. Thus ‖µα,sı‖ ≥ ı
α−1
α

and using the triangle inequality we get

‖µα,sı − µα,s‖ ≥ ı
α−1
α − ‖µα,s‖.

On the other hand, ‖s − sı‖ ≤ 2/ı by the triangle

inequality, as well. Thus ‖µα,p−µα,s‖ is an unbounded

function of p on every neighborhood of s , i.e. µα,p is not

continuous at p = s .

(d) If Cα,W is infinite, there is a sequence of {pı}ı∈Z+ such

that limı↑∞ Iα(pı;W) = ∞. Let pβ,ı = (1−β)p+βpı, for

any p. Then the concavity of the order α Rényi informa-

tion in the prior for α’s in [1,∞], established in Lemma

6-(b), and the non-negativity of the Rényi information

imply

Iα(pβ,ı;W)− Iα(p;W) ≥ β(Iα(pı;W)− Iα(p;W))

for all β ∈ (0, 1) and ı ∈ Z+ . On the other hand

‖p − pβ,ı‖ ≤ 2β. Thus Iα(p;W) is not continuous in p,

whenever Cα,W is infinite. The continuity of Iα(p;W) in

p for the case when Cα,W is finite follows from part (e).

(e) We establish the uniform equicontinuity by proving es-

tablishing the following bound

sup
α∈[0,η]

|Iα(p2;W)−Iα(p1;W)|

≤





ln( 1
1−δ ∧ eC0,W

δ )+ln(1−δ+δeC0,W) η=0

ln 1−δ+δeCη,W

[
(1−δ)

1
η +δ

1
η e

η−1
η

Cη,W

] η
1−η

η∈R+\{1}

h1(δ)+δC1,W+ln(1−δ+δeC1,W) η=1

(A.16)

where δ = ‖p1−p2‖
2 and hα(·) is defined in (61).

As a result of the decomposition given Lemma 4-(c) we

can write p1 as p1 = (1 − δ)s∧ + δs1 for some s∧ and

s1 in P(W). Using (19), (22), and (23) we get

I1(p1;W)=(1− δ)I1(s∧;W) + (1 − δ)D1(q1,s∧‖ q1,p1)

+ δI1(s1;W) + δD1(q1,s1‖ q1,p1) . (A.17)

Similarly for positive orders other than one we have,

Iα(p1;W)= 1
α−1ln

[
(1−δ)e(α−1)[Iα(s∧;W)+Dα(qα,s∧‖qα,p1)]

+δe(α−1)[Iα(s1;W)+Dα(qα,s1‖qα,p1)]
]
.

(A.18)

Since the Rényi divergence is non-negative by Lemma 10,

Iα(p1;W)≥
{
(1 − δ)I1(s∧;W) + δI1(s1;W) α=1
ln[(1−δ)e(α−1)Iα(s∧;W)+δe(α−1)Iα(s1;W)]

α−1 α 6=1

≥Iα(s∧;W)− g(δ, α, Iα(s∧;W)− Iα(s1;W))

where the function g(δ, α, γ) is defined for any δ ∈ [0, 1],
α ∈ R+ , and γ ∈ R as follows

g(δ, α, γ),

{
δγ α=1
1

1−α ln
[
(1− δ) + δe(1−α)γ

]
α 6=1

.

Given δ and γ, g(δ, α, γ) is nonincreasing32 in α. Then

Iα(p1;W) ≥ Iα(s∧;W)− g(δ, 0, Iα(s∧;W)− Iα(s1;W))

for all α in (0, η]. Furthermore, given δ and α, g(δ, α, γ)
is nondecreasing in γ. Then using Iα(s1;W) ≥ 0,

Iα(s∧;W) ≤ Iη(s∧;W), and Iη(s∧;W) ≤ Cη,W we get

Iα(p1;W) ≥ Iα(s∧;W)−g(δ, 0,Cη,W) (A.19)

for all α∈(0, η]. On the other hand, p2 = (1−δ)s∧+δs2
by the decomposition given in Lemma 4-(c). Then

(1−δ) 1
αµα,s∧ ≤ µα,p2

as a result of the definition of the mean measure. Thus

e
α−1
α (Iα(s∧;W)−Iα(p2;W))(1−δ) 1

α qα,s∧ ≤ qα,p2

by (13) and (21). Applying Lemma 8 we get

Dα(qα,s∧‖ qα,p2) ≤ Dα

(
qα,s∧‖(1−δ)

1
αµα,s∧

)

= (1−α)(Iα(s∧;W)−Iα(p2;W))−ln(1−δ)
α

for all α’s in R+ . Using the corresponding upper bound

on Dα(qα,s2‖ qα,p2) together with (A.17) and (A.18) we

get the following bound for all positive real orders

Iα(p2;W)≤





(1− δ)I1(s∧;W)+δI1(s2;W) + h1(δ) α = 1

α ln

[
(1−δ)

1
α e

α−1
α

Iα(s∧;W)+δ
1
α e

α−1
α

Iα(s2;W)

]

α−1 α 6= 1

= Iα(s∧;W) + f (δ, α, Iα(s2;W)− Iα(s∧;W))

where the function f (δ, α, γ) is defined for any δ ∈ [0, 1],
α ∈ R+ , and γ ∈ R as follows

f (δ, α, γ),

{
δγ + h1(δ) α = 1
α
α−1 ln

[
(1 − δ)

1
α + δ

1
α e

α−1
α γ
]

α 6= 1
.

32For any fixed (δ, γ) pair, g(δ, α, γ) is a continuous and differentiable

function of α satisfying ∂
∂α

g(δ, α, γ) ≤ 0. In particular

∂
∂α

g(δ, α, γ) = −1
(1−α)2

d
(

δe(1−α)γ

(1−δ)+δe(1−α)γ

∥

∥

∥
δ
)

.
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For any fixed (δ, γ) pair, f (δ, α, γ) is nondecreasing33 in

α. Then for any α in (0, η] we have

Iα(p2;W) ≤ Iα(s∧;W) + f (δ, η, Iα(s2;W)− Iα(s∧;W)).

Furthermore, given δ and α, f (δ, α, γ) is nondecreasing

in γ. Then using Iα(s∧;W) ≥ 0, Iα(s2;W) ≤ Iη(s2;W), and

Iη(s2;W) ≤ Cη,W we get

Iα(p2;W) ≤ Iα(s∧;W) + f (δ, η,Cη,W) (A.20)

for all α in (0, η]. Using (A.19) and (A.20) together with

the definition of the Rényi capacity given in (27) we get

Iα(p2;W)−Iα(p1;W)≤ f (δ, η,Cη,W)+g(δ, 0,Cη,W).

A lower bound on Iα(p2;W)−Iα(p1;W) can be obtained

using the same arguments with the roles of p1 and p2
reversed. This establishes (A.16) for η > 0 and α ∈ (0, η].
In order to establish (A.16) for α = 0, recall the definition

of the order zero Rényi information given in (13).

I0(p1;W) = − ln ess sup
µ1,p1

(
(1− δ)

∑
w :s∧(w|y)>0

s∧(w)

+δ
∑

w :s1(w|y)>0
s1(w)

)

≥ − ln
(
(1 − δ)e−I0(s∧;W) + δ

)

= I0(s∧;W)− ln
(
1− δ + δeI0(s∧;W)

)
.

Note that I0(s∧;W) ≤ Iη(s∧;W) by Lemma 5 and

Iη(s∧;W) ≤ Cη,W by definition. Then

I0(p1;W) ≥ I0(s∧;W)− ln
(
1− δ + δeCη,W

)
. (A.21)

On the other hand,

I0(p2;W) = ess inf
µ1,p2

ln 1∑
w:p2(w|y)>0((1−δ)s∧(w)+δs2(w))

≤
(
ess infµ1,s∧

ln 1
(1−δ)∑

w:s∧(w|y)>0 s∧(w)

)

∧
(
ess infµ1,s2

ln 1
δ
∑

w:s2(w|y)>0 s2(w)

)

= (I0(s∧;W) + ln 1
1−δ ) ∧ (I0(s2;W) + ln 1

δ )

Then I0(s∧;W)≥0 and I0(s2;W)≤Iη(s2;W)≤Cη,W imply

I0(p2;W) ≤ I0(s∧;W) +
(
ln 1

1−δ ∧ ln e
Cη,W

δ

)
. (A.22)

Thus using (A.21) and (A.22) we get

I0(p2;W)−I0(p1;W) ≤ ln
(
1− δ + δeCη,W

)

+ ln
(

1
1−δ ∧ eCη,W

δ

)
. (A.23)

A lower bound on I0(p2;W) − I0(p1;W) can be obtained

using the same arguments with the roles of p1 and p2
reversed. Consequently, (A.16) holds for η = 0, α = 0

33For any fixed (δ, γ) pair, f (δ, α, γ) is a continuous and differentiable

function of α satisfying ∂
∂α

f (δ, α, γ) ≥ 0. In particular

∂
∂α

f (δ, α, γ) = 1
(1−α)2

d

(

(1−δ)1/α

(1−δ)1/α+δ1/αe(1−1/α)γ

∥

∥

∥

∥

1− δ

)

.

case. In order to establish (A.16) for η > 0, α = 0 case,

note that

η ln

[
(1−δ)

1
η +δ

1
η e

η−1
η

Cη,W

]

η−1 ≥
{
ln 1

1−δ
1−δ

δe
−Cη,W

≥ 1

ln eCη,W

δ
1−δ

δe−Cη,W
≤ 1

≥
[
ln 1

1−δ ∧ ln eCη,W

δ

]

Thus (A.16) holds for η > 0, α = 0 case, as well.

