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This paper presents novel algorithms for enumerating
architectural floor plans. The enumeration approach
attempts to generate all feasible solutions that satisfy
given constraints. Therefore, such a method might
usefully reveal the potential diversity of Open Building
floor plans. However, combinatorial enumeration
solutions easily explode even for small problem sizes.
We represent a space by a set of cells and organize
some cells into polyomino-like configurations. We then
enumerate all cell combinations that can be tiled in the
given space using an efficient search algorithm for
combinatorial problems. We also propose queries for
extracting specific floor plans that satisfy additional
constraints from all enumerated floor plans without re-
enumeration. Our approach solves a 56-cell
configuration space within a realistic timeframe.



1. INTRODUCTION

This paper presents novel algorithms for enumerating architectural floor
plans. The floor-planning problem is conventionally solved by two main
approaches; optimization ([1]) and enumeration [2-10]. The optimization
approach seeks the solution with the best score for one or more objective
functions satisfying given constraints. However, appropriate objective
functions may be difficult to specify, especially for design problems. In
general, constraints are more easily defined than objective functions. In
addition, we sometimes desire alternative solutions rather than the single
best solution. The enumeration approach attempts to generate all feasible
solutions that satisfy given constraints. 

We consider that enumeration could be effectively applied to the
potential diversity problem of Open Building floor plans [11]. The Open
Building concept regards space as three levels; town blocks (called urban
tissue); buildings (support or skeleton); and floor plans, interiors, and
facilities (infill). The desirable freedom of infill has been discussed. Doi et al.
[12] claimed that fixing a zone equipped with a nearly-immobile water
supply improves the economy and ease of renovation while preserving a
certain degree of infill diversity. In this study, the term “diversity” refers to
the variability of the possible floor plans. We consider that humans have
limited capability for guessing the fixed zone location that maximizes the
potential diversity of floor plans, and that numerical techniques, especially
enumeration approaches, are appropriate for solving floor-planning
problems.

When evaluating the potential diversity of floor plans in a typical floor-
planning problem, we need to define (1) a representation of the floor plan,
(2) constraints and objective functions, and (3) a space generator. In
addition, we also newly define (4) a measure of the floor plan diversity and
(5) efficient storage and search methods for the enumerated solutions.
Here, we focus on (3) and (5). 

Solutions to combinatorial enumeration problems tend to explode even
for small problem sizes. However, with current algorithms and data
structures, practical-scale enumeration problems are becoming more
tractable. In this study, we represent the space as a set of cells and organize
cell components into polyomino-like configurations. We then enumerate all
cell combinations that can be tiled in the space under the specified
constraints. To this end, we employ an efficient search algorithm called the
frontier method [13]. The frontier method directly constructs a zero-
suppressed binary decision diagram (ZDD) [14], which is a compressed
data structure for combinatorial problems. We also propose some queries
for extracting specific floor plans that satisfy additional constraints from all
enumerated floor plans stored in a ZDD without re-enumeration. Thus, we
achieve the interactive operation necessary for an architectural planning
support system.
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Differently from previous enumeration approaches for floor plans, the
proposed algorithms enumerate and preserve the data of all floor plans
within the ZDD framework. In Section 6, we discuss the current limitations
of definitions (1), (2), and (4) in the floor-planning problem and suggest
future improvements.

The remainder of this paper is organized as follows. Sections 2 and 3
introduce enumeration and the ZDD framework, respectively. The
proposed method is detailed in Section 4, and Section 5 presents the
results of a case study. Section 6 discusses and concludes the article.

2. ENUMERATION ALGORITHMS

An enumeration problem requests all elements of a given set.  The term
“enumeration” is used in the area of mathematics and theoretical computer
to refer to outputting all combinatorial objects. An efficient enumeration
algorithm must output all of the desired objects without repetitions. If the
algorithm has to check whether a newly output object is equal to the one
already output, it has to store all the objects already output so far in the
memory, which requires an exponential size memory space.

