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Preface

The aim of this book is to present a broad overview of the theory and applications
related to functional calculus. The book is based on two main subject areas: matrix
calculus and applications of Hilbert spaces.

Functional analysis is the most important branch of mathematics, whose founda-
tion was laid by the great Persian polymath Muhammad ibn Mūsā al-Khwārizmī,
also known as Algorithmi, during 973–1048. He named this branch the “Theory of
Functions.” Later, Newton and  Leibnitz enriched this branch by introducing the
concept of derivatives  and integrals during 1665–1742 and thus gave birth to another
name: calculus. This branch of mathematics has been recently divided into several
subbranches, including differential calculus, integral calculus, stochastic calculus,
etc. In mathematics, a functional calculus is a theory that permits someone to apply
mathematical functions to mathematical operators. Now, functional calculus is a
branch that connects operator theory, classical calculus, algebra, and functional
analysis. In daily life, functionals are increasingly used to  model real-world situ-
ations, for example if f: R→R is real valued functional from  real to real number
system. If we apply f on some function x∈R, then f(x) makes no sense but if we write
it in equation form, then it makes sense, e.g. f(x)= x, which represents a physical
process between two quantities such that there is direct proportionality. Similar
problems occur daily in our surroundings. Therefore, it is necessary to understand
what criteria should be satisfied by concerned functionals and operators used in
modeling or in the description of daily life problems. It is functional calculus that
guides and provides us with the path to how, when, and where particular functionals
and operators may be used. Mostly, integral and differential equations are used when
we wish to solve a technique or procedure that converts the mentioned equations
into algebraic equations of known and unknown functions and functionals.  Keeping
these needs in mind, the editor of this book has been motivated to welcome interna-
tional mathematicians and researchers to contribute various topics that address the
areas of functional calculus and its applications in both pure and applied analysis.
The editor has incorporated contributions from a diverse group of leading
researchers in the field of functional calculus. This book aims to provide an overview
of the present knowledge that addresses applications and results related to functional
calculus. The main topics covered in this book are determinantal representations of
the core inverse and its generalizations, which provides a foundation to solve matrix
equations. Furthermore, new series formulae for matrix exponential series have been
developed, which are used in solving algebraic equations. Also covered are results on
fixed point theory, which is used for mapping the satisfying condition (DA) in Banach
space. Results that address folding on chaotic graph operations and their fundamental
groups are also introduced. Such  algebraic structures are largely used in biology
and chemistry. Elsewhere in the book,  a brief review is considered of Hilbert space
with its fundamental features and features of reproducing kernels in correspond-
ing spaces. Spectral theory is an important area that is most applicable in quantum
mechanics. Therefore, a number of fundamental concepts have been investigated
regarding analytical applications and observations of PM10 fluctuations. Optimal
control is a very important procedure, which is increasingly used in the study of
mathematical models of real-world problems. It is helpful in developing future



II

Chapter 10 149
Integral Inequalities and Differential Equations via Fractional Calculus
by Zoubir Dahmani and Meriem Mansouria Belhamiti

Chapter 11 165
Approximate Solutions of Some Boundary Value Problems by Using  
Operational Matrices of Bernstein Polynomials
by Kamal Shah,Thabet Abdeljawad, Hammad Khalil and Rahmat Ali Khan

Preface

The aim of this book is to present a broad overview of the theory and applications 
related to functional calculus. The book is based on two main subject areas: matrix 
calculus and applications of Hilbert spaces.

Functional analysis is the most important branch of mathematics, whose founda-
tion was laid by the great Persian polymath Muhammad ibn Mūsā al-Khwārizmī, 
also known as Algorithmi, during 973–1048. He named this branch the “Theory of 
Functions.” Later, Newton and  Leibnitz enriched this branch by introducing the 
concept of derivatives  and integrals during 1665–1742 and thus gave birth to another 
name: calculus. This branch of mathematics has been recently divided into several 
subbranches, including differential calculus, integral calculus, stochastic calculus, 
etc. In mathematics, a functional calculus is a theory that permits someone to apply 
mathematical functions to mathematical operators. Now, functional calculus is a 
branch that connects operator theory, classical calculus, algebra, and functional 
analysis. In daily life, functionals are increasingly used to  model real-world situ-
ations, for example if f: R→R is real valued functional from  real to real number 
system. If we apply f on some function x∈R, then f(x) makes no sense but if we write 
it in equation form, then it makes sense, e.g. f(x)= x, which represents a physical 
process between two quantities such that there is direct proportionality. Similar 
problems occur daily in our surroundings. Therefore, it is necessary to understand 
what criteria should be satisfied by concerned functionals and operators used in 
modeling or in the description of daily life problems. It is functional calculus that 
guides and provides us with the path to how, when, and where particular functionals 
and operators may be used. Mostly, integral and differential equations are used when 
we wish to solve a technique or procedure that converts the mentioned equations 
into algebraic equations of known and unknown functions and functionals.  Keeping 
these needs in mind, the editor of this book has been motivated to welcome interna-
tional mathematicians and researchers to contribute various topics that address the 
areas of functional calculus and its applications in both pure and applied analysis.
The editor has incorporated contributions from a diverse group of leading 
researchers in the field of functional calculus. This book aims to provide an overview 
of the present knowledge that addresses applications and results related to functional 
calculus. The main topics covered in this book are determinantal representations of 
the core inverse and its generalizations, which provides a foundation to solve matrix 
equations. Furthermore, new series formulae for matrix exponential series have been 
developed, which are used in solving algebraic equations. Also covered are results on 
fixed point theory, which is used for mapping the satisfying condition (DA) in Banach 
space. Results that address folding on chaotic graph operations and their fundamental 
groups are also introduced. Such  algebraic structures are largely used in biology 
and chemistry. Elsewhere in the book,  a brief review is considered of Hilbert space 
with its fundamental features and features of reproducing kernels in correspond-
ing spaces. Spectral theory is an important area that is most applicable in quantum 
mechanics. Therefore, a number of fundamental concepts have been investigated 
regarding analytical applications and observations of PM10 fluctuations. Optimal 
control is a very important procedure, which is increasingly used in the study of 
mathematical models of real-world problems. It is helpful in developing future 



XIV

predictions and control strategies of infectious diseases. Analytic and numerical 
results of the Euler–Bernoulli beam model with a two-parameter family of boundary 
conditions are also presented, where Chebyshev polynomial approximation has been 
used to approximate the solution.  In recent times, fractional calculus has attracted 
great attention. Results on fractional integral inequalities are investigated. By using 
the principle of functional calculus, numerical analysis for boundary value problems 
of fractional differential equations are studied in the final chapter.