(f) In order to establish the uniform equicontinuity we prove

the Lipschitz continuity of {Iα(p;W)}p∈P(W) in α on

compact subsets of (0, η) with a common Lipschitz

constant: If α and φ in [ǫ, η−ǫ] for an ǫ ∈ (0, ǫη], then

|Iα(p;W)−Iφ(p;W)| ≤ γη
ǫ2 |α− φ| (A.24)

for all p in P(W) where ǫη and γη are defined as follows

ǫη,

{
η
2 η ∈ (0, 1]
η−1
8η η ∈ (1,∞)

,

γη,

{
Cη,W η ∈ (0, 1]

ηCη,W + 5e2Cη,W

2e2 η ∈ (1,∞)
.

Since ‖µα,p‖α is a log-convex in α by Lemma 3-(d),

‖µα,p‖α ≤ ‖µβ,p‖β
α−φ
β−φ ‖µφ,p‖φ

β−α
β−φ .

for any φ, α, β satisfying 0 < φ < α < β and p ∈ P(W).
Let us start with η ∈ (0, 1] and ǫ ∈ (0, η2 ] case. Then for

any φ, α, β satisfying 0 < φ < ǫ ≤ α < β ≤ η − ǫ,

Iβ(p;W) − Iα(p;W) = 1
1−α ln

‖µα,p‖α

‖µβ,p‖
β(1−α)
1−β

≤ 1
1−α ln

‖µβ,p‖
β

α−φ
β−φ ‖µφ,p‖

φ
β−α
β−φ

‖µβ,p‖
β(1−α)
1−β

= (β−α)(1−φ)
(1−α)(β−φ)(Iβ(p;W)− Iφ(p;W))

≤ β−α
ǫ(ǫ−φ)Iβ(p;W) .

The above bound holds for any φ in (0, ǫ). Furthermore,

the Rényi information is a nondecreasing function of the

order by Lemma 5. Then

0 ≤ Iβ(p;W) − Iα(p;W) ≤ Cη,W

ǫ2 (β − α) (A.25)

for any p in P(W) and β, α satisfying ǫ ≤ α ≤ β ≤ η−ǫ.
(A.25) establishes (A.24) for η ∈ (0, 1] and ǫ ∈ (0, η2 ]
case.

We proceed with η ∈ (1,∞) and ǫ ∈ (0, η−1
8η ] case. For

any φ, α, β such that 1 + ǫ ≤ φ < α ≤ β − ǫ and p in

P(W) we have

Iα(p;W) − Iφ(p;W) = 1
α−1 ln

‖µα,p‖α

‖µφ,p‖
φ(α−1)

φ−1

≤ 1
α−1 ln

‖µβ,p‖
β

α−φ
β−φ ‖µφ,p‖

φ
β−α
β−φ

‖µφ,p‖
φ(α−1)
φ−1

= (α−φ)(β−1)
(α−1)(β−φ) (Iβ(p;W) − Iφ(p;W))

≤ (α−φ)
ǫ2 βCβ,W. (A.26)

If 0 < α − φ < ǫ, then at least one of the three closed

intervals [ǫ, 1−ǫ], [ 12 ,
5η−1
4η ], [1+ǫ, η−ǫ] includes both α
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and φ. When α and φ are in [ǫ, 1−ǫ] we use (A.25). When

α and φ are in [1 + ǫ, η − ǫ] we use (A.26). Derivation

of the bound for the second interval takes some effort.

Let us first finish the proof of (A.24) assuming that the

bound given in (A.33) holds for the second interval. Then

for any φ, α such that ǫ ≤ φ ≤ α ≤ (φ+ ǫ)∧ (η− ǫ) we

have

0≤ Iα(p;W)−Iφ(p;W)
α−φ

≤






Cη,W

ǫ2 ǫ≤φ≤α≤(φ+ǫ)∧(1−ǫ)
4Cη,W+ 160η2e

2Cη,W

e2(η−1)2
1
2 ≤φ≤α≤(φ+ǫ)∧ 5η−1

4η
ηCη,W

ǫ2 1+ǫ≤φ≤α≤(φ+ǫ)∧(η−ǫ)
Thus for any α and φ satisfying ǫ≤φ≤α≤ (φ+ǫ)∧(η−ǫ)
and p in P(W) we have

Iα(p;W)− Iφ(p;W) ≤ α−φ
ǫ2

[
ηCη,W + 5e2Cη,W

2e2

]
.

Note that the preceding bound is linear with a uniform

constant, thus the hypothesis φ ≤ α ≤ φ + ǫ can be

removed without loss of generality. Thus (A.24) holds

for η ∈ (1,∞) case for any ǫ ∈ (0, ǫη], as well.

We are left with establishing the bound given in (A.33).

For orders other than one, (4) and (16) imply that

d
dαIα(p;W) = 1

α−1

[
α
‖µ′

α,p‖
‖µα,p‖ − Iα(p;W)

α

]
.

The expression in the brackets is differentiable in α on

R+ because ‖µα,p‖ is positive and ‖µα,p‖,
∥∥µ′

α,p

∥∥, and

Iα(p;W) are differentiable by Lemmas 1-(a), 3-(b,c), and

5. Furthermore, the expression in the brackets is equal to

zero at α = 1. Then as a result of the mean value theorem

[80, 5.10] for each α ∈ [1/2, 1) there exists a φ ∈ (α, 1)
and such that

d
dαIα(p;W) = d

dα

[
α‖µ′

α,p‖
‖µα,p‖ − Iα(p;W)

α

]∣∣∣∣
α=φ

. (A.27)

Using the expressions for derivatives given in Lemmas

2-(b) and 3-(b,c) we get

d
dα

α‖µ′
α,p‖

‖µα,p‖ =
αµ′′

α,p(Y)

‖µα,p‖ +
‖µ′

α,p‖
‖µα,p‖ − α‖µ′

α,p‖2

‖µα,p‖2

= Eqα,p

[∑
w

p[α](w|y)
α2

(
ln

p[α](w|y)
p(w)

)2]

+Eqα,p

[
α(1−α)(π′

α,p)
2

(πα,p)2

]
−‖µ′

α,p‖
‖µα,p‖ −

α‖µ′
α,p‖2

‖µα,p‖2

≤ Eqα,p

[
π′
α,p

2

4πα,p
2 +
∑

w

p[α](w|y)
α2

(
ln

p[α](w|y)
p(w)

)2]

Then using
∑

w p[α](w |y) 1
α ln

p[α](w|y)
p(w) =

απ′
α,p

πα,p
, which

follows from Lemma 2-(b), we get

d
dα

α‖µ′
α,p‖

‖µα,p‖ ≤ 4α2+1
4α2 Eqα,p

[
∑

w

p[α](w|y)
α2

(
ln

p[α](w|y)
p(w)

)2
]

(A.28)

Since Iα(p;W) is differentiable and nondecreasing in α

d
dα

Iα(p;W)
α = − Iα(p;W)

α2 + 1
α

d
dαIα(p;W)

≥ − Iα(p;W)
α2 (A.29)

Using (A.27), (A.28), and (A.29) we can conclude that

there exists a φ ∈ (α, 1) such that

d
dα Iα(p;W)≤2Eqφ,p

[
∑

w

p[φ](w|y)
φ2

[
ln

p[φ](w|y)
p(w)

]2
]
+4Iφ(p;W)

Similarly for all α ∈ (1,∞) there exists a φ ∈ (1, α) sat-

isfying the same identity. Furthermore, one can confirm

by substitution for the expression given in (17) that

d
dα Iα(p;W)

∣∣
α=1

≤ 1
2Eq1,p

[
∑

w

p[1](w |y)
(
ln

p[1](w|y)
p(w)

)2
]
.

Thus there exist an φ ∈ (12 ,
5η−1
4η ) such that

supα∈[ 12 ,
5η−1
4η ]

d
dα Iα(p;W)

≤4Iφ(p;W)+2Eqφ,p

[
∑

w

p[φ](w|y)
φ2

[
ln

p[φ](w|y)
p(w)

]2
]
.

(A.30)

Note that xφ ln2 x ≤ 4
e2φ21{x∈[0,1)} + 4xβ

e2(β−φ)21{x>1}
for all β > φ. Then using Lemma 2-(a) we get the

following bound for all φ in [ 12 ,
5η−1
4η ]

∑
w
p[φ](w |y)

(
1
φ ln

p[φ](w|y)
p(w)

)2

=
∑

w
p(w)

(
p[1](w|y)
p(w)πφ,p

)φ (
ln

p[1](w|y)
p(w)πφ,p

)2

≤ 4
e2φ2 + 4

e2

(
3η−1
2η − φ

)−2∑
w
p(w)

(
p[1](w|y)
p(w)πφ,p

) 3η−1
2η

= 4
e2φ2 + 4

e2

(
3η−1
2η − φ

)−2 (
π 3η−1

2η
,p/πφ,p

) 3η−1
2η

≤ 16
e2 + 64

e2

(
η
η−1

)2 (
π 3η−1

2η
,p/πφ,p

) 3η−1
2η

. (A.31)

On the other hand (πα,p)
α is log-convex in α by Lemma

2-(c) and πα,p is nondecreasing in α by Lemma 2-(d).