There are three major approaches for designing efficient enumeration
algorithms: partition, backtracking, and reverse searching [15]. Backtracking
is a basic search method used in various enumeration problems. The
proposed problem described in Section 4 is defined similar to a polyomino-
like configuration that is generally solved by backtracking [16]. Naïve
backtracking methods are inefficient because of redundant searching.
Reverse searching is a relatively new method that defines the parent–child
relationships between solutions, and implicitly constructs a solution family
tree. Solutions are then efficiently enumerated by searching the tree in a
depth-first manner. Nakano [17] employed a reverse search for
enumerating rectangular floor plans. However, although reverse searching is
compatible with rectangular dissection, it is not generalizable to
nonrectangular room shapes. 

Conversely, a ZDD-based enumeration approach uniquely compresses a
huge enumerated dataset. The ZDD approach is detailed in the next
section. 

3. ZDD

The ZDD is an extension of the binary decision diagram (BDD) [18], a
fundamental data structure that represents a logic function as a graph
structure. It is constructed by (1) initially representing all combinations of
variables and associated function values as a complete binary tree, and by
(2) eliminating redundant nodes and by merging equivalent nodes. For
instance, an element s in set S can be represented by a characteristic vector
x , and the associated logic function f is defined such that s belongs to set S
if and only if f(x)=1. Thus, we can represent a combinatorial set S by the
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logic function f. Because the vectors x of interest satisfy f(x)=1, we can
neglect the terminal nodes of the BDD, for which f(x)=0, and thereby
derive the ZDD from the BDD. Note that the ZDD is suitable for
processing sparse combinatorial datasets, which typify real datasets. The
data set used in this study can be regarded as sparse since only one room
usage must be assigned to a cell from more than ten kinds of room usages.

Here, we present a simplified example of our proposed ZDD-based
method (which will be described in Section 4). Figure 1(a) illustrates the
problem. There are two empty cells numbered 0 and 1 and two blocks
labeled A and B. We wish to assign each block to exactly one cell and each
cell to exactly one block. Naively, we could build the binary decision tree
illustrated in Figure 1(b). The label on each node represents the
combination of a cell number and a block label; for example, 0A denotes
that block A is assigned to cell 0. The dotted and solid lines radiating from
the nodes indicate 0-edges and 1-edges, respectively. If and only if the line
from a node is solid (i.e., a 1-edge), the corresponding block is assigned to
the corresponding cell according to the node label. The Boolean value
inside each round-cornered square distinguishes the 1-terminal and 0-
terminal nodes. If an assignment is feasible, the 1-terminal node is
connected from the last node of the path; otherwise, the 0-terminal node is
connected. To represent all assignments, the binary tree requires up to
∑i=0

xy+1 2i nodes, where  and  denote the numbers of cells and blocks
respectively. Conversely, a ZDD compresses the set of assignments, as
illustrated in Figure 1(c) [2]. 

A binary tree can be reduced to a ZDD by three operations: pruning,
removing nodes whose -edge is connected to a 0-terminal node, and
sharing equivalent nodes. For enumeration purposes, we construct a ZDD
by an efficient search method called the frontier method, which requires no
explicit construction of the binary tree. � Figure 1: Representation of all cell

layouts in problem (a).
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An more important and widely appreciated virtue of ZDDs is that they
efficiently perform fundamental set operations. For example, the basic set
operations on the ZDDs of sets A and B are union (A ∪ B), product (A ∩
B), difference (A - B), direct product A × B, and other fundamental
operations. The execution time of these operations is almost proportional
to the number of nodes in the ZDD. In subsection 4.4, we define some
queries using ZDD operations for extracting user-specific floor plans.

4. ENUMERATION AND SEARCH ALGORITHMS FOR
FLOOR PLANS

This section explains the proposed enumeration and search algorithms.