The theory of Hilbert spaces is the center around which functional analysis has 
developed. Hilbert spaces have a rich geometric nature as they are endowed with an 
inner product that permits the concept of orthogonality of vectors. Hilbert space 
methods are applied to several science and engineering areas such as optimization, 
variational and control problems, and to problems in approximation theory, nonlin-
ear stability, and bifurcation as well as spectral theory and quantum mechanics. That 
is why a part of the book is devoted to a brief presentation and applications of Hilbert 
spaces. For the reader who has no previous experience in the theory of normed spaces 
with enough background for comprehending the theory of Hilbert spaces, there two 
chapters based on these topics in the book. An important application of the theory of 
Hilbert spaces to the reproducing kernels is also analyzed in this part. Spectral theory 
is an important area which is most applicable in quantum mechanics. In this content, 
a real-life application of Hilbert space where an investigation of the pollution and 
air quality in Caribbean region by the help of theoretical Hilbert frame aspect is also 
provided. Here some observations of PM10 fluctuations are analyzed by scaling and 
time-frequency properties of PM10 data in Hilbert frame and compared the func-
tioning obtained in Hilbert space. Optimal control is also very important procedure 
which is increasingly used in study of mathematical models of real world problems. It 
is helpful in developing future predictions and control strategies of infectious disease. 
In this issue, analytic and numerical results of the Euler-Bernoulli beam model with a 
two-parameter family of boundary conditions have been presented where Chebyshev 
polynomial approximation has been used to approximate the solution.

We hope that this book will be of benefit to mathematicians, computational 
mathematicians, applied mathematicians, and researchers in the field of pure 
mathematics as well as in analysis. The book is written basically for those who have 
some knowledge of classical calculus and mathematical analysis. The authors of 
each section convey a strong emphasis on theoretical foundations.

Kamal Shah 
Associate Professor,

Department of Mathematics,
University of Malakand,
Khyber Pakhtankhawa,

Pakistan

Baver Okutmuştur 
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Chapter 1

Determinantal Representations
of the Core Inverse and Its
Generalizations
Ivan I. Kyrchei

Abstract

Generalized inverse matrices are important objects in matrix theory. In particu-
lar, they are useful tools in solving matrix equations. The most famous generalized
inverses are the Moore-Penrose inverse and the Drazin inverse. Recently, it was
introduced new generalized inverse matrix, namely the core inverse, which was late
extended to the core-EP inverse, the BT, DMP, and CMP inverses. In contrast to
the inverse matrix that has a definitely determinantal representation in terms of
cofactors, even for basic generalized inverses, there exist different determinantal
representations as a result of the search of their more applicable explicit expres-
sions. In this chapter, we give new and exclusive determinantal representations of
the core inverse and its generalizations by using determinantal representations
of the Moore-Penrose and Drazin inverses previously obtained by the author.

Keywords: Moore-Penrose inverse, Drazin inverse, core inverse, core-EP inverse,
2000 AMS subject classifications: 15A15, 16W10

1. Introduction

In the whole chapter, the notations  and  are reserved for fields of the real and
complex numbers, respectively. m�n stands for the set of all m� n matrices over
. m�n

r determines its subset of matrices with a rank r. For A∈m�n, the symbols
A ∗ and rk Að Þ specify the conjugate transpose and the rank of A, respectively, ∣A∣ or
detA stands for its determinant. A matrix A∈n�n is Hermitian if A ∗ ¼ A.

A† means the Moore-Penrose inverse of A∈n�m, i.e., the exclusive matrix X
satisfying the following four equations:

AXA ¼ A (1)

XAX ¼ X (2)

AXð Þ ∗ ¼ AX (3)

XAð Þ ∗ ¼ XA (4)

For A∈n�n with index IndA ¼ k, i.e., the smallest positive number such that

rk Akþ1
� �

¼ rk Ak
� �

, the Drazin inverse of A, denoted by Ad, is called the unique

matrix X that satisfies Eq. (2) and the following equations,

1



Chapter 5

A Survey on Hilbert Spaces
and Reproducing Kernels
Baver Okutmuştur

Abstract

The main purpose of this chapter is to provide a brief review of Hilbert space
with its fundamental features and introduce reproducing kernels of the
corresponding spaces. We separate our analysis into two parts. In the first part, the
basic facts on the inner product spaces including the notion of norms, pre-Hilbert
spaces, and finally Hilbert spaces are presented. The second part is devoted to the
reproducing kernels and the related Hilbert spaces which is called the reproducing
kernel Hilbert spaces (RKHS) in the complex plane. The operations on reproducing
kernels with some important theorems on the Bergman kernel for different domains
are analyzed in this part.

Keywords: Hilbert spaces, norm spaces, reproducing kernels, reproducing kernel
Hilbert spaces (RKHS), operations on reproducing kernels, sesqui-analytic kernels,
analytic functions, Bergman kernel

1. Framework

This chapter consists of introductory concept on the Hilbert space theory and
reproducing kernels. We start by presenting basic definitions, propositions, and
theorems from functional analysis related to Hilbert spaces. The notion of linear
space, norm, inner product, and pre-Hilbert spaces are in the first part. The second
part is devoted to the fundamental properties of the reproducing kernels and the
related Hilbert spaces. The operations with reproducing kernels, inclusion property,
Bergman kernel, and further properties with examples of the reproducing kernels
are analyzed in the latter section.

2. Introduction to Hilbert spaces

We start by the definition of a vector space and related topics. Let  be the
complex field. The following preliminaries can be considered as fundamental
concepts of the Hilbert spaces.

2.1 Vector spaces and inner product spaces

Vector space. A vector space is a linear space that is closed under vector
addition and scalar multiplication. More precisely, if we denote our linear space by
H over the field , then it follows that
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i. if x, y, z∈H, then

xþ y ¼ yþ x∈H, xþ yþ zð Þ ¼ xþ yð Þ þ z∈H;

ii. if k is scalar, then kx∈H:

Inner product. Let H be a linear space over the complex field . An inner
product on H is a two variable function

�, �h i : H�H ! , satisfying

i. f , gh i ¼ g, fh i for f , g∈H:

ii. αf þ βg, hh i ¼ α f , hh i þ β g, hh i and f , αg þ βhh i ¼ α f , gh i þ
β f , hh i for α, β∈ and f , g, h∈H:

iii. f , fh i≥0 for f ∈H and f , fh i ¼ 0 ⇔ f ¼ 0:

Pre-Hilbert space. A pre-Hilbert space H is a linear space over the complex field
 with an inner product defined on it.

