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Abstract: Several generalizations of the relativistic models of Burgers equations have recently been
established and developed on different spacetime geometries. In this work, we take into account the
de Sitter spacetime geometry, introduce our relativistic model by a technique based on the vanishing
pressure Euler equations of relativistic compressible fluids on a (1+1)-dimensional background and
construct a second order Godunov type finite volume scheme to examine numerical experiments
within an analysis of the cosmological constant. Numerical results demonstrate the efficiency of the
method for solutions containing shock and rarefaction waves.

Keywords: relativistic Burgers equation; Euler system; de Sitter metric; de Sitter backgrounds;
finite volume method; Godunov scheme

1. Introduction

A fundamental relativistic Burgers equation has recently been derived and generalized
to different spacetime geometries by LeFloch and his collaborators [1–4]. The first model
has been obtained by establishing a hyperbolic balance law satisfying the Lorentz invariance
property for flat geometry and then its relativistic generalizations were extended to the
Schwarzschild, Friedmann–Lemaitre–Robertson–Walker (FLRW), de Sitter and Schwarzschild–de
Sitter spacetimes [1–5].

In this article, we consider the “de Sitter” (dS) spacetime which is a member of the family of
the FLRW geometry. The line elements of the FLRW and the dS geometries share certain common
properties. In particular, these metrics are solutions to the Einstein field equations. Furthermore, the
Minkowski metric can be derived from particular cases of both the FLRW and the dS metrics. The
inspiration of derivation of the relativistic Burgers equation on the dS spacetimes is based on the
common properties of these geometries. We follow the instruction via [1,4,6] and take into account the
relativistic Euler equations on a given curved background M by the following general formulation of
balance laws:

∇α

(
Tαβ(ρ, u)

)
= 0,

Tαβ(ρ, u) = ρc2uαuβ + p(ρ)
(
uαuβ + gαβ

)
,

(1)

where ∇ is the covariant derivative operator, Tαβ is the energy-momentum tensor of perfect fluids,
ρ ≥ 0 denotes the mass-energy density of the fluid, c is the light speed and the unit timelike vector
field uα represents the velocity of the fluid so that gαβuαuβ = −1.
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Motivation of the Paper

One of the basic nonlinear hyperbolic conservation laws:

∂v
∂t

+
∂

∂x
( v2

2
)
= 0, v = v(t, x), t > 0, x ∈ R (2)

is the (inviscid) Burgers equation which has various applications in many physical fields. Indeed, this
equation is a simplified version of the Euler equations of compressible fluids

∂ρ

∂t
+

∂

∂x
(ρv) = 0,

∂

∂t
(ρv) +

∂

∂x
(ρv2 + p(ρ)) = 0,

(3)

where v denotes the velocity, ρ the density, and p the pressure of the fluid. We recover the inviscid
Burgers equation from this system by first imposing that p ≡ 0 in Equation (3). Then, we take partial
derivatives for both equations, combine them and finally deduce the Equation (2). This analysis was
generalized for the relativistic models in the articles [1,2,4] in order to get the relativistic Burgers
equations on the related geometries.

In the present article, we apply this analysis by considering the relativistic Euler equations on
a smooth, time-oriented, curved (1+1)-dimensional dS spacetime in order to derive the relativistic
Burgers model. We pursue and cite the article by Ceylan and Okutmustur [2] for the details of
derivation of the model on a dS background. Once we obtain our model, we then construct a second
order Godunov type finite volume scheme in order to inspect the stability and efficiency of the method.
Following the papers by LeFloch et al. [1,4], the relativistic Burgers equations are derived from
Equation (1) on a (1+1)-dimensional background by imposing a vanishing pressure to Equation (1).
The derived equations satisfy the Lorentz invariance property and in the case where c → ∞, the
classical (non–relativistic) Burgers equation is recovered directly from the given system. In paper [4],
the curved spacetime is considered to be flat and then generalized to a Schwarzschild background;
whereas in [1], an FLRW background is taken into account. In both [1,4], the derived relativistic models
are used for the numerical experiments via a second-order accurate finite volume method based on the
geometric formulation Equation (1). A similar work is attained by Ceylan and Okutmustur for the
Schwarzschild–de Sitter geometry [3]. For the convergence and geometric formulation of finite volume
schemes on Lorentzian (curved) manifolds, we follow the articles by LeFloch et al. [7,8]. The theory of
conservation laws on the flat space is introduced by Kruzkov [9]. We refer the reader to the following
work by Groah, Smoller and Temple [10] for the shock wave interactions and further details in general
relativity. On the other hand, we cite a recent work on balance laws posed on (1+1)-dimensional
spacetimes by Gosse [11] where a locally inertial Godunov scheme is presented numerically. Moreover,
further details of second order Godunov schemes are presented in the book of Guinot [12] and the
article by Van Leer [13]. The reader can find a more general instruction for the theory of general
relativity and related concepts about Einstein’s theory in the book of Wald [14].

