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Representations for the Analysis and Synthesis of Space Layouts

Abstract.  Representations for spatial configuration, what they show and the types of 

reasoning they support are discussed using Villa Malcontenta as an example.

Representations are abstractions used for manual and automated reasoning, analysis and

synthesis.  This paper is about the representations we use when we try to understand or create

the spatial order of some part of the environment.  The representations discussed in this paper

are not intuitive representations such as sketches or other types of drawings but symbolic 

representations with well-defined rules of correspondence to spatial configurations.  They are

used in manual and computerized methods for documenting and reasoning about space, such 

as GIS; analyzing space, such as space syntax analysis; and automated layout generation, 

such as shape grammars and constraint-based methods.  The representations we consider are 

plans, convex, axial and isovist spaces; graphs, region connection calculus, rectangle algebra,

linear equations and shape grammars.

Each representation makes certain aspects of spatial organization explicit, and certain 

types of operations possible.  We compare representations with respect to what they show, 

which operations they make possible, the reasoning mechanisms associated with each, their 

completeness and correctness, the procedures for converting between them, and how they are 

used.  Analysis goes from concrete to abstract by omitting details, and synthesis in the 

opposite direction by adding information.  Different representations of Villa Malcontenta by 

Palladio (1997, p. 128) is used as a continuing example throughtout the paper when 

discussing these issues.
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Spatial configuration

The built environment consists of orders at different levels.  The highest level consists 

of roads and city blocks.  The level below that consists of buildings and exterior spaces 

arranged inside blocks.  The next level is the arrangement of rooms and partitions in 

buildings (Habraken, 1998).  Configuring space turns continuous space into discrete units that

can be assigned to different groups or activities.  And for analysis, we have to discretize 

space in order to reason about relations and other aspects of configuration.  An architectural 

space, which can be at any of the above levels, is space that is entered and used by humans.  

It consists of a surface that forms the base or floor, and boundaries that allows man to 

perceive its "interior" as different from its "exterior" (Baykan and Pultar, 1995).

Figure 1. Plan of Villa Malcontenta by Palladio.

The abstraction of the built environment that is the starting point for analyses is the 

plan.  The plan is a 2D orthogonal drawing which shows the horizontal supporting plane that 

supports movement, the vertical boundaries that limit movement and visibility, and the 

horizontal dimensions of the elements.  Figure 1 shows the floor plan of Villa Malcontenta, 

designed by Palladio.  For purposes of analysis, the plan is abstracted and converted to other 
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iconic or symbolic representations described below.  The first step in this process is 

identifying the spaces in the plan.

Iconic representations for analysis

The plan is an iconic representation, which means that properties of the real object are 

represented by themselves in the model, i.e. lines in the plan show where surfaces meet in the

building, forming lines.  In an analog representation, one property is represented by another, 

i.e. height is indicated using color in geographic maps.  A symbolic representation has no 

correspondence to what is represented except by convention (Ackoff, 1962)

Convex space

Convex space is a space where no line between any two points inside it crosses its 

perimeter.  A convex map depicts the least number of convex spaces that fully cover a layout.

The process for creating a convex map starts by identifying the fattest convex space in a plan 

and continues until the entire area is subdivided into convex spaces (Hillier and Hanson, 

1984).  The convex map is widely used in applied space syntax studies for the analysis of 

building plans, due to its ability to capture sociologically relevant relationships in the plan 

(Bafna, 2003).

Figure 2. Convex map of Villa Malcontenta.
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The convex map of Villa Malcontenta is shown in figure 2, where each convex space is 

labeled with a letter and indicated by a filled rectangle.  There are some uncovered areas in 

the doorways which are disregarded, because they are not large enough on their own to be 

entered and used by humans.  The first convex space identified is C, and the rest follows in a 

straightforward way.

Axial space

Axial space is a straight line or sight line, possible to follow on foot.  An axial map is a 

discrete mapping overlaid on top of the convex map.  It consists of the least number of axial 

lines covering all convex spaces of a layout and their connections.  The procedure for 

generating an axial map is iterative and starts with the longest line that passes through at least

one permeable threshold between two adjacent convex spaces and repeats this until all the 

permeable thresholds between all adjacent convex spaces have been crossed (Batty & Rana, 

2004).  All the points inside a space should be visible from the axial line through that space.  