Thus for all φ in [ 12 ,
5η−1
4η ] we have

(
π 3η−1

2η ,p

) 3η−1
2η ≤ (π 2ηφ

2ηφ−η+1 ,p
)(πφ,p)

φ η−1
2ηφ

≤ (πη,p)(πφ,p)
η−1
2η . (A.32)

Using equations (A.30), (A.31), and (A.32) we get

d
dα Iα(p;W)≤4Iη(p;W) + 32

e2 + 128
e2

(
η
η−1

)2 ‖µη,p‖
‖µ1/2,p‖

=4Iη(p;W)+ 32
e2 +

128η2

e2(η−1)2 e
η−1
η Iη(p;W)+I 1

2
(p;W)

for all α in [ 12 ,
5η−1
4η ]. Since Iα(p;W) is nondecreasing in

α by Lemma 5, the definition of Rényi capacity implies

d
dα Iα(p;W) ≤ 4Cη,W + 32

e2 + 128
e2

(
η
η−1

)2
e2Cα,W

for all α in [ 12 ,
5η−1
4η ] and p in P(W). Hence,

Iα(p;W)−Iφ(p;W)≤(α−φ)
[
4Cη,W+ 160η2e

2Cη,W

e2(η−1)2

]
(A.33)

for all φ, α in [ 12 ,
5η−1
4η ] satisfying φ ≤ α and p in P(W).

(g) For any p ∈ P(W), Iα(p;W) is nondecreasing and

continuous in α on [0,∞] by Lemma 5. Then Iα(p;W)
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is a quasi-convex continuous function of α satisfying

Iα(p;W) = infη∈(α,∞) Iη(p;W) for any p in P(W). Using

the definition of Cα,W we get

Cα,W=supp∈P(W) infη∈(α,∞)Iη(p;W) ∀α∈R≥0 . (A.34)

Since Iα(p;W) ≤ ln |W| by Lemma 5, if W is finite, then

Cα,W is finite for all α ∈ R≥0 and Iα(p;W) is continuous

in p on P(W) for all α ∈ R+ by part (e). Furthermore

Iα(p;W) is quasi-concave in p for all α ∈ R+ by Lemma

6. Then we can change the order of the supremum and

the infimum in (A.34) using Sion’s minimax theorem,

[95, Cor. 3.3], [57] because P(W) is compact.

Cα,W = infη∈(α,∞) supp∈P(W) Iη(p;W)

= infη∈(α,∞) Cη,W ∀α ∈ R≥0 .

Then Cα,W is continuous from the right. On the other

hand Cα,W is continuous from the left because it is

nondecreasing and lower semicontinuous on [0,∞] by

Lemma 15-(a).

Proof of Lemma 21. supı∈T Cα,Wı ≤ Cα,W:

Cα,W
(a)

≥ Sα,Wı(qα,W)

(b)

≥ Cα,Wı +Dα(qα,Wı‖ qα,W)

(c)

≥ Cα,Wı +
α∧1
2 ‖qα,Wı − qα,W‖2

where (a) follows from (1), Theorem 1, and Wı ⊂ W,

(b) follows from Lemma 19, (c) follows from Lemma 10.

Consequently, Cα,W ≥ supı∈T Cα,Wı and if Cα,Wı = Cα,W,

then qα,W = qα,Wı .

• If Cα,Wı = Cα,W and qα,W = qα,Wı , then

Sα,W(qα,Wı) ≤ Cα,Wı by Theorem 1.

• If Sα,W(qα,Wı) ≤ Cα,Wı , then Cα,W ≤ Cα,Wı because

Cα,W = Sα,W by Theorem 1 and Sα,W ≤ Sα,W(qα,Wı)
by definition. Then Sα,W(qα,Wı) ≤ Cα,Wı implies

Cα,W = Cα,Wı because Cα,W ≥ Cα,Wı by definition.

Cα,W ≤ ln
∑

ı∈T
eCα,Wı : If T is infinite, then the inequality

holds trivially because the right hand side is infinite. Thus,

we will establish the inequality assuming T is finite. Let v be

v ,
∨
ı∈T

eCα,Wı qα,Wı . Then

Sα,W(v/‖v‖)
(a)
= maxı∈T Sα,Wı(v/‖v‖)
(b)

≤ maxı∈T Sα,Wı(qα,Wı)− ln eCα,Wı + ln ‖v‖
(c)
= ln ‖v‖ (A.35)

where (a) follows from (1) and (2), (b) follows from Lemma

8 because eCα,Wı qα,Wı ≤v , and (c) follows from Theorem 1.

On the other hand, ‖v‖≤∑ı∈T
eCα,Wı by the definition of v .

Then Cα,W ≤ ln
∑
ı∈T

eCα,Wı by Theorem 1.

• If T is infinite, then
∑

ı∈T e
Cα,Wı is infinite. If T is finite

but qα,Wı and qα,W are not singular for some distinct

ı and , then Cα,W < ln
∑

ı∈T
eCα,Wı by (A.35) and

Theorem 1 because ‖v‖ <∑ı∈T
eCα,Wı . Consequently,

if Cα,W = ln
∑

ı∈T
eCα,Wı < ∞, then T is finite and

qα,Wı ⊥ qα,W for all ı 6=  in T.

• If T is finite and qα,Wı ⊥ qα,W for all ı 6= , then any

u ∈ P(Y) can be written as u =
∑|T|
ı=0 uı where uı are

finite measures such that uı≺qα,Wı for ı ∈ {1, . . . , |T|}
and u0 ⊥ (

∑
ı∈T

qα,Wı) by the Lebesgue decomposition

theorem [30, 5.5.3]. Then using Lemmas 8 and 9, we get

Dα(qα,Wı‖ u) ≥ − ln ‖uı‖.

Thus Lemma 19 implies

Sα,Wı(u) ≥ Cα,Wı − ln ‖uı‖ ∀u ∈ P(Y).

Since Sα,W(u) = maxı∈T Sα,Wı(u) for all u in P(Y)
and Cα,W = infu∈P(Y) Sα,W(u) by Theorem 1, we get

Cα,W ≥ infu∈P(Y)maxı∈T ln e
Cα,Wı

‖uı‖

≥ infu∈P(Y) ln
∑

ı∈T
eCα,Wı∑

ı∈T
‖uı‖

≥ ln
∑

ı∈T
eCα,Wı .

Then Cα,W = ln
∑

ı∈T e
Cα,Wı because we have already

proved the reverse inequality. Furthermore, qα,W = ũ/‖ũ‖
for ũ =

∑
ı∈T

eCα,Wı qα,Wı by Theorem 1. because

Sα,Wı(ũ/‖ũ‖) = Cα,W.

Proof of Lemma 22. By the definition of Iα(p;W) for all p

satisfying p =
⊗

t∈T
pt for some pt ∈ P(Wt) we have

Iα(p;W) =
∑

t∈T
Iα(pt ;Wt) ∀α ∈ [0,∞]. (A.36)

Furthermore, {p : p =
⊗

t∈T
pt , pt ∈ P(Wt), ∀t ∈ T} is a

subset of P(W). Then

Cα,W ≥ sup
p1,p2,...,p|T|

∑
t∈T

Iα(pt ;Wt)

=
∑

t∈T
Cα,Wt

∀α ∈ [0,∞]. (A.37)

Let us proceed with proving Cα,W ≤∑t∈T
Cα,Wt

. If there

exists a t ∈ T such that Cα,Wt
= ∞, then the inequality holds

trivially. Else, Cα,Wt
< ∞ for all t ∈ T and by Theorem 1

there exists a qα,Wt
for each t ∈ T such that

Dα(wt‖ qα,Wt
) ≤ Cα,Wt

∀wt ∈ Wt .

Recall that all w ’s in W can be written as w =
⊗

t∈T
wt for

some wt ∈ Wt by the hypothesis. Then for q ,
⊗

t∈T
qα,Wt

by the definition of the Rényi divergence given (19) and

Tonelli-Fubini theorem [30, 4.4.5] we have

Dα(w‖ q) =
∑

t∈T
Dα(wt‖ qα,Wt

)

≤
∑

t∈T
Cα,Wt

∀w ∈ W. (A.38)

Then Cα,W ≤ ∑
t∈T

Cα,Wt
by (33) Thus (58) holds and

qα,W = q follows from (A.38) and Theorem 1 for the case

when Cα,W <∞.

Proof of Lemma 23. (19) implies that

Dα(p⊛W‖ p ⊗ qα,W) ≤ supw∈supp(p) Dα(w‖ qα,W) ,

Dα(p⊛W‖ p ⊗ qα,W) ≥ infw∈supp(p) Dα(w‖ qα,W) .
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On the other hand, (22) and (23) imply that

Dα(p⊛W‖ p ⊗ qα,W) = Iα(p;W) + Dα(qα,p‖ qα,W) .

Then (60) follows from (59) and Theorem 1.

Note that Cα,Wα,ǫ is bounded above by Cα,W and hence

finite by definition. Thus Wα,ǫ has a unique order α Rényi cen-

ter by Theorem 1. If qα,Wα,ǫ = qα,W, then Cα,Wα,ǫ =Cα,W
by the definition of Wα,ǫ and Theorem 1.

We show in the following by contradiction that qα,Wα,ǫ

equals to qα,W. Let q = (1−e−ǫ/2)qα,Wα,ǫ +e
−ǫ/2qα,W. Then

using Lemma 8 and (59) we get

supw∈W\Wα,ǫ
Dα(w‖ q) ≤ Cα,W − ǫ/2. (A.39)

The convexity of the Rényi divergence in its second argument,

i.e. Lemma 11, and Theorem 1 imply that

supw∈Wα,ǫ
Dα(w‖ q)

≤ sup
w∈Wα,ǫ

[
(1 − e−

ǫ/2)Dα
(
w‖ qα,Wα,ǫ

)
+ e−

ǫ/2Dα(w‖ qα,W)
]

≤ (1− e−
ǫ/2)Sα,Wα,ǫ(qα,Wα,ǫ) + e−

ǫ/2Sα,Wα,ǫ(qα,W)

= (1− e−
ǫ/2)Cα,Wα,ǫ + e−

ǫ/2Cα,W. (A.40)

If qα,Wα,ǫ 6=qα,W, then Cα,Wα,ǫ < Cα,W by Lemma 21. Then

Sα,W(q) < Cα,W by (A.39) and (A.40). However, this is a

contradiction by Theorem 1. Thus qα,Wα,ǫ =qα,W holds.