4.1 Configuration Space and Rooms

As a case study, the proposed method is demonstrated on the floor plan of
an actual building, the UR Hanabatake apartment built in 1964 in Tokyo.
The floor is divided into unit cells called a configuration space (see Figure
2). Let c ∈ C be a cell within a set of cells C . Each cell is 0.95-m wide and
0.930-m high, and is assigned a room usage such as a living room. Let u ∈ U
be a room usage inside a set U of room usages. If needed, the room usages
can be indexed as uj(j = 0, …, |U | – 1), where |⋅| represents the size of a
set. A cell on or beside an external wall is assigned to a facility B = {simple
exterior wall, window, alcove, balcony}. Cells are indexed from top-left to
the bottom-right. The index corresponds to the order of the ZDD nodes.
The ZDD representation of the floor plan is described in the next section.
If needed, the cells can be indexed as ci(i = 0, …, |C | – 1), where the
indices correspond to the number of cells as illustrated in Figure 2(b).

� Figure 2: (a) Floor plan of the UR

Hanabatake apartment and (b) its

configuration space.
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The room usages and shapes must be specified in advance. Referring to
the actual floor plan of the Hanabatake apartment, we designate ten room
usages in this case study (see Figure 3), and the total number of rooms is
twelve. Each room is composed of cells. A room usage may have multiple
room shapes. Therefore, we evaluate the performance of the proposed
method by assigning complex room shapes to some of the room usages. In
addition, we consider 90° rotations and mirror images of the shapes
illustrated in Figure 3(a). Therefore, the original shapes and up to seven
transformations of each shape are included. Furthermore, the adjacency
relationships that affect the flow line and environmental conditions are
defined for different room usages and boundary conditions. Figure 3(b)
illustrates the adjacency relationships adopted in this study. We also
stipulate that a window cannot be shared between two rooms.

More constraints could be imposed in actual use, but for demonstrating
the enumeration, we restrict ourselves to the basic constraints only. 

4.2 ZDD representation of floor plans

A room usage assigned to a cell is represented by the node of a binary or
ZDD search tree. The upper nodes of the search tree are illustrated in
Figure 4. These nodes correspond to the cell marked 0 in Figure 1. A
general ZDD implements Boolean functions; however, our problem
requires multiple values for room usages. That is, if the number of room
usages exceeds two, we require more than two node levels to assign a
room usage to a cell. The number of total levels required for all cells is L =
|U |×|C |. Let ncu denote a 0–1 variable such that if ncu = 1, the usage of cell c
is u; otherwise the usage is not u. From the constraints described in
Section 4.1, we have ∑u ∈ Uncu = 1. Denote Nl (l = 1, …, L) as the set of
nodes created on the l-th level. The level of the node of cell ci that is
assigned uj is calculated as l = i × |U | + j + 1. A cell and its room usage is

(a) Room shapes. (b) Adjacency relationships between room

usages.
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referred by its level number l as c(l) and u(l), respectively. For example,
c(1) = c0 and u(1) = u0 = LI. In terms of n  Nl, they are referenced as c(n)
and u(n), respectively. The top node of a ZDD is the root, denoted nroot. In
Figure 4, nroot = n0LI. 

4.3 Enumeration by the Frontier Method

Framework o f Frontier method
The frontier method is given in Algorithm 1. The variable x associated with
a node n denotes whether the node is connected to a 0-edge or a1-edge.
Initially, the root node is created. Then, for node n  Nl and l = 0, …, L –
1, the constraints are checked and new nodes n¢ and n¢¢ are created on the
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for  to  do 
   for each  do 
        for each  do 
              
             if 0-terminal and 1-terminal then 
                if we already have  such that  then 
                     
                else 
                     
                end if 

end if 
connect  and  with -edge  

        end for  
   end for  
end for 
reduce the tree as a ZDD. 

� Figure 4: Node

representation of floor

plans over a search tree.

Symbols in each node
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ends of the 0- and 1-edges of n, respectively. If the assignment is feasible,
the node is added to Nl + 1. This process repeats until l = L – 1. The
function CreateChildNode( in line six creates a node on the end of the -
edge of . This function must be adapted to the problem, and is defined in a
later section.