The resulting network of intersecting straight lines is the axial map.  The axial map of Villa 

Malcontenta superimposed on the convex map is shown in figure 3.  The axial lines are 

numbered in the order they are identified.

Figure 3. Axial map of Villa Malcontenta.
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The axial space is a suitable abstraction for describing and analyzing the street network 

in urban areas, where line of sight is a significant unifying device, and the number of turns on

a route are more crucial to spatial experience than distance covered.  Movement, options for 

mobility, potential for unplanned encounters are captured by the alignments of the constituent

convex spaces of axial maps (Bafna, 2003).

Isovist space

Convex and axial spaces show space-to-space permeability.  Isovist space makes 

explicit  the relation of visibility.  An isovist is the nonconvex space visible around a 

viewpoint.  The viewpoint is defined alternatively as a single point, all points inside a convex 

space, inside a diamond shaped area at the center of a convex space, or on an axial line (Batty

& Rana, 2004).

Figure 4 shows the isovist map of points visible with the doors open from a diamond-

shaped space drawn inside the central space of Villa Malcontenta.  The diamond is drawn by 

joining the centre points of each wall of the convex space, thus covers half of the area of the 

room.  Space use is normally concentrated within this diamond shape, the corners being 

reserved for objects.

Figure 4. Isovist map of the diamond inside the central space in Villa Malcontenta.
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Looking at the isovist map in figure 4, we can guess that the central space has a more 

powerful visual field than the other convex spaces on the floor.  These visibility differences 

can form the basis for visual or quantitative and statistical analyses.

Symbolic representations for analysis and synthesis

The iconic representations such as the different types of plans are converted to symbolic

representations for further analysis.  One of the most common representations for a spatial 

configuration is the graph.  Different types of graphs and other representations for qualitative 

reasoning are discussed below.

Convex map graph and axial map graph

One of the most common representations for a spatial configuration is the graph.  A 

graph consists of nodes and edges.  Graphs are used for analysis of spatial complexes, as in 

space syntax method, and in generation programs for synthesizing layouts.  Many different 

types of graphs showing different attributes of a layout have been used.  Figure 5 shows two 

such graphs used in space syntax analysis.  The convex map graph on the left is derived from 

the convex map shown in figure 2.  The nodes of the graph are the convex spaces which have 

similar labels as in figure 2.  The edges of the graph indicate that it is possible to go directly 

from one space to the other.

Figure 5. Convex map graph (left) and axial map graph (right) of Villa Malcontenta.
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As with the convex map, the axial map is also easily represented as a graph in which 

each axial space is represented by a node and each intersection between two axial spaces as 

an edge. The graph at right in figure 5 shows the axial map graph of the axial map in figure 3.

Similar graph can be formed of isovists and overlap relations between them.  An isovist map 

graph can be formed by taking isovists as nodes and indicating overlapping isovists by links.

The convex map graph takes into account only access and topological features of a  

configuration.  The premise behind this abstraction is that sociologically relevant aspects of 

configured space, such as issues of control and privacy can be captured at the level of 

topological description.

Measures of a space, such as connectivity, number of immediate neighbours; 

integration, average depth to all other spaces; control value, degree to which a space controls 

access to its immediate neighbours considering also the alternative connections available; and

global choice, measure of the flow through a space which depends on how many of the 

shortest paths pass through it are based on the information represented in graphs.  The above 

four measures are called first order measures.  Second order measures are formed by 

correlating some of these, i.e. the correlation between connectivity and integration,  termed 

intelligibility.

Measures obtained from the axial map graph has proved useful for the analysis of 

pedestrian travel patterns and activities related to such patterns, i.e. the potential for 

unplanned encounters, location of services and crime distribution. (Turner, Penn, Hillier, 

2005)

Topological descriptions allow researchers a systematic way of disregarding small and 

generally sociologically irrelevant geometrical differences, thus enabling several different 

layouts to be classified together under a broader typological category (Bafna, 2003).
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Adjacency graph

Another type of graph, similar to the convex map and axial map graphs shown in figure 

5 above is the adjacency graph.  Whereas the convex map and axial map graphs show 

existing direct movement and visibility relationships in a plan, the adjacency graph shows all 

adjacency relations which make direct movement and visibility relations possible.