As a result of the definition of Wα,ǫ, an element of W is in

Wα,0 iff it is in Wα,ǫ for all ǫ > 0, i.e.
⋂
ǫ>0Wα,ǫ = Wα,0.

Consequently, if W is a finite set, then Wα,ǫ = Wα,0 for small

enough ǫ. Then Cα,Wα,0 = Cα,Wα,ǫ = Cα,W. Furthermore,

(60) holds for ǫ = 0 because (60) holds for all ǫ > 0.

For arbitrary W’s, identity
⋂
ǫ>0Wα,ǫ = Wα,0 does not

imply that Wα,ǫ = Wα,0 for some ǫ > 0. Wα,0 can be the

empty set or a non-empty set such that Cα,Wα,0 < Cα,W, see

Example 4.

Proof of Lemma 24.

(a) Cα,W ≤ Cα,chW by definition because W ⊂ chW. If

Cα,W =∞, then the reverse inequality Cα,chW ≤Cα,W
holds trivially. If Cα,W < ∞, then ∃!qα,W satisfying

supw∈W Dα(w‖ qα,W) = Cα,W by Theorem 1. Then as

a result of the quasi-convexity of the Rényi divergence in

its first argument, i.e. Lemma 12, we have

Dα(µ1,p‖ qα,W) ≤ maxw∈supp(p) Dα(w‖ qα,W)

≤ Cα,W

for all p ∈ P(W). Then Cα,chW ≤ Cα,W by Theorem 1.

(b) Cα,W ≤ Cα,clW by definition because W ⊂ clW. If

Cα,W = ∞, then the reverse inequality Cα,clW ≤ Cα,W
holds trivially. If Cα,W < ∞, then ∃!qα,W satisfying

supw∈W Dα(w‖ qα,W) = Cα,W by Theorem 1. Further-

more, for all v ∈ P(Y) and ǫ > 0 there exists an open

set N containing v , i.e. a neighborhood of v , such that

Dα(v‖ qα,W)− ǫ < Dα(s‖ qα,W) ∀s ∈ N

by the lower semicontinuity, i.e. Lemma 13. If v ∈ clW,

then every open set containing v contains a member of

W. Thus Dα(v‖ qα,W)− ǫ < Cα,W for every v in clW

and positive ǫ. Then34 Dα(v‖ qα,W) ≤ Cα,W for every

v ∈ clW and Cα,clW ≤ Cα,W by Theorem 1.

The closure of W for a topology stronger than the

topology of setwise convergence is a subset of the closure

of W for the topology of setwise convergence and a

superset of W. Thus its Rényi capacity is bounded from

below and from above by Cα,W.

(c) If Cη,W < ∞, then as a result Theorem 1, Lemma 14,

and (22) there exists a unique qη,W satisfying

Dη(qη,p‖ qη,W) ≤ Cη,W − Iη(p;W) ∀p ∈ P(W).

If η > 1, then using the definitions of Rényi information

and divergence given in (13) and (19) we get
∫
(
dµη,p

dν )η(
dqη,W

dν )1−ην(dy) ≤ e(η−1)Cη,W ∀p ∈ P(W).

Since Cη,W is finite this implies that µη,p≺qη,W. On the

other hand µα,p is nondecreasing in α, in the sense that

if α < η then µα,p ≤ µη,p , by Lemma 3-(a,b). Hence,
∫
(
dµα,p

dqη,W
)ηqη,W(dy) ≤ e(η−1)Cη,W

for all p in P(W) and α in [0, η]. Then
dµα,p

dqη,W
’s are qη,W-

integrable and the set { dµα,p

dqη,W
: p ∈ P(W), α ∈ [0, η]}

satisfies the necessary and sufficient condition for the uni-

form integrability35 determined by de la Vallée Poussin

[8, Thm. 4.5.9], for the growth function G(x ) = x η.

But when the reference measure is finite, the uniform

integrability is equivalent to the uniform absolute conti-

nuity of the integrals and boundedness in L1(qη,W) by [8,

Thm. 4.5.3], which in our case is nothing but the uniform

absolute continuity with respect to qη,W and boundedness

in total variation norm for the set of all mean measures.

Thus {µα,p : p ∈ P(W), α ∈ [0, η]}≺uniqη,W.
On the other hand by [8, Thm. 4.7.25], a set of measures

is uniformly absolutely continuous with respect to a finite

measure and bounded in variation norm iff it has compact

closure in the topology of setwise convergence. A set

of measures has compact closure in the topology of

setwise convergence iff it has compact closure in the weak

topology by [8, Thm. 4.7.25], as well.

If η = 1, then using x ln x ≥ −1/e, ‖µ1,p‖=1, and the

definition of the Rényi divergence given in (19) we get,
∫

G
(

dµ1,p

dq1,W

)
q1,W(dy) ≤ C1,W − I1(p;W) + 1

e + 1

34This observation is nothing but the definition of the continuity: A function
f : X → Z is continuous iff for any A ⊂ X, f (clA) ⊂ clf (A) by [68, Thm.
18.1]. If we chose X to be P(Y) with the topology of setwise convergence, Z
to be (−∞,∞] with the topology generated by the sets of the form (z ,∞] for
z ∈ R , and f to be f (·) = Dα

(

·‖ qα,W

)

, then the lower semicontinuity of
the Rényi divergence in its first argument is equivalent to the continuity of f .
On the other hand, f (W) ⊂ (−∞,Cα,W] by Theorem 1 and (−∞,Cα,W] is
a closed set for the topology we have chosen for (−∞,∞]. Thus f (clW) ⊂
clf (W) ⊂ (−∞,Cα,W], i.e. Dα

(

v‖ qα,W

)

≤ Cα,W for all v ∈ clW.
35A set of qη,W-integrable functions is uniformly integrable iff it has

compact closure in the weak topology of L1(qη,W) by Dunford-Pettis

theorem [8, 4.7.18]. Thus {
dµα,p

dqη,W
: p ∈ P(W), α ∈ [0, η]} has compact

closure in the weak topology of L1(qη,W). Since we have chosen to work
with the space of measures rather than the space of integrable functions we
have stated our result in terms of relative compactness in the space of measures
rather than integrable functions.
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for all p∈P(W) where G(x )=x1{0≤x<e}+x ln x1{x≥e}.

Since mean measure is a nondecreasing function of the

order by Lemma 3-(a,b) and G(x ) is an increasing

function of x , we have
∫

G
(

dµα,p

dq1,W

)
q1,W(dy) ≤ C1,W + 1

e + 1

for all p in P(W) and α in [0, 1]. The rest of the proof

for η = 1 case is identical to that of η > 1 case.

(d) The equivalence of the last three statements to one

another is a version of Dunford-Pettis theorem [8, 4.7.25].

Thus we will only prove the equivalence of the first two

statements.

Let us first prove the direct part: if there exists a µ in

P(Y) satisfying W≺uniµ, then limα↑1
1−α
α Cα,W = 0.

Note that Cα,W ≤ supw∈W Dα(w‖ q) for all α ∈ (0, 1)
and q ∈ P(Y) by Theorem 1. Thus using (19) we get

lim sup
α↑1

1−α
α Cα,W≤ lim sup

α↑1
sup
w∈W

D1−α(µ‖w)

≤ lim sup
α↑1

sup
w∈W

−1
α lnEµ

[
(dwdµ )

α
]
. (A.41)

Since W≺uniµ, for all ǫ > 0 there exists a δ > 0 such

that if µ(E) ≤ δ for an E ∈ Y , then w(E) ≤ ǫ for all

w ∈ W. On the other hand µ(dwdµ > 1
δ ) ≤ δ by Markov

inequality. Hence

w(dwdµ >
1
δ ) ≤ ǫ. (A.42)

On the other hand using (19) we get

Eµ

[
(dwdµ )

α
]
≥Ew

[
(dwdµ )

α−1
1
{dw
dµ ∈(0,

1
δ ]}

]

≥δ1−α(1 − w(dwdµ >
1
δ )) ∀w ∈ W.

Then as a result of (A.41) and (A.42) we have

lim supα↑1
1−α
α Cα,W ≤ 1

1−ǫ ∀ǫ > 0.

Then limα↑1
1−α
α Cα,W = 0 because Cα,W ≥ 0.

We are left with proving the converse statement: if

limα↑1
1−α
α Cα,W = 0, then there exists a µ ∈ P(Y)

such that W≺uniµ. We start with proving the following

statement about the Rényi centers: For every ǫ > 0 there

exists a (φ, δ) pair such that φ ∈ (0, 1), δ ∈ (0, ǫ), and if

qφ,W(E) ≤ δ, then w(E) < ǫ for all w ∈ W.

For any ǫ > 0 there exists a φ ∈ (0, 1) such that

e
φ−1
φ Cφ,W > 1− ǫ

2 because limα↑1
1−α
α Cα,W =0. On the

other hand, D
σ({E})
α (w‖ qα,W) ≤ Cα,W for any w ∈ W

and E ∈ Y , as a result of Lemma 9 and Theorem 1. Then

the above described φ satisfies

f (w(E), qφ,W(E)) ≥ (1− ǫ
2 )
φ (A.43)

for all E ∈ Y and w ∈ W where the function f (x , z ) is

defined for all x ∈ [0, 1] and z ∈ [0, 1] as

f (x , z ) , xφz 1−φ + (1 − x )φ(1 − z )1−φ.

Given ǫ ∈ (0, 0.5) and the corresponding φ ∈ (0, 1), let

δ be the unique z in (0, ǫ) satisfying f (ǫ, z ) = (1− ǫ/2)φ.

