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ABSTRACT
REPRODUCING KERNEL HILBERT SPACES

Baver Okutmustur
M.S. in Mathematics
Supervisor: Assist. Prof. Dr. Aurelian Gheondea
August, 2005

In this thesis we make a survey of the theory of reproducing kernel Hilbert spaces
associated with positive definite kernels and we illustrate their applications for in-
terpolation problems of Nevanlinna-Pick type. Firstly we focus on the properties
of reproducing kernel Hilbert spaces, generation of new spaces and relationships
between their kernels and some theorems on extensions of functions and kernels.
One of the most useful reproducing kernel Hilbert spaces, the Bergman space, is
studied in details in chapter 3. After giving a brief definition of Hardy spaces, we
dedicate the last part for applications of interpolation problems of Nevanlinna-
Pick type with three main theorems: interpolation with a finite number of points,
interpolation with an infinite number of points and interpolation with points on
the boundary. Finally we include an Appendix that contains a brief recall of the

main results from functional analysis and operator theory.

Keywords: Reproducing kernel, Reproducing kernel Hilbert spaces, Bergman

spaces, Hardy spaces, Interpolation, Riesz theorem.
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OZET
DOGURAN CEKIRDEKLI HILBERT UZAYLARI

Baver Okutmustur
Matematik, Yiiksek Lisans
Tez Yoneticisi: Yrd. Dog. Dr. Aurelian Gheondea
Agustos, 2005

Bu tezde, doguran cekirdekli Hilbert uzaylar1 teorisini pozitif tanimlh
gekirdekler ile beraber inceledik ve bunun uygulamalarini Nevallina-Pick inter-
polasyon problemleri iizerinde 6rnekledik. Oncelikle, doguran cekirdekli Hilbert
uzaylarinin ozelliklerini, iiretilen yeni uzaylar ve onlarin ¢ekirdekleri arasindaki
iligkileri ve genisgletilen c¢esitli fonksiyon ve cekirdeklerle ilgili baz1 teoremleri
inceledik. Sik¢a kullanilan doguran gekirdekli Hilbert uzaylarindan biri olan
Bergman uzay1 3. kisimda detaylariyla islendi. Hardy uzaymin kisa bir
tanimiyla basladigimiz son kisim, Nevallina-Pick interpolasyon problemlerinin
uygulamalarini igeren ii¢ ana teorem ile son buldu. Bunlar: sinirh sayida nokta
ile interpolasyon, sinirsiz sayida nokta ile interpolasyon ve siir noktalarinda in-
terpolasyon. Son olarak Appendix kismi bu tezde sikga kullandigimiz fonksiyonel

analiz ve operator teori ile ilgili temel esaslarin kisa bir 6zetine ayrildi.

Anahtar sozciikler: Doguran cekirdekler, Doguran cekirdekli Hilbert uzaylari,

Bergman uzaylar1, Hardy uzaylar1, Interpolasyon, Riesz teoremi.
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Chapter 1

Introduction

The reproducing kernel was used for the first time at the beginning of the 20th
century by S. Zaremba in his work on boundary value problems for harmonic and
biharmonic functions. In 1907, he was the first who introduced, in a particular
case, the kernel corresponding to a class of functions, and stated its reproducing
property. But he did not develop any theory and did not give any particular

name to the kernels he introduced.

In 1909, J. Mercer examined the functions which satisfy reproducing property
in the theory of integral equations developed by Hilbert and he called this func-
tions as 'positive definite kernels’. He showed that this positive definite kernels

have nice properties among all continuous kernels of integral equations.

However, for a long time these results were not investigated. Then the idea
of reproducing kernels appeared in the dissertations of three Berlin mathemati-
cians G. Szegd (1921), S. Bergman (1922) and S. Bochner (1922). In particular,
S. Bergman introduced reproducing kernels in one and several variables for the

class of harmonic and analytic functions and he called them 'kernel functions’.

In 1935, E.H. Moore examined the positive definite kernels in his general

analysis under the name of positive Hermitian matrix.

Later, the theory of reproducing kernels was systematized by N.Aronszajn

1



CHAPTER 1. INTRODUCTION 2

around 1948.

The original idea of Zaremba to apply the kernels to the solution of boundary
value problems was developed by S. Bergman and M. Schiffer. In these investi-
gations, the kernels were proved to be powerful tool for solving boundary value
problems of partial differential equations of elliptic type. Moreover, by application
of kernels to conformal mapping of multiply-connected domains, very beautiful

results were obtained by S. Bergman and M. Schiffer.

Several important results were achieved by the use of these kernels in the
theory of one and several complex variables, in conformal mapping of simply-
and multiply-connected domains, in pseudo-conformal mappings, in the study of

invariant Riemannian metrics and in other subjects.

Meanwhile, in probability theory, the theory of positive definite kernels was
used by A.N. Kolmogorov, E. Parzen and others.

There are also several papers and lecture notes on this subject; B. Burbea
(1987), E. Hille (1972), S. Saitoh (1988), H. Dym (1989) and T. Ando (1987).
Most part of this thesis owes to T. Ando’s lecture notes [1] in its diversity of tools
and results. We also used H. Dym, S. Saitoh and N. Aronszajn’s works especially
for the second chapter. Moreover, we used partially the books of P.L. Duren [4],
P. Koosis [7], P.L. Duren and A. Schuster’s [5] for complementing with result on

Bergman and Hardy spaces.
The thesis is organized as follows:

In Chapter 2, after giving definitions and properties of reproducing kernel
Hilbert spaces with some theorems, we focus on generation of new spaces and
relationship between their kernels. Also, some extension theorems of functions

and kernels are proven.

In Chapter 3, we present some of the most useful reproducing kernel Hilbert
spaces consisting of analytic functions. A special role is played by the Bergman

spaces and Bergman kernels that we present in detail.
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Chapter 4 is dedicated to applications to interpolation problems of
Nevanlinna-Pick type. We start with a brief definition of Hardy spaces. Then we
prove three main theorems: interpolation with a finite number of points, inter-
polation with an infinite number of points, and interpolation with points on the

boundary.

The Appendix part contains some elementary facts from functional analysis
and operator theory in Hilbert spaces which can be found in textbooks, e.g. in
J. Conway [3] and J. Weidman [9].



Chapter 2

Reproducing Kernel Hilbert

Spaces

2.1 Definition, Uniqueness and Existence

Definition 2.1.1. Let H be a Hilbert space of functions on a set X. Denote by
(f,g) the inner product and let || f|| = (f, f)'/? be the norm in H, for f and g €
H. The complex valued function K(y,z) of y and x in X is called a reproducing

kernel of H if the followings are satisfied:

(i) For every z, K,(y) = K(y,z) as a function of y belongs to H.

(ii) The reproducing property: for every x € X and every f € H,

f(@) = (f, Ka). (2.1)

So applying (2.1) to the function K, at y, we get
K, (y) = (K;, K,), for z,y € X,

and by (i),
K(y,x) = (K;, K,), for z,y € X.

By the above relations, for z € X we obtain ||K,|| = (K,, K,)/2 = K (z,z)"/*.

4



CHAPTER 2. REPRODUCING KERNEL HILBERT SPACES 5

Definition 2.1.2. A Hilbert space H of functions on a set X is called a repro-
ducing kernel Hilbert space (sometimes abbreviated by RKHS) if there exists a
reproducing kernel K of ‘H, cf. Defintion 2.1.1.

The Hilbert space with reproducing kernel K is denoted by Hg(X). Corre-
spondingly norm will be denoted by || - ||k (or sometimes by || - |3, ) and inner
product will be denoted by (-, )k (or sometimes by (-, )3, ), if there is a need of

distinction.

Theorem 2.1.3. If a Hilbert space 'H of functions on a set X admits a repro-
ducing kernel, then the reproducing kernel K (y,x) is uniquely determined by the
Hilbert space 'H.

Proof. Let K(y,x) be a reproducing kernel of H. Suppose that there exists an-
other kernel K'(y,z) of H. Then, for all € X, applying (ii) for K and K’ we
get

HKm - K;H2 - <Kaz - K;:a K, — Kaln>
= <K:v - K;, Km> - <Km - Kg/cv K:f:)
— (K. = K))(@) — (K, — K})()
=0

Hence K, = K|, that is, K,(y) = K.(y) for all y € X. This means that
K(z,y) = K'(z,y) for all z,y € X. O

Theorem 2.1.4. For a Hilbert space H of functions on X, there exists a re-
producing kernel K for 'H if and only if for every x of X, the evaluation linear

functional H 3> f — f(z) is a bounded linear functional on H.

Proof. Suppose that K is the reproducing kernel for H. By reproducing property

and Schwarz inequality of the scalar product, for all x € X,

F @) = [ KD < WA = 11 Ka)' 2 = | FIE (2, 0)

that is, the evaluation at x is a bounded linear functional on H.
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Conversely, if for all x € X the evaluation H > f +— f(z) is a bounded linear
functional on H, then by the Riesz Representation Theorem, for all x € X, there

exists a function g, belonging to H such that

f(@) = ([, 9x)-

If we put K, instead of g,, then for all y € X, we get K,(y) = g.(y). Hence K is
a reproducing kernel for H. O]

Definition 2.1.5. Let X be an arbitrary set and K be a kernel on X, that is,
K: X x X — C. The kernel K is called Hermitian if for any finite set of points

{y1,--.,yn} € X and any complex numbers €, ..., €, we have

Z €6l (y;,y:) ER

ij=1
and K is called positive definite if

n

Z €6 K (y5,y:) > 0.

ij=1
Equivalently, the last inequality means that for any finitely supported family of
complex numbers {e€, },cx we have
> feK(y.x) > 0. (2.2)
z,yeX
In brief, sometimes we will denote this by [K(y,x)] > 0 on X, or equivalently, we

will say that K is a positive definite matrixz in the sense of E. H. Moore.

Theorem 2.1.6. The reproducing kernel K(y,x) of a reproducing kernel Hilbert

space H is a positive matrix in the sense of E. H. Moore.

Proof. We have

0< | ekl = O ek, Y ekK,,)
i=1 i=1 =1
- Z Z eigj (Ky,, Ky;) = Z Z eiE K (Y, yi).

i=1 j=1 i=1 j=1
Hence,

> K(y;,y)EE > 0. O

ij=1
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Remark 2.1.7. Given a reproducing kernel Hilbert space H and its kernel
K(y,z) on X, then for all z,y € X we have the followings:

() K(y,y) > 0.
(i) K(y,x) = K(z,y).
(iii) |K(y,2)|* < K(y,y)K(x, ), (Schwarz Inequality).
(iv) Let zp € X. Then the followings are equivalent:
(a) K(zo,z0) = 0.
(b) K(y,z9) =0 for all y € X.
(¢) f(xg) =0 forall feH.

Indeed, (i) and (ii) can be easily seen. For (iii), we use the Schwarz Inequality

in H and get
(K (y, 2)[* = (Ko, K)[* < [IK K K = 1K1
= <Kx7 Kx><Ky’ Ky) = K(l’, x>K(yv y)
which is the desired result.
As for (iv), it follows by (iii) that K (z, z¢) = 0 is equivalent with K (y,z) = 0

for all y € X. Further, by the reproducing property, K(y,zo) = 0 for all y € X
if and only if f(xq) = 0, for all f.

The following theorem can be regarded as a converse of Theorem 2.1.3.

Theorem 2.1.8. For any positive definite kernel K(y,x) on X, there ezists a
uniquely determined Hilbert space Hy of functions on X, admitting the reproduc-

ing kernel K(y, ).

Proof. We denote by H, the space of all functions f on X such that there exists

a finite set of points 1, o, ..., z, of X and complex numbers €1, ¢9,...,&,,

f(y) = Z 6iK(y7 xi)v
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for all y € X. Let g(-) = >0, ;K (-, y;) be in Hy. Define the inner product of
the functions f and ¢ from Hy by

n m n m

<f7 g>7‘l0 = ZZgiﬁj<K('axi)>K<'7yj)>Ho = Zzelﬁj[(<yﬁxl) (23)

i=1 j=1 i=1 j=1

Then,

3

n

(LK) =Y &K (w), K(2) = &K (x,z;) = f() (2.4)
=1 =1

for all x € X, that is, Hy has the reproducing property. This implies that the
definition of the inner product in (2.3) does not depend on the representations
of the functions f and g in Hy. Moreover, it is easy to see that (-, )y, is linear
in the first variable and Hermitian. Since K is positive definite it follows that
(f, )2, = 0 for all f € Hy, hence we have the Schwarz Inequality for (-, -)5,. In
addition, if (f, f)», =0, ||f|| = 0 and then by (2.4) for all x € X,

|f (@) < | FINEC z)] =0,
which implies that f = 0. Thus, (Ho, (-, )n,) is a pre-Hilbert space.

Now denote by H abstract the completion of Hy to a Hilbert space. We will
show that H has a unique representation as a Hilbert space with reproducing
kernel K (y,x). Consider first any Cauchy sequence (f,),>1 in Ho. Then for any

r € X we have

() = ful)]

<fm7Kﬂc>Ho - <mez>7‘lo’
<fm - fnaKx>Ho‘
< ||fm - anHoK(m7$)1/2'

So, there exists the function f: X — C such that for all x € X,

lim f,(z) = f(z). (2.5)

n—oo

Moreover, we have

£l = tim |1 £l
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and for any two Cauchy sequences (f,) and (g,) in Ho, denoting by f and,

respectively g, the corresponding pointwise limit of (f,,) and (g,), we have

<f7g>7‘l: lim <fn>gm>7’(0'

We can easily see that, for any two Cauchy sequences (f,,) and (g, ), these limits
exist and are independent of the approximating sequences (f,) and (g,) of the

limits f and g, respectively.

Let us note that (2.5) yields a concrete representation of H as a space of
functions on X. In addition, K has the reproducing property with respect to H.
To see this, let f € H and (f,) C H such that f, — f as n — oo strongly. Then
for all z € X,

f(x) = nh_{lolo fu(z) = lim (fn, Kz)2,

n—oo

= <711LH010 fnv Kx>7‘lo - <f7 K;L’>'H

It remains to show the uniqueness of the Hilbert space ‘H admitting the repro-
ducing kernel K. Suppose H; is another Hilbert space with the same reproducing
kernel K. By definition, for any x € X, K, € H; and then we have Hy C H;.
Also, for any f, g € Hy, because of the reproducing property we have

<f7 g>7‘lo = <f7 g>H1' (26)

If f € Hy such that 0 = (f, K,)n, = f(z) for all x € X, then f = 0. Thus, the
family {K, : x € X} is total in H;. So for any f € H;, we can take a Cauchy
sequence (fn)n>1 in Ho such that lim f, = f. Hence, (2.6) is valid in H,.

Now since we have Hy C H; and (2.6), we obtain H C H;. Also from the
construction of H, we get Hy C H. Thus, we have H; = H.

Finally, we have to show that the inner products and the norms are equal in
H and H;. Consider any f, g € H; and any Cauchy sequences ( f,)n>1 and (gn)n>1

in Hy which converge to f and g respectively. We have

<f7 g>H1 = nlinolo<fnagn>7'{1 = T}Lngo<fnagn>7'(o = <fa g>H

and hence the norms in ‘H and H; are equal. O]
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Theorem 2.1.9. Every sequence of functions (f,)n>1 which converges strongly
to a function f in Hg(X), converges also in the pointwise sense, that is,
lim f,(z) = f(z), for any point x € X. Further, this convergence is uniform

on every subset of X on which x — K (x,x) is bounded.

Proof. For x € X, using the reproducing property and the Schwartz Inequality,

|f(2) = fu(2)]

(f, Kx) = (fnr )|
[(f = for K|

<|1f = fall - 1)

= If = full - K (2, 2)">.

Therefore, lim f,(z) = f(x), for any point z € X.

Moreover, it is clear from the above inequality that this convergence is uniform

on every subset of X on which x — K(x,z) is bounded. O

In the following we will use the following notation: given X an abstract

nonempty set and H and K two Hermitian kernels on X, we denote

[H(y,=)] < [K(y,z)] on X, (2.7)
whenever for any natural number n, any finite set {x,...,x,} € X and any
complex numbers €4, ..., €, we have

Z EjEZ'H(SCj,iCi) S ZEjEiK(xjaxi)- (28)
ij=1 ij=1

Theorem 2.1.10. A complex valued function g on X belongs to the reproducing
kernel Hilbert space Hy (X) if and only if there exists 0 < v < 0o such that,

l9(y)g(x)] < A*[K(y,x)] on X. (2.9)

The minimum of all such vy coincides with ||g||.

Proof. By the reproducing property, g € Hy and ||g|| < v is equivalent with the
existence of f € Hy(X) such that ||f|| < v and g(z) = (f, K,) for x € X. By
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applying the Abstract Interpolation Theorem (see Theorem A.2.6) we obtain the
inequality (2.9). The converse implication is also a consequence of the Abstract

Interpolation Theorem. O

Theorem 2.1.11. Let KW (y,z) and K® (y,x) be two positive definite kernels

on X. Then the following assertions are mutually equivalent:

(1) Hgo(X) C Hgo(X), (set inclusion).

(ii) There ezists 0 < v < oo such that
(KW (y,2)] <P [KD(y, ).

If this is the case, the inclusion map J in (i) is continuous, and its norm is given

by the minimum of v in (ii).