An adjacency graph shows spaces by nodes and a boundaries between spaces by edges 

connecting the nodes.  It can be drawn by replacing each space by a node, and each common 

oundary by an edge.  Such a plan is called the dual of the plan, as it contains the same 

topological information about shapes and their relations as the plan it is derived from 

(Kozminski, Kinnen, 1984).

Figure 6. A simplified block plan of Villa Malcontenta and its adjacency graph.

Figure 6 shows a simplified plan of Villa Malcontenta, and its dual.  In the plan, walls 

are indicated by a single line, a number of the smaller spaces are replaced by two larger 

spaces, and the porch, space A in figure 2, is eliminated so that the plan fits inside a 

rectangle.  Four outside nodes at the north, south east and west are added.  We notice that a + 

junction in the plan, formed by the walls of four spaces, such as that formed by the spaces I, 
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K, G, and C results in a four-sided face in the dual.  A T junction in the walls where three 

spaces meet, for example G, E and C, results in a triangular face in the dual.

Such graphs have been used for generating layouts.  When the exterior boundary and all

interior spaces are restricted to be rectangular, we can start with the four external nodes and a 

node representing each interior space and add an edge for every required permeability 

relation.  Then we can add edges in all possible ways until all faces in the dual are triangular 

to get all plans satisfying the requirements.  This is the opposite of the process of going from 

a plan to a convex map graph.  We can go from a convex map graph to an adjacency graph, 

and from that to a plan.

Wall-representation

Another type of graph used for generating layouts, called a wall representation 

considers the adjacency relations between walls and rectangular spaces where a wall is a 

maximal continuous straight run of line (Fleming, Baykan, Coyne, Fox, 1992).  It records all 

the walls and the sequence of rectangles bordering the wall from north and south or east and 

west.  This type of graph is represented by a string of characters, and generation proceeds by 

inserting a new space in all possible locations by operations on the string.

{<1,(N),(W,I,K,D,L,J,E)>,<1,(I,K,D,L,J),(G,C,H)>,
<1,(G,C,H)(E,B,F)>,<1,(W,E,B,F,E),(S)>,
<-1,(W),(I,G,E)>,<-1,(I,G),(K,C)>,<-1,(K),(D)>,
<-1,(E),(B)>,<-1,(D),(L)>,<-1,(B),(F)>,
<-1,(L,C),(J,H)>,<-1,(J,H,F),(E)>}

Figure 7. Wall representation of the block plan of Villa Malcontenta shown in figure 6.

Figure 7 shows the block plan of Villa Malcontenta given in figure 6 in wall-

representation format.  The wall-representation of the whole plan is enclosed in braces {}.  

Walls are ordered from north to south and west to east.  Walls are identified by enclosing 

brackets < > ; horizontal walls are signified by 1 and vertical walls by -1.  The rectangles 
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north/west and south/east of a horizontal/vertical wall are enclosed in parentheses () 

(Steadman 1983).  The northernmost wall in the block plan is bordered by N at north, and by 

I, K, D, L and J at south as shown in figures 6 and 7.

Other types of graphs, showing different combinations of space, line and point 

adjacencies, are possible.  Each type of graph has its own rules of consistency and well-

formedness.  A graph is an abstract mathematical representation.  It can be drawn on a piece 

of paper, possibly in different ways called embedings; and represented symbolically by a list 

or an array or a string in a computer or on a piece of paper.

Region connection calculus

The following three representations, region connection calculus, interval algebra and 

rectangle algebra are qualitative reasoning methods and are similar with respect to their 

methods of reasoning.  Region connection calculus [RCC8] consists of 8 exhaustive and 

mutually exclusive relations on dimensionless, topological entities called regions.  A region 

has an inside, an outside and a boundary, and one and only one RCC8 relation must hold 

between any two regions.  The relations of RCC8 are; disconnected [DC], externally 

connected [EC], partial overlap [PO], equals [EQ], tangential proper part [TPP], tangential 

proper part inverse [TPP-1], non-tangential proper part [NTPP], and non-tangential proper 

part inverse [NTPP-1], as shown in figure 7 (Li & Ying, 2003).

