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Abstract. A relativistic generalization of the inviscid Burgers equation was introduced
by LeFloch and co-authors and was recently investigated numerically on a Schwarz-
schild background. We extend this analysis to a Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) background, which is more challenging due to the existence of time-dependent,
spatially homogeneous solutions. We present a derivation of the model of interest
and we study its basic properties, including the class of spatially homogeneous solu-
tions. Then, we design a second-order accurate scheme based on the finite volume
methodology, which provides us with a tool for investigating the properties of solu-
tions. Computational experiments demonstrate the efficiency of the proposed scheme
for numerically capturing weak solutions.
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1 Introduction

Aim of this paper

The inviscid Burgers equation is an important model in computational fluid dynamics
and provides the simplest (yet challenging) example of a nonlinear hyperbolic conserva-
tion law. Recently, a relativistic generalization of the standard Burgers equation was in-
troduced on curved spacetimes and studied by LeFloch and collaborators [1–4,9–12]. This
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relativistic Burgers equation, as it is now called, takes into account geometrical effects and
satisfies the Lorentz invariance property, also enjoyed by the Euler equations of relativis-
tic compressible fluids. In LeFloch, Makhlof, and Okutmustur [11], this model was stud-
ied on a Schwarzschild black hole background and a numerical scheme was designed
from the finite volume methodology which allowed one to capture weak solutions con-
taining shock waves. The standard maximum principle and the total variation diminish-
ing (TVD) principle are lacking for Burgers-type equations on a curved geometry, so that
it necessary to revisit standard approaches if stable approximation schemes are sought
for. Our main objective in the present paper is to extend the results in [11] and design
an accurate and robust numerical scheme when the model of interest is formulated on
a cosmological background and, especially, on a Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) geometry. This latter spacetime is a solution to Einstein’s field equations and is
particularly relevant in cosmology [7].

The relativistic Burgers equations on a curved background

Our model is derived from the full relativistic Euler equations posed on a smooth, time-
oriented Lorentzian manifold (M,g), that is,

∇αTαβ =0, Tαβ=(ρc2+p)uαuβ+pgαβ,

where Tαβ is the energy-momentum tensor of a perfect fluid. Here, ρ≥0 denotes the mass-
energy density of the fluid, while the future-oriented, unit timelike vector field u=(uα)
represents the fluid velocity, normalized to be unit: gαβ uαuβ=−1.

As usual, the Euler equations are supplemented with an equation of state for the
pressure p= p(ρ). In the present work, we assume that the fluid is pressureless, that is,
p≡0, so that the Euler system takes the simpler form

∇α

(
ρuαuβ

)
=0. (1.1)

Provided ρ,u are sufficiently regular, we can write

ρ∇αuαuβ+ρuα∇αuβ+uαuβ∇αρ=0.

By contracting this equation with the covector uβ and by observing† that gαβuβ∇γuα=0,
we get uα∇αρ=−ρ∇αuα. In turn, from (1.1) it follows that

ρuβ∇αuα+ρuα∇αuβ−ρuβ∇αuα=0.

Finally, provided ρ>0, it follows that

uα∇αuβ =0, (1.2)

which we refer to as the relativistic Burgers equation (expressed here in a non-divergence
form) on a curved background (M,g). Its unknown is the vector field (uβ) satisfying the
normalization gαβuαuβ.

†u is orthogonal to ∇u, as is easily checked by differentiating the identity gαβ uαuβ=−1 stating that u is unit
vector and by recalling that ∇ is the Levi-Civita connection associated with the metric gαβ so that ∇γgαβ=0.
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Minkowski and Schwarzschild backgrounds

Recall that the standard inviscid Burgers equation is one of the simplest example of a
nonlinear hyperbolic conservation law and reads

∂tv+∂x(v
2/2)=0, (1.3)

where the unknown v=v(t,x) is defined for t≥0 and x∈R. This equation can be derived‡

from the Euler system of compressible fluids

∂tρ+∂x(ρv)=0,

∂t(ρv)+∂x(ρv2+p(ρ))=0,

where p(ρ) denotes the pressure of the fluid and ρ denotes its density. By assuming
a pressureless fluid p(ρ)≡ 0 and keeping a suitable combination of the two equations
above, we can obtain (1.3). Namely, we have

0=v∂t(ρ)+ρ∂t(v)+v2∂x(ρ)+2vρ∂xv=ρ(∂tv+2v∂xv)+v(∂tρ+v∂xρ)

=ρ(∂tv+2v∂xv)−vρ∂xv=ρ(∂tv+v∂xv)

and, provided the density does not vanish, we get ∂tv+v∂xv= 0, which is equivalent to
(1.3).