Proof. Denote the norm and the inner product in Hyw (X) by || - ||; and (-, -);,

respectively.
Let (i) be satisfied. Set J : Hy ) (X) — Hg@ (X), the inclusion map.
Claim: J is a closed and continuous operator.

Suppose that f, — ¢ in Hyiw (X) and f, — h in Hg@ (X). As point evalua-

tions are continuous in Hyw (X), (i = 1,2), we get

fu(@) = g(x) and fo(x) — h(z)

which implies that g(z) = h(x) for all x, since the limit is unique. So J is closed.
Since J is closed, we know that by the Closed Graph Theorem any closed linear

operator between Hilbert spaces is continuous. Hence J is continuous, as claimed.

Now, for all f € Hyw(X) and for all x € X, by reproducing property we
have f(z) = (f, Kg(cl))l and (Jf)(z) = (Jf, Kg(f))g. Then by using this and the

inclusion property of J, for all x € X, we have

(f, PE®Y = (Jf, K®)y = (Jf)(z) = (f, K"}
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and hence we obtain J*Kéz) = Kg(cl) for all z € X.

Finally, for any v > ||.J|| and any finitely supported family of complex numbers
{€x}zex, we have

S emKOy.a) = (L ekl Y = | L ek

x,Y T

=177} e KT <7 HZ% 2|

T

SN Y
Y

xT

=" ) aqKP(y,2)
-/I:’y

Hence,
(KW (y, 2)] < PIKP(y, 2)].

Conversely, suppose that (ii) is satisfied for some 0 < v < oo. This means that

for any finitely supported family of complex numbers {e,}.cx, that is denoted

by (€],
Zﬁxﬁy < Y Zﬁxey Y, x

x?y
Taking the minimum of v in Theorem 2.1.10, we have the norm of any function

f on X given by

2
1712 = sup < 2z S OE
Y Zm,y ExEyK ‘ (yﬂr)

with [|f]|; = oo if f is not in Hygw (X). Now since {Kg(f) :x € X} is total in

(1=1,2),
Hiw(X), (i = 1,2) and using the Schwarz Inequality for the norms ||f]|; and
[f]]2; we get
[fll2 < Al fllx for f € Ky (X).
Hence, Hy ) (X) C Hye (X) with [|J|| < 7. 0

Suppose that there is a map ¢ from a set X to a Hilbert space H such that

xr —— ¢,. Then ¢ can be used to define a positive definite kernel

K(y,x) = (¢u, ¢y) for z,y € X. (2.10)
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Theorem 2.1.12. Let ¢ : X — H and K be defined as in (2.10). Let T be the

linear operator from H to the space of functions on X, defined by

(Tf)(@) = (f, @) forz e X, f €H.
Then Ran(T') coincides with Hy(X) and
ITfllxc = |1Pmfl for f € H,

where M is the orthogonal complement of ker(T'), Py is the orthogonal projection

onto M and || - ||k denotes the norm in Hy(X).

Proof. To see the positive definiteness of K(y,z), let X 2 x — ¢, be a complex

valued function with finite support. Then,

Z@@:K(ya Zgygz ¢xa¢y = Z<5x¢x7€y¢y>
Zemw,Zay% = | Zemxl\? > 0 for z,y € X.

Hence K (y,x) is positive definite.

Letz € Xand K, : X — C.Forally € X, K,(y) = (¢u, ¢y) = (T'¢2)(y). So,
Ran(T) contains all the functions K, x € X, where K,(y) = K(y,x) = (¢z, ),
y € X. Since Ran(7) is a linear space, then linear span of {K, : x € X}, that is,
lin{K, : x € X} = Hy, will be in Ran(7"), i.e. Hy C Ran(T).

Claim: T : lin{¢, : © € X} — Hy is isometric.

Since T'¢, = K,, for all z € X, then T'(}_ e,0,) = >, €, K. Hence,
25x¢x Zny¢y K = ng x5 Zny K = Zn_ygzK(%x)
x7y
= Zn_ygac ¢x> (by H = Z gx(bw? Z 77y¢y>H
x,y T Y

That is, T'lin{¢, : © € X} — lin{K, : = € X} = H, is isometric. Clearly,
T(lin{p, :x € X}) =
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Now take f in ker(T). So Tf = 0, i.e. (T'f)(x) = 0 for all z € X. But
(Tf)(x) = (f,¢.) =0 for all z € X and T is linear which implies

f Llin{¢, :z € X}

If f €lin{g, : v € X} ={¢,: x € X}, then for all z € X,
0=(f,z) = (Tf)(x).

That is, Tf = 0 and ker(T) = lin{¢, : z € X }**. By this, we reach

ker(T)* =lin{¢, : z € X}LL =lin{¢, : 2z € X} = M.
As M is a closed subspace, then H can be written as H = M®M-=*. Since
T:lin{¢,:x € X} — Ho C Hg(X)

is isometric and surjective and since Hy is dense in Hg(X), it follows that
T(lin{¢, : v € X}) — Hy = Hx(X). Hence, TM = Hg(X) = T(MOEM*) =
TH = Ran(T).

Finally, to see the equality of norms, take f € H = M®M™L. It can be
written as f = Puf + (I — Pum)f, where I — Py = Pyepr. Then, since T is

isometric on M,

1T flle = T (Prsf + Prerr )l = 1T Pas fllc = || Par flxc- =

The next result that concludes this section shows that the assumptions in

(2.10) is by no means restrictive, if we consider positive definite kernels.

Theorem 2.1.13. (Kolmogorov Decomposition) Let K(y,x) be a positive
definite kernel on an abstract set X. Then there exists a Hilbert space H and a

function ¢: X — H such that

K(y,z) = (¢g, ¢y) for z,y € X.

In addition, the Hilbert space H can be chosen in such a way that the set {¢, }rex
is total in ‘H and in this case the pair (¢, H) is unique in the following sense:
for any other pair (¢, K), where ¢: X — K and K is a Hilbert space such that
{s}eex is total in K and K(y,x) = (g, ¢y)c for all x,y € X, there exists a
unitary operator U € L(H,K) such that U, = 1), for all z € X.
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Proof. Since K is positive definite, by Theorem [2.1.8 there exists the reproducing
kernel space Hx with reproducing kernel K. Let ¢, = K, € Hg for all x € X.
By the reproducing property, for all z,y € X we have

K(yv J}') - <K:137 Ky)HK7
and { K, }.ex is a total subset of H.

To prove uniqueness, let (¢,K) be a pair as in the statement and define
Up, = 9, for all x € X. Clearly U extends by linearity as a linear mapping
U: lin{¢,: v € X} — lin{ep,: x € X}. In addition, for any finitely supported

families of complex numbers {e, },ex and {n,},ex we have

< Z Erﬁbm Z 77y¢y = Z ex% Z nywy

zeX yeX zeX yeX
- Z Ey6m<¢a}7¢y>I€
z,yeX
= Y Gk, 1) = Y Eealdn by
T,yeX T,yeX
= Z€x¢z Zny¢y Hx
zeX yeX

which shows that U is isometric. Due to the fact that both families {¢,}.cx and
{1y }yex are total in Hy and, respectively, I, it follows that U can be uniquely
extended to a unitary operator U: Hx — K. By definition, U satisfies the
condition U¢, = ¢, for all z € X. O

2.2 Operations with Reproducing Kernel Hilbert

Spaces

Let K(y,z) be a positive definite kernel on X and ‘H = Hx(X) be the RKHS.
Let M be a closed subspace of Hx(X). We know M is a Hilbert space since it is
closed. As every point evaluation functional is continuous in Hy (X) and M is a

closed subspace, then every point evaluation functional is continuous also in M.
Thus, M is a RKHS.
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Denote by Py the orthogonal projection onto M. This means that, for h €
Hi(X), Py(h) = hag € M where h = hag + hpgo, with hyg € M, hpo € M*.
If PuK, € M, we have f(z) = (f, PuK,) for all f € M. Then we have the
reproducing kernel KM (y, x) for M as

KM(y,z) = (PuK,, PuK,) = (PuPi K., K,) = (PuK,, K,).

Let K(©(y,z) be the restriction of K(y, ) to a subset Xj of X, ie. KO (y, z) =
K(y,7) |xyxx,- Since K(y,z) is positive definite, then so is K(*)(y, z). Then by
Theorem 2.1.8 there exists a unique RKHS admitting K(°)(y, z) as its reproduc-
ing kernel. Denote this RKHS by Hy o (X). The following theorem gives the
relation between Hy (X) and H o) (X).

Theorem 2.2.1. Let KO (y, x) be the restriction of K(y,z) to a subset Xq of X,
H o (X) be the RKHS admitting K©) (y, x) as its reproducing kernel and H(X)
be the RKHS with its reproducing kernel K(y,x). Then

Hio(Xo) = {/flx, : f € Hx(X)} (2.11)

and

ol o = min{||fl|x : flx, =h} for h € Hgw(Xo). (2.12)

Proof. For x,y € X, we have

K(O)(y,x) = K(y,z) and so (K(O),K(0)>K(o> = (K., K,)k.

T Yy

Define a map S such that S KO = K, for all x € X, which is uniquely extended
to an isometry from the closed linear span of {K? : x € X} that coincides with
H 00 (Xo) onto the closed linear span M of {K, : z € Xy}.

Let T = SPy where P, is the orthogonal projection to M, ie. Py :
Hi(X) — M. We have

T:Hg(X) = MOMF — Hypw(Xo).

Since
(TK,)(y) = KOy) = K, (y) for z,y € X,



CHAPTER 2. REPRODUCING KERNEL HILBERT SPACES 17

then
(Tf)(y) = fly) for f € Mand ye X,

and when (T'f)(y) =0, (Tf)(y) = f(y) = (f,K,) =0 for f € M+ and y € X,.

So T’ is the restriction map to Xy and
(Tf)(x) = (Tf, K)o = (f, T*" KM, for x€ X,.

Hence we have (T f)(z) = (f, ¢s) = (f, T*K”) x which gives us ¢, = T*K\". By

this with Theorem 2.1.12/ and taking into account that 7™ is isometric,
<¢Zv ¢y>K = <T*K(O)7 T*K:'SO))K = <K(0)7 K(O)>K(0) = K(O) <y7 SL’),

T 1y Yy

for all z,y € Xj. O]

Let KW (y,z) and K®(y, z) be two positive definite kernels. Then
K(y.x) = KW (y,z) + K®(y, )

is also a positive definite kernel.

Let H ), Hy» and Hyx be RKHSs with reproducing kernels KM (y, ), K@ (y, z)
and K (y, z), respectively, with K = K + K®),

Theorem 2.2.2. Let KW(y,x) and K®(y,z) be two positive definite kernels
and K = KO + K®) Then

Hi(X) = Hren (X) + Hio (X), (algebraic sum)
and for f € Hyin (X) and g € Hyo)(X),

I1f + gl = min{|[f + hllzq + lg = Al + h € Hiw (X) N Hge (X)) (2.13)

Proof. We have

K(y, ) = KW (y,2) + K@ (y,2) = (K", KV) o + (K2, KP) oo

z Y

Consider the direct sum Hilbert space H = Hya)@H g . Since both Hyyand
H 2y are Hilbert spaces, so is H. Then, by the definition of inner product for

direct sum, we have

<K$7Ky>K = K(y,z) = K(l)(y,x) + K(2)<y7x) = <K(1)€BK(2)7KZ§1)@K(2)>K.
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Consider the map ¢ such that ¢(z) = KM@ K® . Then we have
K(y,x) = (K oKD, KNOKP)k = (60, ,).
Using the operator 7" in Theorem 2.1.12, where (T'f)(z) = (f, ¢), we get

f@g,¢.) = (fog, KNVoKP)
[ K£1)>K(1> + (9, K;§2)>K(2)
= f(z) +g(z).

So, T(f®g) = f + g. This shows by Theorem 2.1.12 that Hx(X) = Ran(T) =
Hyw) (X) + Hy(X). Again by the same theorem,

(T(fog))(z) = |
{

If + gl = [[Pm(f®g)l?, where M = (ker(T))".
Next we show that
ker(T) ={h @ (—=h) : h € Hro)(X) N Hye (X)}.

If h € Hpeo)(X) N Hyge(X), then T'(h & (—h)) = h — h = 0. Conversely, if
hi @ hy € ker(T'), then 0 = T'(hy @ hy) = hy + hy implies that hy = —h;. Thus
h e HK<1)(X) N Hxge (X)

Then by Theorem 2.1.121 we have M = (ker(T))* which implies M+ =
ker(T). So, h&d(—h) € M*. Consider the quotient

H/ME = {h+ M+ heH)
Let f € Hrw(X), g € Hro(X) and fdg € H = Hia)®Hge. Then, for
ke H/M*,
k= {E+EZ c M*},
where k = f®g € H, h = hd(—h) € M*. Then,
h={f®g+h®(—h): fogeH, hd(—h)e M},
Taking the norm of both sides, it follows that
7]l = t{|| fog + he(—h)| : foog € H, ha(—h) € M*} = || Paik]
=[[Pm(feg9)ll = IIf + 9l
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Taking the square, we get
1f + glI* = inf{|| fog + hd(=h)|*: fog € H, h®(~h) € M},
Then,
If@g +he(=h)|* = (f®g + he(=h), fBg + he(=h))
= (f®g, fBg) + (f&g,h&(=h)) + (hd(=h), fBg) + (h®(=h), h&(=h))

= (£, f) + (9, 9)+(f, h) + (g, =) + (h, f) + {(=h,g) + (h, h) + (=h, —h)
= If+hl*+1lg — bl

Hence, we get

If + glI> =min{||f + Al* + lg — hlI* : f € Hrg (X), g € Hrw (X),
h € HK(I)(X) NHyo (X)} O

Given Hilbert spaces Hym) (X) and Hye (X), the intersection Hym) (X) N
Hy(X) will be again a Hilbert space of functions on X with respect to the

norm
LA = 1 e + 1 o

Since every point evaluation functional is continuous in both Hyw (X) and
Hpo) (X), letting f € Hype) (X)NH e (X), it follows that every point evaluation
functional will be continuous in H ) (X) N H g (X). Therefore the intersection
Hilbert space is a RKHS.

Theorem 2.2.3. The reproducing kernel of the space
Hi(X) = Hio (X) N Higo (X)

is determined, as a quadratic form, by
Y FeK(y,x) =inf { > pm KN (y,x) + ZCnyK(Q) v, @) : [ea] = 0] + (G}
x,y z,y

where [e;] is an arbitrary complex valued function on X with finite support, and

the same are true for [n,] and [(].
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Proof. Consider the isometric map S, such that it embeds H (X)) into the direct
sum Hilbert space H o) (X)OHie (X), S @ Hig(X) — Hio (X)OH g (X)
that is

Sf=faf for feHg(X).

Let Pp be the orthogonal projection onto Ran(S) := M. Then Py = SS*, and

by using the reproducing and algebraic direct sum properties, it follows

(Sf)@)=(Sf. KN @ KP) = (fo f KV o KP)
= (f, KM ko + (f, K)o
= f(x) + f(z) = 2f(z) where f € Hg(X).

So, (Sf, KM @ Ky = 2f(x), i.e. 1(Sf, KV @ K?) = f(x). This implies
<f SHEL @ KP)) = f(x)

or equivalently

US% e KP) = f(x).

In other words, K, = 15*( Vo KP ) for x € X. Then using this and the

isometricity of S,
_ .
E :gyng(yux) = H E *’5wa||§( = H § 5x§5’ (Kg(cl) D Ka(:2))||2
z,y x xT
1
— || gg* 1) (2)y]|12
= I35 S ek & K|

= [P ea( Y @ KP))1%

Now, since M = Ran(S) = (ker(S))*, then M = ({K;gl) ® (—Kf)) cx e X}t

which implies

=K @ (K)o e XHH

=lin{K" & (~KP):z € X}
= {KW @ (-K®):zec X}.

xT
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So, the elements of the form § Y A, (Kz Mg (- Kéz))) are dense in M=. Then,

by using Theorem 2.1.12 and the property of orthogonal projection, we get

1Puly Zé KM e KP))|P
N H§ > (KN e kP e ; Z e (KL
= <% Z%(KS) o K)o Zs o K@),
_ng KO ng (KW @ K®))
wa K & K?) —Zax(KS)@Kfm
+ <§ Zax(le) K®) ZEI KW @ K®))
- ”% > (KN e KPP + ||§ S (KD @ K|

1
=512 e & KPP

Az) =05 and 3(g, + Az) + 2(6, — Ay) = &y, that is,

K?)|?

Let 3(e0 4+ As) =10, 3(e0 —
[51] = [nz] + [53:]

Finally, applying Theorem 2.2.2 to the function 3 " e, (Kz KV e K& )) we get

. 1 1
§H D (KN @ KO = int || (D 5+ A K) @ (D 560 = Aa) )|

x

where
1

(3560 + M) © (3 56 = M)
Zm M) 25 EP)|?
me” ® Z KDY KN @y 6K
=| an ;>||K<1> T Dl
= Zx??_ynxK(”(y, x) + ia_yaxz((?) (y, )

xT

x?y

which completes the proof.



CHAPTER 2. REPRODUCING KERNEL HILBERT SPACES 22

Remark 2.2.4. Consider the tensor product Hilbert space H ) (X) @ H g2 (X).
Take g € Hpe)(X), h € Hg2)(X) and z, 2" € X. It follows

(9 ® h)(z,2') = g(x)h(z') = (g, KMV (h, KD) = (g @ h, KV @ K

which shows that the tensor product Hilbert space Hya)(X) ® Hiwe(X) is a
RKHS on X x X.