An outline of this paper is as follows. We introduce the basic features of a dS geometry and
its metric in the first part. We then derive the Euler equations by means of the Christoffel symbol
where we refer the reader to the article [2] for further details. The next issue is deriving the particular
cases of the relativistic Burgers equations depending on the cosmological constant parameter Λ.
Then, we present a geometric formulation of finite volume approximation on a curved background
which follows by a construction of finite volume scheme on local coordinates. We then establish
a Godunov type second order scheme for the given model. We also compare the non-relativistic
and relativistic Burgers equations depending on different values of Λ. The effects of the Λ on the
numerical scheme are studied in the numerical experiments part. We finish the article by investigating
the efficiency of the scheme with different Λ values. The results demonstrate that the scheme is
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consistent with the conservative form of our model which yields correct computations of weak
solutions containing shock and rarefaction waves.

2. The dS Metric and the Euler System

The dS spacetime is a particular case of the Lorentzian manifold and its metric provides a
cosmological solution to the Einstein field equations similar to the FLRW metric. The line element
(metric) of the dS background involves a constant so called “cosmological constant” and it is denoted
by Λ. Einstein firstly introduced this cosmological constant in his field equations. Depending on the
sign of the cosmological constant Λ, we distinguish the de Sitter and the Anti-de Sitter spacetimes;
namely, if Λ > 0, the geometry is called the “de Sitter spacetime” and, if Λ < 0, it is called the “Anti-de
Sitter spacetime”. Particularly, if Λ = 0, the metric turns to be a Minkowski metric and thus we have a
flat geometry.

The corresponding line element for a (3+1)-dimensional case in terms of time t, the radial r and
angular coordinates θ and ϕ is given by:

g = −(1−Λr2)dt2 +
1

1−Λr2 dr2 + r2(dθ2 + sin2 θdϕ2). (4)

Thus, Equation (4) is called the “de Sitter metric” if Λ > 0 and the “Anti-de Sitter metric” if Λ < 0.
Notice that Equation (4) can be rewritten in matrix form as

(gij) =


−(1−Λr2) 0 0 0

0 1
1−Λr2 0 0

0 0 r2 0
0 0 0 r2 sin2 θ


with the non-zero “covariant” elements

g00 = −(1−Λr2), g11 = 1
1−Λr2

g22 = r2, g33 = r2 sin2 θ

and the inverse of (gij) is

(gij) =


1

Λr2−1 0 0 0
0 1−Λr2 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2 θ


with the corresponding “contravariant” elements

g00 = 1
Λr2−1 , g11 = 1−Λr2

g22 = 1
r2 , g33 = 1

r2 sin2 θ
.

Here,

gikgkj = δi
j =

{
1 if i = j

0 if i 6= j

is satisfied where δi
j is the Kronecker’s delta function.



Math. Comput. Appl. 2016, 21, 16 4 of 15

2.1. Christoffel Symbols for the dS Spacetime

The Christoffel symbols are defined by

Γµ
αβ =

1
2

gµν(−∂νgαβ + ∂βgαν + ∂αgβν), (5)

where the terms α, β, µ, ν ∈ {0, 1, 2, 3}. By substituting α, β, µ, ν ∈ {0, 1, 2, 3} in Equation (5), we
calculate all the terms of Γµ

αβ in the following:

Γ0
00 = 0,

Γ0
01 =

Λr
Λr2 − 1

,

Γ0
01 = Γ0

10 =
Λr

Λr2 − 1
,

Γ1
11 =

Λr
1−Λr2 ,

Γ1
00 = Λr(Λr2 − 1),

Γ1
22 = r(Λr2 − 1),

Γ1
33 = r(Λr2 − 1) sin2 θ,

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1
r

,

Γ2
33 = − sin θ cos θ,

Γ3
23 = Γ3

32 = cot θ.

