
Computation

Visualization

Programming

MATLAB Function Reference

Version 6

MATLAB
®

The Language of Technical Computing

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

MATLAB Function Reference
 COPYRIGHT 1984 - 2000 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 1996 First printing New for MATLAB 5.0 (Release 10)
June 1997 Revised for 5.1 Online version, MATLAB 5.1
October 1997 Revised for 5.2 Online version, MATLAB 5.2
January 1999 Revised for 5.3 Online version (Release 11)
June 1999 Second printing MATLAB 5.3 (Release 11)
November 2000 Revised for 6.0 Online version (Release 12)

Contents
1
Functions by Category

General Purpose Commands . viii

Operators and Special Characters . xi

Logical Functions . xii

Language Constructs and Debugging xiii

Elementary Matrices and Matrix Manipulation xv

Specialized Matrices . xvii

Elementary Math Functions . xviii

Specialized Math Functions . xix

Coordinate System Conversion . xx

Matrix Functions - Numerical Linear Algebra xxi

Data Analysis and Fourier Transform Functions xxiii

Polynomial and Interpolation Functions xxv

Function Functions – Nonlinear Numerical Methods xxvi

Sparse Matrix Functions . xxvii

Sound Processing Functions . xxix

Character String Functions . xxx

File I/O Functions . xxxii
iii

iv Contents
Bitwise Functions . xxxiv

Structure Functions . xxxv

MATLAB Object Functions . xxxvi

MATLAB Interface to Java . xxxvii

Cell Array Functions . xxxviii

Multidimensional Array Functions xxxix

Plotting and Data Visualization . xl

Graphical User Interfaces . xlvii

Serial Port I/O . xlix

Volume 1 Reference

Index

1

Functions by Category

Functions by Category

 vi
This section lists MATLAB functions grouped by functional area.

General Purpose Commands

Operators and Special Characters

Logical Functions

Language Constructs and Debugging

Elementary Matrices and Matrix Manipulation

Specialized Matrices

Elementary Math Functions

Specialized Math Functions

Coordinate System Conversion

Matrix Functions - Numerical Linear Algebra

Data Analysis and Fourier Transform Functions

Polynomial and Interpolation Functions

Function Functions – Nonlinear Numerical Methods

Sparse Matrix Functions

Sound Processing Functions

Character String Functions

File I/O Functions

Bitwise Functions

Structure Functions

MATLAB Object Functions

MATLAB Interface to Java

Cell Array Functions

Multidimensional Array Functions

Plotting and Data Visualization

Graphical User Interface Creation

Serial Port I/O
vii

Functions by Category

 vii
General Purpose Commands

Managing Commands and Functions
addpath Add directories to MATLAB’s search path
doc Display HTML documentation in Help browser
docopt Display location of help file directory for UNIX platforms
genpath Generate a path string
help Display M-file help for MATLAB functions in the Command Window
helpbrowser Display Help browser for access to all MathWorks online help
helpdesk Display the Help browser
helpwin Display M-file help and provide access to M-file help for all functions
lasterr Last error message
lastwarn Last warning message
license Show MATLAB license number
lookfor Search for specified keyword in all help entries
partialpath Partial pathname
path Control MATLAB’s directory search path
pathtool Open the GUI for viewing and modifying MATLAB’s path
profile Start the M-file profiler, a utility for debugging and optimizing code
profreport Generate a profile report
rehash Refresh function and file system caches
rmpath Remove directories from MATLAB’s search path
support Open MathWorks Technical Support Web Page
type List file
ver Display version information for MATLAB, Simulink, and toolboxes
version Get MATLAB version number
web Point Help browser or Web browser at file or Web site
what List MATLAB-specific files in current directory
whatsnew Display README files for MATLAB and toolboxes
which Locate functions and files