Figure 7. Relations of the region connection calculus, RCC8.
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Reasoning is carried out by composition, which finds the possible relations between 

two regions A and C by composing the relations between A and B and B and C.  For 

example, (A EC B)○(B NTTP C)→(A {PO TTP NTPP} C).  This is achieved using a 

transitivity table, which is an 8x8 table that shows the composition of every combination of 

relations.  The relations between every pair of regions need to be represented explicitly, 

which can be done using a triangular matrix such as shown in figure 10.  Initially all relations

are possible, thus every cell in the matrix contains all 8 relations.  The basic operation by 

which information is added to the system is by removing some relations from the domain of a

pair of regions.  Then by composing the recently changed domain with all others causes a 

propagation of the effects, reducing other relations.  Any change can lead to a long chain of 

propagation, which continues until no more changes are possible.  If the domain of a relation 

becomes empty, it shows that the relations became inconsistent as a result of the last piece of 

information added.  This type of reasoning is called constraint propagation.  RCC8 relations 

can be used for specifying the requirements of a design problem, or as a language for 

querying a GIS system.

Interval algebra and rectangle algebra

Interval algebra [IA] is for reasoning about one dimensional entities called intervals.  Its

most common application is for reasoning about time intervals.  Interval algebra consists of 

13 mutually exclusive and exhaustive relations, shown in figure 8.  Direction is important in 

defining these relations, as before is distinct from after, which are inverse, such that x is 

before y and y is after x, as shown in the top line of figure 8 (Allen, 1983).
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Figure 8. Relations of interval algebra.

IA relations are similar to RCC8 relations, with directions added.  Before and after 

correspond to DC, meets and met-by to EC, equals to EQ, etc.  Like RCC8, reasoning is by 

constraint propagation and composition by a 13x13 transitivity table.

The significance of IA to space layout is that a 2D form of it can be used for reasoning 

about rectangles that are parallel to the axes of a Cartesian coordinate system.  The relations 

of the rectangle algebra [RA] are derived by the cross product of the 13 relations between two

intervals.  This defines 13x13=169 possible mutually exclusive and exhaustive qualitative 

relations between two rectangles, as shown in figure 9.  Rectangle 1 is shown in grey and 

rectangle 2 in white.
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Figure 9. Relations of the rectangle algebra.

The DC relation of RCC8 maps onto those relations of the RA where the two rectangles

do not touch, i.e. the 48 relations at the edges of the square matrix, and the 4 relations at the 

diagonals of the rows just below and above the outermost ones, where the two rectangles 

touch at only the corners.  The EQ relation of RCC8 corresponds to the relation at the center 

of figure 9.  Thus every RCC8 relation corresponds to a subset of the relations of RA.  It is 

possible to define other subsets, such as alignment relations like align-one-side, align-two-

sides, .and directional relations, like align-north, north-of, south-of, etc.

Having 169 different relations enables a designer to make distinctions that are 

significant in a layout domain, and simplify the specification of design requirements by 

collecting all possible relations between two rectangles in one matrix.  The relations of the 

RA can be augmented by the addition of dimensions and orientations to express the 

requirements of space layout (Baykan 2003).
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Figure 10. RA relations between the spaces of Villa Malcontenta

The RA relations between the spaces of Villa Malcontenta, derived from the layout 

shown in figure 6 above, is shown in figure 10.  The column labeled Box is the outermost 

rectangle, that contains the floor plan.  If we specify only the RA relations between the Box 

and the other rectangles and between adjacent pairs of rectangles and leave all the others 

containing all RA relations in their domains, composition and propagation will be able to 

infer the only possible relation that is shown in figure 10.

Orientation

Sometimes we need to take into account the orientations of spaces or objects.  Dealing 

with rectangles, orientation is either two valued or four valued.  When the space is a corridor, 

we may want to restrict its width to be 120 cm.  Whether this will be in the x or y direction 

depends on its orientation.  When the object is a refrigerator, its front can face towards N, S, 

E or W.  These are examples of the absolute orientation of a rectangle.  Sometimes we may 

need to consider the orientations of rectangles with respect to each other, called relative 

orientation.
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There are four possibilities for the relative orientation of two objects; parallel, 

clockwise-from, opposite, and counter-clockwise-from.  It is necessary to specify relative 

orientation together with some rectangle relations.  We may specify relationships in kitchen 

layout, such as the front of the refrigerator should face the use-area, or that refrigerator, sink 

and range can be parallel to or facing each other, but not facing in opposite directions.  