2.2. Energy-Momentum Tensor

We take into account our spacetime to be (1+1)-dimensional so that the solutions to the Euler
system depend only on the time variable t and radial variable r and the angular components θ, ϕ

vanish. It follows that
(uα) = (u0, u1, 0, 0), with uαuα = −1 (6)

and
uαuα = u0u0 + u1u1,

= g00(u0)(u0) + g11(u1)(u1),

= g00(u0)2 + g11(u1)2,

= −1,

where (u0)2 and (u1)2 are unitary vectors. Next, we substitute the covariant terms g00 and g11 in the
above relation which yields

− 1 = −(1−Λr2)(u0)2 +
1

1−Λr2 (u
1)2. (7)

Next, we define a velocity component v depending on u0 and u1 as follows:

v :=
c

(1−Λr2)

u1

u0 . (8)

Examining the relations (7) and (8) together, it follows that

(u0)2 =
c2

(1−Λr2)(c2 − v2)
, and (u1)2 =

v2(1−Λr2)

(c2 − v2)
. (9)
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It remains to substitute the Equation (9) terms into the energy momentum tensor for perfect fluids
equation, which is defined by

Tαβ = (ρc2 + p) uα uβ + p gαβ. (10)

Thus, by using Equations (9) and (10), the tensors are evaluated as follows:

T00 =
ρc4 + pv2

(c2 − v2)(1−Λr2)
,

T01 = T10 =
cv(ρc2 + p)
(c2 − v2)

,

T11 =
c2(1−Λr2)(v2ρ + p)

(c2 − v2)
,

T22 =
p
r2 ,

T33 =
p

r2 sin2 θ
,

T02 = T03 = T12 = T13 = T20 = T21 = T23 = T30 = T31 = T32 = 0.

2.3. The Euler System on a (1 + 1)-Dimensional dS Background with Zero Pressure

We are about to write the Euler equations and deduce the presureless Euler system from these
equations. We recall that the Euler system (1) is given by

∇αTαβ = 0,

which is equivalent to
∂αTαβ + Γα

αγTγβ + Γβ
αγTαγ = 0, (11)

where Tαβ terms are calculated in the previous subsection. In order to derive the desired system, we
start by substituting β = 0 in Equation (11) to get

∂αTα0 + Γα
αγTγ0 + Γ0

αγTαγ = 0. (12)

Then, we put α, γ ∈ {0, 1, 2, 3} into the above equation which yields

∂0T00 + Γ0
00T00 + Γ0

00T00 + Γ0
01T10 + Γ0

01T01 + Γ0
02T20 + Γ0

02T02 + Γ0
03T30

+ Γ0
03T03 + ∂1T10 + Γ1

10T00 + Γ0
10T10 + Γ1

11T10 + Γ0
11T11 + Γ1

12T20 + Γ0
12T12

+ Γ1
13T30 + Γ0

13T13 + ∂2T20 + Γ2
20T00 + Γ0

20T20 + Γ2
21T10 + Γ0

21T21 + Γ2
22T20

+ Γ0
22T22 + Γ2

23T30 + Γ0
23T23 + ∂3T30 + Γ3

30T00 + Γ0
30T30 + Γ3

31T10 + Γ0
31T31

+ Γ3
32T20 + Γ0

32T32 + Γ3
33T30 + Γ0

33T33 = 0.

Next, for β = 1 in Equation (11), we have

∂αTα1 + Γα
αγTγ1 + Γ1

αγTαγ = 0, (13)

and putting α, γ ∈ {0, 1, 2, 3} into the above equation yields

∂0T01 + Γ0
00T01 + Γ1

00T00 + Γ0
01T11 + Γ1

01T01 + Γ0
02T21 + Γ1

02T02 + Γ0
03T31

+ Γ1
03T03 + ∂1T11 + Γ1

10T01 + Γ1
10T10 + Γ1

11T11 + Γ1
11T11 + Γ1

12T21 + Γ1
12T12

+ Γ1
13T31 + Γ1

13T13 + ∂2T21 + Γ2
20T01 + Γ1

20T20 + Γ2
21T11 + Γ1

21T21 + Γ2
22T21

+ Γ1
22T22 + Γ2

23T31 + Γ1
23T23 + ∂3T31 + Γ3

30T01 + Γ1
30T30 + Γ3

31T11 + Γ1
31T31

+ Γ3
32T21 + Γ1

32T32 + Γ3
33T31 + Γ1

33T33 = 0.
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Replacing the Christoffel symbols and the tensor terms with their calculated values and imposing zero
pressure to this system yields