Consider the map ¢ : X — Hyx) (X)@H g (X) defined by x +— KMo K®.
Then

Hence the pointwise product of two positive definite kernels is again a positive

definite kernel.

Theorem 2.2.5. For the product kernel K(y,z) = KW (y,2) - K®(y,x), the
RKHS Hg(X) consists of all functions f on X for which there are sequences
(gn)n>0 of functions in Hya)(X) and (hy)n>o of functions in Hy o) (X) such that

D gallicn Menllieey < 00 and Y~ gu(@)ha(w) = f(z) for all z€ X, (2.14)
1 1
and the norm is given by

oo
I f[I% = min { Z ||9n”§<<1> th||12r<<2)}a
1

where the minimum is taken over the set of all sequences (gn)n>0 and (hy)>o
satisfying (2.14).

Proof. Let T' be an operator from Hya) ® H @ to the space of functions on X,

associated with ¢,, as in Theorem 2.1.12/ more precisely,

T:Higoy @ Hgey — F(X):={f: X — C: f complex function on X}.
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Let F' € Hia) @ Hy. Then F' will be of the form

F = Zgn ® h, with g, € Hxo) and h, € Hy o).
1

Let x € X and ¢, := Kg(cl) R Kg(f), GOr 0 X — Higa) @ Hige and K(y,z) =
(02, Dy)-

It follows by Theorem 2.1.12

(TF)(z) = (F,¢s) = (F. KN @ K&) = () g @ by, KV @ KP)

n=1

= Z<gn> K(1)><hm K£2)>

Finally,

|FI? = thn,zgn@h

Z gnagn K@) hnah >K(2)

oo
Z gl et 1 I -
=1

Taking the norm of (T'F)(z) = f(x), again by Theorem 2.1.12 we get

If(@)llx = ITFllx = | PaF I = min { Y llgalFe 1nllice }- 0
1

Remark 2.2.6. If X consists of a finite number of points, say n, then the space of
all functions on X, that is C", has the canonical RKHS structure (12, (-, -)), where
the point evaluation at ¢ is induced by the inner product with e;, (i = 1,2,... n).

Moreover, for a positive definite kernel K(j,7) on X, we have
K(j,1) = (Le;, ej), (i,j =1,2,...,n) (2.15)

where L is a uniquely determined linear operator on [2 and is positive definite.
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Theorem 2.2.7. If K(j,i) is a strictly positive definite kernel on X =
{1,2,...,n} and the operator L on [? is defined as in (2.15), then L is a strictly

positive definite operator and

(f,9)x = (L7 f,g) for f,g € C". (2.16)

Proof. Given K (j,1) a positive definite kernel on X = {1,2,...,n}, consider the
inclusion map J : Hy(X) — C" = [2. As a result of Theorem 2.1.11, J is

continuous.

Let J* be the adjoint of J. We have J* : [2 — Hg(X). Let J*(¢;) = K;
(i=1,2,...,n). By (2.15),

(Leisej) = K(j,1) = (Ki, Kj)x = (Jei, J'ej)k = ((J T ei), ;)

which gives
L=JJ".

Since K is a strictly positive definite kernel, it follows that dim(Hx (X)) = n and

J is a bijection. Hence,

(foyxk = . T gk =((J )T f.g9)
= ((JJ) ' f9)=(L""f,9)

and consequently we have

(f,9)x =(L7"f,9). O
Each positive definite operator L on [2 produces a positive definite kernel
K(j,i) on X by (2.15).

Theorem 2.2.8. If L;, (i = 1,2) are two strictly positive definite operators on

12, then

(L7 + LyYf, f) = min {(ng,g> + (Lah,h) : g+ h = f} for feC". (2.17)
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Proof. Let KU and K® be the kernels associated to L; and Lo, respectively. By

using (2.15) and the result of previous theorem, we have

(f,9)kw = (L' f,g) for f,geC"

Now consider the inner product (f, f) x4 g in Theorem 2.2.2]

(f, Nrwyre = 1150 ge =min {|lgl%w + |12k g +h=f}
= min{(g, ) gy + (I, ) 1 g+ h = f}
= min{<L1g,g> + (Loh,h) g+ h = f} for f,g and h € C",

and since by (2.16) in Theorem 2.2.7, we have (f, f) = (Ly* + Ly)7f, f),

combining this with the above equations, we obtain

(£ = (L + L) )
= min{(Lig,9) + (Loh,h) : g+ h=f for feC"}. O

2.3 Extension of Functions and Kernels

The following four theorems refer to extensions of a function (respectively a ker-
nel), defined on a subset, to a function (respectively a kernel) on the whole set

which obeys suitable restrictions.

Theorem 2.3.1. Let K(y,x) be a positive definite kernel on X and h a function
on Xy, where Xy is a subset of X. If

[l(y)h(2)] < [K(y,x)] on Xo, (2.18)

then there is a function h € Hy(X) such that
IRk <1 and h(z) = h(z) for z € Xo. (2.19)
Proof. Let K (y, z) be the restriction of K (y,z) to Xo. We know that K© (y, z)

is positive definite because K(y,x) is positive definite. By assumption, for h a

function on X, since the equation (2.18) is satisfied, then applying Theorem
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2.1.10l with v = 1, we have h € H o (Xo) and by the proof of Theorem 2.1.10,
|7l <~ = 1.1t follows by Theorem 2.2.1 that, for H o) (Xo) and Hg(X) are

reproducing kernel Hilbert spaces we have
Hico (Xo) = {h [xo: I € Hie(X)}

and
Al g = min { ||| : b |x,= h} for h € Hyw (X)),

equivalently,
|| o = min {||A]x : h(z) = h(z), € Xo} for h € Hgw(Xo) with [|h] g < 1.

Hence,
1h]lx < 1. O

Theorem 2.3.2. Let KW (y,z), (i = 1,2) be positive definite kernels on X, h a
function on Xy C X.

(i) If

[A(y)h(2)] < [KD(y, 2) + KP (y,2)] on Xo,

then there are functions | € Hyo)(X) and § € Hyew (X) such that
1w + 3l < 1 and h(z) = f(z) +G(x) for z € Xo. (2.20)
(ii) If
[A(y)h(a)] < [KV(y,z) - K@ (y, )] on Xo,

then there are sequences of functions (fu)n>1 C Hrn(X) and  (gn)n>1 C
H 2 (X) such that

Y lfalliwllgnlie <1 and Y fulz)gn(e) = h(z) for z € Xo. (2.21)

Proof. (i) For this part, consider the kernel K (y,z) = KM (y, ) + K@ (y, z) on
X. We know that K (y,x) is positive definite because K M and K® are positive
definite .
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Let Hya (X) and Hge (X) be associated reproducing kernel Hilbert spaces
for KM and respectively K their reproducing kernels. By Theorem 2.2.2], we
have Hg, the reproducing kernel Hilbert space admitting the reproducing kernel

K (y,z) such that Hx(X) = Hxo (X) + Higo (X). By assumption, since

[h(y)h(x)] < [KW(y, ) + KP (y, )] = K(y,x) on Xo,

applying previous theorem, there exists h € Hy(z) such that ||A]|x < 1 and
h(z) = h(z) for z € X,.

Returning to Theorem 2.2.2, there are functions fv € Hrxn(X) and g €
Hye (X) such that b = f+§ and

1Al[F = min {||f + &l + 117 = kllke b € Hgo NHge } < 1.
Hence, we get

1Pl = 1/l + 13k <1 and  h(z) = f(x) +G(a) for =€ Xo.

(ii) Conmsider K (y,x), the pointwise product of two kernels K (y,z) and
K®(y,2), that is K(y,z) = KO (y,2) - K@ (y,z). Since both KM and K® are
positive definite, then K(y,x) is also positive definite, see Remark 2.2.4. Simi-
larly as in (i), let H o) (X) and Hge (X) be the associated reproducing kernel
Hilbert spaces for KW and K® their reproducing kernels, respectively. Denote
by Hx (X) the reproducing kernel Hilbert space admitting the reproducing kernel
K(y, z).

Since, by assumption,

[h(y)h(e)] < (KD (y,2) - K@ (y,2)] = K(y,2) on Xy,
then there exists b € Hy(X) such that ||h||x <1 and h(z) = h(z) for z € Xo.

By Theorem 2.2.5, the reproducing kernel Hilbert space Hx consists of all
functions h on X such that there exist sequences (fu)n>1 C Hypwm(X) and
(gn)n>1 € Hy (X) subject to the conditions:

h(z) =Y faolz)galx), for z € X
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and

Z 1 fallzecn 19 | 52 < 00

with

oo
|7]|% = min {Z an“i((l) Hgn”iu)}-
1

But we know [|A]|% < 1. Hence we have

oo
Z I fall 3 lgnllze < 1. O
1

As a result of the above theorem and Theorem 2.1.13, any positive definite
kernel K (y,z) on a subset X, of X can be extended to a positive definite kernel
on the whole set X.

Let K(y,x) be a positive definite kernel on X. For a continuous linear operator

L on Hi(X), (i.e. L:Hg(X) — Hg(X)), we associate its kernel as
T(y,xz) = (LK,, K,) for z,y € X. (2.22)

Recall that {K, : x € X} is total in Hx(X). For any finitely supported [¢,] and

[n:], we have
LY &IG), Y myk,) = Y &m, (LK., K,) = Y &1, T(y.x)
xT Y x,y €,y
Therefore, ||L|| <1 is equivalent to the following condition:
IZ&ny Y, Zéx Zny
<| Z&:Kx“ | ZnyKy”Q
waﬁ K(y,x any (y,2)).

Thus,

IZ&my y,x))” < ZﬁzéKy, Zm«ny (y,2)).  (2.23)
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This last condition (2.23) can be expressed as the positive definiteness of the

kernel K on the disjoint union of X and its copy X', where K is defined as

K(y,z) ifz,yeX
Ry x) = T(y,2') ifzeX yeX

T(x,y) ifzreXyelX

Ky, o) ifz,ye X

where the canonical identification map X’ — X is denoted by prime and the

positive definiteness will be denoted by

(K (y, )] [T(y, )]

7 > 0on X. (2.24)
[T'(z,y)] [K(y, )]

Conversely, if a kernel T'(y, x) is given on X and satisfies one of the equations
(2.23) or (2.24), then there is a continuous linear operator L on Hy(X) with

|L|| < 1 whose kernel coincides with T

Lemma 2.3.3. Let L be a bounded linear operator on Hy and T the associated
kernel as in (2.22). Then L is self-adjoint (respectively positive) if and only if
the kernel T'(y, x) is Hermitian (respectively positive definite).

Proof. L is self-adjoint if and only if L = L*, equivalently for all x,y € X,

T(y,x) = (LK, Ky) = (L' K, Ky) = (Ky, LK) = T(x,y).

Moreover, L is positive if and only if
(Lf,f) >0, for all f € Hg,

equivalently, for any finitely supported family of complex numbers {€,},cx,

> &Ly x) > 0. O

x?y

Theorem 2.3.4. If a kernel T(y,z) on X, satisfies

[K(y, )] [T(y, )]

_ v >0 on Xy,
[T(y,z)] [K(y, )]
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then there exists a kernel T(y,x) on X such that T(y,x) = T(y, x) for z,y € X,

and
[K(y, )] [T(y, )]

[Ty, )] [K(y,2)]

If T(y, x) is Hermitian (respectively positive definite), then T(y, x) can be chosen

Hermitian (respectively positive definite).

Proof. Let K©(y, ) be the restriction of K (y, ) to X,. Consider the reproduc-
ing kernel Hilbert space H o) (Xo). Let T'(y, z) be a kernel on X, satisfying

[K(y, )] [T(y, )]
[T(y, )] [K(y,2)]
This implies that there is a continuous linear operator L on H g (Xo) such

that ||L]] < 1 and T(y,z) = (LK, K, ) for 2,y € X,. Then there is an
isomorphism S from M, the closed linear span of { K, : x € Xy}, onto H ) (Xo)

>0 on Xj.

such that SK, = KV forz e Xo. Denote by Py, the orthogonal projection onto
M. Define

T(y,z) = (LSPuK,, SPuK,) for z,y € X.
Then

T(y,x) == (S*"LSPyK,, PuK,) = (PS*LSPyK,, K,) for all 2,y € X.

This means that T(y,2) becomes the kernel of the continuous linear operator
Py S*LS Py on Hi (X). If we take the norm of this operator, by using the prop-

erties of orthogonal projections and isometric operators, we get
[ PaS™ LS Paal| < 1 Pall IS IN LIS Pl
< [ISTHILASTI
< |[ILff <t
Then for any z,y € X,
T(y,x) = (LSPuK,, SPuK,) = (LSK,, SK,)
and using SK, = KY forz e Xo, we get

(LSK,,SK,) = (LK, K, = T(y,z)
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and hence

T(y,z) =T(y, ).

Moreover, if T(y,x) is Hermitian (respectively positive definite), then L* is
self-adjoint (respectively positive definite) by previous remark and so the op-
erator Py S*LSPy will be self-adjoint (respectively positive definite). Denote
PuS*LSPy = N. Then

T(y,z) = (PuS*LSPyK,,K,) = (NK,, K,)

= (N'Ky, Ky) = (Ky, NK,)) = (NKy, Ky) = (T'(2,9)).

So T(y, ) is Hermitian (respectively positive definite). O]

When L is self-adjoint, then ||L]| <1 if and only if

KLE O ILIfIE< N for all f € Hi(X). (2.25)

This implies

which is equivalent to
> 8My, ) <) LK (y, ), forall [&]. (2.26)
T,y z,y

When L is not self adjoint, then either of the equations (2.25) or equivalently
(2.26) only imply L < 2.

Theorem 2.3.5. Let K(y,x) be a positive definite kernel on X, and let L(y, x) be
a kernel on Xo. If for any finitely supported family of complex numbers {&;}rex

| Y E&L o) < ) §EK (), (2.27)

z,y€Xo z,y€ X0

then there is a kernel E(y,x) on X such that L(y,x) = L(y,z) for all z,y € X,

and

1> &Ly a) <) ELK (y,x) for all [&,).
T,y T,y

If L(y, x) is Hermitian (respectively positive definite), i(y, x) can be chosen Her-

mitian (respectively positive definite).



CHAPTER 2. REPRODUCING KERNEL HILBERT SPACES 32

Proof. Let equation (2.27) be satisfied for K(y,x) a positive definite kernel on X
and let L(y,x) be a kernel on Xj. So this is equivalent with Theorem 2.3.4. This
implies that the linear operator L on Hg?) (Xo) satisfies

(LR, B) ko | < [lf% for h € H (Xo).

Taking S isometric and choosing i(y,x) = (LSPyK,,SPyK,), similarly as in

the previous proof, we have

{LSPyf, SPaf) ol < ISPy fllicw < IfIlk for f € Hi(X).

Hence, similarly as in the previous proof, we find that L(y,z) = L(y,z) for
x,y € Xo. Therefore,

1> e 6Ly a) = 1> &6 (PuS LSPy K, K,)|
= (PuS*LSPu (Y &KL), > &K,
< [|PaS LS P[] Y &K
<Y (KL, Ky)

T,y
<Y &Ky x). =
T,y



Chapter 3

Spaces of Analytic Functions

3.1 Sesqui-analytic kernels

Definition 3.1.1. A two variable function on a domain €2 in the complex plane,
is sesqui-analytic if it is analytic in the first variable and anti-analytic in the

second variable.

For example, this holds if the kernel K (w, z) is analytic in the first variable

and Hermitian, that is,

K(w,z) = K,(w) = Ky(2) = K(z,w) forall w,ze€Q.

Definition 3.1.2. A function f defined on some topological space X with real
or complex values is called locally bounded, if for any xy in X, there exists a
neighborhood A of g such that f(A) is a bounded set, that is, for some number
M >0, |f(x)] < M for all z in A.

We have the kernel K (w, ) is locally bounded in the sense that it is bounded

on A x B for every pair {A, B} of compact subsets of a domain .

Let us denote by 2 a connected domain of the complex plane.

33
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Theorem 3.1.3. The reproducing kernel Hilbert space Hy (§2) consists of analytic
functions on Q if and only if the positive definite kernel K(w,z) on € is sesqui-

analytic and locally bounded.

Proof. Suppose that Hg (£2) consists of analytic functions on €. Let K(w, z) be
the reproducing kernel of Hx(€2) and note that K, € Hyg is analytic. By the

definition of a reproducing kernel which is positive definite, we have
K(w,z) = K(z,w) forall w,z € Q.

So K is sesqui-analytic. To see the localy boundedness, consider any pair {A, B}

of compact subsets of 2. By assumption, every f € Hg () is analytic. Then

f)=(fK.), z2€4,

is analytic and hence continuous in z. Then the map z — K, is weakly contin-
uous. This implies {K, : z € A} is weakly compact, thus weakly bounded. Then
by the Theorem |A.3.6, weakly boundedness implies strong boundedness. That
is, sup,c4 || K| =: 74 < 0o. Now by Schwarz Inequality,

[K(w,2)] = [(Kz, Ku)| < [[KC| - 18wl < va- s,
for w € A,z € B. Hence K is locally bounded.