If the assignment does not satisfy the constraints before the floor plan is
completed, the succeeding assignment is terminated and searching of
another series of assignments begins. To check whether an assignment
satisfies the constraints, we require information of the assigned cells. The
frontier is the set of all assigned cells adjoining unassigned cells. 

Definition o f the Frontier
If the assignment of a room usage to a cell never satisfies the constraints,
the assignment is terminated. Therefore, for constraint checking, we need
to store the state of the assignment. However, this information need not
be stored at all nodes. As illustrated in Figure 5, the assignment state is
required only at cells located between the assigned and unassigned cells;
the so-called frontier cells. Moreover, there exist three states in the
frontier cells; just included in the frontier, just deleted from it, and none of
them. The processing for frontier cells in Alogithm2 described later differs
depending on those states. We define by  the set of nodes of the frontier
cells on the -th level. 

The information required for checking the constraints and equivalence
(described in the next section) is called the “configuration.” In this paper,
the configuration constitutes (1) the assigned room usage, (2) the
sufficiency state of the adjacency relationships between room usages, (3)
the assigned area of each room usage, and (4) the shape catalogues of the
room usages (see next section).

Sharing condition o f nodes
Lines 8–10 of Algorithm 1 prevent unnecessary widening of the search tree
by sharing equivalent nodes. We say that two nodes are equivalent if their
assignments differ up to the current level, but are likely to equalise in future
assignments.  An example of equivalence is illustrated in Figure 6. Let numu
denote the number of cells in C ¢ assigned room usage u, where C ¢ denotes
the set of cells assigned that room usage. When the same room usages are
assigned to the frontiers of two different floor plans, numu are equal. The
frontiers of the purple cells (assigned to the hall) contain equivalent cells,

� Figure 5: Classification of frontier

cells.
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although the halls are of different shapes in the two plans and their
assignment has finished. Therefore, we can merge the ZDD nodes of the
rightmost assigned frontier cells of both floor plans. The abovementioned
configuration information is required for judging whether or not two nodes
can be merged.

Definition o f C reateC hildNode(n, l, x)
Function CreateChildNode(n, l, x) receives the pointer of the parent node
n, the current level l of the search tree and the search direction of the edge
(i.e., 0- or 1-arc) as arguments and returns the pointer of a child node, 0-
terminal node or 1-terminal node of a ZDD, based on the constraint
checking result. This function is detailed in Figure 7 and presented as
Algorithm 2 in the appendix. 

This function proceeds through five steps. In step 1, the node search
terminates if the corresponding cell is not assigned to any room or is
assigned to more than two usages before a child node is created.

Step 2 creates a child node, and updates the corresponding shape
catalogue and the sufficiency state of the adjacency relationships. Here, the
shape catalogue is the list of all possible room shapes for each room usage
in a certain state of the assignment. For example, six shapes are possible for
room usage u12 (i.e., the hall) in Figure 3, allowing for rotation and
mirrored images of the original shape. These shapes are distinguished and
indexed as u12_1, …, u12_6. For example, in Figure 8(a), we suppose that u12
is first assigned to c13. Because the assignment starts from the top-left of
the configuration space and any vacant cell is infeasible, the position a that
represents the first cell assigned to each room shape is necessarily the
leftmost of the uppermost cells. Therefore, once the first cell of each room
is assigned, the possible set of cells constituting the remainder of the room
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shape is determined at that time. This set of cells is called the “assignable
area.” As illustrated in Figure 8(a), shape u12_1 cannot be realized once the
first piece u12_1 has been assigned to c13, because the rightmost cell of u12_1
overlaps the alcove. Therefore, u12_1 is deleted from the shape catalogue.
The assignment of the next cell to a different room usage eliminates shapes
u12_4 and u12_6, as illustrated in Figure 8(b). In Figure 8(c), the assignment
fails because piece u12 is assigned outside the assignable area. If the final
assignment of each room usage succeeds, a single shape remains in its shape
catalogue. Therefore, if no shapes remain in the shape catalogue, the room
usage assignment fails at that time.