∂0

( c
(1−Λr2)(c2 − v2)

)
+ ∂1

( v
c2 − v2

)
+

2v
r(c2 − v2)

+
2Λrv

(Λr2 − 1)(c2 − v2)
= 0,

∂0

( cv
c2 − v2

)
+ ∂1

(v2(1−Λr2)

c2 − v2

)
− Λrc2

c2 − v2 +
Λrv2

c2 − v2 +
2(1−Λr2)v2

r(c2 − v2)
= 0,

(14)

which is the “Euler system with zero pressure” on a (1+1)-dimensional dS background.

3. Relativistic Burgers Equation on a (1+1)-Dimensional dS Spacetime

3.1. Derivation of the Model

We observed in the introduction part that the classical Burgers equation is deduced from the Euler
equations by imposing zero pressure to the given system. In this section, we follow the same technique
in order to derive the relativistic Burgers equation on the dS geometry. The investigation of static and
spatially homogeneous solutions of the given model is also an issue of this section.

We start by rewriting the first and second equations of (14) with the notation ∂0 = ∂t, ∂1 = ∂r and
combining these two equations (by taking partial derivatives of each term of (14) and summing these
equations after elimination of the vanishing terms) in order to derive the following single equation:

∂tv + (1−Λr2)∂r(
v2

2
) + Λr(v2 − c2) = 0, (15)

which is the desired so called “relativistic Burgers equation on the dS background”. Notice that the
left-hand side of the model can also be written in the conservative form as follows:

∂tv + ∂r

(
(1−Λr2)

v2

2

)
= Λr(c2 − 2v2).

3.2. Limiting Case of the Derived Model

The Equation (15) may differ depending on different values of Λ. We recall that the particular
case of the dS metrics for the value Λ = 0 gives the Minkowski metric. If we substitute Λ = 0 in the
relativistic Burgers equation (15), we recover the classical (inviscid) Burgers equation:

∂tv + ∂r(
v2

2
) = 0.

In other words, the limiting case of the relativistic Burgers Equation (15) on a dS spacetime yields
the classical (non-relativistic) Burgers equation. This common property is also shared by the other
relativistic models on the curved spacetimes (such as flat, Schwarzschild and FLRW).

3.3. Static and Spatially Homogeneous Solutions for the Model

In this subsection, we search for the static and homogeneous solutions of our model if they exist.
To examine this, we need to write the conservative form of the derived model (15), which is

∂tv + ∂r

(
(1−Λr2)

v2

2

)
= Λr(c2 − 2v2). (16)
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We start by seeking the static solutions, that is the t-independent solutions, to Equation (16). Due to
the t-independency, the term ∂tv vanishes, and we obtain

∂r

(
(1−Λr2)

v2

2

)
= Λr(c2 − 2v2). (17)

Applying the change of variable

K = 1−Λr2, L = c2 − v2 (18)

results in
L = K N,

where N ∈ (0, c) is a constant parameter. It follows that

c2 − v2 = N (1−Λr2).

Hence, we find the “static solutions” described by

vstatic = ±
√

c2 − N(1−Λr2). (19)

On the other hand, we follow an analogue process for the homogeneous solutions, that is
the r-dependent solutions to the Equation (16). It is obvious to conclude that there is no spatially
homogeneous (r-independent) solution since the equation

∂tv = Λr(c2 − 2v2)

depends already on r.
As a result, we conclude that our model (15) admits only “static solutions”.