Conversely, suppose that a positive definite kernel K(w,z) on € is sesqui-
analytic and locally bounded. Recall that the set {K, : z € Q} is total in Hx (€2).
Then for each f € Hg(2), f is the strong limit of a sequence (f,),>1 in the
linear span of {K, : z € Q}, that is || f, — f|| — 0, as n — oco. By assumption,
since K (w, z) is sesqui-analytic, then K(w, z) = K,(w) is analytic in w. Then by

reproducing property, since

fn(w) = <fn7Kw>7 w e Q>

it follows that f, is analytic. Since K(w,z) is locally bounded, we have

SUP,c 4 || ;]| = 74 < 00, where A is any compact subset of Q. Then for w € A,

[fu(w) = fw)] = [{fn, Ku) = {f Ku)| = [(fo = [, Ku)]|
1fo = FIE ] < yallfu = [l
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and since ||f, — f|| — 0, (as n — o0), we have f, converges to f uniformly
on each compact subset A of ). Hence, Hx(€2) consists of analytic functions on
Q. O

Definition 3.1.4. A subset A of Q) is called determining subset if every analytic
function on €2, equal to zero on A, vanishes identically on €2. In particular, if A

has a limit point in €, it is a determining subset.

If two analytic functions are equal on a determining subset A, then they

coincide on the whole set €, i.e. fi|a = f2|a implies fi|o = fa|a.

In particular, given two sesqui-analytic kernels K" (w, z) and K®(w,z)
on Q, if KM(w,z) = K®(w,z) for w,z € A and A is determining subset, then
KW (w,z) = K®(w, z) on whole .

Theorem 3.1.5. Let K(w, z) be a locally bounded, sesqui-analytic and positive

definite kernel on Q0 and A a determining subset of 2.

(i) If a function h on A satisfies the condition

[h(w)h(2)] < [K(w, z)] on A, (3.1)

then there exists uniquely an analytic function h on § such that

h(z) = h(2) for z € A and [h(w)h(2)] < [K(w, 2)]. (3.2)

(ii) If a positive definite kernel L(w, z) satisfies
[L(w, 2)] < [K(w,2)] on A, (3.3)

then there exists uniquely a sesqui-analytic positive definite kernel f/(w, z) on S

such that

L(w, z) = L(w, z) forw,z € A and [L(w,2)] < [K(w,z)] on Q. (3.4)

Proof. Let K(w,z) be a locally bounded, sequi-analytic and positive definite

kernel on €2 and A a determining subset of 2.
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(i) Suppose that for a function h on ©Q (3.1) is satisfied. Then by Theorem
2.3.1, there exists h € Hx(Q) such that ||h||x < 1 and h(z) = h(z) for z € A.
By the same theorem, we can extend h(w)w on A to a positive definite kernel
h(w)h(z) on Q. Then h(w)h(z) = h(w)h(z) on A implies that

[A(w)h(2)] < [K (w, 2)].

Note that by Theorem 3.1.3, Hg consists of analytic functions and hence h is
analytic as well. The uniqueness part follows due to the assumption on the set A

to be determining for €.

(ii) Suppose that a positive definite kernel L(y, z) satisfies the condition (3.3).
By Theorem 2.1.13] there exists a Hilbert space ‘H and a function h: A — H such
that L(w, z) = (h., hy)y for all z,w € A. Then we use part (i) for Hilbert space
valued functions. O

In the successive theorem, we will use the following lemma:

Lemma 3.1.6. Let Q) be a domain in the complex plane and f either analytic
or harmonic in Q. Then for all w € Q and € > 0 such that D(w;e) :={z € C:
|z —w| < €} CQ, we have

s =[] sGme)

where m(-) is the planar Lebesque measure in C.

Proof. By writing f = u-+1wv, it follows that it is sufficient to prove the statement
for f harmonic on €2. Also recall that by the Cauchy integral formula for harmonic

functions, for all r € [0, €],

1 2 )
fw) = %/0 f(w +re™)dt.
Then by using the change of variables to polar coordinates

r=a+rcost, y=>b+rsint,
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where z = z + 1y and w = a + b, we have

% / /D L fGn(z) = % /0 E /O 7 flw + ret)rdtdr

— 1 06 (/O% f(w—{—reit)dt>7“d7"

et
1 [c 21 f(w) r?|e
—— [ 9 dr — L
e J, mf (wjrdr €2 2 o
= f(w). 0

Theorem 3.1.7. Let K(w, z) be a locally bounded, sesqui-analytic kernel on Q.

If K(w, z) is positive definite on a determining subset A, then it is on the whole

Q.

Proof. Let K(w, z) be a locally bounded, sesqui-analytic kernel on 2. Suppose
that K (w, ) is positive definite on A. Our aim is to show that K (w, z) is positive

definite on the whole 2. The proof is divided in six steps:
Step 1: K(w, z) is Hermitian on Q.

Since K (w, z) is positive definite on A, then K(w,z) = K(z,w) on A. Then
K (z,w) will also be sesqui-analytic on A. This implies that K (w, z) and K(z,w)

are equal on €. Hence K (w, z) is Hermitian.
Step 2: There exists a positive Borel function p(z) on 0 which satisfies the

following conditions:

(i) 1/p(2) is locally bounded.
(i) Jq [ K (w,2)]?p(z)dm(z) < oo for all w € Q.

(i) Jfy Jy 15 (w0, 2)[20(=)plaw)dim (2)dmi(w) < oo

where m(-) denotes the planar Lebesque measure.

Let us write € as an increasing union of bounded subdomains {2, },>1 such
that Q, C Qi1
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Let sup,, .co, [K(w,2)]* = v, (n = 1,2,3,...). Since K(w, z) is locally
bounded, we have 7, < oo for each n.
We define p as follow,

o 1
pl2) = 2 (e + 1) (S0, \ Q1)

for 2€Q,\Q,1 with Qy=0. (3.5)

(i) We have 1/p(z) is bounded on each €2,, and every compact subset of €2 is
absorbed in some €,,,. So we get 1/p(z) is locally bounded.

(i) Let w € Q, \ ,—1. Then

/ K (w, 2)[20(z)dm(z)

/Q PRLCEETIC

Vep(z)dm(z)
Qp\ Q%1

1
/k\ﬂk 1 T Dm (Qk\qu)dm(Z)

g TTMS ||M8

Yk
< 28 (e + 1)m(Q \ Q1) /Qk\le dm(z)

<> 12 =1<o0.

k=1

(iii) To see this we have the following estimations:

| [1K w2 Poptw)dm(z)m(w

( / K, 2) () dm(2) ) dm(uw)

/Qk\ﬂk 1 w)(/ﬂ|K(w7z)|2p(2)dm(z)>dm(w)

/ [ pw)imG) by )

IN

TMS& i ME% i Méﬂ \

<1< o0.

< 2% (7k+1)
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Step 3: Define a new measure du(z) := p(z)dm(z) on Q and let L*(Q, 1) be
the associated Hilbert space. Let A?(Q, p) be the subspace of L*(Q, ) consisting
of all analytic functions in L*(Q, ). In the following we show that A*(Q, 1) is a
reproducing kernel Hilbert space on 0 and it is closed in L*(Q, p).

Let us fix w € 2 and take ¢ > 0 such that the open disk D(w,¢) := {z :
|z —w| < e} is contained in Q. For any analytic function f € A*(Q, ), according

to the previous lemma,

1
) fEamn)

Then by the Schwarz Inequality in L?(Q, u),

flw) =

=1z [ sEdn)

1 2 1/2 1/2
= z z)dm(z 2)dm(z
([ Wrpam@) ([ 1otz)am(z)
< &| ]

where £ is a finite constant depending on w and e, but not on f € A*(Q, pu).
Thus, the point evaluation functional f — f(w) is continuous on L?(£2, 1) and

hence A%(§2, 1) is a reproducing kernel Hilbert space on €.

To see that A%(Q, ) is closed, by the above discussion, since |f(w)| < x|/ f]|,
the strong topology of A%(€), i) is stronger then the topology of local uniform
convergence. This implies that the closure of A?(2, 1) consists of analytic func-
tions, that is, A%(€Q, u) is closed in L*(Q, p).

Step 4: Define a linear operator K in L*(Q, u) such that

K)w) = (£, K) = | Klw. )2 (36)
for all f € L*(Q,n) and w € Q. We claim that it is unique and bounded.

Note that by (ii), K,(z2) = K(z,w) = K(w,2) € L*(Q,u) and hence K is
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well-defined. Then by using (iii) and (3.0),

10 Pdutw) = [ 105,50 Paute)

K, ||°d

< / £l Pdp)
— 171 / (Ko, Ko )dp(w)
e / K (w0, 2) Ko (2)p(2)dm(z)p(w)dm(w)
e / / K (w, ) p(2)plw)dm(=)dim(w)
< ||

where C' is a finite constant. Hence K is bounded.

Step 5 : K maps L*(Q, ) in A%(Q, u).

Note that since the kernel K is Hermitian, it follows that the operator K
is self-adjoint. Since A%(€), i) is a closed subspace and all analytic functions in
L?(2, p) are contained in A%(€2, ) and for all w, K, (2) is analytic in z, it follows
that K,, € A%(Q, ). By Step 4, we have

{Ky:we Q) Cker(K) = (RanK*)*™ = (RanK)*, as K = K*.
Then (RanK) = (RanK*) C A?(Q, u).

Step 6:  Let L(w,z) be the reproducing kernel of A*(Q, ). Then we have
(KL, L,) = K(w, z) for all w,z € Q.

Let P be the orthogonal projection onto A*(€2, u). Then for f € L*(Q, u), we
have (Kf, f) = (KPf, Pf) since RanK C A%(Q, u) and K is self adjoint.

In Step 4, put L, instead of f with the reproducing property,

(KLZ)(U) = <Lza Ku> = Ku(z) = K(Zv u) = K(uv Z) = Kz(u) (37)

and

(KL.,Ly) = (K., L) = T Ko) = Ku(2) = Ko(w) = K(w,2)  (3.8)
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for w, z € Q.

Since A is a determining subset of Q and {L, : z € Q} is total in A%(Q, u), it
follows that {L, : z € A} is total in A%(€, u). Therefore, by (3.8) and taking into
account that the linear operator K is bounded and that the kernel K is positive

on A, it follows that the operator K is positive and hence the kernel K is positive
definite on 2. Il

Theorem 3.1.8. Suppose that QM N QP £ where QU and QP are connected
domains of the complex plane. If KM (w,2) and K@ (w,z) are locally bounded,

sesqui-analytic, positive definite kernels on QW and Q@) respectively, such that
KY(w, 2) = K®D(w,2) for allw,z € QY N Q3| (3.9)

then there exists uniquely a locally bounded, sesqui-analytic, positive definite ker-
nel K(w,z) on QW UQ® such that

K(w,z) = K9(w, 2) forw,z € QY (i=1,2). (3.10)
Proof. Let Q be the intersection of Q) and Q) and K(w, z) be the restriction
of KM (w,z) = K®(w, 2) to this Q for w, 2z € Q. So we have
K(w,z) = KW (w,z) = K®(w, 2) for w, z € Q.

Since € is open in connected Q. Q is a determining subset of QM) and Q®.

Then, there exists an isometric operator T from H ) (2®) to Hy (Q) such that
TOKY =K, for € Q (i =1,2).
Now we can define the kernel K (w, z) on  := QM UQ® by
K(w,z) = (TOK® TOKDY e if we Q¥ 2eQ and 4,5 € {1,2}).

Then, since KM(w, 2) and K® (w, z) are locally bounded and sesqui-analytic, so
is K(w, z).
Moreover by the isometric property of operator T, we get from the last

equation that

K(w,z) = K9 (w, z) for w,z € Q9 (i =1,2).
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Finally, since K (w, z) is locally bounded and sesqui-analytic on €, and K (w, 2)
is positive definite on the determining subset Q of €, by Theorem 3.1.7, K (w, z)
is positive definite on the whole Q. Il

3.2 Bergman Spaces

Definition 3.2.1. The space of all analytic functions f(z) on 2 for which

J[kdzy <o, c=w iy

is satisfied, is called the Bergman space on Q and denoted by A%(Q).

Remark 3.2.2. A%(Q) is a reproducing kernel Hilbert space with respect to the

inner product

(F.9) = {f.g) = / / £(2)g()ddy

and its kernel is called the Bergman kernel of Q and denoted by B (w, z).

In the following we will calculate the Bergman kernel for any simply connected
domain 2. Consider the simplest case, that is Q = D, where D := {z : |2| < 1}.

For this case the inner product is

(f,g) = /01 /027T f(re®)g(rei®)dfrdr, (z=re?,r <1).

Theorem 3.2.3. The Bergman kernel for the open unit disc D is given by
1 1

B(D)(w,z) = %m fOT' w, z - ID) (311)

Proof. We divide the proof in three steps.

Step 11 fu(z) = /222", (n=0,1,2,...) form an orthonormal sequence in
A%(D).

Since

21
n+m-+2

nm»

1 27
(2", 2m) = / / re™rme= ™0 dordr =
o Jo
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then

<fn7 fm> = 5nma

which means that {f,,(2)},>¢ forms an orthonormal sequence.
Step 2: {fn(2)}n>0 is total in A*(D).

Consider any function f € A%(D). By the definition of Bergman space, f is

analytic in D and so we have the Taylor series expansion of f as
o0
= Z an2"
0

Then we get

<ﬁﬁﬁzdggq%,(n:QLz“y

Therefore, if f is orthogonal to all of f,,, that is,

™

=0, (n=0,1,2,...)

then a, = 0 for all n > 0. In other words, all Taylor coefficients of f vanish and
this gives f = 0. Hence, {f, }n>0 is total in A?(DD).

Step 3: The Bergman kernel for D is

= Z fa(w) fu(2)

If this is true, then it has to satisfy the reproducing property. Let us check this
fact,

o0

<faB,§D)> = Zanfn an n )>:an(z)an<fmfn>

= S e = )

Hence, by the uniqueness of the reproducing kernel we have

}:ﬁ, Ful(2) for all w, z € D.
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It remains to insert the values of f,, and f,, into the above equation and get

BO)(w,z) = ifn(w)n Z\/n+1 "\/n+1_——2n+1 ) (wz)"
n=0
- %(1+2wz+3(w2)2+..):%d%(;gn) .
1 1 11

7(1=¢)?2 sz T (l—wz)?

Hence the Bergman kernel for the open unit disc I is

1 1
B(D)(w,Z):—m for w,zE]D UJ
™ —wz

By the Riemann Mapping Theorem, each simply connected domain (which is
not equal to C) is mapped conformally onto the open unit disc. Hence we can
find the Bergman kernel for an arbitrary simply connected domain €2, in terms of
the associated conformal mapping function. The proof of the following theorem

includes the calculation of this kernel.

Theorem 3.2.4. The Bergman kernel of a simply connected domain Q(# C) is
given by

1 ¢ (w)e(z)

™ (1= 9(w)é(2))”

where ¢ is any conformal mapping function from  onto D.

B (w, z) = for w,z € Q, (3.12)

Proof. Let f € A%(D). Assign f — Uf, where U is the linear mapping on
defined by

(Uf)(2) = [(9(2))¢ (=) for = € . (3.13)

Claim: U : A%2(D) — A2(Q) is an isometric operator.

Since we have the Jacobian of ¢ as

0 )
/ = Re < Re
2 = det [ o ited %y ¢ where 2z =z + 1y,

P = et G
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then by the formula of change of variables we have

J[1wn@eazay = [[ 11e@)P6 @Psay, ¢ =atiy
-/ me)\ dudv,  (w=u-+iv, ¢(2) = w).

Similarly, take g € A%(Q) and assign g — Vg where V is the linear mapping on
Q) defined by

(Vg)(w) = g((w)) - ¢ (w) for w € D (3.14)
and 1 is the inverse mapping of ¢, i.e. ¥ (w) = z. By similar arguments, we get
that V' is also isometric. Since ¢(¢(w)) = ¢(2) = w and Y(é(z)) = Y(w) = z,
with (3.13) and (3.14) we get U and V are inverse to each other. Thus, since

they are both isometric operators, so U is a unitary operator.

For the last part, let us fix z € Q. Take f € A%(2). By using the reproducing
property of Bergman kernels BY and B®),

F(6(2))¢ (2) = (Uf)(z) = (UF, BP)a = (f,U"B)o

and

F(6(2))0 (2) = ¢/ ()(f. BE))o = (f. &' (2) BSo)) )o-

Then, by combining these formulas we get

*(Q) _ (D)
U*B.” = ¢'(2) By,

or equivalently by using the property of U being unitary, we have

B =U¢(2)BY),. (3.15)

= ¢/ (w) - ¢ (2) <B;?3), B;?L>>D
— l ¢ (w)¢'(2) 5 for w,ze€Q ]
T (11— ¢(w)p(2)
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The following result is the converse of the previous theorem.

Lemma 3.2.5. A conformal mapping from Q to D can be recaptured from the

Bergman kernel of €.

Proof. For fixed zy € €2, by the Riemann Mapping Theorem, there is a unique
analytic function w = ¢(z) mapping €2 onto the unit disc D such that

d(z0) = 0 and ¢ (z) > 0. (3.16)

By (3.12), for w € 2 and z, € Q satisfying (3.16), we find

and letting 2y instead of w in the last equation, we get

¢ (z0) = \/TB® (20, 20).
Then if we integrate this equation, we find the conformal mapping function in

terms of Bergman kernel, i.e.