Managing Variables and the Workspace
clear Remove items from the workspace
disp Display text or array
length Length of vector
load Retrieve variables from disk
memory Help for memory limitations
mlock Prevent M-file clearing
munlock Allow M-file clearing
openvar Open workspace variable in Array Editor, for graphical editing
pack Consolidate workspace memory
i

General Purpose Commands
save Save workspace variables on disk
saveas Save figure or model using specified format
size Array dimensions
who, whos List the variables in the workspace
workspace Display the Workspace Browser, a GUI for managing the workspace

Controlling the Command Window
clc Clear Command Window
echo Echo M-files during execution
format Control the display format for output
home Move cursor to upper left corner of Command Window
more Control paged output for the Command Window

Working with Files and the Operating Environment
beep Produce a beep sound
cd Change working directory
checkin Check file into source control system
checkout Check file out of source control system
cmopts Get name of source control system, and PVCS project filename
copyfile Copy file
customverctrlAllow custom source control system
delete Delete files or graphics objects
diary Save session to a disk file
dir Display a directory listing
dos Execute a DOS command and return the result
edit Edit an M-file
fileparts Get filename parts
filebrowser Display Current Directory browser, for viewing files
fullfile Build full filename from parts
info Display contact information or toolbox Readme files
inmem Functions in memory
ls List directory on UNIX
matlabroot Get root directory of MATLAB installation
mkdir Make new directory
open Open files based on extension
pwd Display current directory
tempdir Return the name of the system’s temporary directory
tempname Unique name for temporary file
undocheckout Undo previous checkout from source control system
unix Execute a UNIX command and return the result
! Execute operating system command
ix

Functions by Category

 x
Starting and Quitting MATLAB
finish MATLAB termination M-file
exit Terminate MATLAB
matlab Start MATLAB (UNIX systems only)
matlabrc MATLAB startup M-file
quit Terminate MATLAB
startup MATLAB startup M-file

Operators and Special Characters
Operators and Special Characters
+ Plus
- Minus
* Matrix multiplication
.* Array multiplication
^ Matrix power
.^ Array power
kron Kronecker tensor product
\ Backslash or left division
/ Slash or right division
./ and .\ Array division, right and left
: Colon
() Parentheses
[] Brackets
{} Curly braces
. Decimal point
... Continuation
, Comma
; Semicolon
% Comment
! Exclamation point
' Transpose and quote
.' Nonconjugated transpose
= Assignment
== Equality
< > Relational operators
& Logical AND
| Logical OR
~ Logical NOT
xor Logical EXCLUSIVE OR
xi

Functions by Category

 xii
Logical Functions
all Test to determine if all elements are nonzero
any Test for any nonzeros
exist Check if a variable or file exists
find Find indices and values of nonzero elements
is* Detect state
isa Detect an object of a given class
iskeyword Testif string is a MATLAB keyword
isvarname Test if string is a valid variable name
logical Convert numeric values to logical
mislocked True if M-file cannot be cleared

Language Constructs and Debugging
Language Constructs and Debugging

MATLAB as a Programming Language
builtin Execute builtin function from overloaded method
eval Interpret strings containing MATLAB expressions
evalc Evaluate MATLAB expression with capture
evalin Evaluate expression in workspace
feval Function evaluation
function Function M-files
global Define global variables
nargchk Check number of input arguments
persistent Define persistent variable
script Script M-files

Control Flow
break Terminate execution offor loop orwhile loop
case Case switch
catch Begin catch block
continue Pass control to the next iteration offor or while loop
else Conditionally execute statements
elseif Conditionally execute statements
end Terminatefor, while, switch, try, andif statements or indicate last

index
error Display error messages
for Repeat statements a specific number of times
if Conditionally execute statements
otherwise Default part ofswitch statement
return Return to the invoking function
switch Switch among several cases based on expression
try Begintry block
warning Display warning message
while Repeat statements an indefinite number of times

Interactive Input
input Request user input
keyboard Invoke the keyboard in an M-file
menu Generate a menu of choices for user input
pause Halt execution temporarily
xiii