Reasoning with orientations is another example of qualitative reasoning, similar to RCC8, IA 

and RA (Baykan 2003).

Equations

The representations discussed above dealt with qualitative relations in layouts.  

Algebraic equations can represent both quantitative and qualitative aspects of rectangular 

layouts.  Bounded-difference equations can be used to represent RA relations and 

dimensional relationships that can be expressed as the distance between two lines..  Linear 

equations can express other relationships, such as that the lengths of two spaces are equal, or 

that they are centered on the same line, etc.  Areas and aspect ratios can be described by non-

linear equations.

Bounded-difference equations

The relations of IA can be expressed by {<, =, >} relations between endpoints of  

intervals, and the relations of RA by the same relations between the vertical and horizontal 

edges of rectangles.  

The difference between two points or lines is shown by a bounded-difference equation 

[BNDF] is an equation of the form xi – xj ≤ d.  BNDF equations can also represent 

dimensional relationships, such as distance, overlap, and dimensions.  When the domain of a 

BNDF equation is an interval, showing minimum and maximum allowable distance, as in xi –

xj ≤ [dmin, dmax], it can be expressed by two equations in canonical form as follows:  xi – xj ≤ 

dmax and xj – xi ≤ -dmin . These equations can be shown on a matrix, where the first variable in 
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the canonical form indicates the row and the second the column.  Such a matrix is shown in 

figure 12.

Figure 11. Coordinates of a simplified plan of Villa Malcontenta.

The coordinates of a simplified plan of Villa Malcontenta, expressed in units of 

Venetian feet are shown in Figure 11.  The y-axis is pointing down, according to the 

convention used in most computer graphics systems.  The matrix shown in figure 12 shows 

the horizontal distances between all vertical lines of the rectangles in the plan shown in figure

11.  Every rectangle R has two vertical lines, its left line is labelled by the letter that is the 

name of the space followed by 1 and its right line the name followed by 2.  The bounding box

enclosing all spaces of the villa is called rectangle A.  The top left corner of the bounding 

rectangle has to be located at the origin.  The cells at the diagonal of the matrix show the 

distance from a line to itself which is 0.
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Figure 12. Matrix showing horizontal-distances between vertical lines of Villa Malcontenta.

Consistency of bounded-difference constraints can be checked by the Floyd-Warshall 

all pairs shortest path algorithm, or if constraints are added one at time, by an incremental 

version of the same algorithm (Baykan, 1997).  RA and BNDF are both for reasoning about 

configurations of rectangles.  RA reasoning takes into account only qualitative (topological) 

relationships and BNDF quantitative (dimensional) relationships.  When topology is 

concerned, RA reasoning detects inconsistencies before BNDF does, therefore it is more 

complete.  But BNDF does not allow any incorrect solutions, thus they are both correct.

Linear equations

Bounded difference equations are a more restricted form of general linear equations and

can be solved by the methods of linear programming [LP].  When we need to express other 

relationships such as two dimensions being equal, or two rectangles having the same vertical 

center, that cannot be represented by BNDF equations, we can use general linear equations 

that may be solved by the methods of linear programming (Dantzig, 1998).  Some space 

A1 A2 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 I1 I2 J1 J2 K1 K2 L1 L2

