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Relativistic Burgers Models on Curved
Background Geometries

Baver Okutmustur(B)

Department of Mathematics, Middle East Technical University (METU),
06800 Ankara, Turkey
baver@metu.edu.tr

Abstract. Relativistic Burgers model and its generalization to vari-
ous spacetime geometries are recently studied both theoretically and
numerically. The numeric implementation is based on finite volume and
finite difference approximation techniques designed for the correspond-
ing model on the related geometry. In this work, we provide a sum-
mary of several versions of these models on the Schwarzschild, de Sit-
ter, Schwarzschild-de Sitter, FLRW and Reissner-Nordström spacetime
geometries with their particular properties.

1 Introduction

The theory of derivation of relativistic type Burgers models on curved spacetimes
was started and improved by LeFloch and collaborators [2–5]. The model was
firstly derived on a flat spacetime both from the Euler system and from a hyper-
bolic balance law satisfying the Lorentz invariance property [5]. This analysis
has recently been extended to the Schwarzschild, de Sitter (dS), Schwarzschild-
de Sitter (SdS), FLRW and Reissner-Nordström (RN) spacetimes and examined
numerically by means of finite volume and finite difference approximations. The
current work provides a summary of [2–5,10] on different spacetime geometries.
We are interested in compressible fluids developing on a curved background. The
fluid under consideration may include shock/rarefaction waves and we study a
class of weak solutions into the Euler system on the given geometry. The Levi-
Civita connection is denoted by covariant derivative ∇. It follows that, the Euler
equations for a compressible fluid on a curved spacetime is

∇α

(
Tαβ(ρ, u)

)
= ∇α

(
ρc2uαuβ + p(ρ)

(
uαuβ + gαβ

))
= 0, (1)

where Tαβ(ρ, u) is the energy-momentum, ρ is the mass-energy density, u = (uα)
is its unit velocity field, c > 0 is the light speed, p is the pressure. Further
details on energy-momentum tensor and perfect fluids can be found in the articles
[1,5,11]. The simplest form of these equations so called the Euler system of
compressible fluids on the flat background reads

∂tρ + ∂x(ρv) = 0, (2)
∂t(ρv) + ∂x(ρv2 + p(ρ)) = 0. (3)

c© Springer Nature Switzerland AG 2019
I. Dimov et al. (Eds.): FDM 2018, LNCS 11386, pp. 370–377, 2019.
https://doi.org/10.1007/978-3-030-11539-5_42
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Burgers Models on Curved Backgrounds 371

It can easily be checked that, imposing a vanishing pressure to this system and
taking a combination of these equations, one can derive the inviscid Burgers
equation We refer [2–5] for this derivation and for further details.

A relativistic generalization of the Burgers model on flat and Schwarzschild
spacetimes are proposed in [5] and a numerical scheme was designed by finite
volume approximation resulting weak solutions with shock waves. This analysis
was extended to SdS spacetime in [2], dS spacetime in [3], FLRW spacetime
in [4] and RN spacetime in [10]. The metric elements of each of these geome-
tries describe a solution to the Einstein’s field equations. We cite [1,6,8] for
convergence and geometric formulation of finite volume methods on Lorentzian
spacetimes. More details on the RN metric and its properties can be found in
[7,9]. The reader can find general instruction for the general relativity theory
and related topics in [11].

The outlook of this work is as follow. Firstly, we give some basic informa-
tion about spacetime geometry. Then Schwarzschild, dS, SdS, FLRW and RN
spacetime metrics and their particular properties are presented, respectively.
Relativistic Burgers models for each background are also given in this part. We
next describe a general approach for derivation of the model on any background.
The final part is dedicated to description of a general geometric finite volume
scheme on a curved background and it ends up with some concluding remarks.

2 Spacetime and Metric

In general relativity, different than Newton’s theory, space and time are a single
continuum as spacetime. By the relativistic point of view, there is no well-defined
construct of two distinct events happening at the same time. For this reason,
there is a light cone defined at any event that is the location of paths through
spacetime. A spacetime is illustrated by an (n+1) dimensional Lorentzian geom-
etry, where n describes dimensions of space and 1 refers dimension of time. The
sign of its spherically symmetric metric is denoted by (−,+, · · · ,+). If we restrict
the dimension (n+1) to a particular dimension (3+1), then a general spherically
symmetric metric dimension will be of the form

g = g00 dt2 + g11 dr2 + g22 dθ2 + g33 dφ2.