Functions by Category

 xiv
Object-Oriented Programming
class Create object or return class of object
double Convert to double precision
inferiorto Inferior class relationship
inline Construct an inline object
int8, int16, int32

Convert to signed integer
isa Detect an object of a given class
loadobj Extends theload function for user objects
saveobj Save filter for objects
single Convert to single precision
superiorto Superior class relationship
uint8, uint16, uint32

Convert to unsigned integer

Debugging
dbclear Clear breakpoints
dbcont Resume execution
dbdown Change local workspace context
dbmex Enable MEX-file debugging
dbquit Quit debug mode
dbstack Display function call stack
dbstatus List all breakpoints
dbstep Execute one or more lines from a breakpoint
dbstop Set breakpoints in an M-file function
dbtype List M-file with line numbers
dbup Change local workspace context

Function Handles
function_handle

MATLAB data type that is a handle to a function
functions Return information about a function handle
func2str Constructs a function name string from a function handle
str2func Constructs a function handle from a function name string

Elementary Matrices and Matrix Manipulation
Elementary Matrices and Matrix Manipulation

Elementary Matrices and Arrays
blkdiag Construct a block diagonal matrix from input arguments
eye Identity matrix
linspace Generate linearly spaced vectors
logspace Generate logarithmically spaced vectors
numel Number of elements in a matrix or cell array
ones Create an array of all ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
zeros Create an array of all zeros
: (colon) Regularly spaced vector

Special Variables and Constants
ans The most recent answer
computer Identify the computer on which MATLAB is running
eps Floating-point relative accuracy
i Imaginary unit
Inf Infinity
inputname Input argument name
j Imaginary unit
NaN Not-a-Number
nargin, nargout

Number of function arguments
nargoutchk Validate number of output arguments
pi Ratio of a circle’s circumference to its diameter,π
realmax Largest positive floating-point number
realmin Smallest positive floating-point number
varargin, varargout

Pass or return variable numbers of arguments

Time and Dates
calendar Calendar
clock Current time as a date vector
cputime Elapsed CPU time
date Current date string
datenum Serial date number
datestr Date string format
datevec Date components
xv

Functions by Category

 xv
eomday End of month
etime Elapsed time
now Current date and time
tic, toc Stopwatch timer
weekday Day of the week

Matrix Manipulation
cat Concatenate arrays
diag Diagonal matrices and diagonals of a matrix
fliplr Flip matrices left-right
flipud Flip matrices up-down
repmat Replicate and tile an array
reshape Reshape array
rot90 Rotate matrix 90 degrees
tril Lower triangular part of a matrix
triu Upper triangular part of a matrix
: (colon) Index into array, rearrange array

Vector Functions
cross Vector cross product
dot Vector dot product
intersect Set intersection of two vectors
ismember Detect members of a set
setdiff Return the set difference of two vector
setxor Set exclusive or of two vectors
union Set union of two vectors
unique Unique elements of a vector
i

Specialized Matrices
Specialized Matrices
compan Companion matrix
gallery Test matrices
hadamard Hadamard matrix
hankel Hankel matrix
hilb Hilbert matrix
invhilb Inverse of the Hilbert matrix
magic Magic square
pascal Pascal matrix
toeplitz Toeplitz matrix
wilkinson Wilkinson’s eigenvalue test matrix
xvii