Norm space or inner product space. A norm on an inner product space H
denoted by ∥ � ∥ is defined by

∥ f∥ ¼ f , fh i1=2 or ∥ f∥H ¼ f , fh i1=2H

where f ∈H and �, �h i ¼ �, �h iH denote the inner product on H. The
corresponding space is called as the inner product space or the norm space.

Properties of norm. For all f , g∈H, and λ∈, we have

• ∥ f∥≥0. (Observe that the equality occurs only if f ¼ 0).

• ∥λf∥ ¼ ∣λ∣∥ f∥:

Schwarz inequality. For all f , g∈H, it follows that

∣ f , gh i∣ ≤ ∥ f∥∥g∥: (1)

In case if f and g are linearly dependent, then the inequality becomes equality.
Triangle inequality. For all f , g∈H, it follows that

∥ f þ g∥≤ ∥ f∥þ ∥g∥: (2)

In case if f and g are linearly dependent, then the inequality becomes equality.
Polarization identity. For all f , g∈H, it follows that

f , gh i ¼ 1
4

∥ f þ g∥2 � ∥ f � g∥2 þ i∥ f þ ig∥2 � ∥ f � ig∥2
� �

for f , g∈H: (3)

Parallelogram identity. For all f , g∈H, it follows that

∥ f þ g∥2 þ ∥ f � g∥2 ¼ 2∥ f∥2 þ 2∥g∥2: (4)

Metric. A metric on a set X is a function d: X � X !  satisfying the properties.
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• d x, yð Þ≥0 and d x, yð Þ ¼ 0 only if x ¼ y;

• d x, yð Þ ¼ d y, xð Þ;

• d x, yð Þ≤ d x, zð Þ þ d z, yð Þ;

for all x, y, z∈X. Moreover the space X, dð Þ is the associated metric space. If we
rearrange the metric with its properties for the inner product space H, then it
follows that for all f , g, h∈H and for all λ∈, where d satisfies all requirements to
be a metric, we have

• d f , gð Þ≥0 and equality occurs only if f ¼ g:

• d f , gð Þ ¼ d g, fð Þ:

• d f , gð Þ≤ d f , hð Þ þ d h, gð Þ:

• d f � h, g � hð Þ ¼ d f , gð Þ.

• d λf , λgð Þ ¼ ∣λ∣ � d f , gð Þ:

Note. The binary function d given in the metric definition above represents
the metric topology inH which is called strong topology or norm topology. As a result, a
sequence fð Þn≥0 in the pre-Hilbert spaceH converges strongly to f if the condition

∥f n � f∥ ! 0 whenever n ! ∞

is satisfied.

2.2 Introduction to linear operators

Linear operator. A map L from a linear space to another linear space is called
linear operator if

L αf þ βgð Þ ¼ αLf þ βLg

is satisfied for all α, β∈ and for all f , g∈H.
Continuous operator. An operator L is said to be continuous if it is continuous

at each point of its domain. Notice that the domain and range spaces must be
convenient for appropriate topologies.

Lipschitz constant of a linear operator. If L is a linear operator from H to G
where H and G are pre-Hilbert spaces, then the Lipschitz constant for L is its norm
∥L∥ and it is defined by

∥L∥ ¼ sup ∥Lf∥G=∥ f∥H : 0 6¼ f ∈H� �
: (5)

Theorem 1. Let L be a linear operator from the pre-Hilbert spaces H to G: Then
the followings are mutually equivalent:

i. L is continuous.

ii. L is bounded, that is,

sup ∥Lf∥G : ∥ f∥H ≤ kf g <∞

for 0≤ k<∞:
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Linear operator. A map L from a linear space to another linear space is called
linear operator if

L αf þ βgð Þ ¼ αLf þ βLg

is satisfied for all α, β∈ and for all f , g∈H.
Continuous operator. An operator L is said to be continuous if it is continuous

at each point of its domain. Notice that the domain and range spaces must be
convenient for appropriate topologies.

Lipschitz constant of a linear operator. If L is a linear operator from H to G
where H and G are pre-Hilbert spaces, then the Lipschitz constant for L is its norm
∥L∥ and it is defined by

∥L∥ ¼ sup ∥Lf∥G=∥ f∥H : 0 6¼ f ∈H� �
: (5)

Theorem 1. Let L be a linear operator from the pre-Hilbert spaces H to G: Then
the followings are mutually equivalent:

i. L is continuous.

ii. L is bounded, that is,

sup ∥Lf∥G : ∥ f∥H ≤ kf g <∞

for 0≤ k<∞:
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iii. L is Lipschitz continuous, that is,

∥Lf � Lg∥G ≤ λ∥ f � g∥H,

where 0≤ λ<∞ and f , g∈H:
Some properties of linear operators. Let B H,Gð Þ be the collection of all con-

tinuous linear operators from the pre-Hilbert spaces H to G. Then

• B H,Gð Þ is a linear space with respect to the natural addition and scalar
multiplication satisfying

αLþ βMð Þf ¼ αLf þ βMf ,

where L and M are linear operators, f ∈H and α, β∈:

• Whenever H ¼ G, then B H,Gð Þ is denoted by B Hð Þ.

• If K is another pre-Hilbert space, L∈B H,Gð Þ and K ∈B G,Kð Þ. Then the product

KLð Þf ¼ K Lfð Þ for f ∈H∈B H,Kð Þ:

In addition,

i. K ξLþ ζMð Þ ¼ ξKLþ ζKM

ii. ∥ξL∥ ¼ ∣ξ∣ � ∥L∥

iii. ∥LþM∥≤∥L∥þ ∥M∥ and

iv. ∥KL∥≤ ∥K∥∥L∥.

are also satisfied.

2.3 Hilbert spaces and linear operators

Linear form (or linear functional). A linear operator from the pre-Hilbert
space H to the scalar field  is called a linear form (or linear functional).