We recall that LeFloch et al. [11] treated the relativistic version (1.2) on Minkowski or
Schwarzschild backgrounds. We recall that the relativistic Burgers equation on the flat
Minkowski spacetime derived in (1.2) can also be characterized by imposing the Lorentz
invariance property. On a Schwarzschild spacetime, the Burgers equations is found to be

∂t(r
2v)+∂r

(
r(r−2m)

v2

2

)
= rv2−mc2, (1.4)

where the Schwarzschild metric in coordinates (t,r,θ,ϕ) is defined by

g=−
(

1− 2m

r

)
c2dt2+

(
1− 2m

r

)−1
dr2+r2(dθ2+sin2dϕ2), (1.5)

so that m>0 is the mass parameter, c is the light speed, r is the Schwarzschild radius and
r>2m. We refer the reader to [11] for further details. The Schwarzschild metric represents
the geometry of a static black hole and, consequently, Eq. (1.4) admits an important family
of explicit solutions, i.e. the family of time-independent solutions.

Outline of this paper

In Section 2, we discuss the FLRW geometry and express the pressureless Euler system on
a FLRW background. Then, in Sections 3 and 4, we present the derivation of the Burgers

‡formally, at least
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equation which is the equation of main interest in this paper. We are in a position in
Section 5 to study the family of spatially homogeneous solutions and then in Section 6
we design the finite volume scheme we propose in this paper. Finally, Section 7 contains
various numerical experiments and in Section 8 we end with several remarks.

2 The compressible Euler system on a FLRW background

FLRW metrics

We work with the FLRW metric describing a spatially homogeneous and isotropic three-
dimensional space. In term of the proper time t measured by a co-moving observer, a
radial variable r, and angular θ,ϕ measured in the co-moving frame, the metric reads

g=−c2dt2+a(t)2
( dr2

1−kr2
+r2dθ2+r2sin2θdϕ2

)
, (2.1)

where a = a(t) is a function (see next paragraph) and k = 0,±1. The variable t is the
cosmological proper time experienced by observers who remain at rest in co-moving
coordinates and observes a uniform expansion of the surrounding Universe.

The function a is taken to be of the form a(t) = a0

(
t
t0

)α
and, for the FLRW metric,

one has α = 2
3 , in which t0 represents the age of the Universe. The constant parameter

k is related to the spacetime curvature K by the relation k = a(t)2K and we distinguish
between three cases:

k=





1, sphere (of positive curvature),

0, (flat) Euclidean space (of vanishing curvature),

−1, hyperboloid (of negative curvature).

(2.2)

Expressions in coordinates

The FLRW metric can also be written in the form

g=(dtdrdθdϕ)




−c2 0 0 0

0 a2

1−kr2 0 0

0 0 a2r2 0

0 0 0 a2r2sin2θ







dt
dr
dθ
dϕ




or else

g00=−c2, g11 =
a2

1−kr2
, g22= a2r2, g33 = a2r2sin2 θ, (2.3)

which are the only non-vanishing covariant components, and

g00=− 1

c2
, g11 =

1−kr2

a2
, g22=

1

a2r2
, g33 =

1

a2r2sin2θ
. (2.4)
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We will also need the expressions of the Christoffel symbols Γ
µ
αβ. Using (2.3) and (2.4)

and the definition Γ
µ
αβ =

1
2 gµν(−∂νgαβ+∂βgαν+∂αgβν), where α,β,µ,ν∈{0,1,2,3}, we first

calculate

Γ
0
00=

1

2
g00(−∂0g00+∂0g00+∂0g00)=0, (2.5)

and then

Γ
0
11=

1

2
g00(−∂0g11+∂1g10+∂0g10)

=
1

2
(−1)

(
−∂0

(
a2

(1−kr2)

)
)
=

aȧ

c(1−kr2)
. (2.6)

Similarly, we can compute the other non-vanishing Christoffel symbols and conclude that

Γ
0
11=

aȧ

c(1−kr2)
, Γ

0
22=

aȧr2

c
, Γ

0
33=

aȧr2sin2 θ

c
,

Γ
1
11=

kr

1−kr2
, Γ

1
22=−r(1−kr2), Γ

1
33=−r(1−kr2)sin2 θ,

Γ
2
33=−sinθcosθ, Γ

3
23=Γ

3
32=cotθ, Γ

2
12=Γ

2
21=Γ

3
31=Γ

3
13=

1

r
,

Γ
1
01=Γ

1
10=Γ

2
02=Γ

2
20=Γ

3
30=Γ

3
03=

ȧ

ca
.