After the assignment, step 3 checks whether a shape remains in the
shape catalogue, whether the cell has been assigned to a nonassignable area,
and that a window is not shared between two rooms. 

Step 4 checks for any unsatisfied adjacency condition of cells that have
just been deleted from the frontier. 

Step 5 checks whether the assigned cell is the last cell (i.e., the bottom
right cell).

4.4 Search queries for extracting specified floor plans

By combining the ZDD set operations, we can directly extract the floor
plans that satisfy a given search condition from all enumerated solutions
stored in the ZDD. We implement the proposed method in C++ and
employ a ZDD library included in the Python graph library called
Graphillion [19]. This library has many efficient operators and class
methods for set operations that can be directly applied to ZDD variables.
For our purpose, the most relevant of these are Union, OnSet, and
Restrict. OnSet(var) receives the node index var as an argument, creates a
new ZDD from subsets including the var-th node as a member (excluding
all other subsets), and returns the new ZDD. Restrict(f) extracts the
subsets covering at least one combination in f, which is a ZDD variable,
from the corresponding ZDD and returns them as a ZDD. 

We implemented three search queries: (1) extract floor plans for which
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the room usage of a given cell matches the specified usage, (2) extract floor
plans for which two specified rooms are adjacent, and (3) extract floor
plans for which the shape of a specified room matches the specified shape.
We define a ZDD variable Z that stores the whole set of enumerated floor
plans, and another variable Z¢ denoting  the subset of floor plans extracted
by the following queries.

Q uery 1; floor plans fo r which a cell is assigned a specific room
usage
Floor plans for which a room usage  is assigned to  are easily extracted as
follows:
Z¢ = Z. OnSet(i × |U | + j + 1).

Q uery 2; floor plans requir ing a specifically shaped room usage
Figure 9 illustrates a specified room shape to be extracted for a room
usage . Let  and  represent the top-left and bottom-right cells of the room
shape, respectively. If the shape can be assigned to an initial configuration
space, we preserve the combination of corresponding node indexes (a × |U |
+ j + 1, …, b × |U | + j + 1) of cells constituting the shape in a ZDD variable
Z1. Shifting the position of cell a from 0 to |C | – 1, we successively add the
node indexes to Z1 if the assignment is feasible. Thus, Z1 contains all
feasible assignments for the shape in the initial configuration space. Finally,
we apply the following query to Z, and retrieve the floor plans with the
specified room shape: Z¢ = Z. Restrict(Z1).

Q uery 3: floor plans satisfying a specific adjacency condition
Let uj and uk be the specified room usages. We say that two rooms with
different usages are adjacent if a cell belonging to uj is adjacent to a cell
belonging to . Figure 10 illustrates two pairs of adjacent cells (a, b) and (a,
c). Let Z2 be a ZDD variable. Shifting the position of cell a from 0 to |C | –
1, we successively add pairs of corresponding node numbers (a × |U | + j +
1, …, b × |U | + k + 1) and (a × |U | + k + 1, …, b × |U | + j + 1) of the
adjacent cells a and b to Z2, provided they are assignable to feasible spaces
in the initial configuration space. The same operation is applied to adjacent
cells a and c. This process gives all adjacent patterns of uj and uk. Finally, we
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apply the following query to Z, and retrieve the floor plans that satisfy the
specified adjacency condition: Z¢ = Z.Restrict(Z2).

5. EXPERIMENTS

In this section, the enumeration is evaluated in a numerical experiment and
the results are reported.

5.1 Overall results 

The proposed method was applied to the problem described in Section 4.1.
Experiments were performed on a desktop PC with an Intel Core i7-3820
CPU, 64 GB memory, a Windows 7 Professional OS and a Visual C++ 2010
compiler. 