Hilbert spaces. A pre-Hilbert spaceH is said to be aHilbert space if it is complete
in metric. In other words if f n is a Cauchy sequence in H, that is, if

∥f n � f m∥ ! 0 whenever n,m ! ∞,

then there is f ∈H such that

∥f n � f∥ ! 0 whenever n ! ∞:

Note. Every subspace of a pre-Hilbert space is also a pre-Hilbert space with
respect to the induced inner product. However, the reverse is not always true.
For a subspace of a Hilbert space to be also a Hilbert space, it must be closed.

Completion. The canonical method for which a pre-Hilbert space H is
embedded as a dense subspace of a Hilbert space ~H so that

f , gh i ~H ¼ f , gh iH for f , g∈H

is called completion.
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Note. If L is a continuous linear operator from a dense subspace M of a Hilbert
spaceH to a Hilbert space G, then it can be extended uniquely to a continuous linear
operator from H to G with preserving norm.

Theorem 2. Let M and N be dense subspaces of the Hilbert spaces H and G,
respectively. For f ∈H, g∈M and 0≤ λ<∞, if a linear operator L from M to G
satisfies

∣ Lf , gh iG∣ ≤ ∣λ∣∥ f∥H∥g∥G, (6)

then L is uniquely extended to a continuous linear operator from M to G with
norm ≤ λ where the norm coincides with the minimum of such λ.

Theorem 3. Let Ω, μð Þ denotes a measure space so that Ω is the union of subsets
of finite positive measure and L2 Ω, μð Þ consists of all measurable functions f ωð Þ on
Ω such that

ð

Ω
f ωð Þj j2dμ ωð Þ<∞: (7)

Then L2 Ω, μð Þ is a Hilbert space with respect to the inner product

f , gh i≔
ð

Ω
f ωð Þg ωð Þdμ ωð Þ: (8)

Theorem 4 (F. Riesz). For each continuous linear functional φ on a Hilbert
space H, there exists uniquely g∈H such that

φ fð Þ ¼ f , gh i for f ∈H: (9)

Theorem 5. LetM be a closed subspace of a Hilbert spaceH: Then the algebraic
direct sum relation

H ¼ M⊕M⊥

is satisfied. In other words, ∀f ∈H can be uniquely written by

f ¼ fM þ fM⊥ with fM ∈M, fM⊥ ∈M⊥: (10)

In addition, ∥fM∥ coincides with the distance from f to M⊥

∥fM∥ ¼ min ∥ f � g∥ : g∈M⊥� �
: (11)

Remark. In a Hilbert space, the closed linear span of any subset A of a Hilbert

space H coincides with A⊥� �⊥
:

Total subset of a Hilbert space. A subsetA of a Hilbert spaceH is called total in
H if 0 is the only element that is orthogonal to all elements of A. In other words,

A⊥ ¼ 0f g:

As a result, A is total if and only if every element of H can be approximated by
linear combinations of elements of A.

Orthogonal projection. If M is a closed subspace of H, the map f↦fM gives a
linear operator from H to M with norm ≤ 1. We call this operator as the orthogonal
projection to M and denote it by PM.
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Note. If I is the identity operator on H, then I � PM denotes the orthogonal
projection to M⊥, and the relation

∥ f∥2 ¼ ∥PMf∥2 þ ∥ I � PMð Þf∥2 (12)

is satisfied for all f ∈H.
Weak topology. The weakest topology that makes continuous all linear func-

tionals of the form f↦ f , gh i is called the weak topology of a Hilbert space H.
Note. If f ∈H, then with respect to the weak topology, a fundamental system of

neighborhoods of f is composed of subsets of the form

U f ;A, ϵð Þ ¼ h :j f , gh i � h, gh ij< ϵ for g∈Af g,

where A is a finite subset of H and ϵ>0. Then a directed net f λ
� �

converges
weakly to f if and only if

f λ, g
� �!λ f , gh i for all g∈H:

Operator weak topology. The weakest topology that makes continuous all
linear functionals of the form

L↦ Lf , gh i for f ∈H, g∈G

is called the operator weak topology in the space B H,Gð Þ of continuous linear
operators from H to G. In addition, a directed net Lλf g converges weakly to L if

Lλf , gh i !λ Lf , gh i:

Operator strong topology. The weakest topology that makes continuous all
linear operators of the form

L↦Lf for f ∈H

is called the operator strong topology. Moreover a directed net Lλf g converges
strongly to L if

∥Lλf � Lf∥ !λ 0 for all f ∈H:

Theorem 6. Let H and G be Hilbert spaces and B H,Gð Þ be a continuous linear
operator from H to G. Then

• the closed unit ball U≔ f : ∥ f∥≤ 1f g of H is weakly compact;

• the closed unit ball L : ∥L∥≤ 1f g of B H,Gð Þ is weakly compact.

Theorem 7. Let H be a Hilbert space and A⊆H: Then if A is weakly bounded in
the sense

sup
f ∈A

∣ f , gh i∣<∞ for g∈H, (13)

then it is strongly bounded, that is, sup f ∈A∥ f∥<∞:
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Theorem 8. If H and G are Hilbert spaces and L is a linear operator from H to G,
then the strong continuity and weak continuity for L are equivalent.

Theorem 9. Let H and G be Hilbert spaces. Then the following statements for
L⊆B H,Gð Þ are mutually equivalent:

(i) L is weakly bounded; that is, for f ∈H, g∈G, we have

sup
L∈ L

∣ Lf , gh i∣<∞

(ii) L is strongly bounded; that is, for f ∈H, we have

sup
L∈ L

∥Lf∥<∞:

(iii) L is norm bounded (or uniformly bounded); that is,

sup
L∈ L

∥L∥<∞:

Theorem 10. A linear operator L from the Hilbert spaces H to G is said to be
closed if its graph

GL ≔ f ⊕Lf : f ∈Hf g (14)

is a closed subspace of the direct sum space H⊕G, that is, whenever n ! ∞,

∣f n � f∥ ! 0 in H and ∥Lf n � g∥ ! 0 in G ) g ¼ Lf :

Theorem 11. If L is a closed linear operator with a domain of a Hilbert spaceH to
another Hilbert space G, then it is continuous.