(2.7)

The energy-momentum tensor for perfect fluids

We consider a fluid flow evolving on a FRLW background and assume that solutions to
the Euler equations depend only on the time variable t and the radial variable r, and
that the non-radial components of the velocity vanish, that is, (uα)=(u0(t,r),u1(t,r),0,0).
Since u is unit vector, we have uαuα=−1 and we write

uαuα=u0u0+u1u1= g00(u
0)(u0)+g11(u

1)(u1),

which gives −1= g00(u0)2+g11(u
1)2. It follows that

−1=−c2(u0)2+
a(t)2

1−kr2
(u1)2. (2.8)

It is convenient to introduce the velocity component

v :=
ca(t)

(1−kr2)1/2

u1

u0
. (2.9)

By using (2.8) and (2.9) with a simple algebraic manipulation, we obtain the following
identities

(u0)2=
c2

(c2−v2)
, (u1)2=

v2(1−kr2)

a2(c2−v2)
. (2.10)
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The energy momentum tensor of perfect fluids read

Tαβ =(ρc2+p)uα uβ+pgαβ. (2.11)

Combining (2.4) with (2.10) and (2.11), we obtain the components of the energy momen-
tum tensor:

T00=(ρc2+p)u0u0+pg00 =
c2

c2−v2
(ρc2+p)−p=

ρc4+pv2

c2−v2
,

T01=T10=
cv(1−kr2)1/2(ρc2+p)

a(c2−v2)
, T11=

c2(1−kr2)(v2ρ+p)

a2(c2−v2)
,

T22=
p

a2r2
, T33=

p

a2r2sin2 θ
.

(2.12)

The pressureless Euler system on a FLRW background

We are in a position to derive the Euler system ∇αTαβ =0 on a FLRW spacetime:

∂αTαβ+Γ
α
αγTγβ+Γ

β
αγTαγ =0. (2.13)

Taking first β=0, (2.13) yields

∂αTα0+Γ
α
αγTγ0+Γ

0
αγTαγ=0,

which is equivalent to

∂0T00+Γ
0
0γTγ0+Γ

0
γ0Tγ0+∂1T10+Γ

1
1γTγ0+Γ

0
1γT1γ+∂2T20+Γ

2
2γTγ0

+Γ
0
2γT2γ+∂3T30+Γ

3
3γTγ0+Γ

0
3γT3γ =0.

Next consider β=1, that is, ∂αTα1+Γ
α
αγTγ1+Γ

1
αγTαγ=0, which gives us

∂0T01+Γ
0
0γTγ1+Γ

0
0γT0γ+∂1T11+Γ

1
1γTγ1+Γ

1
1γT1γ+∂2T21+Γ

2
2γTγ1

+Γ
1
2γT2γ+∂3T31+Γ

3
3γTγ1+Γ

1
3γT3γ =0.

We substitute the expressions (2.7) of the Christoffel symbols and obtain

∂0T00+∂1T10+
3ȧ

ca
T00+

kr

1−kr2
T10+

aȧ

c(1−kr2)
T11

+
2

r
T10+

r2aȧ

c
T22+

aȧr2sin2θ

c
T33=0,

∂0T01+∂1T11+
4ȧ

ca
T01+

ȧ

ca
T10+

2kr

(1−kr2)
T11

+
1

r
T11−r(1−kr2)T22−r(1−kr2)sin2 θT33=0.

(2.14)
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Finally, using the expressions (2.12) for perfect fluids into and assuming that the pressure
p vanishes identically, we obtain the compressible Euler system on a FLRW background:

∂0

(
ρc2

c2−v2

)
+∂1

(
ρcv(1−kr2)1/2

a(c2−v2)

)
+

3ȧρc2

a(c2−v2)
+

2ρcv(1−kr2)1/2

ra(c2−v2)

+
krρcv

a(c2−v2)(1−kr2)1/2
+

ȧv2ρ

ca(c2−v2)
=0, (2.15)

∂0

(
cρv(1−kr2)1/2

a(c2−v2)

)
+∂1

(
v2ρ(1−kr2)

a2(c2−v2)

)
+

5ȧρvc(1−kr2)1/2

a2(c2−v2)