Such a z exists because f (ǫ, 0) = (1 − ǫ)φ, f (ǫ, ǫ) = 1

and f (ǫ, z ) is monotone increasing and continuous in z on

[0, ǫ]. On the other hand f (x , z ) < f (ǫ, δ) = (1−ǫ/2)φ for

any z ∈ [0, δ) and x ∈ [ǫ, 1] because f (x , z ) is monotone

increasing in z on [0, x ] for any x ∈ (0, 1] and monotone

decreasing in x on [z , 1] for any z ∈ [0, 1). Hence, using

(A.43) we can conclude that if qφ,W(E) < δ for a E ∈ Y ,

then w(E) < ǫ for all w ∈ W. In the following we use

this property to construct a µ such that W≺uniµ.

Let µ be
∑
ı∈Z+

qφı,W

2ı where (φı, δı) is the pair associate

with ǫ= 1
ı . Then for any E∈Y and ı∈Z+ , if µ(E)≤ δı

2ı ,

then qφı,W(E)≤ δı and consequently w(E) ≤ 1/ı for all

w in W. Thus for any ǫ > 0 if µ(E) ≤ δ⌈1/ǫ⌉
2⌈1/ǫ⌉

for an

E ∈ Y , then w(E) < ǫ for all w in W.
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PROOFS OMITTED FROM IT TRANSACTIONS SUBMISSION

In the following, unless specified explicitly to be otherwise all
∑

w ,
∏

w , ∨w , maxw , minw stand for the corresponding

expression with the subscript “w : p(w) > 0.”

D. Proofs of the Lemmas on the Mean Measure

Proof of Lemma 1.

(1-a) For any w̃ such that p(w̃ ) > 0 and α ∈ R+ , the following inequalities hold ν-a.e.

(p(w̃ ))
1/α dw̃

dν ≤
(∑

w
p(w)

(
dw
dν

)α)1/α

≤
∨

w

dw
dν ≤

∑
w

dw
dν .

Then for any w̃ such that p(w̃ ) > 0, α ∈ (0,∞], and E ∈ Y ,

(p(w̃ ))
1
α w̃(E) ≤ µα,p(E) ≤

∑
w
w(E).

Thus for any α ∈ (0,∞], µα,p(E) = 0 iff w(E) = 0 for all w such that p(w) > 0. Then µ1,p ∼ µα,p for all α ∈ (0,∞].
Note that ‖w‖ = 1 for all w in P(Y), then ‖µ1,p‖ = 1 for all p. Furthermore, there exists a w̃ such that p(w̃ ) ≥ 1

|supp(p)|
for all p, then |supp(p)|−1/α ≤ ‖µα,p‖ ≤ |supp(p)|.

(1-b) As a result of the Hölder’s inequality,

µ0,p(E) =

∫

E

∏
w

(
dw
dν

)p(w)
ν(dy)

≤
∏

w

(∫

E

dw
dν ν(dy)

)p(w)

=
∏

w
(w(E))

p(w)
.

Then µ0,p(E) = 0 whenever w(E) = 0 and µ0,p≺w for all w such that p(w) > 0. Since w(Y) = 1 for all w in P(Y),
‖µ0,p‖ = µ0,p(Y) ≤ 1.

Proof of Lemma 2.

(2-a) Let us establish the expressions for πα,p(y) and p[α](w |y), first. Note that p[1](w |y) = p(w) dw
dµ1,p

for all w such that

p(w) > 0 by the definition of p[α](w |y) given in (10). Then the expressions for πα,p(y) follows from the definitions of
dµα,p

dν and πα,p given in (7) and (9), respectively.

On the other hand, w≺µ1,p for all w such that p(w) > 0 by definition and µα,p ∼ µ1,p by Lemma 1. Thus,

dw
dµα,p

=
dµ1,p

dµα,p

dw
dµ1,p

= 1
πα,p

p[1](w|y)
p(w) ∀w : p(w) > 0.

Then the expression for p[α](w |y) follows from its definition given in (10).

In order to bound πα,p from below and from above µ1,p-a.e. we use the expression for πα,p we have just derived. Note

that
(∑

w p[1](w |y)α
)1/α ≥ 1 for α ∈ (0, 1]. Then

(∑
w
p[1](w |y)αp(w)1−α

)1/α

≥
(∑

w
p[1](w |y)αδ1−α

)1/α

≥ δ
1−α
α .

On the other hand, as a result of the Hölder’s inequality we have

(∑
w
p[1](w |y)αp(w)1−α

)1/α

≤
(∑

w
p[1](w |y)

) (∑
w
p(w)

) 1−α
α

= 1.

Thus δ
1−α
α ≤ πα,p ≤ 1 for α ∈ (0, 1].

In order to obtain the bound for α in [1,∞), we use the identity
(∑

w p[1](w |y)α
)1/α ≤ 1, which is valid for all α in

[1,∞), together with the reverse Hölder’s inequality.

(2-b)
p[1](w|y)

p(w) is a non-negative real number for all w such that p(w) > 0 and
p[1](w|y)

p(w) is positive at least for one such w .

Then expression for πα,p given in part (a) is a smooth function36 of α on R+ . Identities for the derivatives of πα,p follow

from the chain rule and elementary rules of differentiation.

36For any positive integer K , non-negative real numbers aı and bı for ı in {1, 2, . . . ,K}, the function (
∑K

ı=1 aıb
α
ı )1/α is a smooth function of α on

R+ , because the exponential function and the logarithm are smooth functions and composition, sum, and product of smooth functions are also smooth.

33



(2-c) As a result of the Hölder’s inequality we have,

(
παβ ,p

)αβ =
∑

w
p(w)

(
p[1](w|y)

p(w)

)α1β (p[1](w|y)
p(w)

)α0(1−β)

≤
(∑

w
p(w)

(
p[1](w|y)

p(w)

)α1
)β (∑

w
p(w)

(
p[1](w|y)

p(w)

)α0
)(1−β)

= (πα1,p)
α1β(πα0,p)

α0(1−β)

Furthermore, the inequality is strict unless there exists a γ such that p(w)(
p[1](w|y)

p(w) )α1 = γp(w)(
p[1](w|y)

p(w) )α0 for all w

such that p[1](w |y) > 0. Thus inequality is strict iff there exist w , w̃ ∈ supp(p) such that
p[1](w|y)

p(w) >
p[1](w̃|y)

p(w̃) > 0.

(2-d) The continuity of πα,p in α on R+ follows from the smoothness of πα,p established in part (b). In order to show the

continuity on [0,∞] we need to establish the continuity at zero and at infinity. Note that xα is a smooth function of α
for any x ∈ R+ and weighted sums of smooth functions are also smooth. Thus (πα,p)

α(y) is a smooth function of α and

we can use L’Hospital’s rule [80, Thm. 5.13] for calculating the limits of πα,p(y) at zero and infinity:

lim
α→0

(∑
w
p(w)

(
p[1](w|y)

p(w)

)α)1/α

=
∏

w

(
p[1](w|y)

p(w)

)p(w)

(A.44)

lim
α→∞

(∑
w
p(w)

(
p[1](w|y)

p(w)

)α)1/α

= maxw
p[1](w|y)

p(w) (A.45)

Thus limα→0 πα,p(y) = π0,p(y) and limα→∞ π∞,p(y) = π∞,p(y) hold µ1,p almost everywhere. Thus πα,p(y) is

continuous on [0,∞].

On the other hand, using the Jensen’s inequality and the convexity of the function ln 1/x we get,

π′
α,p ≥ −πα,p

α2 ln
∑

w :p[1](w|y)>0
p(w)

≥ 0. (A.46)

Since the function ln 1/x is strictly convex, the first inequality is strict and π′
α,p(y) is positive unless p(w) = p[1](w |y)

for all w such that p(w) > 0. Thus πα,p(y) is monotone increasing in α unless p(w) = p[1](w |y) for all w such that

p(w) > 0. Boundedness is already established in part (a).

Proof of Lemma 3.

(3-a) For all y ∈ Y —except for a µ1,p-measure zero set— density πα,p is a non-negative function of α continuous on [0,∞]
by Lemma 2-(d). Thus for any sequence {αı} such that limı→∞ αı = α we have limı→∞ παı,p = πα,p µ1,p-a.e. Since

παı,p ≤ π∞,p by Lemma 2-(d) and π∞,p ≤ 1
minw p(w) by Lemma 2-(a), we can apply the dominated convergence theorem

[8, 2.8.1]. Thus {παı,p}
L1(µ1,p )−−−−−→ πα,p , i.e.

lim
ı→∞

∫
|παı,p − πα,p |µ1,p(dy) = 0.

Then {µαı,p} converges to µα,p in the total variation topology, for any sequence {αı} such that limı→∞ αı = α. Then

µα,p is a continuous function of α from [0,∞] with its usual topology to M+

0(Y) with the total variation topology because

[0,∞] with its usual topology is a metrizable space, see [68, Thm. 21.3].

(3-b) For µ′
α,p defined in (11) to be a finite measure, π′

α,p should be a non-negative µ1,p-integrable function. The density π′
α,p

is non-negative by (A.46). By the expression for π′
α,p given Lemma 2-(b) and the bound for π′

α,p given in Lemma 2-(a)

we have

π′
α,p =

πα,p

α2

∑
w
p[α](w |y) ln p[α](w|y)

p(w)

≤ πα,p

α2 ln 1
minw p(w) .

= 1
α2

1
minw p(w) ln

1
minw p(w)

Thus π′
α,p is bounded and µ′

α,p is a finite measure, i.e. µ′
α,p ∈ M+

0(Y). We can apply the dominated convergence

theorem [8, 2.8.1] for µ′
α,p as we did for µα,p in part (a) in order to establish the continuity of µ′

α,p as a function of α.