4. Finite Volume Method on a Curved Spacetime

The finite volume method is an important discretization technique for partial differential
equations. In the present work, we use a finite volume approximation for general balance
laws of hyperbolic partial differential equations on an (n+1)-dimensional manifold following the
papers [4,7,8,15,16]. We consider the geometry in (n+1)-dimensional case, where n refers to the space
and 1 refers to the time dimension and introduce a geometric formulation of the finite volume method
for the general balance laws. We then consider the finite volume approximation on coordinates to
work on the particular (1+1)-dimensional spacetime for analyzing numerically the relativistic Burgers
Equation (15).

In the following, the introduction of a geometric formulation of the finite volume method on a
curved spacetime and its particular case for the local coordinates are given.

4.1. Geometric Spacetime Finite Volume Method

Following the article [7], we search for a formulation of the finite volume scheme for a hyperbolic
balance law given by

div
(
T(v)

)
= S(v), (20)

posed on an (n + 1)-dimensional curved spacetime M, where the unknown function v is a scalar field,
div(·) is the divergence operator, T(v) is the flux vector field and S(v) is the scalar field.
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We are now ready to introduce the geometric formulation of the finite method for discretizing the
balance laws (20) on M. First of all, we establish a general triangulation of the spacetimes by

T h =
⋃

K∈T h

K

for the manifold M such that M is composed of these spacetime elements K ⊂ M satisfying the
following conditions:

• The boundary of an element K, denoted by ∂K, is given by

∂K =
⋃

e⊂∂K

e,

which is piecewise smooth and includes exactly two “spacelike” faces (having an induced
Riemannian type metric) denoted by e+K and e−K , and “timelike” elements (having an induced
Lorentzian type metric) denoted by

e0 ∈ ∂0K := ∂K \
{

e+K , e−K
}

.

• The intersection K ∩ K′ of two distinct elements K and K′ in T h is either a common face of K, K′ or
is a smooth submanifold with dimension at most (n− 1).

• |K|, |e+K |, |e
−
K |, |e0| represent the measures of K, e+K , e−K , e0, respectively.

• Along the timelike faces e+K , e−K , we introduce the outgoing unit normal vector field denoted by
ne+K

, ne−K
, respectively.

Furthermore, we assume that M permits a foliation {Ht}t∈(0,∞), by oriented spacelike
hypersurfaces such that the parameter t : M ∪ ∂M→ [0,+∞) provides us with a global time function.
This allows us to separate between future–oriented (t increasing) and past–oriented (t decreasing)
timelike directions on M. Thus, M is assumed to be foliated by hypersurfaces Ht (which are spacelike
elements) such that

M ∪ ∂M =
⋃
t≥0

Ht, (21)

with the time function t if it is determined from a sequence of discrete times t0 < t1 < t2 < · · · < tN
such that all spacelike faces are submanifolds of Ht = Htn , (n = 0, 1, · · · , N) and H0 is an initial slice.
It follows that the class of nonlinear hyperbolic Equations (20) and (21) gives a scalar model on which
we can analyze numerical methods.

We are ready to define the finite volume approximations by averaging the balanced law (20) over
each element K ∈ T h of the triangulation. By integrating in space and time, we can write∫

K
div(T(v)) =

∫
K

S(v).

Applying the Stokes formula to the above equation, it follows that∫
e+K

T0(v) (ne+K
, ·) =

∫
e−K

T0(v) (ne−K
, ·)− ∑

e0∈∂0K

∫
e0

T1(v) (ne0 , ·) +
∫

K
S(v).

Using the given averages v−K and v−Ke0
computed along e−K and e0 ∈ ∂0K, we need to compute the

average v+K along e+K . To this aim, we introduce∫
e−K

T0(v) (ne+K
, ·) ' |e−K |Te−K

(v−K ),∫
e0

T1(v) (ne0 , ·) ' |e0|QK,e0(v−K , v−Ke0
),

(22)
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and ∫
K

S(v) ' |K|SK,

where, for each K and e0 ∈ ∂0K, we selected a numerical flux QK,e0 : R2 → R satisfying natural
properties of consistency, conservation, and monotonicity. Therefore, the finite volume method of
interest takes the form

|e+K | Te+K
(v+K ) = |e

−
K | Te−K

(v−K )− ∑
e0∈∂0K

|e0|QK,e0(v−K , v−Ke0
) + |K| SK. (23)

Notice that a standard Courant–Friedrichs–Lewy (CFL) condition is assumed for the sake of
stability of this scheme. For further details, the reader may consult [7,8,15,16].