+
2krv2ρ

a2(c2−v2)
+

2v2ρ(1−kr2)

ra2(c2−v2)
=0. (2.16)

3 The relativistic Burgers equation on a FLRW background

The derivation of the relativistic Burgers equation

We now derive the relativistic Burgers equation from the system (2.15)-(2.16). First of all,

from (2.15) we express ∂0

( ρc2

c2−v2

)
as

∂0

(
ρc2

c2−v2

)
=−∂1

(
ρcv(1−kr2)1/2

a(c2−v2)

)
− 3ȧρc

a(c2−v2)
− 2ρcv(1−kr2)1/2

ra(c2−v2)

− krρcv

a(c2−v2)(1−kr2)1/2
− ȧv2ρ

ca(c2−v2)
.

Next, we take partial derivatives in (2.16) and get

∂0

(
c2ρ

c2−v2

)(
v(1−kr2)1/2

a

)
+

(
c2ρ

c2−v2

)
∂0

(
v(1−kr2)1/2

a

)

+∂1

(
cvρ(1−kr2)1/2

a(c2−v2)

)(
v(1−kr2)1/2

a

)

+

(
cvρ(1−kr2)1/2

a(c2−v2)

)
∂1

(
v(1−kr2)1/2

a

)

+
5ȧρvc(1−kr2)1/2

a2(c2−v2)
+

2krcv2ρ

a2(c2−v2)
+

2cv2ρ(1−kr2)

ra2(c2−v2)
=0.
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Then, we substitute the expression ∂0

( ρc2

c2−v2

)
and find

∂1

(
ρcv(1−kr2)1/2

a(c2−v2)

)
+

3ȧρc

a(c2−v2)
+

2ρcv(1−kr2)1/2

ra(c2−v2)
+

krρcv

a(c2−v2)(1−kr2)1/2

+
ȧv2ρ

ca(c2−v2)

(
v(1−kr2)1/2

a

)
+

(
c2ρ

c2−v2

)
∂0

(
v(1−kr2)1/2

a

)

+∂1

(
cvρ(1−kr2)1/2

a(c2−v2)

)(
v(1−kr2)1/2

a

)
+

(
cvρ(1−kr2)1/2

a(c2−v2)

)
∂1

(
v(1−kr2)1/2

a

)

+
5ȧρvc(1−kr2)1/2

a2(c2−v2)
+

2krcv2ρ

a2(c2−v2)
+

2cv2ρ(1−kr2)

ra2(c2−v2)
=0. (3.1)

After further calculations and replacing the notation (∂t,∂r) by (∂0,∂1), we arrive at

a2∂t

(v

a
(1−kr2)1/2

)
+∂r

((v2

2

)
(1−kr2)

)
+v(1−kr2)1/2at

(
2− v2

c2

)
+rkv2 =0. (3.2)

It follows that

(avt−vat)(1−kr2)1/2+(1−kr2)∂r

(v2

2

)
−rkv2+v(1−kr2)1/2at

(
2− v2

c2

)
+rkv2 =0

and, after simplification,

avt(1−kr2)1/2+(1−kr2)∂r

(v2

2

)
+v
(

1−kr2
)1/2

at

(
1− v2

c2

)
=0.

Definition 3.1. The relativistic Burgers equation on a FLRW background is the following bal-
ance law

avt+
(
1−kr2

)1/2
∂r

(v2

2

)
+v
(

1− v2

c2

)
at =0 (3.3)

with unknown v = v(t,r), in which the function a = a(t)> 0 is given, k ∈
{
−1,0,1

}
is a

discrete parameter, and the light speed c is a positive parameter.

The physical parameters of interest

In (3.3), we are especially interested in the physically relevant expression

a(t)= a0

( t

t0

)α
(3.4)

for some given t0, so that the relativistic Burgers equation depends upon the following
parameters:

k∈ [−1,1] is the curvature constant,

c∈ (0,∞) is the light speed,

a0∈ (0,∞) is the scaling factor,

α∈ (0,∞) is the scale exponent.

(3.5)
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Two main ranges of the time variable are relevant in the problem under consideration.
Since shock wave solutions to nonlinear hyperbolic equations can only be defined in for-
ward time directions (due to the entropy condition and the implied irreversibility prop-
erty) and since the equation is singular at t=0, we distinguish between two regimes:

(1) In the range t∈ [1,∞), we use the normalization t0=1 and the spacetime is expand-
ing toward the future.

(2) In the range t∈ [−1,0), we use the normalization t0 =−1 and the spacetime is con-
tracting toward the future.