Sesqui-linear form. A function Φ : H� G !  is a sesqui-linear form (or sesqui-
linear function) if for f , h∈H, g, k∈G and α, β∈,

ið Þ Φ αf þ βh, gð Þ ¼ αΦ f , gð Þ þ βΦ h, gð Þ (15)

iið Þ Φ f , αg þ βkð Þ ¼ αΦ f , gð Þ þ βΦ f , kð Þ (16)

are satisfied where H and G are Hilbert spaces.
Remark. If L∈B H,Gð Þ, then the sesqui-linear form Φ defined by

Φ f , gð Þ ¼ Lf , gh iG (17)

is bounded in the sense that

∣Φ f , gð Þ∣ ≤ λ∥ f∥H∥g∥G for f ∈H, g∈G, (18)

where λ≥∥L∥:

Remark. If a sesqui-linear form Φ satisfies the condition (18), then for f ∈H,
the linear functional

g↦Φ f , gð Þ

is continuous on G: If we apply the Riesz theorem, then there exists uniquely
f 0 ∈G satisfying
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∥f 0∥G ≤ λ∥ f∥H and Φ f , gð Þ ¼ f 0, g
� �

G for g∈G:

Hence f↦f 0 becomes linear, and as a result we obtain

Φ f , gð Þ ¼ f 0, g
� �

G ¼ Lf , gh iG:

Adjoint operator. If L∈B H,Gð Þ, then the unique operator L ∗ ∈B G,Hð Þ
satisfying

Φ f , gð Þ ¼ f ,L ∗ gh iH for f ∈H, g∈G (19)

is called the adjoint of L.
Remark. By the definitions of L and L ∗ , it follows that

Lf , gh iG ¼ f ,L ∗ gh iH for f ∈H, g∈G: (20)

Isometric property. The adjoint operation is isometric if

∥L∥ ¼ ∥L ∗ ∥ is satisfied: (21)

Remark. Let H,G, and K be Hilbert spaces and K ∈B G,Kð Þ and L∈B H,Gð Þ be
given. Then

KL∈B H,Kð Þ and KLð Þ ∗ ¼ L ∗K ∗ (22)

Ker Lð Þ ¼ Ran L ∗ð Þð Þ⊥ and Ker Lð Þð Þ⊥ ¼ Clos Ran Lð Þ ∗f g (23)

where Ker Lð Þ is the kernel of L and Ran Lð Þ is the range of L.
Theorem 12. If L,M∈B H,Gð Þ, then the following statements are mutually

equivalent.

i. Ran Mð Þ⊆Ran Lð Þ.

ii. There exists K ∈B Hð Þ such that M ¼ LK:

iii. There exists 0≤ λ<∞ such that

∥M ∗ g∥≤ λ∥L ∗ g∥ for g∈G:

Quadric form. Let H be a Hilbert space. A function

φ : H ! 

is a quadratic form if for all f ∈H and ζ∈,

φ ζfð Þ ¼ ζj j2φ fð Þ (24)

and

φ f þ gð Þ þ φ f � gð Þ ¼ 2 φ fð Þ þ φ gð Þf g (25)

are satisfied.
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Note. If L∈B Hð Þ, the quadratic form φ on H is defined by

φ fð Þ ¼ Lf , fh i for f ∈H, (26)

and it is bounded

∣φ fð Þ∣ ≤ λ∥ f∥2 for f ∈H, (27)

where λ≥∥L∥:
Remark. The sesqui-linear form Φ associated with L can be recovered from the

quadratic form φ by the equation

Φ f , gð Þ ¼ 1
4

φ f þ gð Þ � φ f � gð Þf g þ φ f þ igð Þ � φ f � igð Þf g (28)

for all f , g∈H:
Self-adjoint operator. A continuous linear operator L on a Hilbert space H is

said to be self-adjoint if L ¼ L ∗ .
Remark. L is self-adjoint if and only if the associated sesqui-linear form Φ is

Hermitian.
Remark. If L is self-adjoint, then the norm of L coincides with the minimum of λ

given in (27) for the related quadratic form
Theorem 13. If L is a continuous self-adjoint operator, then

∥L∥ ¼ sup j Lf , fh ij: ∥ f∥≤ 1f g: (29)

Positive definite operator. A self-adjoint operator L∈B Hð Þ is said to be positive
(or positive definite) if

Lf , fh i≥0 for all f ∈H:

If Lf , fh i ¼ 0 only when f ¼ 0, then L is said to be strictly positive (or, strictly
positive definite).

Note. For any positive operator L∈B Hð Þ, the Schwarz inequality holds in the
following sense

Lf , gh ij j2 ≤ Lf , fh i � Lg, gh i: (30)

Theorem 14. Let L andM be continuous positive operators onH and G,
respectively. Then a continuous linear operator K fromH to G satisfies the inequality

Kf , gh iG
�� ��2 ≤ Lf , fh iH Mg, gh iG for f ∈H, ∈G (31)

if and only if the continuous linear operator

L K ∗

K M

� �

on the direct sum Hilbert space H⊕G with

f ⊕ g↦ Lf þ K ∗ gð Þ⊕ Kf þMgð Þ

is positive definite.
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Remark. If L is self-adjoint, then the norm of L coincides with the minimum of λ

given in (27) for the related quadratic form
Theorem 13. If L is a continuous self-adjoint operator, then

∥L∥ ¼ sup j Lf , fh ij: ∥ f∥≤ 1f g: (29)

Positive definite operator. A self-adjoint operator L∈B Hð Þ is said to be positive
(or positive definite) if

Lf , fh i≥0 for all f ∈H:

If Lf , fh i ¼ 0 only when f ¼ 0, then L is said to be strictly positive (or, strictly
positive definite).