Table 1 summarizes the results of different kinds of search trees. While
both ZDD-based search trees found all solutions satisfying the constraints,
the binary tree based method found no solutions, because the number of
nodes became prohibitively large. However, the ZDD-based method
required at least six hours to find all solutions. Comparing the
computational times of both ZDDs, we can attribute the large difference to
the extended time of node sharing rather than the node numbers, which
are quite similar in the presence and absence of node sharing. In this
problem, the time cost of checking the configuration information outweighs
the benefit of node sharing. 

Figure 11 shows some of the enumerated floor plans. All enumerated
plans can be downloaded from http://p.tl/UibG. Floor plan No. 6 is identical
to that of the original apartment. In plan No. 12, the closet (C2) faces the
balcony, which is unnatural. Such unnatural assignments are quickly
excluded by applying Query 1 to C2 after the enumeration. Because we
consider only the adjacent conditions of the enumerated rooms, some floor
plans (e.g., Nos. 7 and 9) exhibit an inappropriate flow line. To exclude

� Figure 10: Shifting the adjacency

cells to create Z2.

� Table 1: Results of numerical

experiments.
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a b
c

Sort of search trees Num. of nodes Num. of solutions Computation time

ZDD with node sharing 464468021 1806 About 26 hours

ZDD without node sharing 491140760 1806 About 6 hours

Binary tree 1.44 × 1017 - -



such floor plans, we must impose additional constraints on the flow lines, as
discussed in the last section.

Figure 12 shows the ZDD representation of plan No.1 in Figure 11.
Since the ZDD only contains nodes of room-usages to be assigned, a floor
plan can be expressed by number of nodes proportional to the size of the
configuration space.

5.2 Examples of queries

Although the enumerated floor plans require improvement, querying and
extracting floor plans by the proposed method is a worthy exercise. These
queries are executed within one second.

A nalysis o f Q uery 1: assigning room usage 
An important purpose of this study is to examine the location of water
related equipment such as that found in kitchens. For each cell and room
usage, Figure 13 shows the ratio of the room usage assignments to the
maximum number of room usage assignments over all cells. The numbers in
the white squares denote the cells that are never allocated that particular
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room usage. The kitchen location is stable, because it must satisfy an
adjacency condition with balcony B2. In contrast, the positions of the
bathroom, water closet, and lavatory vary but are more frequently seen in
some positions than others. Thus, this query provides useful information on
the diversity of the room usage positions, including those related to water.

A nalysis o f Q uery 2: frequency o f adjacency between two
rooms 
Query 2 enumerates the frequency of adjacency between any two rooms.
The results are summarized in Table 2. The maximum number (1806) is
fixed by the adjacency constraint illustrated in Figure 3(b). The kitchen
tends to adjoin the living room even when no adjacency condition is set. By
summarizing the adjacency frequency obtained by this query, we can check
the necessary constraints of a floor plan or perhaps discover unexpected
room combinations (as described in 5.1). 
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The ratio of the number of assinments: 0               100%. (The ratio for cells with index is 0%.)

Living room             Private room1           Private room2                  Kitchen                        WC                       Bath room   

Lavatory                     Closet1                     Closet2                     Storage                     Entrance                       Hall

� Figure 13: Ratio of the number of

assignments of each cell to the

maximum number of assignments to a

cell, for each room usage.



A nalysis o f Q uery 3: frequency o f room shapes 
Finally, we examine the frequency of the room shapes in the 1806 floor
plans, retrieved by Query 3 and listed in Table 3. The shape types in the
table are labeled as in Figure 3 (a). The living room (LI) and both private
rooms (P1 and P2) generally adopt simple shapes, while the kitchen (K) is
more irregular. Since we set the adjacency relationships that the kitchen
has to face other small room units, it can be thought that irregular shapes
of the kitchen tends satisfy those relationships. 

By summarizing the frequency of the various room shapes, we can
reconsider their variability.