Functions by Category

 xv

nd
Elementary Math Functions
abs Absolute value and complex magnitude
acos, acosh Inverse cosine and inverse hyperbolic cosine
acot, acoth Inverse cotangent and inverse hyperbolic cotangent
acsc, acsch Inverse cosecant and inverse hyperbolic cosecant
angle Phase angle
asec, asech Inverse secant and inverse hyperbolic secant
asin, asinh Inverse sine and inverse hyperbolic sine
atan, atanh Inverse tangent and inverse hyperbolic tangent
atan2 Four-quadrant inverse tangent
ceil Round toward infinity
complex Construct complex data from real and imaginary components
conj Complex conjugate
cos, cosh Cosine and hyperbolic cosine
cot, coth Cotangent and hyperbolic cotangent
csc, csch Cosecant and hyperbolic cosecant
exp Exponential
fix Round towards zero
floor Round towards minus infinity
gcd Greatest common divisor
imag Imaginary part of a complex number
lcm Least common multiple
log Natural logarithm
log2 Base 2 logarithm and dissect floating-point numbers into exponent a

mantissa
log10 Common (base 10) logarithm
mod Modulus (signed remainder after division)
nchoosek Binomial coefficient or all combinations
real Real part of complex number
rem Remainder after division
round Round to nearest integer
sec, sech Secant and hyperbolic secant
sign Signum function
sin, sinh Sine and hyperbolic sine
sqrt Square root
tan, tanh Tangent and hyperbolic tangent
iii

Specialized Math Functions
Specialized Math Functions
airy Airy functions
besselh Bessel functions of the third kind (Hankel functions)
besseli, besselk

Modified Bessel functions
besselj, bessely

Bessel functions
beta, betainc, betaln

Beta functions
ellipj Jacobi elliptic functions
ellipke Complete elliptic integrals of the first and second kind
erf, erfc, erfcx, erfinv

Error functions
expint Exponential integral
factorial Factorial function
gamma, gammainc, gammaln

Gamma functions
legendre Associated Legendre functions
pow2 Base 2 power and scale floating-point numbers
rat, rats Rational fraction approximation
xix

Functions by Category

 xx
Coordinate System Conversion
cart2pol Transform Cartesian coordinates to polar or cylindrical
cart2sph Transform Cartesian coordinates to spherical
pol2cart Transform polar or cylindrical coordinates to Cartesian
sph2cart Transform spherical coordinates to Cartesian

Matrix Functions - Numerical Linear Algebra
Matrix Functions - Numerical Linear Algebra

Matrix Analysis
cond Condition number with respect to inversion
condeig Condition number with respect to eigenvalues
det Matrix determinant
norm Vector and matrix norms
null Null space of a matrix
orth Range space of a matrix
rank Rank of a matrix7
rcond Matrix reciprocal condition number estimate
rref, rrefmovie

Reduced row echelon form
subspace Angle between two subspaces
trace Sum of diagonal elements

Linear Equations
chol Cholesky factorization
inv Matrix inverse
lscov Least squares solution in the presence of known covariance
lu LU matrix factorization
lsqnonneg Nonnegative least squares
minres Minimum Residual Method
pinv Moore-Penrose pseudoinverse of a matrix
qr Orthogonal-triangular decomposition
symmlq Symmetric LQ method

Eigenvalues and Singular Values
balance Improve accuracy of computed eigenvalues
cdf2rdf Convert complex diagonal form to real block diagonal form
eig Eigenvalues and eigenvectors
gsvd Generalized singular value decomposition
hess Hessenberg form of a matrix
poly Polynomial with specified roots
qz QZ factorization for generalized eigenvalues
rsf2csf Convert real Schur form to complex Schur form
schur Schur decomposition
svd Singular value decomposition
xxi

Functions by Category

 xx
Matrix Functions
expm Matrix exponential
funm Evaluate general matrix function
logm Matrix logarithm
sqrtm Matrix square root

Low Level Functions
qrdelete Delete column from QR factorization
qrinsert Insert column in QR factorization
ii

Data Analysis and Fourier Transform Functions
Data Analysis and Fourier Transform Functions

Basic Operations
cumprod Cumulative product
cumsum Cumulative sum
cumtrapz Cumulative trapezoidal numerical integration
factor Prime factors
inpolygon Detect points inside a polygonal region
max Maximum elements of an array
mean Average or mean value of arrays
median Median value of arrays
min Minimum elements of an array
perms All possible permutations
polyarea Area of polygon
primes Generate list of prime numbers
prod Product of array elements
rectint Rectangle intersection Area
sort Sort elements in ascending order
sortrows Sort rows in ascending order
std Standard deviation
sum Sum of array elements
trapz Trapezoidal numerical integration
var Variance