Note. For any positive operator L∈B Hð Þ, the Schwarz inequality holds in the
following sense

Lf , gh ij j2 ≤ Lf , fh i � Lg, gh i: (30)

Theorem 14. Let L andM be continuous positive operators onH and G,
respectively. Then a continuous linear operator K fromH to G satisfies the inequality

Kf , gh iG
�� ��2 ≤ Lf , fh iH Mg, gh iG for f ∈H, ∈G (31)

if and only if the continuous linear operator

L K ∗

K M

� �

on the direct sum Hilbert space H⊕G with

f ⊕ g↦ Lf þ K ∗ gð Þ⊕ Kf þMgð Þ

is positive definite.
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Theorem 15. Let L be a continuous positive definite operator. Then there exists a
unique positive definite operator called the square root ofL, denoted byL1=2, such that

L1=2� �2 ¼ L:
Modulus operator. The square root of the positive definite operator L ∗L is

called the modulus (operator) of L if L is a continuous linear operator.
Isometry. A linear operator U between Hilbert spaces H and G is called isometric

or an isometry if

∥Uf∥G ¼ ∥ f∥H for f ∈H (32)

is satisfied, that is, it preserves the norm.
Note. Eq. (32) implies that a continuous linear operator U is isometric if and

only if U ∗U ¼ IH; in other words,

Uf ,Ugh iG ¼ f , gh iH for f , g∈H, (33)

that is, U preserves the inner product.
Unitary operator. A surjective isometry linear operator U : H ! H is called a

unitary (operator).
Note. Observe that if U ∈B Hð Þ is a unitary operator, then U ∗ ¼ U�1:
Partial isometry. A continuous linear operator U between Hilbert spaces H and

G is called a partial isometry if

f ∈ KerUð Þ⊥ ¼ Ran U ∗ð Þ ) ∥Uf∥ ¼ ∥ f∥:

The spaces KerUð Þ⊥ and Ran Uð Þ are called the initial space of U and the final
space of U, respectively.

Note. If U is a partial isometry, then its adjoint U ∗ is also a partial isometry.
Theorem 17. Every continuous linear operator L on H admits a unique

decomposition

L ¼ U~L, (34)

where ~L is a positive definite operator and U is a partial isometry with initial
space the closure of Ran ~L

� �
.

3. Reproducing kernels and RKHS

We continue our analysis on the abstract theory of reproducing kernels.

3.1 Definition and fundamental properties

Reproducing kernels. Let H be a Hilbert space of functions on a nonempty set
X with the inner product f , gh i and norm ∥ f∥ ¼ f , fh i1=2 for f and g∈H. Then the
complex valued function K y, xð Þ of y and x in X is called a reproducing kernel of H if

i. For all x∈X, it follows that Kx �ð Þ ¼ K �, xð Þ∈H,

ii. For all x∈X and all f ∈H,

f xð Þ ¼ f ,Kxh i, (35)

are satisfied.
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Note. Let K be a reproducing kernel. Applying (35) to the function Kx at y,
we get

Kx yð Þ ¼ K y, xð Þ ¼ Ky,Kx
� �

, for x, y∈X: (36)

Then, for any x∈X, we obtain

∥Kx∥ ¼ Kx,Kxh i1=2 ¼ K x, xð Þ1=2: (37)

Note. Observe that the subset Kxf gx∈X is total inH, that is, its closed linear span
coincides with H. This follows from the fact that, if f ∈H and f⊥Kx for all x∈X,
then

f xð Þ ¼ f ,Kxh i ¼ 0 for all x∈X,

and hence f is the 0 element in H. As a result, 0f g⊥ ¼ H.
RKHS. A Hilbert spaceH of functions on a set X is called a RKHS if there exists a

reproducing kernel K of H.
Theorem 18. If a Hilbert space H of functions on a set X admits a reproducing

kernel K, then this reproducing kernel K is unique.
Theorem 19. There exists a reproducing kernel K for H for a Hilbert space H of

functions on X, if and only if for all x∈X, the linear functional H∍f↦f xð Þ of
evaluation at x is bounded on H:

Hermitian and positive definite kernel. Let X be an arbitrary set and K be a
kernel on X, that is, K : X � X ! . The kernel K is called Hermitian if for any finite
set of points y1, … , yn

� �
⊆X, we have

Xn
i, j¼1

ϵjϵiK yj, yi
� �

∈:

It is called positive definite, if for any complex numbers ϵ1, … , ϵn, we have

Xn
i, j¼1

ϵjϵiK yj, yi
� �

≥0:

Note. From the previous inequality, it follows that for any finitely supported
family of complex numbers ϵxf gx∈X, we have

X
x, y∈X

ϵyϵxK y, xð Þ≥0: (38)

Theorem 20. The reproducing kernel K of a reproducing kernel Hilbert space H
is a positive definite matrix in the sense of E.H. Moore.

Properties of RKHS. Given a reproducing kernel Hilbert space H and its kernel
K y, xð Þ on X, then for all x, y∈X, we have

i. K y, yð Þ≥0:

ii. K y, xð Þ ¼ K x, yð Þ:

iii. K y, xð Þj j2 ≤K y, yð ÞK x, xð Þ (Schwarz inequality).
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iv. Let x0 ∈X. Then the following statements are equivalent:

a. K x0, x0ð Þ ¼ 0.

b. K y, x0ð Þ ¼ 0 for all y∈X.

c. f x0ð Þ ¼ 0 for all f ∈H:

Theorem 21. For any positive definite kernel K on X, there exists a unique
Hilbert space HK of functions on X with reproducing kernel K.

Theorem 22. Every sequence of functions f n
� �

n≥ 1 that converges strongly to a
function f in HK Xð Þ converges also in the pointwise sense, i.e., for any point x∈X,

lim
n!∞

f n xð Þ ¼ f xð Þ:

In addition, this convergence is uniform on every subset of X on which
x↦K x, xð Þ is bounded.

Theorem 23. A complex valued function g on X belongs to the reproducing
kernel Hilbert space HK Xð Þ if and only if there exists 0≤ λ<∞ such that,

g yð Þg xð Þ
h i

≤ λ2 K y, xð Þ½ � on X: (39)

∥g∥ coincides with the minimum of all such λ.
Theorem 24. If K 1ð Þ y, xð Þ and K 2ð Þ y, xð Þ are two positive definite kernels on X,

then the following statements are mutually equivalent:

i. HK 1ð Þ Xð Þ⊆HK 2ð Þ Xð Þ.

ii. There exists 0≤ λ<∞ such that

K 1ð Þ y, xð Þ
h i

≤ λ2 K 2ð Þ y, xð Þ
h i

:

Note. For any map φ from a set X to a Hilbert space H, with the notation x↦φx,
a kernel K can be defined by

K y, xð Þ ¼ φx,φy

D E
for x, y∈X: (40)

Theorem 25. Let φ : X↦H be an arbitrary map and for x, y∈X let K be
defined as

K y, xð Þ ¼ φx,φy

D E
:

Then K is a positive definite kernel.
Theorem 26. Let T be the linear operator fromH to the space of functions on X,

defined by

Tfð Þ xð Þ ¼ f ,φxh i for x∈X, f ∈H:

Then Ran Tð Þ coincides with HK Xð Þ and
∥Tf∥K ¼ ∥PMf∥ for f ∈H,

72

Functional Calculus

where M is the orthogonal complement of Ker Tð Þ, PM is the orthogonal
projection onto M, and ∥ � ∥K denotes the norm in HK Xð Þ:

Kolmogorov decomposition. LetK y, xð Þ be a positive definite kernel on an abstract
setX. Then there exists a Hilbert spaceH and a functionφ : X ! H such that

K y, xð Þ ¼ φx,φy

D E
for x, y∈X:

3.2 Operations with RKHSs

Theorem 27. Let K 0ð Þ be the restriction of the positive definite kernel K to a
nonempty subset X0 of X and letHK 0ð Þ Xð Þ andHK Xð Þ be the RKHS corresponding to
K 0ð Þ and K, respectively. Then

HK 0ð Þ X0ð Þ ¼ f f
��
X0

: f ∈HK Xð Þg (41)

and

∥h∥K 0ð Þ ¼ min ∥ f∥K : f jX0
¼ h

n o
for all h∈HK 0ð Þ X0ð Þ: (42)

Remark. If K 1ð Þ y, xð Þ and K 2ð Þ y, xð Þ are two positive definite kernels, then

K y, xð Þ ¼ K 1ð Þ y, xð Þ þ K 2ð Þ y, xð Þ

is also a positive definite kernel.
Remark. Let HK 1ð Þ ,HK 2ð Þ , and HK be RKHSs with reproducing kernels K 1ð Þ y, xð Þ,

K 2ð Þ y, xð Þ, and K y, xð Þ, respectively, and let K ¼ K 1ð Þ þ K 2ð Þ: Then

HK Xð Þ ¼ HK 1ð Þ Xð Þ þ HK 2ð Þ Xð Þ,

and for f ∈HK 1ð Þ Xð Þ and g∈HK 2ð Þ Xð Þ, it follows that

∥ f þ g∥2K ¼ min ∥ f þ h∥2K 1ð Þ þ ∥g � h∥2K 2ð Þ : h∈HK 1ð Þ Xð Þ∩HK 2ð Þ Xð Þ
n o

: (43)

Theorem 28. The intersection HK 1ð Þ Xð Þ∩HK 2ð Þ Xð Þ of Hilbert spaces HK 1ð Þ Xð Þ and
HK 2ð Þ Xð Þ is again a Hilbert space of functions on X with respect to the norm

∥ f∥2 ≔∥ f∥2K 1ð Þ þ ∥ f∥2K 2ð Þ :

In addition the intersection Hilbert space is a RKHS.
Theorem 29. The reproducing kernel of the space

HK Xð Þ ¼ HK 1ð Þ Xð Þ∩HK 2ð Þ Xð Þ

is determined, as a quadratic form, by

X
x, y

εyεxK y, xð Þ ¼ inf f
X
x, y

ηyηxK
1ð Þ y, xð Þ þ

X
x, y

ζyζxK
2ð Þ y, xð Þ : εx½ �

¼ ηx½ � þ ζx½ �g,

where ϵx½ �, ηx½ �, ζx½ � are an arbitrary complex valued function on X with finite
support.
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Theorem 30. The tensor product Hilbert space

HK 1ð Þ Xð Þ⊗HK 2ð Þ Xð Þ

is a RKHS on X � X.
Theorem 31. The RKHS HK Xð Þ of the kernel K y, xð Þ ¼ K 1ð Þ y, xð Þ � K 2ð Þ y, xð Þ

consists of all functions f on X for which there are sequences gn
� �

n≥0 of functions in
HK 1ð Þ Xð Þ and hnð Þn≥0 of functions in HK 2ð Þ Xð Þ so that

X∞
1

∥gn∥
2
K 1ð Þ∥hn∥2K 2ð Þ <∞,

X∞
1

gn xð Þhn xð Þ ¼ f xð Þ, x∈X, (44)

and the norm is given by

∥ f∥2K ¼ min
X∞
1

∥gn∥
2
K 1ð Þ∥hn∥2K 2ð Þ

( )
,

where the minimum is taken over the set of all sequences gn
� �

n≥0 and hnð Þ≥0

satisfying (44).

3.3 Examples of RKHS. Bergman and Hardy spaces

Bergman space. The space of all analytic functions f on Ω for which

ð ð

Ω
f zð Þj j2dxdy<∞, z ¼ xþ iyð Þ

is satisfied is called the Bergman space on Ω and denoted by A2 Ωð Þ.
Remark. A2 Ωð Þ is a RKHS with respect to the inner product

f , gh i � f , gh iΩ ≔
ð ð

Ω
f zð Þg zð Þdxdy,

and its kernel is called the Bergman kernel on Ω and denoted by B Ωð Þ w, zð Þ:
Bergman kernel for the unit disc. The Bergman kernel for the open unit disc 

is given by

B ð Þ w, zð Þ ¼ 1
π

1

1� wzð Þ2 for w, z∈: (45)

Bergman kernel of a simply connected domain. The Bergman kernel of a
simply connected domain Ω 6¼ ð Þ is given by

B Ωð Þ w, zð Þ ¼ 1
π

φ0 wð Þφ0 zð Þ
1� φ wð Þφ zð Þ
� �2 for w, z∈Ω, (46)

where φ is any conformal mapping function from Ω onto :
Theorem 32. A conformal mapping from Ω to  can be recovered from the

Bergman kernel of Ω:
Jordan curve. A Jordan curve is a continuous 1� 1 image of jξj¼ 1f g in .
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Green function. A Green function G w, zð Þ of Ω is a function harmonic in Ω
except at z, where it has logarithmic singularity, and continuous in the closure Ω,
with boundary values G w, zð Þ ¼ 0 for all w∈∂Ω, where Ω is a finitely connected
domain of the complex plane.

Theorem 33. Let Ω be a finitely connected domain bounded by analytic Jordan
curves, and let G w, zð Þ be the Green’s function of Ω: Then the Bergman kernel
function is

B Ωð Þ w, zð Þ ¼ � 2
π

∂
2G

∂w∂z
w, zð Þ, w 6¼ z: (47)

Hardy space. The closed linear span of φn : n ¼ 0, 1, …f g in L2 Tð Þð is called the
(Hilbert type) Hardy space on  and is denoted by H2 ð Þ: Here φn ξð Þ ¼ ξn.