Shape type/Room usage LI P1 P2 K H

a 521 754 788 222 876

b 105 47 90 201 930

c 50 45 159 299

d 235 128 521 402

e 75 428 12 147

f 282 37 0 179

g 158 226 0 79

h 57 53 236 157

i 323 88 0 120
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LI 
           

674 P1 
          

626 506 P2 
         

1701 1465 1475 K 
        

504 586 417 815 W 
       

460 365 730 160 70 BR 
      

535 446 681 575 381 1806 LA 
     

150 1806 415 744 376 191 154 C1 
    

1806 221 257 811 391 400 383 73 C2 
   

252 328 410 982 423 69 579 174 186 S 
  

60 92 20 4 753 72 474 170 79 410 E 
 

293 428 384 1806 1806 122 1806 238 217 1806 1806 H 

 

� Table 2: Frequency of adjacency

between two rooms in 1806 floor

plans.

� Table 3: Frequency of the room

shapes in 1806 floor plans.



6. DISCUSSION AND CONCLUSIONS

As mentioned in Section 5.1, the above experiments ignored the flow line
of room allocation. To constrain the flow line, we must identify and return
possible and/or impossible gate cells for each room shape. To this end, we
define a new query that combines Queries 2 and 3 and extract the floor
plans satisfying the additional constraint. When constraining the flow line,
we can improve the evaluation precision by imposing syntactical criteria
based on Space Syntax, as suggested by Heitor et al. [20]. This discussion
relates to the diversity of floor plans. In this article, two floor plans are
regarded as different even if different usages are assigned to a given cell.
However, the diversity of actual floor plans depends not only on shape
differences but also on more abstract properties such as syntactical criteria.

We now enumerate a relatively small number of room pieces with
complicated shapes. To validate the degree of complexity of the room
shape, we analyze the floor plan database. For example, there exist 63600
different pieces in a 12-omino (dodecamino) arrangement. By selecting
appropriate room pieces from these configurations, we can exhaustively
enumerate all selected pieces. In this case, the large number of pieces might
be better enumerated by an alternative approach based on direct product
operations of ZDDs, as demonstrated in [21].

The present study has proposed an efficient enumeration method and
some basic ZDD-based queries in the floor-planning problem. We
overcame the combinatorial explosion of standard enumeration approaches,
and explored a 56-cell configuration space within a realistic timeframe. We
consider that the algorithm should be applicable to configuration spaces
exceeding 80 cells which is the normal area of a contemporary Japanese
dwelling unit in a condominium building. To tackle large-sized problems
while preserving the generality of solutions, we need to improve the
present enumeration algorithm. Once the solutions are stored in a ZDD,
subset solutions can be rapidly extracted. Therefore, the following scheme
is conceivable; allocate a certain time for enumerating and storing as many
varied solutions as possible in the ZDD, while imposing minimum
constraints that suppresses combinatorial explosion; then extract the
required floor plans by complex queries. 
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APPENDIX
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Algorithm 2 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 

//Step 1: check constraints before creating a child node 
if = 0 then 
   if  is never assigned with any room usage and  is the last room usage for it then 
        return 0-terminal node 
  end if 

else  
   if  has been assigned with another room usages then 
        return 0-terminal node 
   end if 
end if 
//Step 2: create a child node 
create  (that corresponds to ) 
if  = 0 then 
   if  has ever been assigned then 
        update the room shape catalogue for  
   end if 
else 
   assign  to c , update the room shape catalogue and the adjacency condition list for  
end if 
//Step 3: check constraints after a child node is created 
if  = 0 then 
   if there remains no room shape for  then 
        return 0-terminal node 
   end if 
else 
   if  is not located in the assignable area for  or there remains no room shape for any room 

usage or a window is shared between  and an another room usage. then 
         return 0-terminal node 
   end if 
end if 
//Step 4: check constraints of cells that are just being deleted from the frontier  
for each  do 
   if the shape of the room usage  is fixed (i.e., u  for all ) then 
        if there remains any adjacency condition on  that is not satisfied yet then 
            return 0-terminal node 
        end if 
   end if 
end for 
//Step 5: check whether the cell assigned is the last one or not 
if c | |  then 
   return 1-terminal node 
else  
   return  

44: end if 
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