Basic properties

Eq. (3.3) is a nonlinear hyperbolic equation with time- and space-dependent coefficients.
The solutions admit jump discontinuities which may arise from an initially smooth data
and propagate in time. Kruzkov’s theory of entropy weak solutions applies immediately
to the Cauchy problem. In the special case a(t)≡ 1 and k≡ 0, we recover the standard
Burgers equation and entropy solutions are known to satisfy the maximum principle

inf
y

v(0,y)≤v(t,x)≤sup
y

v(0,y) for all relevant values (t,x).

For general a and k, this maximum principle does not hold and this is one of the main
challenges in dealing with (3.3) and designing efficient schemes for the computation of
shock wave solutions.

Observe that, in the non-relativistic limit c→+∞, Eq. (3.3) converges to

∂t

( a(t)v

(1−kr2)1/2

)
+∂r

(v2

2

)
=0, (3.6)

which, in this limiting regime, leads us to a conservation law. On the other hand, if we
keep c finite but suppress the effect of the geometry by choosing a(t)≡ 1, then Eq. (3.3)
also takes the form of a conservation law, i.e.

∂t

( v

(1−kr2)1/2

)
+∂r

(v2

2

)
=0. (3.7)

Spatially homogeneous solutions

It is natural to seek first for special classes of solutions to (3.3). Due to the presence of
the coefficient a(t) which depend on t (unless it is chosen to be constant), the only time-
independent solution is v≡0.

On the other hand, the class of spatially homogeneous solutions of (3.3) is richer. As-

suming that v depends on t only, we see that the term ∂r(
v2

2 ) vanishes identically and
thus

avt+v
(

1− v2

c2

)
at =0.



T. Ceylan, P. G. LeFloch and B. Okutmustur / Commun. Comput. Phys., 23 (2018), pp. 500-519 509

This yields us
(1

v
+

v
c2

1− v2

c2

)
vt =−(loga)t,

hence ±v√
1−v2/c2

= w
a , where w is a constant.

Claim 1. The spatially homogeneous solutions v=v(t) to the relativistic Burgers equation
on a FLRW background are given by

v(t)=
w√

a(t)2+ w2

c2

∈ (−c,c) (3.8)

and are parametrized by a single real parameter w.

The non-relativistic limit

As mentioned earlier, by taking the limit c→+∞ in Eq. (3.3), we obtain

∂t(av)+(1−kr2)1/2 1

2
∂r(v

2)=0. (3.9)

We can also determine directly the limiting behavior of the spatially homogeneous solu-
tions to (3.3): in view of (3.8), we obtain

v(t)=
1√

1
c2 +

a2(t)
w2

, (3.10)

where w is a constant parameter. Let us finally make the following observations:

– Spatially homogeneous solutions always satisfy |v|< c.

– In the expanding direction t→+∞, we have v→0.

– In the contraction direction t→0, we have v→ c since a(t)→0.

– Furthermore, we have v→ w
a(t) as c→+∞.

4 A finite volume method for the relativistic Burgers equation

Finite volume methodology for geometric balance laws

In Burgers equation on a FLRW background, the variable coefficients depend upon the
time variable t, due to the terms a(t), a′(t) and k∈{−1,0,1}. Hence, the numerical ap-
proximation of solutions to Burgers equation on a FLRW background leads to a new
challenge, in comparison to flat or Schwarzschild backgrounds.
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As explained earlier, the spacetime of interest is described by a single chart and some
coordinates denoted by (t,r). For the discretization, we denote the (constant) time length
by ∆t and we set tn =n∆t, and we introduce equally spaced cells Ij =[rj−1/2,rj+1/2] with
(constant) spatial length ∆r = rj+1/2−rj−1/2. The finite volume method is based on an
averaging of the balance law

∂t(T
0(t,r))+∂r(T

1(t,r))=S(t,r), (4.1)

over each grid cell [tn,tn+1]× Ij, where Tα(v)=Tα(t,r) and S(t,r) are the flux and source
terms, respectively. We thus have the identity

∫ r j+1/2

r j−1/2

(T0(tn+1,r)−T0(tn,r))dr

+
∫ tn+1

tn

(T1(t,rj+1/2)−T1(t,rj−1/2))dt=
∫

[tn,tn+1]×Ij

S(t,r)dtdr

or, by re-arranging the terms,

∫ r j+1/2

r j−1/2

T0(tn+1,r)dr=
∫ r j+1/2

r j−1/2

T0(tn,r)dr+
∫

[tn,tn+1]×Ij

S(t,r)dtdr

−
∫ tn+1

tn

(T1(t,rj+1/2)−T1(t,rj−1/2))dt. (4.2)