Furthermore, d
dαµα,p(E)

∣∣
α=φ

= µ′
φ,p(E) follows from the boundedness of π′

α,p and the definitions of µ′
α,p and π′

α,p by

[8, Cor. 2.8.7.(ii)] for X = E. One can apply the Tonelli-Fubini theorem [30, 4.4.5] to obtain an equivalent result, instead

of invoking [8, Cor. 2.8.7.(ii)].
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(3-c) For µ′′
α,p defined in (12) to be a finite signed measure, π′′

α,p should be a µ1,p-integrable function. By the expression for

π′′
α,p given in Lemma 2-(b) we have

− 2
α3

(
ln 1

minw p(w)

)
πα,p ≤ π′′

α,p ≤
[
1+α
α4

(
ln 1

minw p(w)

)2
+ 4

e2α3

]
πα,p (A.47)

The proof of the continuity is similar to the corresponding proofs in parts (a) and (b). The identity d
dαµ

′
α,p(E)

∣∣
α=φ

=

µ′′
φ,p(E) follows from (A.47) by applying [8, Cor. 2.8.7.(ii)] for X = E.

(3-d) For any β ∈ [0, 1] and α0, α1 ∈ R+ let αβ be αβ = βα1 + (1 − β)α0. Then as a result of the Hölder’s inequality,
∫

(πα1,p)
βα1
αβ (πα0,p)

(1−β)α0
αβ µ1,p(dy) ≤ (‖µα1,p‖)

βα1
αβ (‖µα0,p‖)

(1−β)α0
αβ . (A.48)

On the other hand by Lemma 2-(c)

παβ ,p ≤ (πα1,p)
βα1
αβ (πα0,p)

(1−β)α0
αβ . (A.49)

Then the log-convexity of ‖µα,p‖α as a function of α follows from (A.48) and (A.49).

If µ1,p(∪γ≥1A(p, γ))<1, then the log-convexity of ‖µα,p‖α is strict because the inequality in (A.49) is strict for y’s that

are not in ∪γ≥1A(p, γ) by Lemma 2-(c). For y ∈ A(p, γ), the inequality in (A.49) is an equality and πα,p = γ
α−1
α for

all α. Consequently if µ1,p(∪γ≥1A(p, γ)) = 1, then the log-convexity of ‖µα,p‖α is strict iff the inequality in (A.48) is

strict. But if µ1,p(∪γ≥1A(p, γ)) = 1, then the Hölder’s inequality in (A.48) is strict unless there exists a γ ≥ 1 such that

µ1,p(A(p, γ)) = 1.

We proceed with calculating the limit at zero. As a result of the expression for πα,p given in part (a) we have,

(∑
w :p[1](w|y)>0

p(w)

)α−1
α

πα,p =
(∑

w
p[0](w |y)

(
p[1](w|y)
p[0](w|y)

)α) 1
α

where p[0](w |y) = p(w)∑
w̃:p[1](w̃|y)>0 p(w̃) .

Then using L’Hospital’s rule [80, Thm. 5.13] for calculating limits and the Hölder’s inequality we get,

lim
α→0

(∑
w :p[1](w|y)>0

p(w)

) α−1
α

πα,p = e
∑

w p[0](w|y) ln
p[1](w|y)
p[0](w|y) µ1,p − a.e. (A.50)

(∑
w :p[1](w|y)>0

p(w)

) α−1
α

πα,p ≤ 1 ∀α ∈ (0, 1), µ1,p − a.e. (A.51)

The sum
∑

w :p[1](w|y)>0 p(w) is a simple function of y , i.e. its range is a finite set, because supp(p) has a finite number

of distinct subsets. Thus the essential supremum is the maximum value of the sum with positive probability. Therefore

µ1,p

({∑
w :p[1](w|y)>0

p(w) = ψ

})
> 0 where ψ = ess sup

µ1,p

∑
w :p[1](w|y)>0

p(w). (A.52)

Then using (A.50) we get

lim
α→0

ψ
α−1
α πα,p = 1{

∑
w:p[1](w|y)>0 p(w)=ψ}e

∑
w
p[0](w|y) ln

p[1](w|y)
p[0](w|y) µ1,p-a.e.

On the other hand ψ
α−1
α πα,p ≤ 1 for all α ∈ (0, 1), µ1,p−a.e. by (A.51) and the definition of ψ given in (A.52). Thus

we can apply the dominated convergence theorem [8, 2.8.1]:

lim
α→0

∫ ∣∣∣∣∣ψ
α−1
α πα,p − 1{

∑
w:p[1](w|y)>0 p(w)=ψ}e

∑
w
p[0](w|y) ln

p[1](w|y)
p[0](w|y)

∣∣∣∣∣µ1,p(dy) = 0. (A.53)

Consequently,

lim
α→0

(
ψ(α−1)‖πα,p‖α

) 1
α

=

∫
1{∑

w:p[1](w|y)>0 p(w)=ψ}e
∑

w
p[0](w|y) ln

p[1](w|y)
p[0](w|y) µ1,p(dy). (A.54)

The right hand side of (A.54) is a real number between 0 and 1 by (A.52). Thus we have,

lim
α→0

ψα−1‖πα,p‖α = 1. (A.55)

(3-e) ‖µα,p‖ ≤ |supp(p)| by Lemma 1-(a). The continuity of ‖µα,p‖ in α is implied by the continuity of µα,p in α for the

total variation topology on M+

0(Y), proved in part (a). Furthermore, ‖µα,p‖ = µα,p(Y) because µα,p ∈ M+

0(Y) by part

(a). In addition d
dαµα,p(Y) ≥ 0 by part (b). Hence ‖µα,p‖ is a nondecreasing function of α.
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Let Ep be Ep = {y : p[1](·|y) 6= p(·)}. Then ∀y ∈ Ep , p[α](·|y) 6= p(·) and πα,p is monotone increasing in α on R≥0 . On

the other hand, if there are two or more distinct w ’s in supp(p), then µ1,p(Ep) > 0. Thus ‖µα,p‖ is monotone increasing

if there exist w , w̃ ∈ supp(p) such that w 6= w̃ . Else πα,p = 1 thus ‖µα,p‖ =
∫
πα,pµ1,p(dy) = 1 for all α ∈ [0,∞].

Proof of Lemma 4.

(4-a) Let us start with α = 0 case. Since the weighted arithmetic mean of any two non-negative real numbers is greater than

their weighted geometric mean, for any reference measure ν for µ1,p1 and µ1,p2 we have,

β
dµ0,p1

dν + (1− β)
dµ0,p2

dν ≥
(

dµ0,p1

dν

)β (dµ0,p2

dν

)1−β

=
dµ0,pβ

dν .

For any α ∈ (0, 1] the function x
1/α is convex in x . Then for any reference measure ν for µα,p1 and µα,p2 as a result of

the Jensen’s inequality we have,

β
dµα,p1

dν + (1− β)
dµα,p2

dν ≥
(∑

w
(βp1(w) + (1− β)p2(w))

(
dw
dν

)α)1/α

=
dµα,pβ

dν .

‖µα,p‖ is convex in p because
dµα,p

dν is convex in p and
dµα,p

dν is non-negative.

(4-b) For α ∈ [1,∞) the function x
1/α is concave in x . Thus the inequalities are reversed. Hence both the Radon-Nikodym

derivative
dµα,p

dν and the norm ‖µα,p‖ are concave in p.

For any reference measure ν for µ∞,p1 and µ∞,p2 by the definition of
dµ∞,p

dν given in (7), we have

β
dµ∞,p1

dν + (1− β)
dµ∞,p2

dν ≤ dµ∞,pβ

dν .

‖µ∞,p‖ is concave in p because
dµ∞,p

dν is concave in p and
dµ∞,p

dν is non-negative.

(4-c) Identities are confirmed using the definitions of s∧, s1 and s2 by substitution. On the other hand,

‖p1 − p2‖ = ‖p1 ∨ p2‖ − ‖p1 ∧ p2‖
= 2− 2‖p1 ∧ p2‖.

Hence s∧ ∈ P(P(Y)). Using the fist identity together with s∧ ∈ P(P(Y)) and p1 ∈ P(P(Y)) we get s1 ∈ P(P(Y)).
Similarly s2 ∈ P(P(Y)) follows from the second identity, s∧ ∈ P(P(Y)) and p1 ∈ P(P(Y)).

(4-d) Let δ be δ = ‖p2−p1‖
2 . For any reference measure ν for µα,p1 and µα,p2 and α ∈ (0, 1],

dµα,p1

dν − dµα,p2

dν =
[
(1− δ)(

dµα,s∧

dν )α + δ(
dµα,s1

dν )α
]1/α

−
[
(1− δ)(

dµα,s∧

dν )α + δ(
dµα,s2

dν )α
]1/α

≤
[
(1− δ)(

dµα,s∧

dν )α + δ(
dµα,s1

dν )α
]1/α

− (1− δ)
1
α

dµα,s∧

dν

≤
[
(1− δ)

dµα,s∧

dν + δ
dµα,s1

dν

]
− (1− δ)

1/α dµα,s∧

dν .

where the last inequality follows from the Jensen’s inequality and the convexity of x
1/α in x for α ∈ (0, 1].

We bound
dµα,p2

dν − dµα,p1

dν in a similarly way. Using these two bounds we can bound ‖µα,p1 − µα,p2‖ as follows

‖µα,p1 − µα,p2‖ =

∫
dµα,p1

dν >
dµα,p2

dν

(
dµα,p1

dν − dµα,p2

dν )ν(dy) +

∫
dµα,p2

dν >
dµα,p1

dν

(
dµα,p2

dν − dµα,p1

dν )ν(dy)

≤ 2
[
1− δ − (1− δ)

1/α
]
‖µα,s∧‖+ δ‖µα,s1‖+ δ‖µα,s2‖

≤ 2
[
1− (1 − δ)

1/α
]

≤ 2
αδ.