6(2) = | /m / B (w, z)dw. (3.17)

This completes the proof. O

Definition 3.2.6. A Jordan curve is a continuous one-to-one image of {|¢| = 1}
in C.

Definition 3.2.7. A Green’s function G(w, z) of € is a function harmonic in 2
except at z, where it has logarithmic singularity, and continuous in the closure Q,
with boundary values G(w, z) = 0 for all w € 92, where (2 is a finitely connected

domain of complex plane.

Suppose now that €2 is a finitely connected domain in the complex plane,

bounded by analytic Jordan curves. G(w,z) has a logarithmic singularity at z

means that G(w, z) —log ﬁ is harmonic in a neighborhood of z. The symmetry

relation G(w, z) = G(z,w) is satisfied for the Green’s function. Moreover, the
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Green function is conformally invariant. That is, if ¢(z) = w maps a domain D
conformally onto €2, and if G(w, zg) is the Green’s function of 2, then H(z,() =
G(o(2), ¢(€)) is the Green’s function of D. For a simply connected domain €2, the
Green’s function is G(w, z) = —log|¢(w)|, where ¢ maps Q conformally onto D
and ¢(z) = 0. In particular, the Green function of D is

w—z

G(w,z) = —log| |. (3.18)

1 —wz
The following theorem gives the Bergman kernel in terms of the Green’s func-

tion for the general case.

Theorem 3.2.8. Let ) be a finitely connected domain bounded by analytic Jordan
curves, and let G(w, z) be the Green’s function of Q). Then the Bergman kernel

function is

2 0°G
(@) - _-

B(w, ) = 22 (w2,

w# 2. (3.19)

Proof. By the definition of the Green’s function, we have

G(w, z) = log + H(w, z)

|w — 2|
in some neighborhood of z, where H(w, z) is a harmonic function of w. Taking

partial derivative with respect to w, we get

oG 1 1 OH

%<w>z):_§‘w_z| a_(w>z)

2
and now taking partial derivative with respect to Z, since 83% (—% |wl_z>: 0,

then we get
0’°G (w, 2) = 0*H
owoz" 7 T dwoz

Since the boundary curves are analytic and the Green’s function vanishes on the

, for w # z.

boundary, it has a harmonic extension across the boundary. Also, for each z € €,

oG

95 (w, z) is analytic in w. Then, 25 (w, z) is bounded and analytic in w € €2, so

) Bate W
it belongs to the Bergman space A?(2).

Recall that according to the Cauchy — Green theorem ( see [5] ), we have

/ z—22/—dA for F e C'(9Q).
o0 Q
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Suppose f is analytic in Q and continuous in Q. Let €. be the domain inside
Q given by a small disc |w — z| < &, and let T. denote the boundary of this
disc. Since the Green’s function G(w, z) vanishes on the boundary, then also
vanishes for z on 02, then by the Cauchy—Green formula

oG 9G .
1. Ow

8w8_ ) f(2)dA(z), (3.20)

where the orientation of T. is counterclockwise. However, if we apply the Cauchy

Theorem to the left hand side of the above equation,
oG 1 1 OH
Stz = [ (-

1. Ow - 2|w—z\ w)f(z)d2—>mf(w) as e — 0.

Hence, applying this result to (3.20) we obtain

i (//‘awaz F(2)dA(2).
=~j/w& F(2)dA(2),

where f is analytic in  and continuous in Q.

Thus we get

Finally, since €2 has analytic boundary, then the kernel function of ) has
an analytic continuation across the boundary. Applying this to the function
ﬂw=3®m0wma

__// s (w,2) B (2,()dA(2) = B (w, ).

Therefore, by the reproducing property of the kernel function, we get the desired

result, i.e.

2 82G 2 aQG
_Z @) 2 @)
// 8w8z(w’ )BTz ()dA(z) = W@w@f(w’o = B (w,(). O

3.3 Szego Kernel

Consider the kernels K, (w, z) on the open unit disc D, (0 < a < 00),

1
Ka(w,z) = m for w, 2z € ]D (321)
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where &% is the analytic continuation of ¢* on R, to the open half plane
{¢ : Re¢ > 0}. By the above definition of kernels, if we have o = 2, we get 7

times Bergman kernel for D, i.e.

1
— — )
Ky(w, z) = A—ws)e B (w, 2).
Since K,(w,z) = K,(z,w), it is sesqui-analytic and moreover it is locally

bounded.

Lemma 3.3.1. The kernel K, defined at (3.21) is positive definite.

Proof. Since

1 d
—s == &), &l <1,
(1-¢)? dfgg

if we take derivatives of both sides « times, it follows that

:=a_1,§j D(n=2)(n =3) - (n— (a-2)¢ret)

::mi1‘23N+a—lMN+a—m (N +1)eV.

Let I" be the Gamma function. For (o =1,2,...), we have I'(a)) = (o — 1)! and

I'(n+a)
—_— -1 —2)--- 1).
Ry = (o= Do =2 (nt 1)
If we put £ = wZ into the above equation we obtain
= T'(n+a) 1

(wz)"' = ——— forw,zeD, (a=12,...).

['(a)I'(n+1) (1 —wz)>

n=0

We can generalize this result for each 0 < o < 00, so that
1
Z F n + Oé ('LUE)” = m = Ka(w, Z) for w,z € D. (322)
Therefore, since [wE ] is positive definite for each n and

I'(n+a)
['(a)l'(n+1)
then K, (w, z) is positive definite. O

>0, (n=0,1,2,...),
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Theorem 3.3.2. (i) The Hilbert space Hg, (D) coincides with the space of ana-
lytic functions f(z) =Y o ap,z2™ on' D such that

i I'(a)(n+1)

2
n|” < 00,
T+ o) la,|* < oo

n=0

equipped with the inner product

I(a)T(n+1), _
py =S Ty o 3.23
for g(z) = >0 by2™ and h(z) = > ¢,2"
(i) When o > 1, Hg, (D) also coincides with the space of analytic functions
f(z) =>0" a,z" such that

Jfa=lpr Py < 0o, (2 =2+ i)

equipped with the inner pmduct

)*2lg(2)|Ih(2)|dxdy. (3.24)

Proof. (i) Since f(z) =Y, a,2", then

D=1 an"| <) lan] 2"
n=0 n=0
I'(a)T(n+1) 12/ SN T(n+a) I\ 172
<(> T(n + a) anl?) <§:rmﬂwy+nkp> !
n=0 n=0
and with the inner product (3.23), strong topology is stronger than the topology

of local uniform convergence on ID. Hence this space of analytic functions becomes

a reproducing kernel Hilbert space on .

The construction of the kernel will be similar as the construction of Bergman

kernel.
Step 11 fu(2) = %z”, (n =0,1,2,...), form an orthonormal
sequence.
(a+n) MNa+n) .
(fusfnd = A 2"

T(@In+1) " "\ T(@)T(n+1)

= Opm, for nym=0,1,...
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Thus, {f,}n>0 is an orthonormal sequence.

Step 2: {fn}n>o0 is complete.
Consider the inner product in (3.23) of f,(z) with f =" ax2",

T(a)D(n + 1)

=0,1,2,...).
F(n—i—oz) ’ (n [t b )

<f7fn> = an

Therefore, f is orthogonal to all of f,, that is

T(e)[(n + 1)

=0 =0,1,2,...
F(n—i—a) ) (n )y )

<.fa fn> = Qnp
only if a, = 0 for each n. Thus f = 0 and f,, is total.

Step 3: Ka(w,z) =3 7, fn(w)fn—(z)-

To prove this, we verify the reproducing property:

<f7Kz> - Zanfn an

Hence, Ky(w,z) =3 0" folw )fn( ).

Finally, inserting the values of f,,(w) and f,(2) in this equation, we get

% (a —i— ) Mlat+n) _,
K, (w,z) = Z fu(w Z 1)w \/F(Q)F(n + 1)2

= T(a+n) o 1
=2 Tl D) = G

(i) We change the coordinates to polar coordinates. For f = > ja,z",
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consider the following integration,

[ Py

-1 1 2 )
_ ¢ / / (1 —7r%)>72| Zan re)"2dOrdr (2 = re'?)
n o Jo
o 1 2
_ 1/ / (1 —7‘2)0‘_2 Z A, e?m ”)>d97“dr
T

n ,m>0
—1 .
_ o Z aman/ / . a 2rm+n+1616(m—n)d0dr
n,m>0
-1 1
=& Z \an|2/ 2m(1 — )22 L dhdr
T 0
n=0

% 1
=2(a—1) Z |an|2/O 2m(1 — r3)* 22 dodr  (t = r?, dt = 2rdr)
n=0

oo 1
=(a—1) Z \an\Q/ (1-— t)“_2t”dt.
n=>0 0
Since

! INGIN
/0 (1—t)~ ' tat = —(ﬁ)JF(Z) for 3,7 >0,

then

la-1I(n+1) TI(a)l(n+1)
I'(n+ a) - I'(n+a) °

(0 —1) /01(1 —)* 2 "dt = (a — 1)

Inserting this in the above integration, we get
00 1 00
] DM+,
(a—1) \an\Q/ (1 —t)*%"dt = — | ay|
2l ) 2 Ta+a)

or equivalently,

) Pdady = Y D

0

‘an‘z'

Hence, the last equality shows that on the space of analytic functions, the two

inner products (3.23) and (3.24) are the same. O
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According to the values that « takes, the behavior of Hg, (D) changes. If

a > 1, Hg, (D) becomes a Hilbert space of analytic functions f(z) on D such

that
/D () 2dpalz) < oo,

where p,, is the measure on D given by

a—1

dpa(2) = (1= [z} 2dedy, (2 =2 +iy).

Definition 3.3.3. For a > 1, Hg, (D) is called the weighted Bergman space on
D (with weight <=1(1 — |z[*)*2).

Lemma 3.3.4. If o < 1, Hg_ (D) is not a reproducing kernel Hilbert space with

respect to the inner product (3.24).

Proof. Suppose that for a < 1, Hg,_ (D) is a reproducing kernel space. Let ¢(z)
be an analytic function such that |¢(z)| <1 for z € D. Then f +—— ¢ - f defines

a continuous linear operator on Hg_ (D) such that

16 fllkco < I fllrce,  where f € Hig, (D). (3.25)

Then, in terms of the kernel K, (w, z), inequality (3.25) becomes

[0(w) Ka(w, 2) $(2)] < [Ka(w, 2)] on D,

and hence we get

(Ko (1, 2)(1 = 6(w) $(=))] = 0 on D.
This implies that, for any z € D, the following 2 x 2 matrix is positive definite

[Ka<o,o><1—|¢<o>|2_> Ka(0,2)(1 = 6(0)8(2))

Ka(2,0)(1 = ¢(2)9(0))  Ka(z,2)(1 = [o(2)[%)
If ¢(0) =0, then (3.26) becomes

[Ka(o,O) K.(0, 2) ] _ [ 11 ] -
Ko(2,0) Ka(z,2)(1 = [6(2)]) 1 a1 = 102 |

] > 0. (3.26)
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where K, (w,z) =1/(1 —wz)®. This implies

1—|(2)?
(1= [=)

Then, for 0 # z € D,

“1>0 and 1—(1—[2[2)* > |6(2)

1= (1= P _ [P
EE

Now consider the analytic function ¢;(2) := z(z —t)/(1 —tz), (0 < t < 1), which
satisfies ¢:(0) = 0 and |¢¢(2)] < 1 for z € D and fix z; € D. Since we have o < 1,
then

(3.27)

(1= |20/ > 1~ |z
and by this, we get the following

1— (1 —J=f*)"

1>
’Zo|2

(3.28)

Then, if we take the limit of |¢s(29)/20]* as t — 1,

2 2

Zo—t
1—252()

Zo(Z() — t)
(1 - tZo)ZO

. 2 1 _
iy 6 ) ol = iy -ty

But this contradicts with the inequality (3.27). Hence, for o < 1, Hg, (D) is not
a reproducing kernel Hilbert space with respect to the inner product (3.24). [

It remains the case when o = 1. Let us denote by T the boundary of D, i.e.

T ={¢: || =1} and let o be the normalized arc-length measure such that

do(€) = o lde] = o-df, (€=,

Consider the Hilbert space L*(T) = L*(T, o) of measurable functions on T. We

have the inner product

wgnmzﬂf@aﬁwwm

with respect to which the functions ¢,,(§) := £, (n € Z), which form a complete

orthonormal sequence.

Definition 3.3.5. The closed linear span of {¢, : n = 0,1,- - -} is called the
Hardy space on T and is denoted by H?(T).
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By Corollary [A.2.3, f € L*(T) belongs to Hardy space H?(T) if and only if
it is orthonormal to all ¢, (n < 0,) i.e. all Fourier coefficients of f which have

negative indices vanish. Then we have

(f.9)r2 = anb, for f.g € HX(T), (3.29)

n=0
where

an = {f ¢z and by = (g, 002 (n=0,1,...).
Before stating the last theorem of this chapter, we will define the Poisson kernel

and some important properties of this kernel.
Definition 3.3.6. For z € D and £ € T, P,(§) is called the Poisson kernel and
defined by
1|2
P(£) = ————.
=
Equivalently, for z = 7 (0 < r < 1) and & = ¢ (—0c0 < t < 00), the

Poisson kernel can be written as

1—7? = .
P.(t): r = Z rinleint

- 1 —2r cost+ 12

We recall some properties of the Poisson kernel, (e.g. see [7]):

(i) P.(t) >0, for all r < 1.
(ii) P.(t+2m) = P.(t)
(iii) 7 P.(t)dt = 2m, for all r < 1.
(iv) Given § > 0, P,(t) — 0 uniformly for 6 < |t| <7 asr — L.

Theorem 3.3.7. The correspondence

o0

fr—>f(z) ::Zanz” with a, = (f, ¢n)rz, (n=0,1,...)

n=0
yields a unitary operator U from H*(T) onto Hg, (D). Conversely, f can be re-
captured from f (2) by the formula

f(&) = lim f(ré) for almost all € € T.
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Proof. Put a =1 in lw;)(n—;:“l Weget%zl‘

Then (3.23) in Theorem [3.3.2/ becomes

Zb Cp, for g(z sz and h(z ch

In other words, equation (3.23) becomes the same as the equation (3.29). This
implies that the operator U from H?*(T) onto H, (D), is isometric on the linear
span of {¢, : n =0,1,...}. Since {¢,, : n =0,1,...} and {(/Zn :n=20,1,...} are
total in H?(T) and Hg, (D), respectively, then U is unitary. Now by (3.29),

(F(re) - 116), F(r€) / Fre) — F(©)Pdol(©)

= Z lan)?(1 —7r™")?* — 0 as r — 1.

Therefore, f(ré) converges to f(£) in measure. It remains to show that the

convergence is almost everywhere. Let us define a kernel S, (&) as

S.(&) = & for £ € T. (3.30)
Then we have
f(2)=(f,8.)2 forzeD, fe H*T). (3.31)
Consider the sum
_ 1 1 T it
SZ(£)+SZ(£)_1_1—£E+1—ZE 17 (z—re )7 (5_6)
C 1—eitrei® 1 —peifelt
1—7r?
1 —2r cos(t —0) +1r2
= P.(t—0)
and by
P = = :P — = v = et
€)= T ~ Togran g~ PO =) (6=
we get
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Then consider the inner product (f, P,). Since S,(§) — 1 is orthogonal to f in
L3(T), we get

<f7 Pz>L2 = <f7 Sz(g) + Sz(é) - 1>L2 = <f7 Sz(f)) + <f7 Sz(f) - 1>L2
= (f.5:(6))12 = [ (2).
So, instead of (3.31), we can use f(z) = (f, P.)z2. Then, by the definition of the

inner product in L?, we have

Fe) = (P = [ 1 Pi@do(e) (33
Changing variables as z = re® and ¢ = €%, it follows

Flre®) — % /_ 7; F(e®) Pt — 0)dt — % /_ W F(E0) P (1)t

We fix § in (—, ) so that F'(6) exists, where F(6) := ["_ f(e")dt. By using the
property (iii) of the Poisson kernel,

/ 1

flre®) = F'(0) = / "(Fre®y — F(9)) Po(t)dt.

We make change of variables and integrate by parts the right hand side of this
equation, say u = P,(t) and dv = (f(re’®) — F'(#))dt and get

™

—[(rO+ 1) - Fon )]

o (F (0+1t) — F’(G)t) P.(t)dt.

™ 2T o

Then the first term converges to 0 as r — 1. So, we have

lim f(re””) — F'(6) = lim iﬂ / ’ <F(9 )~ F(0) t) P(t)dt. (3.34)

For any € > 0 there exists o > 0 such that
|F(0+1t) — F(O—t)—2F (0)t] < et for 0 <t <é. (3.35)

On the other hand,

Fre®) — F'(9) = % / i(F(@ 1) — F(0) t) Pl(t)dt
< % /06<F(9 +1)— F(6—t) —2F (0) t) P.(t)dt



CHAPTER 3. SPACES OF ANALYTIC FUNCTIONS o8

and then by using (3.35),

‘%/_Z(F(QH)—F/(G)t)P;(t)dt‘Sa/wtlpq:(t)|dt+7 sup | (1)),

0 S<[|t|<m

where
v =sup |F(0+1t) — F ().

ltl<m
Now, since we have the derivative of P,(t) as
Pl(t) = 2rsint (1 —r?) 5
(1 —2r cost + r?)

taking modulus of this derivative we get

2rsint (1 —r?) < 2r(1 —r?)