Finite Differences
del2 Discrete Laplacian
diff Differences and approximate derivatives
gradient Numerical gradient

Correlation
corrcoef Correlation coefficients
cov Covariance matrix

Filtering and Convolution
conv Convolution and polynomial multiplication
conv2 Two-dimensional convolution
deconv Deconvolution and polynomial division
filter Filter data with an infinite impulse response (IIR) or finite impulse

response (FIR) filter
xxiii

Functions by Category

 xx
filter2 Two-dimensional digital filtering

Fourier Transforms
abs Absolute value and complex magnitude
angle Phase angle
cplxpair Sort complex numbers into complex conjugate pairs
fft One-dimensional fast Fourier transform
fft2 Two-dimensional fast Fourier transform
fftshift Shift DC component of fast Fourier transform to center of spectrum
ifft Inverse one-dimensional fast Fourier transform
ifft2 Inverse two-dimensional fast Fourier transform
ifftn Inverse multidimensional fast Fourier transform
ifftshift Inverse FFT shift
nextpow2 Next power of two
unwrap Correct phase angles
iv

Polynomial and Interpolation Functions

nts
Polynomial and Interpolation Functions

Polynomials
conv Convolution and polynomial multiplication
deconv Deconvolution and polynomial division
poly Polynomial with specified roots
polyder Polynomial derivative
polyeig Polynomial eigenvalue problem
polyfit Polynomial curve fitting
polyint Analytic polynomial integration
polyval Polynomial evaluation
polyvalm Matrix polynomial evaluation
residue Convert between partial fraction expansion and polynomial coefficie
roots Polynomial roots

Data Interpolation
convhull Convex hull
convhulln Multidimensional convex hull
delaunay Delaunay triangulation
delaunay3 Three-dimensionalDelaunay tessellation
delaunayn Multidimensional Delaunay tessellation
dsearch Search for nearest point
dsearchn Multidimensional closest point search
griddata Data gridding
griddata3 Data gridding and hypersurface fitting for three-dimensional

data
griddatan Data gridding and hypersurface fitting (dimension >= 2)
interp1 One-dimensional data interpolation (table lookup)
interp2 Two-dimensional data interpolation (table lookup)
interp3 Three-dimensional data interpolation (table lookup)
interpft One-dimensional interpolation using the FFT method
interpn Multidimensional data interpolation (table lookup)
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and interpolation
pchip Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
ppval Piecewise polynomial evaluation
spline Cubic spline data interpolation
tsearch Search for enclosing Delaunay triangle
tsearchn Multidimensional closest simplex search
voronoi Voronoi diagram
voronoin Multidimensional Voronoi diagrams
xxv

Functions by Category

 xx
Function Functions – Nonlinear Numerical Methods
bvp4c Solve two-point boundry value problems (BVPs) for

ordinary differential equations (ODEs)
bvpget Extract parameters from BVP options structure
bvpinit Form the initial guess forbvp4c
bvpset Create/alter BVP options structure
bvpval Evaluate the solution computed bybvp4c
dblquad Numerical evaluation of double integrals
fminbnd Minimize a function of one variable
fminsearch Minimize a function of several variables
fzero Find zero of a function of one variable
ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

Solve initial value problems for ODEs
odeget Extract parameters from ODE options structure
odeset Create/alter ODE options structure
optimget Get optimization options structure parameter values
optimset Create or edit optimization options parameter structure
pdepe Solve initial-boundary value problems
pdeval Evaluate the solution computed by pdepe
quad Numerical evaluation of integrals, adaptive Simpson quadrature
quadl Numerical evaluation of integrals, adaptive Lobatto quadrature
vectorize Vectorize expression
vi