4.2. Finite Volume Schemes in Coordinates

Following the geometric formulation of the finite volume scheme on (n + 1)-dimensional
spacetime in the previous part, we now take into account the particular case (for n = 1) and assume that
the spacetime is described in coordinates (t, r). We divide into equally spaced cells Ij = [rj−1/2, rj+1/2]

of size ∆r, centered at rj, that is,
rj+1/2 = rj−1/2 + ∆r,

satisfying
rj−1/2 = j∆r, rj = (j + 1/2)∆r.

Furthermore, we denote by ∆t the constant time length and we set tn = n∆t.
In order to introduce the finite volume method in local coordinates, we start by rewriting the

hyperbolic balance law (20) in (1 + 1) dimension, that is,

∂tT0(t, r) + ∂rT1(t, r) = S(t, r), (24)

where T0, T1 are flux fields, and S is the source term. We integrate Equation (24) over each grid cell

[tn, tn+1]× [rj−1/2, rj+1/2]

to get ∫ rj+1/2

rj−1/2

(T0(tn+1, r)− T0(tn, r) dr +
∫ tn+1

tn
(T1(t, rj+1/2)− T1(t, rj−1/2)) dt

=
∫
[tn ,tn+1]×[rj−1/2,rj+1/2]

S(t, r) dt dr,

which is equivalent to

∫ rj+1/2

rj−1/2

T0(tn+1, r) dr =
∫ rj+1/2

rj−1/2

T0(tn, r) dr−
∫ tn+1

tn
(T1(t, rj+1/2)− T1(t, rj−1/2)) dt

+
∫
[tn ,tn+1]×[rj−1/2,rj+1/2]

S(t, r) dt dr.

The numerical flux functions are approximated by

T̃n
j ≈

1
∆r

∫ rj+1/2

rj−1/2

T0(tn, r) dr,

Q̃n
j±1/2 ≈

1
∆t

∫ tn+1

tn
T1(t, rj±1/2) dt,
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S̃n
j ≈

1
∆r ∆t

∫
[tn ,tn+1]×[rj−1/2,rj+1/2]

S(t, r) dt dr.

Using these approximations in the above integrations, the scheme becomes

T̃n+1
j = T̃n

j −
∆t
∆r
(
Q̃n

j+1/2 − Q̃n
j−1/2

)
+ ∆tS̃n

j . (25)

Since T̃ is convex (see [4]), by taking the inverse of the above relation, the scheme (25) is rewritten by

vn+1
j = T̃−1

(
T̃(vn

j )−
∆t
∆r
(
Q̃n

j+1/2 − Q̃n
j−1/2

)
+ ∆tS̃n

j

)
.

For further details of triangulations and discretization of finite volume approximations on a
curved spacetime, we refer the reader to the papers by LeFloch et al. [4,6–8].

5. Second Order Godunov–Type Scheme

In this section, we construct a second order Godunov type finite volume scheme for the derived
model which is the main objective of this paper. Fundamentally, Godunov type algorithms could be
summarized by the following steps:

• Discretize the cells in finite volumes;
• Obtain the profile reconstruction on the cells;
• Do specification of the Riemann problems at cell interfaces;
• Find solution for the Riemann problems;
• Perform computation for fluxes on cell interfaces;
• Determine the variables for the next time step.

The second order scheme differs from the original Godunov type scheme in reconstruction on the
profile and specification of the Riemann problems. More generally, for the equation

∂tv + ∂r f (v, r) = 0,

a first order scheme can be converted to a second order method by proceeding the cell-boundary
values which are used in the numerical flux functions to decide the intermediate time level
tn+1/2 = (tn + tn+1)/2. In other words, the second order Godunov scheme is obtained from the
edge-boundary values of the reconstructed profile proceeded by a half time step.

The construction of the second order type of scheme is formulated by the following steps:

• Firstly, the variable within the computational cells is reconstructed which gives couples of values
(vn

i,L, vn
i,R) in each computational cell where the letters L and R refer to left and right sides,

respectively. Note that vn
i,L lies between vn

i−1 and vn
i , whereas vn

i,R lies between vn
i and vn

i+1.
• Secondly, one should advance the solution by half a step in time. The intermediate values v at

the cell edges at the time tn+1/2 = (tn + tn+1)/2 are denoted by (vn
i,L, vn

i,R). These values can be
calculated by the following:

vn+1/2
i,L = vn

i,L −
∆t

2∆r
[ f (vn

i,R)− f (vn
i,L)],

vn+1/2
i,R = vn

i,R −
∆t

2∆r
[ f (vn

i,R)− f (vn
i,L)].