Then, we introduce the following approximations

1

∆r

∫ r j+1/2

r j−1/2

T0(tn,r)dr≃T
n
j ,

1

∆t

∫ tn+1

tn

T1(t,rj±1/2)dt≃Q
n
j±1/2,

1

∆t∆r

∫

[tn,tn+1]×Ij

S(t,r)dtdr≃S
n
j

so that our scheme takes the following finite volume form

T
n+1
j =T

n
j −

∆t

∆r
(Q

n
j+1/2−Q

n
j−1/2)+∆tS

n
j . (4.3)

Keeping in mind the practical implementation of the scheme, we write also T
n
j =T(vn

j ),

where T is the (invertible) map determined by the equation. The piecewise constant
approximations (vn

j ) at the “next” time level are thus given by the formula

vn+1
j =T

−1
(

T(vn
j )−

∆t

∆r
(Q

n
j+1/2−Q

n
j−1/2)+∆tS

n
j

)
. (4.4)

For the scheme to be fully specified, we still need to select a numerical flux and an ap-
proximation of the source term.
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Approximating Burgers equation on a FLRW background

Consider first he partial differential equation in conservation form

∂tv+∂r f (v,r)=0, (4.5)

for which time-independent solutions have the property that r 7→ f (v(r),r) is constant in
r. A general finite volume approximation for Eq. (4.5) can be written as

vn+1
j =vn

j −
∆t

∆r

(
f n
j+1/2− f n

j−1/2

)
, (4.6)

where f n
j+1/2 = f j+1/2(v

n
j ,vn

j+1) is an approximation of the flux at the cell interface

rj+1/2 and such a discretization can be constructed to preserved the the family of time-
independent solutions at the discrete level.

On the other hand, the relativistic Burgers equation (3.3) under consideration can be
put in two different forms, that is, an equation whose the left-hand side has a nonconser-
vative form

vt+
(
1−kr2

)1/2 1

a(t)
∂r

(v2

2

)
=−v(1−v2)

at(t)

a(t)
=: SN , (4.7)

and on the other hand an equation whose left-hand side has a conservative form

∂tv+∂r

(
(1−kr2)1/2 v2

2a(t)

)
=−

( krv2

2a(t)
(1−kr2)−1/2+v(1−v2)

at(t)

a(t)

)
=: SC. (4.8)

Note the obvious relation SC = SN+S̃ with S̃=− krv2

2a(t) (1−kr2)−1/2. The second form ap-

pears to be preferable since like in (4.5) one can take advantage of the conservation form
in order to formulate the discrete scheme and make sure that the integral of the solution
is preserved in time at the discrete level. A finite volume scheme for (4.8) has the general
form

vn+1
j =vn

j −
∆t

∆r

(
bn

j+1/2gn
j+1/2−bn

j−1/2gn
j−1/2

)
+∆tSn

j , (4.9)

in which we still need to specify the numerical flux f n
j+1/2 =bn

j+1/2gn
j+1/2.

The second-order Godunov-type scheme

A first-order scheme for the equation ∂tv+∂r f (v,r) = 0 and, more generally, similarly
for an equation like ∂tv+∂r f (v,r) = g(v,r) can be turned into a second-order method
by suitably “advancing” the cell-boundary values used in the numerical flux functions
in order to determine the intermediate time level tn+1/2 =(tn+tn+1)/2. More precisely,
the second-order Godunov scheme is obtained from the edge values of the reconstructed
profile advanced by half a time step. Following van Leer [15], our algorithm is formulated
as follows:
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• We reconstruct the solution within the computational cells by introducing values
(vn

i,L,vn
i,R) in each cell, so that vn

i,L lies between vn
i−1 and vn

i , and vn
i,R lies between vn

i
and vn

i+1.

• We proceed to advance the solution by half a step in time. The intermediate values
at the cell edges at the time tn+1/2=(tn+tn+1)/2 are denoted by (vn

i,L,vn
i,R) and are

determined by

vn+1/2
i,L =vn

i,L−
∆t

2∆r

(
f (vn

i,R,ri)− f (vn
i,L,ri)

)
,

vn+1/2
i,R =vn

i,R−
∆t

2∆r

(
f (vn

i,R,ri)− f (vn
i,L,ri)

)
.