P =
|7 (®)] (1 —2r cost+r2)2l = (1 —2r cost +1r2)?’

and this implies sups<y<, |P.(t)] — 0, as r — 1. Also, t|P.(t)| will be clearly
integrable on [0, 7]. Consequently, taking the limsup of (3.34), it converges to 0

as r — 1. That is

/

lim sup | f(re) — F' ()| = 0.
r—1
Hence f(re) converges as r — 1 at all # for which F'(0) exists. O

Since f (z) is analytic on D and f(&) is its boundary function on T, then f (2)

is the analytic extension of f to D.

Definition 3.3.8. The kernel

S(& z) = é for £€T and z €D, (3.36)

or its analytic extension

S(w, z) := T for w,z € D. (3.37)

is called the Szego kernel .

Since K, (w,z) = (1_11@)&7 note that it is equal to the Szegd kernel for o = 1,

ie. S(w,z) = K (w,z2).

We will end this chapter by a remark.
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Remark 3.3.9. The orthogonal projection Pyt from L*(T) to the Hardy space

H?(T) can be expressed in terms of the Szegd kernel as follows:
(Pi29)(2) = (g,5.)12 for z€D and g€ L*(T). (3.38)
Moreover, by Theorem [3.3.7, we have

(Pr29) (&) = lirr%(g, Sre)r2 for almost all £ € T. (3.39)



Chapter 4

Interpolation Theorems of

Nevanlinna-Pick Type

4.1 General definition of Hardy spaces

In the previous chapter we have defined H? spaces for the case p = 2. Before
giving a more general definition and some properties of H? spaces, we first define

the integral means.

Definition 4.1.1. For a function analytic in the unit disc D, the integral means

are defined by

W00 =(z [ Wieeypa) ", 0 <p< o)

and
Moo (r,9p) = max [g(re)].

0<6<2m

Definition 4.1.2. The class H? is the set of all functions analytic in D for which
the integral means M,(r, 1) are bounded for 0 < r < 1.

By the above definitions and the maximum modulus principle, if M,(r, )

stays bounded as r — 1, then 1 is said to belong to the H? space.

60
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Consider the case p = 2. If ¢(2) = > a,z" is analytic in D, then by

Parseval’s identity, we have

M3(r, ) = lan[*r™,
n=0

This shows that Ms(r 1)) increases with r, and that ¢ € H? if and only if
S Jan)* < oo. Similarly, it follows from the maximum modulus principle that
M, increases with r. This situation is more complicated for the other values of

p, but M,(r,v) is always a non-decreasing function.

The HP class is a linear space under addition and scalar multiplication. The
norm ||¢|| g of a function ¢ € HP is defined as the limit of M,(r,¢) as r — 1

and it is a true norm if p > 1.
Another property of HP spaces is that, if 0 < p < ¢ < oo, then HP D HY.

Moreover, by the above relations, H>°(D) is the class of all bounded analytic

functions ¢ (z) on D with norm
[l = sup |1(2)]- (4.1)
zeD

According to Theorem [3.3.7, each v € H*(D) admits the boundary value for
o-almost all ¢ € T, (T is the unit circle),

$(Q) = lim 4 (rC). (4:2)

From now on, norm || - || and inner product (-,-) will be used for the space
H?(T) and the reproducing kernel, i.e. the Szego kernel S(w, z) for H?(T) will be

denoted by K (w, z), to avoid any confusion:

1

:1—wz

K(w,z) = K,(w) : for z,w e D.

In order to see the connection between H?(T) and H>(D), let us consider any
function ¢ € H* (D). For each 1, there is a multiplication operator M, on H?*(T)
defined by

(Myh)(¢) =¥ (¢)h(¢) for (€T and he HXT),
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or, with respect to analytic extension,
(Myh)(z) = ¢¥(2)h(z) for z e D. (4.3)

Lemma 4.1.3. Let My, be a multiplication operator on H*(T) defined as in (4.3).
Then | Myl = ] for all § € H=(D).

Proof. Since
[¥]loc = sup ()],
zeD

it is clear that || My| < [|¢]]cc-

For the converse inequality, since

1 1
S l—zz 1|z

K(z,z2) = K.(2) z €D,

then
|1(2)]
S EE V() |K (2, 2)| = |[(2)[ (K, K
= [¢(2) (K., K2)| = [(¥(2) K, K»)|
= |(My K., K,)| since YK, = M,K,
< [ Ml K12
1
|| ¢||(1_|Z|2)7 EAS
So, we get
[4(2)] 1
< || My||———=
1_‘Z|2—H ¢H1_|Z‘27
which yields
sup [(z)| = [|¥]loe < [[My]]-
zeD
Hence,
[¥llec = [[Myl|  for ¢ € H*(D). O

If ,¢ € H*(D), we have My, = My M, for the map ¢ — M, from
H>(D) to B(H?(T)) and %) is linear and multiplicative.
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Definition 4.1.4. The multiplication operator corresponding to the function
¢(2) := z, which is defined by

S(6(2)) = z9(2),

is called the shift operator and is denoted by S.

It is easy to see that, for multiplication operator M, on H?*(T) and shift
operator S on B(H?*(T)), we have

MyS = SM,. (4.4)

Theorem 4.1.5. If a continuous linear operator T on H*(T) commutes with the
shift operator S, i.e. T'S = ST, then there exists uniquely 1 € H>®(D) for which
T =M,y.

Proof. Let [ be the constant function with value 1 and let ¢» = T'l. Since

1

K. (w) = T—ws = Z(w?)", z,w e D,
n=0

then

I\

K.(z) = i nt = iE"Snl.
n=0 0

n=
Since by assumption 7' is continuous on H*(T) and commutes with shift operator

S, the above relation implies

TK, = iZ”TS”l = iE"S”TZ = iznsnw since ¢ =TI,
n=0

=9 7" =¢K, = MyK., z€D.
n=0

So we get TK, = MyK, for z € D. Thus ¢ € H*(D). Moreover, since T" and
M, are continuous and {K, : z € D} is total in H?(T), then we have T = M.

For the uniqueness part, suppose that there exists v, and 1, such that T' =
My, and T = My, . It follows by (4.3) that

TKZ:szle:lez and TKZ:szKZ:w2KZ7
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which yields
77ZJ1[(Z = Mlez = ngKz = ¢2Kz-

Thus 1/)1 = 1/)2. ]

Corollary 4.1.6. Let M be a closed non-zero subspace of H*(T) and S be the
shift operator. If M is invariant for the adjoint S*, i.e. S*h € M for all h € M,
then the closed linear span of {S"(M) :n=0,1,...} coincides with H*(T).

Proof. Let M be a closed non-zero subspace of H?(T). Denote by C the closed
linear span of {S™"(M) : n = 0,1,...}. Since S*S = [ and by assumption
S*(M) C M, then C is invariant for S*, i.e. S*(S"(g)) C C for all ¢ € M.
In fact S*(S™(g)) = S™'(g) C C as SS* = I. Clearly C is also invariant for S.

Let P be the orthogonal projection to the closed linear span C.
Claim: PS = SP.

By using the definition of orthogonal projection, for g = g1 + ¢go where ¢, €
M, and g, € M+, we have P(g) = g;. Taking h € M, (h,Sgy) = (S*h, g2) =0
since, by assumption, S*h € M. In other words, Sgs € M=*. Then

(PS)(9) = (PS)(g1 + 92) = P(S(g1) + S(92)) = S(91) = (SP)(9),

that is, PS = SP as claimed.
By previous theorem, P = M, for some ¢y € H*(D). Since P? = P, we
have (M,)? = My which implies that 1(z)* = 1(2). But since ¢» € H*®(D), 1) is

analytic. This means, ©* = 1 only if ¢)(z) = 0 or v(z) = 1. By assumption since
M #£ 0, then ¢(z) = 1. That is,

Myh = hfor all he€ H”
Hence the closed linear span of {S"(M) :n =0,1,...} coincides with H*(T). [

The following theorem states that two functions in H?*(T) can coincide on a

set of positive o- measure only when they represent one and the same element of
H?(T).
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Theorem 4.1.7. A function h € H*(T) can vanish on a measurable subset A of

T with positive o-measure only if h = 0.

Proof. Let A be a measurable subset T with positive o-measure. Consider the
subspace M := {f € H*(T): f({)=0on A o — a.e (almost everywhere)}.

Claim: M = {0}.

M is a closed subspace since strong convergence in H?(T) implies convergence
in measure on T. Let S be the shift operator. Since, by definition, S(h) € M
for all h € M, then M is invariant for S. Let P be the orthogonal projection
onto M and [ be the constant function with value 1. Consider g := PI. Then
l—g=1—Pl=(I— P)lis orthogonal to M. As M is invariant for S, it follows
that [ — g is also orthogonal to S™g for n =0,1,...

Since
(S"g,1) =(S"g)(0) =0 for n=1,2,...,

we have
0= (S"g.1— g) = / (5" )T = 9 )do(0)
_ / §"(O)g(OTQ)do(C) / (5"9) ()G (D)o (0)
__ / Clg(Q)Pdo(¢)  as (Sg,1) =0,

This means that all Fourier coefficients of |g|?, except the constant term, vanish,
thus |g(¢)|? is constant on T o — a.e. Since g = Pl € M, g(¢) vanishes on A
of positive o-measure which implies that g = 0, i.e. ¢ = Pl = 0. This means [ is
orthogonal to M. Then for each f € M, as Sf € M, we have (S*f)(¢) = f(¢),
hence S*f vanishes on A ¢ — a.e., which means that M is invariant for S*.
Hence, since M is invariant for both S and S* and [ is not in M, by previous
corollary, M = {0}. O

Corollary 4.1.8. Let P, be the orthogonal projection from the Hilbert space
L3(T) to H*(T). If A is a measurable subset of T with positive o-measure, then
{P.(xaf): f € LAT)} is a dense subspace of H*(T), where xx(¢) = 1 is the

characteristic function of A.
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Proof. We show that, if H*(T) 2 h L xa f for all f € L*(T), then h = 0. To see

this, consider the previous theorem,

0= (xah ) = / (ea B)(OR()dor ()

= /A hOR(C)do (¢) = /A 1 (¢)[Pdo(C)

implies that h vanishes on A o — a.e. Hence {P,(xa f) : f € L*(T)} is a dense
subspace of H?(T). O

A consequence of the above proof is that, {P,(xa g) : g € H*(T)} is dense in
H(T)}.

4.2 Interpolation Inside Unit Disc

In this section we consider interpolation on finite and infinite subsets of the unit

disc. In the following theorem we consider interpolation on a finite subset.

Theorem 4.2.1. (Nevanlinna-Pick) Let X = {z1,...,2,} be a finite subset of D
and ¢ be a function on X. Then, in order for there to exist an analytic function
1 € H®(D) such that

[V|lo <1 and P(z) = é(z), ((=1,2,...,n) (4.5)
it is necessary and sufficient that the kernel [%] on X is positive definite,
that is,

zi)9(2;) "
Z & 5] — >0 for all {&}1, C C. (4.6)
— 2%

2,7=1

Proof. Necessity: Suppose that there exists 1 € H*(D) satisfying (4.5).

Claim: MK, = ¢(2)K, where K, (w)=K(w,z) = 12— for w,zeD.

1—wz

By using the properties of multiplication operators and reproducing kernels,
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we get
(M) (w) = (MK, Ky) = (K, My Ky) = (K2, 9 (2) Ku)
(2) (K, Ky) = 9(2) K (w, 2) = ¢(2) K (2, w)
= ¥(2) K (w).
Hence MJ)KZ = WKZ for z € D, as claimed.

Since, by assumption, |[¢|| < 1, and by Lemma 4.1.3/ we have | Myl =
|%]|0, combining these we get [[My|| = [[Mj| < 1. Then using Claim and as-

sumption,

0< DGR = MO S GE.)IP as [[M] <1
=1 =1

=D GE P =11 GMK.|?
j=1 j=1

=D GEL P =11 &GuE) KL 1P as MK, = ¢(2)K.
j=1 j=1

= (Z &R, Z@Kz) - (Z & (2K, Z&MKZJ->
=) GG — Pz (z)(K,,, Ke)

3,0=1
=> & 5253 1 — 2)0) o an {&y, cc,
7,7=1 ]

which is the desired result.

[1—¢>(Z¢>szv>

- | on X is positive definite,

Sufficiency: Suppose that the kernel
that is,
Z £ 5] 2)0(2) >0 for all [&].

1—22
1,7=1 g

Denote by M the closed linear span of K, (j = 1,2,...,n), and S shift operator.
By the Claim in the necessity part, we have S*K, = ZK, for any z € . This
implies that M is invariant for S*. Then consider the following function

" Hj;éi 1:22%-

U(z)=) T ¢(zi)-
#i 122,

i=1
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Note that this function ¢ € H>°(ID) satisfies the following

V(z)=0¢(z) (i=1,2,...,n). (4.7)

Let P be the orthogonal projection onto M. Now define the linear operator T’
on M by
T =PMyg|,, (4.8)

Since (4.7) is satisfied, then (4.6) becomes

S EE) S gy gy,

1-— Zigj

i,j=1

It follows that ||T*h|| < ||h|| for b € M and hence ||T'|| < 1. To be able to finish

this proof we need the following lemma.

Lemma 4.2.2. Suppose that My is a non-zero closed subspace of H*(T), in-
variant for the adjoint S*, and that Ty is a continuous linear operator on My,
commuting with the restricted shift Sy = POS|MO where Py is the orthogonal
projection onto My, that is,

T0So = SoTp. (4.9)

Then the closed linear span My of My and SM s invariant for S* and there

s a continuous linear operator Ty on My such that
BTy =Tol, ||l =|[Toll, and 115 =5T, (4.10)

where S; = PlS‘MI, Py being the orthogonal projection onto M.

Proof. We prove this lemma in five steps.
Step 1: M; s invariant for S*.

By definition, M is invariant for S* means S*(My) C M. Since S*S = I,
we have S*(S(My)) = M. Then, since M, is defined as closed linear span of
M, and S(M,), we have M, is invariant for S*.

Step 2: S1 =SF on M;.
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Let M; > g be orthogonal on M. Then, since by Step 1, S*h € M; for
h € My, it follows that

(Sg,h) = (g,S*h) =0 for h € M,
that is, Sg is orthogonal to M, and
(Sg,Sh) = (g,h) =0 for g€ My, h € M,.

This implies that Sg is also orthogonal to S(Mj). Now, since S; = P1.S on My,

where P; is the orthogonal projection onto My, then we get
S1g = P1Sg= Pi(S(g)) =0 because S(g) L Mo.
It follows that S; = S1 P on M;. Since S(My) C Mj, we obtain

Slzslpozspo.

Before the third step, without loss of generality we assume that we have
[To]| = 1.

Step 3: ||(Sl — S()P())T()Poh” S ||<]1 — (T()Po)*(Topo))l/Q : Sth fO’I" h € Ml,
and I, is the identity operator of My.

By assumptions and previous steps, we have the following,

1(S1 — SoPo)ToPoh||* = |(SPy — SoPo)ToPohl|)* = ||(S — So) PoToPoh||
= (S = SRy PyToPohl|> = ||(I — Po)SPyToPohl?
= | SPyToPoh|)* — || SoToPohl|?
< |Pohll* = [1SoToPoh||* = [|SPohl|* — || ToSo Poh |1
= [|S1h]]* = [ ToPoSih|?
= (S1h, S1h) — (Ty PyS1h, ToPyS1h)
= (S1h, Sih) — ((ToFPo)"(ToFPo)Sih, Sih)
= (S1h — (To Py)* (To Fy), S1h)
= ((lh = (To )" (To Fp)) Sih, Sih).
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Considering the identity operator I; of My, since [|TyFy|| < 0 implies
I — (TyPy)*(TyPy) > 1, we can consider the positive definite square root

(I, — (ToPy)* (To Py)) /2.
So from the above inequality it follows as
||<Sl - S()PQ)TOP()h” S ||(]1 — (T()P[))*(T()Po))l/Q . Sth for h e Ml.

This means that we have a well-defined linear operator from the range of

(I, — (ToPy)*(ToPy))'/? - Sy to the range of (S; — SoPy)ToP, and of norm < 1.
Now consider its continuous extension, composed with the orthogonal projection
to the closure of the range of (I} — (TyPy)*(TyPy))Y/? - Si, then we can conclude
that there is a continuous linear operator L from M to the closure of the range
of Sy — SoP, such that || L] <1 and

(Sl - SOPO)TOPO = L (Il - (Topo)*<T0P0))l/2 . Sl- (411)

Define T7 by
Ty = ToPy + L (I, — (ToPy)*(TyPy)) /2. (4.12)

Step 4: POT1 = T()PO and T15’1 = SlTl.

Since the range of L is contained in the closure of S — Sy F, applying Fj to
both sides of (4.12), we get

1/2
%ﬂz%%%+ﬂ¢@fﬂ%%ﬂ%%w
= Py/To Py + Po(S1 — SoFo)To Py
= P(]T()PO since P()(Sl — S()P()) =0.
Similarly,
T)S; = TyPySy + L (I — (TyPy)*(To Py))*/? Sy
= T()S()PO + (Sl - S()P())TOPO
= SlTOPO
- SlTl.
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Hence
POT1 = T()PO and T15’1 = SlTl.