• As a third step, we solve the Riemann problem formed by the intermediate values (vn
i,L, vn

i,R). The

solution vn+1/2
i+1/2 is used in order to compute the flux f n+1/2

i+1/2 = f (vn+1/2
i+1/2 ).
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• In the final step, we advance the solution by the time step ∆t from tn using the usual formula

vn+1
i = vn

i −
∆t
∆r

[ f n+1/2
i+1/2 − f n+1/2

i−1/2 ].

We refer to the article by Van Leer [13] and the book by Guinot [12] for construction of the
algorithm to the second order Godunov type finite volume method.

6. Numerical Experiments

Implementation of the Godunov Scheme for the Derived Model

In this part, numerical tests are displayed for the model derived on a dS spacetime based on a
second order Godunov scheme. We prepare the second order finite volume approximation for our
model based on the construction in the previous section. The method for the intermediate values
and the proceeding solutions are formulated as follows. We analyze the given model with a single
shock and rarefaction for an initial function considering the Godunov scheme with a local Riemann
problem for each grid cell depending on two particular cases of cosmological constant Λ. Note that,
for the numerical experiments, we fix r ∈ [0, 1]. We take into consideration the fastest wave at each
grid cell since both shock and rarefaction waves are produced in the Riemann problem. We compel
transmissive boundary conditions on the scheme. By normalization (taking c = 1) in Equation (15), we
attain the following model:

∂tv + (1−Λr2)∂r

(v2

2

)
= −

(
Λr(v2 − 1)

)
, (26)

and the finite volume schemes for this model can be given as

vn+1/2
j±1/2 = vn

j±1/2 −
∆t

2∆r
(bn

j+1/2gn
j+1/2 − bn

j−1/2gn
j−1/2) +

∆t
2

Sn
j±1/2, (27)

vn+1
j = vn

j −
∆t
∆r

(bn+1/2
j+1/2 gn+1/2

j+1/2 − bn+1/2
j−1/2 gn+1/2

j−1/2 ) + ∆tSn+1/2
j , (28)

with
tn+1/2 = (tn + tn+1)/2

and
bn+1/2

j±1/2 = 1−Λ(rn+1/2
j±1/2 )

2,

gn+1/2
j−1/2 = f (vn+1/2

j−1 , vn+1/2
j ),

gn+1/2
j+1/2 = f (vn+1/2

j , vn+1/2
j+1 ),

where the source term is
Sn+1/2

j = −
(

Λrn+1/2
j ((vn+1/2

j )2 − 1)
)

.

Moreover, the flux function f (v1, v2) is written as follows

f (v1, v2) =



v2
1

2 , if v1 > v2 and v1 + v2 > 0
v2

2
2 , if v1 > v2 and v1 + v2 < 0
v2

1
2 , if v1 ≤ v2 and v1 > 0
v2

2
2 , if v1 ≤ v2 and v2 < 0

0, if v1 ≤ v2 and v1 ≤ 0 ≤ v2

. (29)
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Notice that the speed term is
1−Λ(rn+1/2

j±1/2 )
2, (30)

and, in order for the stability condition in the scheme to be satisfied, we choose ∆t and ∆r so that the
CFL condition satisfied, i.e.,

∆t
∆r

max
j

∣∣∣1−Λ(rn+1/2
j±1/2 )

2
∣∣∣ ≤ 1. (31)

The implementation of the second order Godunov scheme is based on the construction given
above. Observe that Λ > 0 and Λ = 0 refer to the dS and Minkowski geometries, respectively. We
compare the particular cases Λ = 1 > 0 and Λ = 0 for the schemes of the model with shock and
rarefaction waves; that is, we analyze the model via the second order Godunov scheme for two
different geometries.