It follows that the line element for a (3 + 1) dimensional form in terms of time
t, the radial r and angular coordinates θ and ϕ can be written by the formula

g = −A(t, r) dt2 + B(t, r) dr2 + r2(dθ2 + sin2 θ dφ2) (4)

with nonzero covariant elements g00 = −A(t, r), g11 = B(t, r), g22 = r2, g33 =
r2 sin2 θ; and the corresponding contravariant elements g00 = − 1

A(t,r) , g11 =
− 1

B(t,r) , g22 = 1
r2 , g33 = 1

r2(sin2 θ)
. Here A(t, r) and B(t, r) are functions

depending on t and r variables. In the following, we introduce some of the well-
known spacetime geometries having spherically symmetric metric elements and
corresponding relativistic Burgers models on these geometries.
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2.1 Minkowski Metric

This spacetime is also called as flat spacetime. We consider a (3+1) dimensional
coordinate system given by (x0, x1, x2, x3) = (t, x, y, z) where (x0, x1, x2) =
(x, y, z) and (x0) = (t) are spatial and time components, respectively. It fol-
lows that, the metric of a (3 + 1) dimensional Minkowski spacetime is

g = −c2dt2 + dx2 + dy2 + dz2

where c is the light speed. In usual spherical coordinates r, θ, ϕ, it becomes

g = −c2dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2. (5)

Burgers Model on Flat Geometry. The relativistic Burgers equation on flat
spacetime can be derived either by Lorentz invariance property or by the Euler
system on a curved spacetime. The proofs of both derivation methods can be
found in [5]. The relativistic Burgers equation on flat background is

∂tv + ∂r

(
1/ε2

( − 1 +
√

1 + ε2v2
))

= 0, ε = 1/c. (6)

2.2 Schwarzschild Metric

The Schwarzschild spacetime describes the gravitational field of the universe
and defines a spherically symmetric black hole solution to the Einstein’s field
equations. Its metric is represented by

g = −
(
1 − 2M

r

)
c2dt2 +

(
1 − 2M

r

)−1

dr2 + r2(dθ2 + sin2 dϕ2) (7)

where M > 0 is the mass parameter, r is the radial spatial coordinate. The sign
of the quantity M and r have significant effects on the geometry.

– If M = 0, the Schwarzschild metric reduces to the Minkowski metric.
– If M �= 0, it is singular for r = 0 and has a coordinate singularity for r = 2M .

That is, g00 vanishes and g11 becomes infinite, so the equation is not valid
at that point. For r < 2M , r �= 0, the Schwarzschild metric is a regular
Lorentzian metric, but the timelike and spacelike behaviors of the coordi-
nates t and r are interchanged, i.e., the Schwarzschild metric in standard
coordinates is again a smooth Lorentzian metric, but t is a space coordinate
while r is a time coordinate. If r > 2M > 0, the metric is a regular Lorentzian
metric with t timelike and r spacelike. If r = 2M , the Schwarzschild metric
with M > 0 is no more a smooth Lorentzian metric.

Burgers Model on Schwarzschild Geometry. According to the paper [5],
relativistic Burgers model on Schwarzschild background is

∂t(v) +
(
1 − 2M

r

)
∂r(

v2

2
) − M

r2
(v2 − c2) = 0. (8)

It can easily be observed that, if M = 0, we get the inviscid Burgers equation.
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2.3 De Sitter Metric

The de Sitter (dS) spacetime is a particular background of the Lorentzian space-
time and its metric describes a cosmological solution to the Einstein’s field equa-
tions. The metric element contains a cosmological constant Λ. If Λ > 0, the
background geometry is called the de Sitter spacetime; if Λ < 0, the background
geometry is called the Anti-de Sitter spacetime. Particularly, if Λ = 0, the met-
ric turns to be a Minkowski metric and hence we get a flat geometry. In (3 + 1)
dimension, this metric is

g = −(1 − Λr2)dt2 +
1

1 − Λr2
dr2 + r2(dθ2 + sin2 θdϕ2). (9)

It is easy to verify that for Λ = 0, it becomes the Minkowski metric.

Burgers Model on the dS Geometry. Following the paper [3], the relativistic
Burgers equation on a dS background is

∂tv + (1 − Λr2) ∂r(
v2

2
) + Λr(v − c2 − 2v2) = 0. (10)

Substituting Λ = 0 in this equation, we recover the inviscid Burgers equation.