• We next solve the standard Riemann problem formed by the constant intermediate

values (vn
i,L,vn

i,R). The solution vn+1/2
i+1/2 is used to compute the flux f n+1/2

i+1/2 = f (vn+1/2
i+1/2 ).

• Finally we proceed the solution by the time step ∆t from tn by using the formula

vn+1
i =vn

i −
∆t

∆r

(
f n+1/2
i+1/2 − f n+1/2

i−1/2

)
.

In addition, a min-max limiter (following [15]) is applied to the reconstructed val-
ues in order to avoid the formation of oscillations.

5 Numerical experiments with the relativistic Burgers equation

The first-order Godunov-type scheme

We now present several numerical experiments which are going to illustrate the main
properties of the Burgers model posed on a FLRW background, as well as the properties
of the proposed Godunov-type schemes. In particular, we are interested in the propa-
gation of shock-like waves and rarefaction waves when the Godunov flux determined
from a local Riemann problem is used in each grid cell. In our experiments, we choose
a(t)=t2 and r∈[−1,1]. Since our equation admits a singularity at t=0 stemming from the
function a(t), we consider the interval t≥ 1 for all cases of k=−1,0,1. In each Riemann
problem, the CFL stability condition must be determined as usual from considering the
fastest wave arising at each grid cell. We impose free boundary conditions at the end
point of the interval. After normalization by taking c=1 in Eq. (3.3), we write our model
as (4.8) and our finite volume scheme reads

vn+1
j =vn

j −
∆t

∆r

(
bn

j+1/2 gn
j+1/2−bn

j−1/2gn
j−1/2

)
+∆tSn

j , (5.1)

in which we define

Sn
j =−vn

j (1−(vn
j )

2)
an

t

an
−

krj(v
n
j )

2

2an
(1−k(rj)

2)−1/2
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and

bn
j+1/2=

(1−k(rj+1/2)
2)1/2

an
, gn

j+1/2= f (vn
j ,vn

j+1),

where f (u,v) denotes the Godunov flux function determined by solving a local Riemann
problem. Here, rj=(1/2)

(
rj−1/2+rj+1/2

)
, while an=a(tn) and an

t =at(tn) are known once
we specify the function a. For the sake of stability, we require that the time length ∆t and
the space length ∆r satisfy the CFL stability condition

∆t

∆r
max

j
(1−k(rj)

2)1/2
|vn

j |
an

<1. (5.2)

We have implemented this first-order Godunov scheme and analyzed the dynamics
of nonlinear waves arising in the problem, and in particular we compared the numerical
solutions obtained in the cases k =−1, k = 0, and k = 1. These results are presented in
Figs. 1 and 2. From these plots, we observe that the numerical solution for the case k=−1
(which is represented by the red line), moves faster than the solutions for the cases k=0
and k= 1, represented by the green curve and the blue curve, respectively. We observe
that, for all cases k =−1, k = 0, or k = 1, the solution converges when the mesh size is
reduced.

Figure 1: The first-order Godunov-type scheme for a rarefaction-like wave in the cases k=−1, k=0, and k=1.
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Figure 2: The first-order Godunov-type scheme for a shock-like wave in the cases k=−1, k=0, and k=1.

The second-order Godunov-type scheme

We now improve the accuracy by relying on our second-order Godunov-type scheme,
which was describe earlier. For the implementation, we write

vn+1
j =vn

j −
∆t

∆r

(
bn+1/2

j+1/2 gn+1/2
j+1/2 −bn+1/2

j−1/2 gn+1/2
j−1/2

)
+∆tSn+1/2

j (5.3)

and

vn+1/2
j±1/2 =vn

j±1/2−
∆t

2∆r

(
bn

j+1/2gn
j+1/2−bn

j−1/2gn
j−1/2

)
+

∆t

2
Sn

j±1/2, (5.4)

where tn+1/2=(tn+tn+1)/2 and

Sn+1/2
j =−vn+1/2

j

(
1−(vn+1/2

j )2
) an+1/2

t

an+1/2
−

krj(v
n+1/2
j )2

2an+1/2
(1−k(rj)

2)−1/2,

with

bn+1/2
j±1/2 =

(1−k(rn+1/2
j±1/2 )

2)1/2

an+1/2
, gn+1/2

j−1/2 = f (vn+1/2
j−1 ,vn+1/2

j ).
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Figure 3: The second-order Godunov-type scheme for a rarefaction-like wave in the cases k=−1, k= 0, and
k=1.

The implementation of the second-order Godunov-type scheme is based on the expres-
sions above.