Remark. f ∈L2 ð Þ belongs to the Hardy space H2 ð Þ if and only if it is ortho-
normal to all φn (n<0), that is, all Fourier coefficients of f with negative indices
vanish. Then we have

f , gh iL2 ¼
X∞
n¼0

anbn for f , g∈H2 ð Þ, (48)

where

an ¼ f ,φnh iL2 and bn ¼ g,φnh iL2 n ¼ 0, 1, …ð Þ:

Szegö kernel. The kernel S ξ, zð Þ≔ 1
1�ξz for ξ∈, z∈, or its analytic extension

~S w, zð Þ≔ 1
1�wz for w, z∈ is called the Szegö kernel.

Notes

This chapter intends to offer a sample survey for the fundamental concepts of
Hilbert spaces and provide an introductory theory of reproducing kernels. We
present the basic properties with important theorems and sometimes with punctual
notes and remarks to support the subject. However, due to the limit of content and
pages, we skipped the proofs of the theorems. The proofs of the first part can be
found in [1, 2] and in most of the basic functional analysis books. Besides, the proofs
of the second part (related with the reproducing kernels) can easily be found in [3].
The Hilbert space and functional analysis parts of this chapter are based on the
books by J.B. Conway [1] and R.G. Douglas [2]. On the other hand, the reproducing
kernel part is based on the lecture notes of T. Ando [4] and N. Aronszajn [5], the
book of S. Saitoh and Y. Sawano [6], and the book of B. Okutmustur and A.
Gheondea [3]. Moreover, the details of Bergman and Hardy spaces are widely
explained in the books [7–9].
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Theorem 30. The tensor product Hilbert space

HK 1ð Þ Xð Þ⊗HK 2ð Þ Xð Þ

is a RKHS on X � X.
Theorem 31. The RKHS HK Xð Þ of the kernel K y, xð Þ ¼ K 1ð Þ y, xð Þ � K 2ð Þ y, xð Þ

consists of all functions f on X for which there are sequences gn
� �

n≥0 of functions in
HK 1ð Þ Xð Þ and hnð Þn≥0 of functions in HK 2ð Þ Xð Þ so that

X∞
1

∥gn∥
2
K 1ð Þ∥hn∥2K 2ð Þ <∞,

X∞
1

gn xð Þhn xð Þ ¼ f xð Þ, x∈X, (44)

and the norm is given by

∥ f∥2K ¼ min
X∞
1

∥gn∥
2
K 1ð Þ∥hn∥2K 2ð Þ

( )
,

where the minimum is taken over the set of all sequences gn
� �

n≥0 and hnð Þ≥0

satisfying (44).

3.3 Examples of RKHS. Bergman and Hardy spaces

Bergman space. The space of all analytic functions f on Ω for which

ð ð

Ω
f zð Þj j2dxdy<∞, z ¼ xþ iyð Þ

is satisfied is called the Bergman space on Ω and denoted by A2 Ωð Þ.
Remark. A2 Ωð Þ is a RKHS with respect to the inner product

f , gh i � f , gh iΩ ≔
ð ð

Ω
f zð Þg zð Þdxdy,

and its kernel is called the Bergman kernel on Ω and denoted by B Ωð Þ w, zð Þ:
Bergman kernel for the unit disc. The Bergman kernel for the open unit disc 

is given by

B ð Þ w, zð Þ ¼ 1
π

1

1� wzð Þ2 for w, z∈: (45)

Bergman kernel of a simply connected domain. The Bergman kernel of a
simply connected domain Ω 6¼ ð Þ is given by

B Ωð Þ w, zð Þ ¼ 1
π

φ0 wð Þφ0 zð Þ
1� φ wð Þφ zð Þ
� �2 for w, z∈Ω, (46)

where φ is any conformal mapping function from Ω onto :
Theorem 32. A conformal mapping from Ω to  can be recovered from the

Bergman kernel of Ω:
Jordan curve. A Jordan curve is a continuous 1� 1 image of jξj¼ 1f g in .
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Green function. A Green function G w, zð Þ of Ω is a function harmonic in Ω
except at z, where it has logarithmic singularity, and continuous in the closure Ω,
with boundary values G w, zð Þ ¼ 0 for all w∈∂Ω, where Ω is a finitely connected
domain of the complex plane.

Theorem 33. Let Ω be a finitely connected domain bounded by analytic Jordan
curves, and let G w, zð Þ be the Green’s function of Ω: Then the Bergman kernel
function is

B Ωð Þ w, zð Þ ¼ � 2
π

∂
2G

∂w∂z
w, zð Þ, w 6¼ z: (47)

Hardy space. The closed linear span of φn : n ¼ 0, 1, …f g in L2 Tð Þð is called the
(Hilbert type) Hardy space on  and is denoted by H2 ð Þ: Here φn ξð Þ ¼ ξn.

Remark. f ∈L2 ð Þ belongs to the Hardy space H2 ð Þ if and only if it is ortho-
normal to all φn (n<0), that is, all Fourier coefficients of f with negative indices
vanish. Then we have

f , gh iL2 ¼
X∞
n¼0

anbn for f , g∈H2 ð Þ, (48)

where

an ¼ f ,φnh iL2 and bn ¼ g,φnh iL2 n ¼ 0, 1, …ð Þ:

Szegö kernel. The kernel S ξ, zð Þ≔ 1
1�ξz for ξ∈, z∈, or its analytic extension

~S w, zð Þ≔ 1
1�wz for w, z∈ is called the Szegö kernel.

Notes

This chapter intends to offer a sample survey for the fundamental concepts of
Hilbert spaces and provide an introductory theory of reproducing kernels. We
present the basic properties with important theorems and sometimes with punctual
notes and remarks to support the subject. However, due to the limit of content and
pages, we skipped the proofs of the theorems. The proofs of the first part can be
found in [1, 2] and in most of the basic functional analysis books. Besides, the proofs
of the second part (related with the reproducing kernels) can easily be found in [3].
The Hilbert space and functional analysis parts of this chapter are based on the
books by J.B. Conway [1] and R.G. Douglas [2]. On the other hand, the reproducing
kernel part is based on the lecture notes of T. Ando [4] and N. Aronszajn [5], the
book of S. Saitoh and Y. Sawano [6], and the book of B. Okutmustur and A.
Gheondea [3]. Moreover, the details of Bergman and Hardy spaces are widely
explained in the books [7–9].
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