2.4 Schwarzschild-de Sitter (SdS) Metric

The SdS geometry is a spherically symmetric solution to the Einstein’s field
equations. Its metric is a composition of Schwarzschild and dS metrics. In a
(3 + 1) dimensional spherical coordinates, this metric is given by

g = −
(
1− 2M

r
− Λr2

3

)
dt2 +

(
1− 2M

r
− Λr2

3

)−1

dr2 +r2(dθ2 +sin2 θdϕ2), (11)

where M > 0 is the mass parameter, Λ is the cosmological constant, and c is the
light speed. It can be observed that whenever Λ = 0, the SdS metric reduces to
the Schwarzschild metric. If the mass parameter M = 0, the metric reduces to
the dS metric. If both Λ = M = 0 then it turns to be the Minkowski metric.

Burgers Model on SdS Geometry. According to the article [2], the rela-
tivistic Burgers equation on SdS geometry is

∂tv + (1 − 2M

r
− Λr2

3
)∂r(

v2

2
) =

Mv2

r2
− Λrv2

3
− mc2

r2
+

Λrc2

3
. (12)

Substituting Λ = 0 in this model yields the Burgers model on the Schwarzschild
background. Moreover, if M = 0 the model reduces to the model on the dS
spacetime. Finally, if Λ = M = 0, then it gives the inviscid Burgers equation.
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2.5 Friedmann–Lemaitre–Robertson–Walker (FLRW) Metric

The FLRW metric is a solution to the Einstein’s field equations and is given by

g = −c2dt2 + a(t)2
(

dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
(13)

where t is the time, c is the light speed, k = {−1, 0, 1} is the curvature, a(t) is
the cosmic expansion factor and r, θ, ϕ are the spherical coordinates.

Burgers Model on a FLRW Geometry. Following the paper [4], the rela-
tivistic Burgers equation on a FLRW background is

a vt +
(
1 − kr2

)1/2
∂r

(v2

2

)
+ v

(
1 − v2

c2

)
at = 0. (14)

For k = −1, 0, 1, we get three different models of interest on FLRW background.

2.6 Reissner-Nordström (RN) Metric

The RN spacetime is a spherically symmetric solution to the Einstein’s field
equations. The main difference between RN and Schwarzschild blackholes is
that RN spacetime is electrically charged with an electrically charge term Q.
The corresponding metric is described by

g = −
(
1 − 2M

r
+

Q2

r2

)
dt2 +

(
1 − 2M

r
+

Q2

r2

)−1

dr2 + r2(dθ2 + sin2 θdϕ2). (15)

RN metric becomes Minkowski metric in polar coordinates at very large radius
r. On the other hand, if Q = 0, it turns to be a Schwarzschild metric. RN metric
is smooth and Lorentzian under the condition that

2M

r
− Q2

r2
< 1.

Event horizon is located at where g11 = 0, that is, 1 − 2M
r + Q2

r2 = 0 ⇒ r2 −
2Mr + Q2 = 0 with roots r± = M ±

√
M2 − Q2. Depending on the relation

between M and Q, we get more information about the event horizon and the
geometry.

– If M2 < Q2, r± are not real and g11 is positive except at r = 0 where there is
a singularity. As g11 > 0, r is spacelike coordinate. At r = 0 we have timelike
line. There is no event horizon for this case and this solution is non-physical.

– If M2 > Q2, there are three regions
1st region (r+ < r < ∞): In this region g11 > 0. Event horizon is the surface
defined by r = r+. The singularity at r = 0 is timelike line.
2nd region (r− < r < r+): If we set r = r+ − δ then with the condition
r+ > M , we get g11 = 1 − 2M

r+−δ + Q2

(r+−δ)2 ⇒ 2δ(−Mr+ + Q2) < 0.

3rd region (0 < r < r−): If we set r = r− − δ then with the condition
r− < M , we get g11 = 1 − 2M

r−−δ + Q2

(r−−δ)2 ⇒ 2δ(−Mr− + Q2) > 0.
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– If M2 = Q2: This case is known as the extreme Reissner-Nordström solution.
Event horizon is r+ = r− = M and g11 = 0 at r = r±.

We address the reader to the articles [7,9,10] for further detail.

Burgers Model on RN Geometry. According to the paper [10], the derived
model is

∂t(v) + ∂r

(v2

2
(1 − 2M

r
+

Q2

r2
)
)

=
(
2v2 − 1

)(M

r2
− Q2

r3

)
. (16)

Note that if Q = 0, it yields the Burgers model on the Schwarzschild geometry.
Moreover, if both M = Q = 0, then the classical Burgers equation is recovered.