The results are sketched in Figures 1 and 2. The rarefactions are drawn in Figure 1 and shocks are
given in Figure 2 for two particular cases of Λ. The iterations are performed for different numbers
of iterations; for instance, for the first figure of Figures 1 and 2, the number of iterations n = 100, for
the second figure n = 400, for the third one n = 600, and for the last one n = 800. Moreover, the
CFL condition (31) is strictly less than 1 in each test for stability of the scheme. We observe that the
numerical solution for the case Λ = 0 (represented by the red curve) moves faster than the case Λ = 1
(represented by the blue curve). In other words, we have a relatively higher speed when the spacetime
is flat comparing with the dS geometry. This fact can also be verified numerically by substituting
Λ = 0 and Λ = 1 into the speed term given by (30), i.e., by the term

1−Λ(rn+1/2
j±1/2 )

2,

which feeds the theoretical background of the model with the numerical results.

Figure 1. The numerical solutions given by the second order Godunov scheme with a rarefaction for
Λ = 0 and Λ = 1.



Math. Comput. Appl. 2016, 21, 16 13 of 15

Figure 2. The numerical solutions given by the second order Godunov scheme with a shock for Λ = 0
and Λ = 1.

We also observe that the negative values of Λ yield the velocity to become greater than 1 by
Equation (30), which is not acceptable since they exceed the speed of light (as we assumed that c = 1
for the numerical calculations). In other words, the sign of the cosmological constant Λ is significant
for the numerical results by which the geometry under consideration is identified.

7. Conclusions

A new nonlinear hyperbolic model, which describes the propagation and interactions of shock
waves on the dS and flat spacetimes, is derived in this study. We take into account the relativistic Euler
system on a curved background and impose a zero pressure in the statement of the energy–momentum
tensor for perfect fluids in order to derive our model (15). This model involves a cosmological constant
Λ, which can be normalized by taking the positive, negative and zero values. According to the positive,
zero and negative values of Λ, the geometry of interest becomes the de Sitter, Minkowski and Anti-de
Sitter spacetimes, respectively. We have the following remarkable observations:

• The standard Burgers equation is recovered when Λ is chosen to vanish;
• Various mathematical properties concerning the hyperbolicity, genuine nonlinearity, shock waves,

and rarefaction waves are established;
• Investigation for the class of static and spatially homogenous solutions is carried out;
• Shock wave solutions to the model for the different possible values of the cosmological constant

Λ are investigated.

The analysis for two possible values of the cosmological constant Λ relies on a numerical scheme,
which applies discontinuous solutions and is based on the finite volume technique. We establish a
second-order Godunov scheme for our model which gives the main originality to the current paper.
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• The scheme is consistent with the conservative form of our model, which yields correct
computations of weak solutions containing shock waves.

• The numerical solution curves for the Anti-de Sitter spacetimes yields the velocity to become
greater than one, which is not acceptable as it exceeds the speed of light.

• One of the most obvious findings emerging from this study is that it allows us to make a numerical
comparison of the relativistic models on the de Sitter and Anti-de Sitter spacetimes by means of
finite volume approximations. Indeed, the method is not efficient for the relativistic model on the
Anti-de Sitter spacetimes, whereas it is efficient for the de Sitter spacetime.

• The efficiency and convergency of the numerical method depends on the value of the cosmological
constant Λ. The sign of Λ is significant. If Λ is smaller than zero, the method is not efficient and
the solution curves do not converge. On the other hand, if Λ = 0 and Λ > 0, the method gives
efficient and convergent numerical results.

• The numerical experiments illustrate the convergence, efficiency and robustness of the proposed
scheme on the de Sitter background.

• Numerical solutions for the cases Λ = 0 and Λ = 1 > 0 are compared. The solution curve
corresponding to Λ = 0 moves faster than the solution curve corresponding to Λ = 1 > 0
(Figures 1 and 2). This feature can be clarified by observing that the characteristic speed

1−Λ(rn+1/2
j±1/2 )

2

is upgraded by reduced Λ in the Equation (15).

To sum up, we highlight that the existence of the model of the concerning equation that permits
one to improve and analyze numerical methods for shock capturing schemes and to attain definite
conclusions concerning the convergence, robustness and efficiency of the schemes. According to
the background geometry, different techniques may be needed to guarantee that certain classes of
time-dependent or space-dependent solutions for the model be preserved by the scheme. A strategic
perspective can be given as to investigate relativistic Burgers equations on different backgrounds with
more complicated points.
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