Sparse Matrix Functions
Sparse Matrix Functions

Elementary Sparse Matrices
spdiags Extract and create sparse band and diagonal matrices
speye Sparse identity matrix
sprand Sparse uniformly distributed random matrix
sprandn Sparse normally distributed random matrix
sprandsym Sparse symmetric random matrix

Full to Sparse Conversion
find Find indices and values of nonzero elements
full Convert sparse matrix to full matrix
sparse Create sparse matrix
spconvert Import matrix from sparse matrix external format

Working with Nonzero Entries of Sparse Matrices
nnz Number of nonzero matrix elements
nonzeros Nonzero matrix elements
nzmax Amount of storage allocated for nonzero matrix elements
spalloc Allocate space for sparse matrix
spfun Apply function to nonzero sparse matrix elements
spones Replace nonzero sparse matrix elements with ones

Visualizing Sparse Matrices
spy Visualize sparsity pattern

Reordering Algorithms
colamd Column approximate minimum degree permutation
colmmd Sparse column minimum degree permutation
colperm Sparse column permutation based on nonzero count
dmperm Dulmage-Mendelsohn decomposition
randperm Random permutation
symamd Symmetric approximate minimum degree permutation
symmmd Sparse symmetric minimum degree ordering
symrcm Sparse reverse Cuthill-McKee ordering
xxvii

Functions by Category

 xx

ns
Norm, Condition Number, and Rank
condest 1-norm matrix condition number estimate
normest 2-norm estimate

Sparse Systems of Linear Equations
bicg BiConjugate Gradients method
bicgstab BiConjugate Gradients Stabilized method
cgs Conjugate Gradients Squared method
cholinc Sparse Incomplete Cholesky and Cholesky-Infinity factorizations
cholupdate Rank 1 update to Cholesky factorization
gmres Generalized Minimum Residual method (with restarts)
lsqr LSQR implementation of Conjugate Gradients on the normal equatio
luinc Incomplete LU matrix factorizations
pcg Preconditioned Conjugate Gradients method
qmr Quasi-Minimal Residual method
qr Orthogonal-triangular decomposition
qrdelete Delete column from QR factorization
qrinsert Insert column in QR factorization
qrupdate Rank 1 update to QR factorization

Sparse Eigenvalues and Singular Values
eigs Find eigenvalues and eigenvectors
svds Find singular values

Miscellaneous
spparms Set parameters for sparse matrix routines
viii

Sound Processing Functions
Sound Processing Functions

General Sound Functions
lin2mu Convert linear audio signal to mu-law
mu2lin Convert mu-law audio signal to linear
sound Convert vector into sound
soundsc Scale data and play as sound

SPARCstation-Specific Sound Functions
auread Read NeXT/SUN (.au) sound file
auwrite Write NeXT/SUN (.au) sound file

.WAV Sound Functions
wavplay Play recorded sound on a PC-based audio output device
wavread Read Microsoft WAVE (.wav) sound file
wavrecord Record sound using a PC-based audio input device
wavwrite Write Microsoft WAVE (.wav) sound file
xxix

Functions by Category

 xx
Character String Functions

General
abs Absolute value and complex magnitude
eval Interpret strings containing MATLAB expressions
real Real part of complex number
strings MATLAB string handling

String to Function Handle Conversion
func2str Constructs a function name string from a function handle
str2func Constructs a function handle from a function name string

String Manipulation
deblank Strip trailing blanks from the end of a string
findstr Find one string within another
lower Convert string to lower case
strcat String concatenation
strcmp Compare strings
strcmpi Compare strings, ignoring case
strjust Justify a character array
strmatch Find possible matches for a string
strncmp Compare the firstn characters of strings
strncmpi Compare the firstn characters of strings, ignoring case
strrep String search and replace
strtok First token in string
strvcat Vertical concatenation of strings
symvar Determine symbolic variables in an expression
texlabel Produce the TeX format from a character string
upper Convert string to upper case