2.7 Derivation of the Burgers Models

A general approach to derive the Burgers model for a given metric element is
briefly introduced in this part. We take a metric of the general form (4) and
consider the Christoffel symbols given by

Γμ
αβ =

1
2
gμν(−∂νgαβ + ∂βgαν + ∂αgβν). (17)

We substitute α, β, μ, ν ∈ {0, 1, 2, 3} in (17) to obtain all the terms of Γμ
αβ . Then

by using the unit vector property of uα, we find a relation between u0, u1 and a
velocity component v depending on u0 and u1. It follows to substitute all these
values into the energy momentum tensor for perfect fluids relation given by

Tαβ = (ρc2 + p)uα uβ + p gαβ . (18)

We then obtain all the terms Tαβ for α, β = 0, 1, 2, 3. These values are plugged
into the Euler system given by

∇αTαβ = ∂αTαβ + Γα
αγT γβ + Γ β

αγTαγ = 0. (19)

As a result of this calculation, we obtain a system of two equations. Next we
impose vanishing pressure to this system and take a suitable combination of
both equations in order to write it in one equation form. This final equation is
the desired Burgers model depending on the given geometry [2–5,10].

3 Finite Volume Method (FVM) Formulation

This part is based on the papers [1–5]. We consider an (n + 1)–dimensional
spacetime M and a hyperbolic balance law given by

div
(
T (v)

)
= S(v), v : M → R, (20)

where v is a scalar field, div(·) is the divergence operator, T (v) is the flux vector
field and S(v) is the scalar field. We establish the FVM by averaging (20) over
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each element of the constructed triangulation. For convergence of the scheme on
curved manifolds and assumptions on triangulation we refer the articles [1,5].

In local coordinates, we suppose that the spacetime is described in coordi-
nates (t, r) and consider equally spaced cells Ij = [rj−1/2, rj+1/2] of size Δr,
centred at rj , with rj+1/2 = rj−1/2 +Δr, and rj−1/2 = jΔr, rj = (j +1/2)Δr.
Next we rewrite (20) in (1 + 1) dimension

∂tT
0(t, r) + ∂rT

1(t, r) = S(t, r), (21)

with T 0, T 1 are flux fields, and S is the source term. Integrating (21) over each
grid cell [tn, tn+1] × [rj−1/2, rj+1/2] yields

∫ rj+1/2

rj−1/2

T 0(tn+1, r) dr =
∫ rj+1/2

rj−1/2

T 0(tn, r) dr

−
∫ tn+1

tn

(T 1(t, rj+1/2) − T 1(t, rj−1/2)) dt

+
∫

[tn,tn+1]×[rj−1/2,rj+1/2]

S(t, r) dt dr.

Approximate these terms by numerical fluxes

T̃n
j ≈ 1

Δr

∫ rj+1/2

rj−1/2

T 0(tn, r) dr, Q̃n
j±1/2 ≈ 1

Δt

∫ tn+1

tn

T 1(t, rj±1/2) dt,

S̃n
j ≈ 1

Δr Δt

∫

[tn,tn+1]×[rj−1/2,rj+1/2]

S(t, r) dt dr,

the scheme takes the form

T̃n+1
j = T̃n

j − Δt

Δr

(
Q̃n

j+1/2 − Q̃n
j−1/2

)
+ ΔtS̃n

j . (22)

The numerical implementation of the Burgers models via FVM are analyzed in
the papers [2–5,10]. We address the reader to these works for further detail.

3.1 Concluding Remarks

– In [2–4,10], nonlinear Burgers models describing the propagation and interac-
tion of shock waves on flat, Schwarzschild, dS, SdS, FLRW and RN spacetimes
are studied and examined. Here we provide a review summary of these works.

– Depending on the geometry and the derived relativistic Burgers model equa-
tion, the finite volume/difference schemes are redesigned.

– The schemes are consistent with the conservative form of the Burgers models
which results correct computations of weak solutions with shock/rarefaction
waves.

– The convergence, efficiency and robustness of these schemes are numerically
analyzed for each spacetime geometry of interest.
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– One of the most obvious findings emerging from this study is that it allows us
to make a comparison of the relativistic Burger models and numerical results
on different spacetimes.

Acknowledgments. Supported by METU-GAP Project, Project no: GAP-101-2018-
2767.
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