Step 5: [[Th]| = [|To]l-

Since PyL = 0, we have

ITih|)> = (|ToPoh||* + || L (I — (ToPo)*(Ty o))"/ Rl
< |NToPoh||* + Al = [ ToPoh|* by |L] <1
= ||n|?,

which yields ||T1]] < 1 = ||To||.

Conversely,
ITo]l = [IToPoll = [ PoTa ]l < 173

So we have || T1]| = ||To]|-

Therefore T satisfies all the requirements in (4.10) of Lemma. ]

Let us return to the proof of sufficiency part of previous theorem. To avoid
confusion, let us take My := M and T; := T in Lemma. We have that M, is
invariant under S* and ||Ty|| < 1. Since Ty = Py M Mo and Sy = POS‘MO and
Mot is invariant under S and My, we have FoM Py = ByMj and By)SH = FyS
such that

T(]SO == POMQ;POS‘MO - POM@‘S‘MO - P()SM@ - S()T().

[t

Now we can change our theorem into the lemma in such a way that, we have to
find a sequence of linear operators T;,, on M,,, the closed linear span of M,_;
and S(M,,—1), (n=1,2,...), such that

PnflTn = Tnflpnfl, ”TnH = HTn,1H and TnSn = SnTru (413)

where, for each n, P, is the orthogonal projection onto M,, and S, = P,S | M
By Corollary 4.1.6, the closed linear span of {M,, : n = 0,1,...} which is equal
to that of {S™(Mg) :n =0,1,...} must coincide with H?(T). This means that,

P, strongly converges to I as n — oo. By the equation (4.13)) , we reach

\T.P.| <1 and P,T,P,=T,P, forn <m, (4.14)
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and hence it follows that there is a continuous linear operator T,, on H?*(T) such
that
[Tl <1 and PTw=T,P, for n=01,... (4.15)

Claim: T,,S = ST,,.

Since P, strongly converges to I as n — oo, then S, P, strongly converges to
S. By (4.15), we have Ty, = lim,,_,oo P,/ T, P,,. These imply

ST =S 7111}010 P, T,P, = nll_% Sn TPy
= nh_}rgo T,S,P, by (4.13)
= TOO(JEEO SnPy) = TsS.
Then by Theorem 4.1.5, there exists » € H*(D) such that
V]l <1 and My =Tw. (4.16)
Then by (4.15) and (4.16) we reach to
PoMy|,, = PoTw|,,, = To-

Finally, by (4.7) and (4.16),

%
= <TOOKZNKZ¢> = <M¢K2i’KZi>
_ Y(2i)
1= [z]*
Hence 9 satisfies all the requirements in (4.5) of Theorem 4.2.1. O

In the following corollary we consider interpolation on an infinite subset of

the unit disc.

Corollary 4.2.3. Let X be an infinite subset of D, and ¢ a function on X. In
order for there to exist a function 1 € H>®(D) such that

|V||oo <1 and (z) = ¢(z) for ze€ X, (4.17)

sz(zj)] on X is positive definite.

it is necessary and sufficient that the kernel [—7 2=

J



CHAPTER 4. INTERPOLATION THEOREMS 73

Proof. This follows by an application of Zorn’s Lemma and the previous theorem.

]

4.3 Interpolation on the Boundary

We will end this chapter by a theorem of interpolation on the boundary of unit

disk D. Before this we need the following lemma.

Lemma 4.3.1. Let A be a measurable subset of T and ¢ a bounded measurable
function on A. Then in order for there to exist 1p € H*(D) such that

[¥lle <1 and $(¢) = ¢(¢) for €A o —ae, (4.18)

it 1s mecessary and sufficient that

1P (@xa A < IPr(xa £ for f e L*(T). (4.19)

Proof. Suppose that (4.18) is satisfied for ¢» € H*(D). Then

|1Pr(oxa )ll= sup  |@dxafig)l=  sup  |[(xaf gl
9eH2(D), gl <1 9eH2(D), gll<1

< [[9llooll P4 (xa £l
< PO ANl since [[¢fleo < 1.

Hence (4.19) is satisfied.

Conversely, suppose that (4.19) is satisfied. Since by Corollary 4.1.8
{P.(xaf) : f € L*(T)} is a dense subspace of H?*(T), then there exists an
operator T' such that

ITI| <1 and TPy(xaf)=P(dxaf) for feL*T).

Claim: T'S* = §*T.
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Denote by S the multiplication by the function k(¢) := ¢ in L*(T). Then we
have S*P; = P, S*. It follows that

S*TPy(xa f) = S*Pi(dxa f) = P.S*(dxa f)
= P (¢xa S*f) :TP+(XAS f)
=TP,(S*(xa f)) = TS*Py(xa f)-

Since {P, (xa f) : f € L*(T)} is dense in H*(T), the above equation implies
S*T =TS,
By Theorem [4.1.5 there exists ¢ € H*(D) such that
[¥lle = IT" <1 and  T" = My,
Finally, it remains to show () = ¢(¢) for € A o —a.e. Take f € L*(T). Then
[ HOTC(O) = (L f) = (L Pl 1)

= ({LTP (xa 1)) = {0, P+(¢XA f))

— (1LFxa f) = /

V() =¢(() for( €A, oc—ae. 0

which yields that

Theorem 4.3.2. Let A be a measurable subset of T with positive o-measure and ¢
a bounded measurable function on A. Then in order for there to exist ¢ € H>*(D)

such that
[¥lloe <1 and ¥(¢) = ¢(¢) for (€A o —ae, (4.20)

it 1s necessary and sufficient that
. L= () 5
lim / / (25 T@(Qdo(€)do(() 2 0 for all f € XT). (421)

Proof. Recall that in Chapter 2, the orthogonal projection Py2 was expressed in

terms of the Szego kernel;

(PH29>(Z) = <g7Kz>L27 for z € D and g€ LQ(T)a
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and
(Pr29)(C) = liIl}(g, K, ¢) for almost all ¢ € T.

Then for 0 <r <1 and n € T, by above equations we get the followings;

(Pogrm) = [ 00— do(0

and

tiy [ 1(Prg)rm) ~ <P+g>< )Pdo(n)

~tiny /| [ 901 1_mC o©) = [5OGO ast
=t [ [ o0z = )0t

—1 _”72__772 _ 2
i“/ JEG 1—nC—TnC+T‘n|C|2> O detm)

It follows that

IPeglP = (Pig. Prg) =iy [ (Pg)(om)Pdoti)

i [([ ] lgffjﬁ19_(_%6do<s>do<<>)da<n>

= lim / JA / 1_rn<1_m do(1))3E9(C)do (E)do ()

zygi// vy K (O)do(e)do(n)
Hl//T 1—r2eg do()do(m).

Therefore for all g € £2(T), we have

Pl =tim [ [ aElo(o(e)aoo) (4.2

Since by previous lemma we have (4.19) by (4.18), these imply

1P (xa 9)II* = I[P+ (@ xa 9)|I* = 0.

Then it follows by (4 22) that

i [ (45 1_7% 9©9(C)do(€)do(¢) > 0 for all g€ LA(T).




Appendix A

Hilbert Spaces

A.1 Definitions

Definition A.1.1. Let H be a linear space over the complex field C. An inner
product on ‘H is a function (-,-) : H x H — C which satisfies the following

conditions:

(i) (f.9) =g, f) for f,g € H.

(i) (Af + pg, h) = Xf,h) + p{g, h) and
(f,\g+ph) = Xf,g) +a(f,h) for \,pcC and f,g and h€H.

(iii) (f,f) >0for feH and (f, f)=0 ifandonlyif f=0.

Definition A.1.2. A pre-Hilbert space (inner product space) H is a linear space

over C with an inner product defined on it.

If H is an inner product space, || - || defines a norm on H by
1£1 = (.02
Sometimes we use the notations || - || and (-, )y for norm and inner product,
respectively.

76
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Some important properties:

I f]] > 0 and equality occurs only when f = 0. (A.1)
1EfIF = I€[I[f]] for feH, §eC. (A.2)
[(Fal < Nfllgll for fog €™ (Schwarz Inequality), (A-3)

and equality occurs when f and ¢ are linearly dependent.
If +gll <IIfll +llgll for f,g € H (Triangular Inequality), (A.4)
and equality occurs when f and ¢ are linearly dependent.
(.00 = 30T+ 9l =7 —gll* +ill7 +igl? ~ 1 —igl) for fgeH (AD)
(polarization identity).
I f+al>+11f—gll* = 2|lfI?+2]|g|]* for f,g € H (parallelogram identity). (A.6)

Define d(f,g) := || f — g/ the binary function. Observe that for f,g and h € H

and for all £ € C, d satisfies all requirements to be a metric:
(7) d(f,g) > 0 and equality occurs if and only if f = g.
(ii) d(f,g) = d(g, f)-
(iid) d(f,g) < d(f,h) +d(h,g).
() d(f —h,g —h) =d(f,g) (translation invariant).
(v) d(&f,€9) = [€] - d(f, 9).

This binary function introduces metric topology in H which is called strong

topology or norm topology.

In other words a sequence (f),>o in H converges strongly to f if || f,—f| —

0 as n — oo.
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Definition A.1.3. A map L from a linear space to another is called linear oper-

ator if it satisfies
L(nf+Cg)=nLf+(Lg

forn, (e C and f,g€H.

The operator L is continuous if L is continuous at each point of domain of
L. To be able to speak of continuity of a linear operator, the domain and range

spaces have to be equipped with respective topologies.

Let L be a linear operator from H to G with H and G are pre-Hilbert spaces.
The Lipschitz constant for a linear operator L is called its norm and denoted by

|L|| where

[N = sup{[|Lfllg/[fll# : 0 # f € H}. (A7)

Theorem A.1.4. Let L be a linear operator from H to G where H and G are

pre-Hilbert spaces. The followings are mutually equivalent:
(1) L is continuous
(17) L is bounded in the sense that
sup{[|Lfllc : [Ifllm < o} < oo
for 0<o0<o0.

(i4i) L is Lipschitz continuous in the sense that there is 0 < v < oo such

that
ILf = Lyl <AyIf — gl

for f,g € H.

Proof. (1)=(ii)

Let L be continuous. Define a neighborhood of 0 in G as v ={g: ||g/lg < 1}.
Continuity of L implies L0 = 0 and there is a neighborhood (of 0 in H) of the
form w={f:|f|l» <0} which is mapped into v by L, where § > 0. Now let
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us take a nonzero f € H such that || f|x =< p, for p > 0. Since [|6f/pllx <9,

then %f €u. As L is linear,

oLflg/p=I1LGf/p)llg =1

and

sup{[|Lflg = 1fll+ = o} =

SIS

(i) = (iii)

Let L satisfies (ii). Consider the norm of Lf — Lg. By linearity property of
L,
ILf = Lylle = |L(f = 9llg =vf =gl for f.geH,

where 7 is the supremum in (i) with p = 1.
(ili)= (i)

This is obvious since boundedness implies continuity. Il

Denote by B(H,G), all continuous linear operators from H to G, H and G are
pre-Hilbert spaces. B(H,G) becomes a linear space with respect to the natural

addition and scalar multiplication:
L+ CM)f=ELf + (M,
where L and M are linear operators, f € H and & € C.
When H = G, B(H,G) is denoted by B(H).

Let K be another pre-Hilbert space. If L € B(H,G) and K € B(G,K), then
their product will be KL € B('H, K) and defined by

(KL)f = K(Lf) for feH.

Moreover we have the following properties:

(i) K(EL+ (M) =KL+ (KM
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(i) L= 1€l - (1L
(iii) [|L + M| < [[L[| + [|M]} and

(iv) [[ELI| < [ECIHIL]T

For ‘H,G are pre-Hilbert spaces and L, M are linear operators, B(H,G) be-
comes a metric space with respect to the translation invariant, positively homoge-
nous distance function

d(L, M) = ||L — M]|.

For each K € B(G,K), the map L —— KL becomes a continuous linear
operator from B(H,G) to B(H,K).

Definition A.1.5. A linear operator from H to the scalar field C is called a

linear functional (or linear form).

Definition A.1.6. A pre-Hilbert space H is called a Hilbert space if it is complete
in metric. In other words, if f,, is a Cauchy sequence in H, i.e. ||f, — fm| — O

when n, m — oo, then there is f € H such that || f, — f|| — 0 when n — oc.

Every subspace of a pre-Hilbert space is again a pre-Hilbert space with respect
to the induced inner product; but for a subspace of a Hilbert space to be again a

Hilbert space, it has to be closed.

Let 'H be a pre-Hilbert space. We can imbed H as a dense subspace of a
Hilbert space H in such a way that

(fra)g=1(9)n forf,geH.

This canonical method is called completion. If we have a continuous linear opera-
tor L from a dense subspace M of a Hilbert space ‘H to a Hilbert space G, we can
extend L uniquely to a continuous linear operator from H to G with preserving

norm.

Theorem A.1.7. Let M be a dense subspace of a Hilbert space H, and N a
dense subspace of a Hilbert space G. If a linear operator L from M to G satisfies
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(LS. g6l < W flnllgllg  for feH, geM with some 0 < < oo, (A8)

then it is uniquely extended to a continuous linear operator from M to G with

norm < . The minimum of such v coincides with norm.

Proof. Let L be a linear operator from M to G and satisfies (A.8)). By fixing f,
since g — (Lf,g)g and g — ||g||g are continuous, we can assume that (A.8])

is satisfied for all ¢ € G.

Now by using (A.8) and Schwarz inequality, we get

ILfllg® = (Lf. LE)g < AN InllLSf g

which implies
ILfllg <Al forall fe M.

Hence L is continuous operator from M to G with norm < 7. So we can
extend L uniquely to a continuous linear operator from H to G with preserving

norm. It is obvious that minimum of v coincides with norm. O

Theorem A.1.8. Let L*(2, 1) consists of all measurable functions f(w) on
such that

téwwWMM<w7 (A.9)

where (2, 1) is a measure space such that € is the union of subsets of finite
positive measure. Then L*(), 1) becomes a Hilbert space with respect to the inner

product

umwzéﬂmﬁﬁww» (A.10)

Proof. We have
[f(@) + g(@)[* < 2{[f(W)* + |g(w)[*}

which implies that L2(£2, 1) is a linear space. If we expand the left handside, we

have

(@) + 9@ = [f @) +g(w)* + 2f (w)g(w) < 2{|FW)[* + |g(w)[*}
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which implies that

@)@ < 7P + o))

So, (f,g) in (A.10) is well-defined and the linear space L*(Q,u) becomes a
pre-Hilbert space.
Completeness:

Let us take a Cauchy sequence (f,),>1 in L*(€, ). Suppose that
D w1 = fall =7 < 0.
n=1

For any m, consider the following integration,

/ernﬂ () Pdp(w) <Z‘|fn+1 A2 = 4% < oo

Then by the Lebesque theorem,
[ 3 ) = Paute) <7 < o0
which implies
Z | fat1(w (w)] < oo for almost all w

and

/Q @) /Z|fn+1 (W)[Pdp(w) < 4% < oo

Hence for almost all w , the sequence (f,(w))n,>1 converges. To find the limit of

f(w), consider the following

Fun (@) = fulw)? < Z Fen(@) = filw)?

<3 @) — ful)] = 9()
and again by Lebesque theorem, -
tim 1, = S = lim (= ffo = £) = i [ 11, (0) = F(0)Paute)
< [ Jim 1£a) = F@)Pdute) =0,

n—oo
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Therefore f, converges strongly to f, which means L?*(£2, 1) is complete and

it is a Hilbert space with respect to the given inner product. O

Let 'H and G be Hilbert spaces. The algebraic direct sum of ‘H and G, con-
sisting of fdg with the functions f € H and g € G, becomes a Hilbert space,
denoted by H@G with respect to the inner product

(fog, f'og) = (f, fin+ (9.9

Let 'H and G be Hilbert spaces. The algebraic tensor product of ‘H and G,
consisting of finite sums of f®g with f € 'H and g € G, becomes a pre-Hilbert

space with respect to the inner product

O fi@9i, ) Fi0g)) =D (fus [iw - (9095
i J

2
Definition A.1.9. The canonical completion of the algebraic tensor product of

‘H and G, where H and G are Hilbert spaces, is called tensor product Hilbert space
and denoted by H®G.

A.2 Projection

We start this section with an important theorem.

Theorem A.2.1 (F.Riesz). For each continuous linear functional ¢ on a Hilbert

space H, there exists uniquely g € H such that

o(f) = (f,9) for f € H. (A.11)

Proof. For the case ¢ =0, take g = 1, then we are done.

Let ¢ # 0. For this case, we can suppose that ||¢|| = 1. Then there exists a

sequence ¢, such that

lgnll =1 (n=1,2,..) and ¢(gn) — [|¢] =1asn — oco.
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Then by parallelogram rule
1gm = gall* + lgm + gall* = 2llgmll* + 2l gull* = 2+ 2 = 4.
On the other hand by triangular rule,
2= [lgmll + llgnll = llgm + gnll;
then we get
2 2 [|gm + gnll = |9(gm) + G(gn)| — 2 s m,n — .
Thus,
1gm + gnll =2 and  |lgm + gnll* = 4. So, [|gm — gull — 0 as m,n — oc.

Then, due to the metric completeness, g, converges strongly to some g such
that [[g]| = ¢(g) = 1.

Let f € H be arbitrary. If (f, g) = 0, then for all ¢ € C,

lg + CFI1* = llgl* + Clg. f) + ¢{f, ) + ICPIAI = 1+ ISP A1

and

lg + CfI* = o9 + CHI* = |o(g) + Co(f)* = 11+ Co(f)I?
= 1+ 2Re¢o(f) + [CI*|o(f)*.