A1 0 64 24 40 16 48 24 40 0 24 40 64 0 16 48 64 0 16 48 64 16 24 40 48

A2 -64 0 -40 -24 -48 -16 -40 -24 -64 -40 -24 0 -64 -48 -16 0 -64 -48 -16 0 -48 -40 -24 -16

B1 -24 40 0 16 -8 24 0 16 -24 0 16 40 -24 -8 24 40 -24 -8 24 40 -8 0 16 24

B2 -40 24 -16 0 -24 8 -16 0 -40 -16 0 24 -40 -24 8 24 -40 -24 8 24 -24 -16 0 8

C1 -16 48 8 24 0 32 8 24 -16 8 24 48 -16 0 32 48 -16 0 32 48 0 8 24 32

C2 -48 16 -24 -8 -32 0 -24 -8 -48 -24 -8 16 -48 -32 0 16 -48 -32 0 16 -32 -24 -8 0

D1 -24 40 0 16 -8 24 0 16 -24 0 16 40 -24 -8 24 40 -24 -8 24 40 -8 0 16 24

D2 -40 24 -16 0 -24 8 -16 0 -40 -16 0 24 -40 -24 8 24 -40 -24 8 24 -24 -16 0 8

E1 0 64 24 40 16 48 24 40 0 24 40 64 0 16 48 64 0 16 48 64 16 24 40 48

E2 -24 40 0 16 -8 24 0 16 -24 0 16 40 -24 -8 24 40 -24 -8 24 40 -8 0 16 24

F1 -40 24 -16 0 -24 8 -16 0 -40 -16 0 24 -40 -24 8 24 -40 -24 8 24 -24 -16 0 8

F2 -64 0 -40 -24 -48 -16 -40 -24 -64 -40 -24 0 -64 -48 -16 0 -64 -48 -16 0 -48 -40 -24 -16

G1 0 64 24 40 16 48 24 40 0 24 40 64 0 16 48 64 0 16 48 64 16 24 40 48

G2 -16 48 8 24 0 32 8 24 -16 8 24 48 -16 0 32 48 -16 0 32 48 0 8 24 32

H1 -48 16 -24 -8 -32 0 -24 -8 -48 -24 -8 16 -48 -32 0 16 -48 -32 0 16 -32 -24 -8 0

H2 -64 0 -40 -24 -48 -16 -40 -24 -64 -40 -24 0 -64 -48 -16 0 -64 -48 -16 0 -48 -40 -24 -16

I1 0 64 24 40 16 48 24 40 0 24 40 64 0 16 48 64 0 16 48 64 16 24 40 48

I2 -16 48 8 24 0 32 8 24 -16 8 24 48 -16 0 32 48 -16 0 32 48 0 8 24 32

J1 -48 16 -24 -8 -32 0 -24 -8 -48 -24 -8 16 -48 -32 0 16 -48 -32 0 16 -32 -24 -8 0

J2 -64 0 -40 -24 -48 -16 -40 -24 -64 -40 -24 0 -64 -48 -16 0 -64 -48 -16 0 -48 -40 -24 -16

K1 -16 48 8 24 0 32 8 24 -16 8 24 48 -16 0 32 48 -16 0 32 48 0 8 24 32

K2 -24 40 0 16 -8 24 0 16 -24 0 16 40 -24 -8 24 40 -24 -8 24 40 -8 0 16 24

L1 -40 24 -16 0 -24 8 -16 0 -40 -16 0 24 -40 -24 8 24 -40 -24 8 24 -24 -16 0 8

L2 -48 16 -24 -8 -32 0 -24 -8 -48 -24 -8 16 -48 -32 0 16 -48 -32 0 16 -32 -24 -8 0
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layout programs, such as those given in Mitchell, Steadman, Liggett (1976) and Flemming 

(1978), use a two step approach to the generation of layouts.  In the first step, topology is 

determined.  In the second step, linear equations are formed based on the topology and 

dimensional constraints and solved by a linear programming package to calculate the 

dimensions of the layout.

Non-linear equations

In space layout, we need to consider the areas and aspect ratios of rooms.  In Villa 

Malcontenta, Palladio used only specific aspect ratios, such as 1:1, 1:2, 1:√2, etc.  In most 

building codes, there are minimum area requirements for bedrooms and houses.  Areas and 

aspect ratios require non-linear equations, which can be handled by general non-linear 

programming methods or by more specific methods restricted to area and aspect-ratio 

calculation which can be much more efficient.

Mixed integer linear or non-linear equations

Integer programming uses integer variables which can take 0 or 1 as values to represent 

choices or alternatives.  This makes it possible to model different topologial alternatives.  

Integer and linear or non-linear variables can be used together to model the topological and 

dimensional aspects of a layout problem.  The methods for solving such a model are called 

mixed integer linear programming [MILP] or mixed integer non-linear programming 

[MINLP].  A space layout problem that aims to define the topology as well as the dimensions

of a layout can be formulated as a MILP or a MINLP.  There is no guarantee that the 

resulting problem can be solved or solved in a reasonable time by an existing solver.  If it can

be solved, the result will be only one optimal solution and not a range of alternatives.