In order to compare the efficiency of the first-order and second-order schemes, we
repeat the same numerical tests. We deal with shock-like wave and rarefaction-like waves
in Figs. 3 and 4 for the three cases of interest k=−1, k=0, and k=1. We observe that the
second-order version significantly improves upon the first-order version. Furthermore,
the numerical solution for the case k=−1 (represented by the red line) again moves faster
than in the cases k=0 and k=1, represented by the green and blue curves, respectively.

The grid convergence

In Figs. 5 and 6, we now analyze the convergence when the mesh sizes are reduced and
approach zero. We consider again the relativistic Burgers model in presence of a single
wave. As mentioned earlier, the Godunov-type scheme is based on local Riemann prob-
lems at each grid interface and that the standard Riemann solver only is used for which
the effect of the geometry and the source-term are suppressed.

We choose here a(t)= t2 and the spatial variable describes r∈ [−1,1] and for definite-
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Figure 4: The second-order Godunov-type scheme for a shock-like wave in the cases k=−1, k=0, and k=1.

ness we take k= 1. We use the notation J for the total number of grid cells in space and
by n to indicate the total number of time steps. What we will do here is to compare the
solution at low and intermediate resolution with the numerical solution obtained with a
very high resolution, say corresponding to the choice J=4000 and n=6000 which provide
a very fine grid for our numerical scheme and virtually coincides with the exact solution
and we may view it as our “reference solution”.

In Fig. 5, we compare this reference solution with the numerical solution given by the
first-order Godunov-type scheme. The red curve is obtained by tour first-order scheme
for J=250,500,1000,2000, respectively. In addition, in this figure the blue curve represents
the reference solution. From this graph, it can be observed that the numerical solution
represented by the red curve approaches the reference solution represented by the blue
curve as J increases.

As we treat a test admitting a continuous solution, we establish our conclusion by
computing the sup-norm between the blue and red curves for J=250,500,1000 and 2000
successively, and this sup-norm is found to be 0.4445,0.3674,0.2668,0.1412 for the mesh
resolution J=250,500,1000,2000 respectively. Fig. 6, represents the relation between num-
ber of grid cells in space J and the error in sup-norm, and clearly demonstrates that the
error decreases as J increases. Similar conclusion would be reached in the L1 norm.
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(a) J=250 (b) J=500

(c) J=1000 (d) J=2000

Figure 5: Comparing the Godunov-type solution (red line) with the reference solution (blue line, very high
resolution).

Figure 6: The grid convergence in the sup-norm.

6 Concluding remarks

In this paper, we have studied a nonlinear hyperbolic model describing the propagation
and interaction of nonlinear waves on a Friedmann-Lemaı̂tre-Robertson-Walker back-
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ground spacetime. We started from the relativistic Euler equations on a curved back-
ground and imposed a vanishing pressure in the expression of the energy-momentum
tensor for perfect fluids. This led us to a geometric relativistic Burgers equation (see
(1.2)) on the background spacetime under consideration. On a FLRW spacetime, Eq. (1.2)
yields the model (3.3) of interest in the present work. The model involves a scaling factor
a= a(t) which depends on the so-called ’cosmic time’ and a constant coefficient k, which
can be normalized to take the values ±1 or 0. The standard Burgers equation is recovered
when a(t) and k are chosen to vanish.

We have investigated nonlinear wave solutions to our model for the three possible
values of the coefficient k. We compared numerical solutions for the cases k=−1, k= 0
and k=1, and we found that the solution corresponding to k=−1 moves faster than the
solution corresponding to k=0 and k=1 (Figs. 1,2,3 and 4). This can be explained from

Eq. (3.3) by observing that the characteristic speed
(
1−kr2

)1/2
is increased by decreasing

k.

Our analysis relies on a proposed numerical discretization scheme which applies to
weak solutions and is based on the finite volume technique. Our scheme is consistent
with the conservative form of (the principal part of) our model and therefore correctly
computes weak solutions. Our numerical experiments illustrate the convergence and ef-
ficiency of the proposed finite volume scheme for FLRW backgrounds. The finite volume
methodology can be applied to the relativistic Burgers equation posed on other classes of
background spacetimes. The advantages of such a rather simplified nonlinear hyperbolic
model is that it allows one to develop and test numerical methods for weak solutions and
reach definite conclusions concerning their convergence, efficiency, etc. Depending upon
the particular background geometry, one want to guarantee that certain classes of solu-
tions of particular interest are preserved by the scheme.
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