(4-e) One can confirm using the derivative test that for any α ∈ [1,∞), x0 ≥ 0 and x1 ≥ x2 ≥ 0 we have

[(1− δ)xα0 + δxα1 ]
1/α − [(1− δ)xα0 + δxα2 ]

1/α ≤ δ
1/α(x1 − x2).

Then for any reference measure ν for µα,p1 and µα,p2 we have

dµα,p1

dν − dµα,p2

dν =
[
(1− δ)(

dµα,s∧

dν )α + δ(
dµα,s1

dν )α
]1/α

−
[
(1− δ)(

dµα,s∧

dν )α + δ(
dµα,s2

dν )α
]1/α

≤ δ
1/α
[
dµα,s1

dν − dµα,s2

dν

]
.
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We can bound
dµα,p2

dν − dµα,p1

dν in a similarly way. On the other hand
dµα,p1

dν ≥ dµα,p2

dν iff
dµα,s1

dν ≥ dµα,s2

dν . Thus we can

bound ‖µα,p1 − µα,p2‖ using the bounds on
dµα,p1

dν − dµα,p2

dν and
dµα,p2

dν − dµα,p1

dν :

‖µα,p1 − µα,p2‖ =

∫
dµα,p1

dν >
dµα,p2

dν

(
dµα,p1

dν − dµα,p2

dν )ν(dy) +

∫
dµα,p2

dν >
dµα,p1

dν

(
dµα,p2

dν − dµα,p1

dν )ν(dy)

≤ δ
1/α

∫
dµα,s1

dν >
dµα,s2

dν

(
dµα,s1

dν − dµα,s2

dν )ν(dy) + δ
1/α

∫
dµα,s2

dν >
dµα,s1

dν

(
dµα,s2

dν − dµα,s1

dν )ν(dy)

= δ
1/α‖µα,s1 − µα,s2‖.

E. Proofs of the Lemmas on the Rényi Information

Proof of Lemma 5. I∞(α;W) ≤ ln |supp(p)| because ‖µ∞,p‖ ≤ |supp(p)| by Lemma 3-(e).

limα↓0 Iα(p;W) = I0(p;W) follows from Lemma 3-(d) and the definition of Iα(p;W) given in (13).

limα↑∞ Iα(p;W) = I∞(p;W) follows from the continuity of ‖µα,p‖ as a function of α at infinity, i.e. Lemma 3-(e), and the

definition of Iα(p;W) given in (13).

Both ‖µα,p‖ and
∥∥µ′

α,p

∥∥ are continuously differentiable on R+ , d
dα‖µα,p‖ =

∥∥µ′
α,p

∥∥ and d
dα

∥∥µ′
α,p

∥∥ = µ′′
α,p(Y) because

of Lemma 3-(a,b,c). Then as a result of its definition given in (13), Iα(p;W) is continuously differentiable in α on (0, 1) and

(1,∞). The expression for the derivative for α 6= 1 given in (16) follows from the chain rule.

In order to extend the continuous differentiability to α = 1, first we establish that Iα(p;W) is continuous at α = 1. As a result

of L’Hospital’s rule [80, Thm. 5.13] and Lemma 3-(b) lim
α→1

α
α−1 ln ‖µα,p‖ =

∥∥µ′
1,p

∥∥. On the other hand
∥∥µ′

1,p

∥∥ = I1(p;W) as

a result of (11), Lemma 2-(b) and the definition of I1(p;W). Thus Iα(p;W) is continuous at α = 1. Then,

d
dα Iα(p;W)

∣∣
α=1

= lim
α→1

1
1−α

[∥∥µ′
1,p

∥∥− α
α−1 ln ‖µα,p‖

]
.

‖µα,p‖ and
∥∥µ′

α,p

∥∥ are continuously differentiable by Lemma 3-(b,c). Then using L’Hospital’s rule [80, Thm. 5.13] and the

identity d
dα

∥∥µ′
α,p

∥∥ = µ′′
α,p(Y) we get

lim
α→1

1
1−α

[∥∥µ′
1,p

∥∥− α
α−1 ln ‖µα,p‖

]
= 1

2

[
µ′′
1,p(Y) + 2

∥∥µ′
1,p

∥∥−
∥∥µ′

1,p

∥∥2
]
.

Hence Iα(p;W) is differentiable at α = 1 and its derivative at α = 1 is the one given in (16). Finally, in order to show that
d
dα Iα(p;W) is continuous at α = 1 we apply L’Hospital’s rule [80, Thm. 5.13] to confirm,

lim
α→1

d
dα Iα(p;W) = lim

α→1

α(α−1)‖µ′
α,p‖−‖µα,p‖ ln ‖µα,p‖

‖µα,p‖(α−1)2

= 1
2

[
µ′′
1,p(Y) + 2

∥∥µ′
1,p

∥∥−
∥∥µ′

1,p

∥∥2
]
.

As a function α on R+ , α ln ‖µα,p‖ is convex by Lemma 3-(d) and differentiable by Lemma 3-(b). Then α ln ‖µα,p‖ has a

tangent at each α ∈ R+ and it lays above all of its tangents, i.e. for all α, η ∈ R+ such that α 6= η,

η ln ‖µη,p‖ ≥ α ln ‖µα,p‖+
(
ln ‖µα,p‖+

α‖µ′
α,p‖

‖µα,p‖

)
(η − α). (A.56)

Then for all α, η ∈ R+ such that α 6= η we have

α
α−η

‖µ′
α,p‖

‖µα,p‖ + η
(α−η)2 ln

‖µη,p‖
‖µα,p‖ ≥ 0. (A.57)

If we apply the above inequality at η = 1 we can conclude, using (16), that d
dα Iα(p;W) ≥ 0 for α 6= 1. For α = 1 using

Lemma 2-(b) and Lemma 3-(c) we get

d
dα Iα(p;W)

∣∣
α=1

= 1
2

∫ ∑
w
p[1](w |y)

(
ln

p[1](w|y)
p(w) − I1(p;W)

)2
µ1,p(dy)

≥ 0. (A.58)

Thus d
dα Iα(p;W) is non-negative for all α ∈ R+ and Iα(p;W) is a nondecreasing function of α. Then Iα(p;W) is non-negative

as well because I0(α;W) ≥ − ln
∑

w p(w) = 0 and limα↓0 Iα(p;W) = I0(α;W).

If µ1,p(A(p, γ)) = 1 for a γ, then ‖µα,p‖ = γ
α−1
α for all α ∈ R+ and Iα(p;W) = ln γ for all α ∈ [0,∞], because

πα,p = γ
α−1
α for all y ∈ A(p, γ).

If there does not exist a γ such that µ1,p(A(p, γ)) = 1, then the convexity of α ln ‖µα,p‖ is strict by Lemma 3-(d) and

the variance of the random variable ln
p[1](w|y)

p(w) is positive. Thus the inequalities (A.56), (A.57), and (A.58) are strict and
d
dα Iα(p;W) is positive for all α ∈ R+ .
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Proof of Lemma 6.

(6-a) Let us start with the values of α in (0, 1). Recall that ‖·‖ : M+

(Y) → R+ and α
α−1 ln(·) : R+ → R are continuous

functions and the composition of two continuous functions is a continuous function, [68, Thm. 18.2.c]. Furthermore, the

function ‖µα,p‖ is continuous in p on P(P(Y)), —and hence on P(W)— for α ∈ (0, 1) by Lemma 4-(d). Thus Iα(p;W)
is continuous in p on P(W) for α ∈ (0, 1).
For any p1, p2 ∈ P(W) and β ∈ [0, 1] let pβ = βp1 + (1 − β)p2. Recall that ‖µα,p‖ is convex in p for α ∈ (0, 1) by

Lemma 4-(a). Then by the definition of Iα(p;W) given in (13) we have

Iα(pβ ;W) ≥ α
α−1 ln (β‖µα,p1‖+ (1 − β)‖µα,p2‖)

≥ α
α−1 ln (‖µα,p1‖ ∨ ‖µα,p2‖)

≥ Iα(p1;W) ∧ Iα(p2;W)

Thus Rényi information is continuous and quasi-concave in p for α ∈ (0, 1).
For α = 0 case, first note that

∣∣e−I0(p1;W) − e−I0(p2;W)
∣∣ ≤ ‖p1 − p2‖. Thus e−I0(p;W) is continuous in p. Since − ln x is

continuous on R+ , I0(p;W) is continuous in p. In order to prove that I0(p;W) is quasi-concave, note that for any β ∈ (0, 1)
and p1, p2 ∈ P(W) we have,

I0(pβ ;W) = − ln ess sup
µ1,pβ

[
β
∑

w :p1(w|y)>0
p1(w) + (1− β)

∑
w :p2(w|y)>0

p2(w)

]

≥ − ln

[
ess sup
µ1,p1

(∑
w :p1(w|y)>0

p1(w)

)∨
ess sup
µ1,p2

(∑
w :p2(w|y)>0

p2(w)

)]

= I0(p1;W) ∧ I0(p2;W) .

(6-b) For any p1, p2 ∈ P(W) and β ∈ [0, 1] let pβ = βp1 + (1 − β)p2. Recall that ‖µα,p‖ is concave in p for α ∈ (1,∞] by

Lemma 4-(b). Then by the definition of Iα(p;W) we have

Iα(pβ ;W) ≥ α
α−1 ln (β‖µα,p1‖+ (1− β)‖µα,p2‖)

≥ β α
α−1 ln ‖µα,p1‖+ (1− β) α

α−1 ln ‖µα,p2‖
= βIα(p1;W) + (1− β)Iα(p2;W)

where the second inequality follows from the Jensen’s inequality and the concavity of the logarithm function.