Shape grammars

Another formalism for describing, analyzing and synthesizing layouts is a shape 

grammar.  A shape grammar is defined by a vocabulary of shapes and a set of rules.  A rule 
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contains two patterns; left-hand-side[LHS] and right-hand-side[RHS], both consisting of the 

shapes in the vocabulary.  When the pattern on the LHS of the rule is present in the 

configuration, it is replaced by the pattern on the RHS.  There is a special pattern called the 

starting symbol.  Generation starts from the starting symbol and continues until no rules are 

applicable.  Analysis starts from a configuration we want to test, and proceeds in the reverse 

direction.  If we can arrive at the staring symbol, then the configuration that is analyzed is in 

the language described by the grammar.

Stiny & Mitchell (1978a) developed a shape grammar for capturing the definition of the

Palladian style and generating a set of villas including Villa Malcontenta.  The grammar 

starts by developing a 5x3 or more generally a (m+1) x n tartan grid that is symmetric with 

respect to a vertical axis.  The resulting villa plans should also be symmetric.  The rules for 

defining the layout of the rooms operate by combining adjacent grid cells.  The rooms on the 

axis of symmetry can be I, T or + shaped, but rooms not on the axis of symmetry have to be 

rectangular.  Stiny and Mitchell (1978b) give all possible 3x3 and 5x3 villa plans defined by 

the grammar.  There are 210 possible plans based on a 5x3 grid.  The schematic layouts of all 

5x3 grid, 11 space Palladian villas that contain 3 rectangular spaces on the axis of symmetry 

are shown in figure 13.  The grammar contains rules defining the exterior walls, interior 

walls, columns, doors and windows, but they are not used in our example.  The configuration 

in row 4 and column 4 corresponds to Villa Malcontenta, and the configuration in row 4 and 

column 2 corresponds to Villa Emo and Villa Pisani which are other 11 space villas with 3 

rectangular spaces on the axis of symmetry that have been built by Palladio.
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Figure 13. Some Palladian villas defined by the grammar of Stiny & Mitchell (1978b).

Most grammars have been developed to describe and analyze historical or existing 

styles, as defined by a corpus of designs.  The rules of the grammar are inferred by analysis 

of existing designs and tested by using the rules to generate designs in the corpus as well as 

new designs.  The clarity of the description is important.  It is also possible to develop 

original grammars to define new styles.

Grammars are used widely in space layout.  The basic idea is very general and intuitive,

but it is hard to automate a general mechanism for operating with shape grammars.  Shape 

grammars are symbolic rather than iconic representations.  This makes it possible to 

implement grammars as computer programs, but the symbolic to iconic correspondence is 

different for each grammar.

Discussion

The representations discussed above are by no means exhaustive.  Some that have been 

omitted are polygonal representations as used in geographic information systems [GIS], grids

as used in the quadratic assignment formulation [QAP] (Liggett; 2000); and pixels.
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It is possible to discuss representations with respect to what they express, whether they 

are iconic or symbolic, qualitative or quantitative, procedural or declarative, and the 

correctness, completeness and complexity of the reasoning mechanisms that are applicable.

Representations that use constraint satisfaction as a reasoning mechanism, such as  

RCC8, RA and BNDF are declarative, that is we are not concerned with the order of 

application of the constraints.  Doing it in a particular order may be more efficient that 

another, but both give the same result.  Shape grammars are procedural.  They also define the 

application order of the rules.  In a constraint-based generation process, a list of spaces and 

the constraints on them are given.  In a grammatical approach, we start with a single symbol 

and add patterns or modify them in some order.Grammars may be more intuitive in that 

respect.

Analysis starts with an existing spatial structure and abstracts it using one of the  

representations discussed above to get to the relevant aspects.  Synthesis starts with some 

abstraction that embodies the requirements and adds more information until it defines a 

spatial structure in sufficient detail for it to be realized.

Conclusion

Every representation makes some features explicit and hides or omits others.  The 

representations discussed above also give an indication of issues that are considered in the 

analysis and synthesis of layouts by the features they consider.  Based on what is explicit, a 

representation makes some operations easy and others very hard or impossible.  Analysis 

goes from concrete to abstract representations by omitting details and synthesis proceeds in 

the other direction, adding more information and details.
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