Combining these equations, we get

L+ [CPIAIP = 1+ 2ReCo(f) + [CIP[0(f)I.

Since ( is arbitrary, then ¢(f) = 0. This implies

o(f) = (f,g) for [ satisfying (f,g)=0.

Now consider the other case which is (f,g) # 0. Define h := f — (f,g)g. It
follows that,
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Then,
0=¢(h) =o(f) = (f,9)0(g) = o(f) — ([, 9)-
Hence we obtain ¢(f) = (f, g).

To see the uniqueness of g, suppose that there exists ¢’ € H such that for

each linear functional ¢, we have

o(f) = (f.9").

Also this equality is satisfied for g. Thus we have

o(f)=(f.9)=(f.9)

which implies
<fa g— g,> =0.
Hence g = ¢'. [
Theorem A.2.2. For any closed subspace M of a Hilbert space H,
H = MSM* (algebraic direct sum),
that is, each f € H can be uniquely written in the form

f:fM+fML U}Zth fM EM, f./\/lJ- GMJ—. (A12)

Moreover, ||fm]| coincides with the distance from f to M*;

I famll = min{|| f — gl| : g € M}, (A.13)

the distance being attained only at f,..

Proof. Since M is closed, it is also a Hilbert space. By Riesz theorem to the
continuous functional h —— (h, g) restricted to M, there is fy € M, such
that

(h, f) = (h, fm) for h € M.

By this, we get (h,f — fu) = 0. Let us define fyo = f — fa. Since
(h, f — fm) =0, then fyo Lh  forall he M. So, frpr € ML, Hence

f=fu+fur where fuy €M, fro € M.
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For the uniqueness, let f = f, + f},. be any other decomposition of f, where
fam e M, fi,. € M*. Then,

f=fu+fur=Im+ frme

which implies that
faa = fu = fame = Fuqe

and by the last equality we obtain that fi = fi.

For the moreover part, let us take any g € M=L. Since (fy — g, f) = 0, we
get
1f = gl> = 1 fan+ Faar = gl = 1 faall? + [ e — gl

Then we have
If —gll* > |l fm]]*? and equality occurs when g = fr..

Hence,
| faall = min{ || f — gl : g € M},
O

Corollary A.2.3. In a Hilbert space, the closed linear span of any subset A

coincides with (A+)*.

Proof. Let M be the closed linear span of A. So, we have M C (AY)1. It
remains to show the other side of inclusion. As (A1)1 is a closed subspace
of H, so it is also a Hilbert space. Now by using the Theorem |A.2.2, for each
f € (AYH)E, f has a decomposition such that f = g+ h where ge& M, h €
(AH)+ and h is orthogonal to all of M. Since A C M, h must be orthogonal
to all of A. In other words, h must be in A+. But h is both in A+ and (A+)+. Hence
h=0and h =0= f—gimplies f = g € M ie. (AY)* C M. Consequently,
M = (AH)L O

Definition A.2.4. A subset of a Hilbert space H is said to be total (complete)
in H if 0 is the only element that is orthogonal to all of A, i.e. A+ = {0}.
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So by the Corollary [A.2.3, A is total if and only if every element of H can be

approximated by linear combinations of elements of A.

Definition A.2.5. When M is a closed subspace of H, the map f —— fu
determines a linear operator from H to M with norm < 1. This operator is

called the orthogonal projection to M and is denoted by P,.

If I is the identity operator, then I — Py, becomes the orthogonal projection
to M+ and

AP = 1 PafI1P + 1T = Paa) FII*. (A.14)

Theorem A.2.6 (Abstract Interpolation). Let H be a Hilbert space, X an
index set and vy a positive number. Given a map x — f, from X to 'H and one

x+——a, from X to C, there exists an element g € H such that

lgll <~v and (fu,9) =a, for z€X, (A.15)
iof and only iof
D &G <Y ELlfur fy) for (G, (A.16)

where [€,] denotes, in general, a function on X which vanishes outside a finite

number of points.

Proof. Suppose that (A.15) is satisfied for g € H. Then
ngxa_y% - | foa:c|2 - |Z€a:<fxug>|2 = |<Z é.acf;mg>|2a
z,y x xT €T

by the Schwarz inequality
<D &bl <A1 D &ful® =7 &&lfos ).
T T T,y

So (A.16) is satisfied.

Now suppose (A.16) is satisfied. Then the correspondence

Y Gafor— Y Guta
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defines a linear functional on the linear span of {f, : € X} with norm < #~.
This bounded functional can be extended to the closure of this linear span, and
then by using Riesz’s Representation Theorem (see Theorem [A.2.1) the vector g
can be found such that ||g|| <~ and (f,,g) = a, for all z € X. O

A.3 Weak Topology

Definition A.3.1. The weak topology of a Hilbert space H is the weakest topol-

ogy that makes continuous all linear functionals of the form f +— (f,g).

For an element f in the weak topology, a fundamental system of neighborhoods

of f consists of subsets of the form

U(f;Aje) ={h:[(f,g9) — (h,g)| <e for g€ A},

where A is a finite subset of H and € is a positive number. Then a directed net

{f»} converges weakly to f if and only if

(fr9) = {f.9)

for all ¢ € H.

Definition A.3.2. The (operator) weak topology in the space B(H,G) of contin-
uous linear operators from H to a Hilbert space G, is the weakest topology that

makes continuous all linear functionals of the form L —— (Lf, g) for f € H and

geqg.

Then a directed net {L,} converges (operator) weakly to L if and only if

(Laf,9) = (Lf,q).

Definition A.3.3. The (operator) strong topology is the weakest topology that

makes continuous all linear operators of the form L —— Lf for f € H.
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Then a directed net {L,} converges (operator) strongly to L if and only if
|Laf = Lfl =0
for all f € H.

Theorem A.3.4 ([1]). The closed unit ball U := {f : ||f|| < 1} of a Hilbert

space H is weakly compact.

Theorem A.3.5 ([1]). The closed unit ball {L : ||L| < 1} of B(H,G) is

(operator) weakly compact.

Theorem A.3.6. If a subset A of a Hilbert space H is weakly bounded in the

sense
sup [(f, g)| < oo for g€ ™, (A.17)
feA

then it is strongly bounded, that is, sup;ec, | f]| < oo.

Proof. Define
By ={g:|{f.9)| <nfor feA}, (n=123..)

Then for each n, B, will be a closed subset of ‘H and so H = Un B,,. By Baire
category theorem, since H is a complete metric space with respect to the strong
topology and H is covered by a countable number of closed sets, then at least

one of them has nonempty interior, say B,,. So, for some gy and € > 0,
V={g:llg— gl <€} C By,
Let g be in H. Since

lg0 + €g/llgll = goll = lllelg/llglll] < e,

then go+e€g/|lg|| will bein V. Then

e[{(f; /gl < I(f, 90 + g/ Nlg Dl + [{f; go)| < no 410 =2no for fe A

This implies,
[{f9)] < 2nollgll /e for  fe A
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Putting f instead of ¢ in the last inequality and using Schwarz inequality, we

get

sup < 2ng/e < o0.
feA

]

Theorem A.3.7. Let H and G be Hilbert spaces. For a linear operator L from

H to G , strong continuity and weak continuity are the same thing.

Proof. Let L be weakly continuous. Since by Theorem [A.3.4/ the unit ball U of a
Hilbert space is weakly compact, it follows that L(U) is also weakly compact and
so weakly bounded in G. Since Theorem |A.3.6 states that weakly boundedness
implies strongly boundedness, L(U) will be strongly bounded and hence it is
strongly continuous by TheoremA.1.4

Now suppose that L is strongly continuous. So we have, for each g € G, the
linear functional f —— (Lf, g)g is continuous on H. Now by Riesz theorem, there
is ¢’ € 'H such that,

fr—Af,9)nfor feH,
then
(Lf,9)g = (f.g)y for f € H.

Hence L is weakly continuous. O]

Theorem A.3.8 ([1]). Let H and G be Hilbert spaces. Then the following as-
sertions for a subset L of B(H,G) are mutually equivalent:

(1) L is (operator) weakly bounded;
sup [(Lf,g)| <oo for feH, geg.
Le L

(12)L is (operator) strongly bounded;

sup ||[Lf|| < oo for f € H.
Le L

(731) L is norm bounded (or uniformly bounded);

sup ||L| < oo.
Le L
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Definition A.3.9. A linear operator L from H to G, where H and G are Hilbert

spaces, is said to be closed if its graph

Gr:={f®eLf:feH} (A.18)
is a closed subspace of the direct sum space H®G, that is, if |f,, — f|| — 0 in H
as (n — oo0) and |[Lf, —g|| — 0in G as (n — o0), then g = Lf.

Theorem A.3.10. Any closed linear operator L from a Hilbert space H to an-

other Hilbert space G is continuous.

Proof. Let G, be the graph of L. Since L is closed, then G, is a closed subspace
and so it is a Hilbert space. Consider the linear operator ¢ : f&Lf —— f from
G to H. ¢ is a bijection because of closedness of G;. Let U be the unit ball
of Gp. By Theorem [A.3.4 Uy, is weakly compact. This implies ¢(Uy) is weakly
compact and so is |J,—, n¢(Ur) = H. Now by Baire theorem, ¢(U;) has non-
empty interior. By the proof of Theorem [A.3.6, there exists 0 < v < oo such
that
[f®LSI < Al f[] for f € H.

This implies
If@LFI? = (IfSLLN NfRLFI) = (f, £) + (Lf,LE) = 1FIP + ILFIP < 22ILAI1%

Then we obtain
ILFI < (v = D)2 £

Hence L is continuous. O

Corollary A.3.11 ([1]). Every continuous linear bijection between Hilbert spaces

has continuous inverse.

A.4 Self-adjoint Operators

Definition A.4.1. Let H and G are Hilbert spaces. A function ® : HxG — C
is a sesquilinear form (or function) if for f,h € H, ¢,k € G and o, 3 € C,

(i) ®(af + Bh,g) = a®(f, ) + f(h, g) (A-19)
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(ii) ®(f, ag + Bk) =aP(f, 9) + BL(f, k) (A.20)

are satisfied.

If L € B(H,G), then the sesquilinear form ® is defined as

®(f,9) = (L}, 9)c (A.21)

and it is bounded,

[0, 9)l <Allfllllgllg  for feH, ged, (A.22)

where v can take any value not less than || L||.

If we are given a sesqui-linear form ® satisfies boundedness condition (A.22),
then for fixed f € H, the linear functional g — ®(f,g) is continuous on G.
Applying Riesz theorem, there exists uniquely f’ € G such that

1/ lg < AIIfll% and (f,g) = (f',g)g for g€g.

Then f — f’ becomes linear, so we obtain ®(f,q) = (f',g)¢ = (Lf, g)g-

Definition A.4.2. If L € B(H,G), then there exists a unique operator in
B(G,H), called adjoint of L, denoted by L* satisfying

O(f,9) = (f, L*g)n for feH,gecg. (A.23)

By the definition of L and L*, we have the following relation,

<Lf7 g>g = <f7 L*g>7'( for f € H7 g€ g. (A24)

Some other properties of adjoint operator:

10 = (1] (A.25)

Given H,G and K are Hilbert spaces, if K € B(G,K) and L € B(H,G),
then
KL € B(H,K) and (KL)* = L*K*. (A.26)



APPENDIX A. HILBERT SPACES 93

ker L = (RanL*)* and (ker L)* = closure{RanL"} (A.27)

where ker L is the kernel of L and RanL is the range of L.

Theorem A.4.3 ([1]). For L, M € B(H,G), the following assertions are mutu-

ally equivalent.
(1) Ran(M) C Ran(L).
(1i) There exists K € B(H) such that M = LK.
(131) There exists 0 < v < oo such that
Mgl <~[IL*gll for g€g.

Definition A.4.4. Let H be a Hilbert space. A function ¢ : H — C is a
quadratic form if for all f € H and ¢ € C,

$(Cf) = ICPPe(f) (A.28)

and
o(f +9) +o(f —g) =2{a(f) + &(9)} (A.29)

are satisfied.

For L € B(H), the quadratic form ¢ on H is defined as

o(f) = (Lf, [) for f €H, (A.30)

and it is bounded
() < ANfII for feH, (A.31)

where v can take any value not less than || L||.

The sesqui-linear form ® associated with L can be recaptured from quadratic

form ¢ by the following equation:

B(f,9) = {00 +9) = 0(F ~ )} + {6/ +ig) ~6(f —ig)} (A3

for all f,g € 'H.
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Definition A.4.5. A continuous linear operator L on a Hilbert space H is said
to be self-adjoint if L = L*.

Remark A.4.6. L is self adjoint if and only if the associated sesqui-linear form

® is Hermitian.

Remark A.4.7. If L is self-adjoint, norm of L coincides with the minimum of

v in (A.31) for the associated quadratic form.

Theorem A.4.8. If L is a continuous self-adjoint operator, then

IL]] = sup{[(LS, A= LA < 13- (A.33)

Proof. Let v = sup{|(Lf, /)] - [[f]| < 1}.
It is obvious that v < ||L||. Consider the reverse direction. By the Remark [A.4.6,

since L is self-adjoint, then associated quadratic form is Hermitian, so real-valued.
Let fix f, g € H and choose ¢ such that

(L(e"f), g) = [(Lf. gl

Then using the equality (A.32), it follows that

(LS. 9)| = Re(L(" ), g)
= LULEF +0).¢"F + ) — (L(e"f — ).¢"F — g))
< T{e?F + gl + e = glI*y = TANFIE + gl

Now replace f and g by Af and % respectively, and take the minimum in A, we

obtain
KLf, o)l < llfllllgll for f,9 € H.

Hence we have
L] < 7.

]

Definition A.4.9. A self-adjoint operator L € B(H) is said to be positive definite
if (Lf,f)>0 forall feH. If (Lf, f)=0only when f =0, then L is said to
be strictly positive definite.
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Remark A.4.10. For any positive definite operator L € B(H), a generalized
Schwarz inequality holds:

(Lf,9)|> < (Lf.f)(Lg.qg). (A.34)

Theorem A.4.11. Let L and M be continuous positive definite operators on 'H
and G respectively. A continuous linear operator K from H to G satisfies the

inequality

(K f, 906> < (LS, /)n(Mg,g)g for fEH, g€G (A.35)

if and only if the continuous linear operator

L K~
K M

on the direct sum Hilbert space HPHG:
feg — (Lf + K7g)e(Kf + Mg)

is positive definite.

Proof. Suppose that (A.35) is satisfied. Let S stands for the matrix
L K
K M

(S(fog), fog) = (Lf+ K'g, f)n+ (Kf+ Mg,g)g,

then by using the property of adjoint operator and Schwarz inequality, the above

such that

equation follows as

(S(feg), fog) = (Lf, [in+ (K*g, f)ne +(Kf,9)g + (Mg, 9)g
= (Lf, fyne+ 9. Kf)g+ (K[ g)g + Mg, g)g
= (Lf, f)n+2Re(K [, g)g + (Mg, 9)g

> (Lf, [)n + (Mg, 9)g — 2/(Lf, [)n(Mg, 9)g

{\/<Lf, Hrn—/(Mg, g)g}* > 0.




APPENDIX A. HILBERT SPACES 96

Thus S is positive definite.

Conversely, let S be positive definite. By the above relation we have

0 <(S(fg), f®g) =(Lf+K"g, f)n+(Kf+Mg,g)g
= <Lf7 f)'H + <K*gvf>7'f + <Kfvg>g + <Mgag>g

then replacing ¢ with a suitable g, we get

<Lfa f>'H - 2|<Kfvg>g| + <Mgag>g > 0,

or

U, 9)al < 5 (LS. Fiwe+ (Mg, 9)g)

Then replacing f and g by Af and % respectively, we obtain

(K f,9)g|” < (Lf, f)n(Mg, g)g.
Il

Theorem A.4.12 ([1]). Let L be a continuous positive definite operator. Then
there exists uniquely a positive definite operator called the square root of L, de-
noted by L'/?, such that (L'/?)? = L.

Definition A.4.13. For a continuous linear operator L, the square root of the

positive definite operator L*L is called the modulus (operator) of L.

Definition A.4.14. A linear operator V between Hilbert spaces H and G is

called isometric or an isometry if it preserves the norm, that is,

IV Fllg = fll» for feX. (A.36)

By (A.36), a continuous linear operator V is isometric if and only if V*V = I,

in other words, V' preserves inner product :

<Vf7 Vg>g = <f7 g>7‘l for f7g €H. (A37)

Definition A.4.15. A linear operator U : H — H that is a surjective isometry

is called a wnitary (operator).
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If U € B(H) is a unitary operator, then U* = U™,

Definition A.4.16. A continuous linear operator U between Hilbert spaces H
and G is called a partial isometry if for f € (ker U)* = Ran(U*), ||Uf]l = ||f]l-
The space (ker U)* is called the initial space of U and the space Ran(U) is called
the final space of U.

For a partial isometry U, its adjoint U* is again a partial isometry.

Corollary A.4.17 ([1]). Each continuous linear operator L on H admits a
unique decomposition

L=UL, (A.38)

where L is positive definite and U is a partial isometry with initial space the
closure of Ran(L). Indeed, L must be the modulus |L|.
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