For α = 1 case, note that as a result of the definition of Iα(p;W) we have

I1(pβ ;W) = βI1(p1;W) + (1− β)I1(p2;W) +

∫ [
β

dµ1,p1

dµ1,pβ
ln

dµ1,p1

dµ1,pβ
+ (1 − β)

dµ1,p2

dµ1,pβ
ln

dµ1,p2

dµ1,pβ

]
µ1,pβ

(dy)

≥ βI1(p1;W) + (1− β)I1(p2;W)

where the inequality follows from β
dµ1,p1

dµ1,pβ

+ (1 − β)
dµ1,p2

dµ1,pβ

= 1, the convexity of the function x ln x and the Jensen’s

inequality.

F. Proof of the Lemma on the Rényi Mean

Proof of Lemma 14. For α = 0, as a result of the definition of the order zero Rényi information given in (13) and the definition

of the order zero Rényi divergence given in (19) we have

D0(p⊛W‖ p ⊗ q) = − ln

∫ ∑
w
p(w)dqdν1{p[1](w|y) dµ1,p

dν >0}
ν(dy)

= I0(p;W) − ln

∫ ∑
w:p[1](w|y)>0 p(w)

ess supµ1,p

∑
w:p[1](w|y)>0 p(w)1{dµ1,p

dν >0}
dq
dν ν(dy).

Then the definition of q0,p given in (21) implies (23) and (24).

For α ∈ (0,∞], (23) follows from the definitions of the Rényi information, divergence, and mean given in (13), (19) (21)

by substitution. Using (22) and (23) we get,

Dα(p⊛W‖ p ⊗ q) = Iα(p;W) +Dα(qα,p‖ q) ∀α ∈ (0,∞]. (A.59)

On the other hand qα,p is a probability measure by definition. Then (24) and uniqueness of Rényi mean as the minimizer

follow from (23), (A.59), and Lemma 10.

The following identity and (24) imply (25).

Dα(p⊛W‖ p ⊗ q) = Dα(µα,p‖ q) ∀p ∈ P(W), q ∈ M+

(Y), α ∈ (0,∞] \ {1}.
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G. The Ergodic Theorem and the Rényi Capacity

For W[f ] described in Example 5 we have Dα(w‖ l) = Dα(wf ‖ l) for all w ∈ W[f ] where l is the Lebesgue measure. Thus

by (33) of Theorem 1 we have

Cα,W[f ] ≤ Dα(wf ‖ l) .
We prove the reverse inequality, Cα,W[f ] ≥ Dα(wf ‖ l), using the Birkoff-Khinchin ergodic theorem [30, 8.4.1]. In particular,

we show that there exists a sequence of priors {pı}ı∈Z+ such that37 limı→∞ Iα(pı;W[f ]) ≥ Dα(wf ‖ l) for all α ∈ (0,∞].
For any κ ∈ Z and x ∈ R let Tκx be the transformation resulting from κ successive applications of Tx . As a result of the

definition of Tx given in (62), Tκx = Tκx for any κ ∈ Z and x ∈ R . For any g ∈ L1(l), x ∈ R and ı ∈ Z+ let g ıx be

g ıx (y) ,
1
ı

∑ı−1

κ=0
g ◦ Tκx (y)

= 1
ı

∑ı−1

κ=0
g(y − κx − ⌊y − κx⌋).

For any x ∈ R , the transformation Tx is measure preserving for the measure space (Y,Y, l); if in addition x is irrational,

then Tx is ergodic. Hence gıx converges to
∫
g(y)dy l−a.e. for any g ∈ L1(l) and x ∈ R \Q , by the Birkoff-Khinchin Ergodic

theorem [30, 8.4.1]:

g ıx
l−a.e.−−−−→

∫
g(y)dy ∀g ∈ L1(l) and ∀x ∈ R \Q . (A.60)

Let x be an irrational number that will be fixed for the rest of the proof. For any ı ∈ Z+ , let pı be the prior that has equal

probability mass on each probability measure corresponding to a f ◦ Tκx for some κ ∈ {0, . . . , (ı− 1)}. Then

dµα,pı

dl (y) =

(
1
ı

∑ı−1

κ=0
(f α ◦ Tκx )(y)

)1/α

=

(∑ı−1

κ=0

1
ı f
α
(
y − κx

ı − ⌊y − κx
ı ⌋
))1/α

∀α ∈ R+ .

For α ∈ R+ \ {1}, we calculate the limit limı→∞ Iα(pı;W[f ]) by calculating the limit limı→∞ ‖µα,pı‖. For α = 1 and α = ∞
the result follows from continuity arguments.

(a) α ∈ (0, 1) case:
∫
f αdy ≤

(∫
f (y)dy

)α
= 1 by the Jensen’s inequality. Hence f α ∈ L1(l) as a result of (A.60) we have

(
dµα,pı

dl

)α
l−a.e.−−−−→

∫
f α(y)dy ⇒ dµα,pı

dl

l−a.e.−−−−→
(∫

f α(y)dy

)1/α

.

For any ǫ > 0 there exists a δ > 0 such that if l(E) < δ for a E ∈ Y , then wf (E) < ǫ, because wf≺l . Since l is

invariant under translations and W[f ] is the set of all mod one translations of wf , µ1,p(E) < ǫ whenever l(E) < δ, as

well. Then {µα,p : p ∈ P(W[f ]), α ∈ (0, 1]}≺unil and {dµα,pı

dl }ı∈Z+ is uniformly l−integrable because µα,p(E) is a

nondecreasing function of α for all E ∈ Y by Lemma 3-(b). Since almost everywhere convergence implies convergence in

measure by [8, Thm. 2.2.3], using Lebesgue-Vitali convergence theorem [8, 4.5.4], we can conclude that
dµα,pı

dl converges

to
(∫

f α(y)dy
)1/α

in L1(l), as well:
dµα,pı

dl

L1(l)−−−→
(∫

f α(y)dy
)1/α

. Then limı→∞ ‖µα,pı‖ =
(∫

f α(y)dy
)1/α

. Using the

definition of Rényi information given in (13) we get

limı→∞ Iα(pı;W[f ]) = 1
α−1 ln

(∫
f α(y)dy

)

= Dα(wf ‖ l) ∀α ∈ (0, 1).

(b) α = 1 case: The Rényi information is a nondecreasing function of the order by Lemma 5. Then

lim infı→∞ I1(pı;W[f ]) ≥ lim infı→∞ Iα(pı;W[f ])

= Dα(wf ‖ l) ∀α ∈ (0, 1).

Since the Rényi divergence is a nondecreasing and lower semicontinuous function of the order by Lemma 7, we have

lim infı→∞ I1(pı;W[f ]) ≥ limα↑1 Dα(wf ‖ l)
= D1(wf ‖ l) .

(c) α ∈ (1,∞) case: We analyze the finite
∫
f α(y)dy and infinite

∫
f α(y)dy cases separately.

37Finding a different sequence of priors for each order α in (0,∞] would have been sufficient for establishing Cα,W[f ] ≥ Dα
(

wf

∥

∥ l
)

. The existence of

a sequence of priors {pı}ı∈Z+
such that limı→∞ Iα(pı;W[f ]) = Cα,W[f ] for all orders α in R+ allows us to assert the convexity of (α − 1)Cα,W[f ] in

α on R+ , rather than just [1,∞).
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• If
∫
f α(y)dy <∞, then f α ∈ L1(l) and

dµα,pı

dl

l−→
(∫

f α(y)dy
)1/α

by (A.60) because almost everywhere convergence

implies convergence in measure by [8, Thm. 2.2.3]. On the other hand, as a result of the concavity of the function

z
1/α in z for α ∈ (1,∞) and the Jensen’s inequality we have

µα,pı(E) ≤
(

1
ı

∑ı−1

κ=0

∫

Tκx E

f α(y)dy

)1/α

.

Then the uniform l−integrability of
dµα,pı

dl follows from the translational invariance of l and the l−integrability of

f α following an argument similar to the one we have for α ∈ (0, 1) case. Thus using Lebesgue-Vitali convergence

theorem [8, 4.5.4] and the definition of Rényi information exactly the same way we did for α ∈ (0, 1) case we get

limı→∞ Iα(pı;W[f ]) = Dα(wf ‖ l) if

∫
f α(y)dy <∞.

• If
∫
f αdy = ∞, then we repeat the above analysis for f ∧ γ for a γ ∈ R+ instead of f . As a result we get,

lim inf ı→∞ Iα(pı;W[f ]) ≥ 1
α−1 ln

(∫
(f (y) ∧ γ)αdy

)
∀γ ∈ R+

Note that as γ ↑ ∞,
∫
(f (y) ∧ γ)αdy ↑

∫
f α(y)dy . Thus

limı→∞ Iα(pı;W[f ]) = ∞ if

∫
f α(y)dy = ∞.

(d) α = ∞ case: Repeat the analysis for α = 1 case by replacing α = 1 and (0, 1) by α = ∞ and (1,∞).

We have used the ergodic theorem [30, 8.4.1] in order to be able to conduct our analysis for arbitrary measurable functions. If

we restrict our attention to functions that are bounded and continuous at all but finite number of points, we can choose pı to be

the priors that have 1/2ı probability mass on each probability measure corresponding to a f ◦ Tκ2−ı for κ ∈ {0, 1, . . . , (2ı− 1)}.

Then the identity (
dµα,pı

dl )α
l−a.e.−−−−→

(∫
f α(y)dy

)
is a result of Riemann integrability of f α rather than the ergodicity.

We have used the Lebesgue-Vitali convergence theorem [8, 4.5.4] instead of the dominated convergence theorem [8, 2.8.1].

That is a matter of taste; one can prove the same statements using the dominated convergence theorem. First, do the analysis

for f̃ = f ∧ γ, and then take the limit as γ diverges to infinity.
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