String to Number Conversion
char Create character array (string)
int2str Integer to string conversion
mat2str Convert a matrix into a string
num2str Number to string conversion
sprintf Write formatted data to a string
sscanf Read string under format control
str2double Convert string to double-precision value
str2mat String to matrix conversion
x

Character String Functions
str2num String to number conversion

Radix Conversion
bin2dec Binary to decimal number conversion
dec2bin Decimal to binary number conversion
dec2hex Decimal to hexadecimal number conversion
hex2dec Hexadecimal to decimal number conversion
hex2num Hexadecimal to double number conversion
xxxi

Functions by Category

 xx
File I/O Functions

File Opening and Closing
fclose Close one or more open files
fopen Open a file or obtain information about open files

Unformatted I/O
fread Read binary data from file
fwrite Write binary data to a file

Formatted I/O
fgetl Return the next line of a file as a string without line terminator(s)
fgets Return the next line of a file as a string with line terminator(s)
fprintf Write formatted data to file
fscanf Read formatted data from file

File Positioning
feof Test for end-of-file
ferror Query MATLAB about errors in file input or output
frewind Rewind an open file
fseek Set file position indicator
ftell Get file position indicator

String Conversion
sprintf Write formatted data to a string
sscanf Read string under format control

Specialized File I/O
dlmread Read an ASCII delimited file into a matrix
dlmwrite Write a matrix to an ASCII delimited file
hdf HDF interface
imfinfo Return information about a graphics file
imread Read image from graphics file
imwrite Write an image to a graphics file
strread Read formatted data from a string
textread Read formatted data from text file
wk1read Read a Lotus123 WK1 spreadsheet file into a matrix
xii

File I/O Functions
wk1write Write a matrix to a Lotus123 WK1 spreadsheet file
xxxiii

Functions by Category

 xx
Bitwise Functions
bitand Bit-wise AND
bitcmp Complement bits
bitor Bit-wise OR
bitmax Maximum floating-point integer
bitset Set bit
bitshift Bit-wise shift
bitget Get bit
bitxor Bit-wise XOR
xiv

Structure Functions
Structure Functions
fieldnames Field names of a structure
getfield Get field of structure array
rmfield Remove structure fields
setfield Set field of structure array
struct Create structure array
struct2cell Structure to cell array conversion
xxxv

Functions by Category

 xx
MATLAB Object Functions
class Create object or return class of object
isa Detect an object of a given class
methods Display method names
methodsview Displays information on all methods implemented by a class
subsasgn Overloaded method for A(I)=B, A{I}=B, and A.field=B
subsindex Overloaded method for X(A)
subsref Overloaded method for A(I), A{I} and A.field
xvi

MATLAB Interface to Java
MATLAB Interface to Java
class Create object or return class of object
import Add a package or class to the current Java import list
isa Detect an object of a given class
isjava Test whether an object is a Java object
javaArray Constructs a Java array
javaMethod Invokes a Java method
javaObject Constructs a Java object
methods Display method names
methodsview Displays information on all methods implemented by a class
xxxvii

Functions by Category

 xx
Cell Array Functions
cell Create cell array
cellfun Apply a function to each element in a cell array
cellstr Create cell array of strings from character array
cell2struct Cell array to structure array conversion
celldisp Display cell array contents
cellplot Graphically display the structure of cell arrays
num2cell Convert a numeric array into a cell array
xviii

Multidimensional Array Functions
Multidimensional Array Functions
cat Concatenate arrays
flipdim Flip array along a specified dimension
ind2sub Subscripts from linear index
ipermute Inverse permute the dimensions of a multidimensional array
ndgrid Generate arrays for multidimensional functions and interpolation
ndims Number of array dimensions
permute Rearrange the dimensions of a multidimensional array
reshape Reshape array
shiftdim Shift dimensions
squeeze Remove singleton dimensions
sub2ind Single index from subscripts
xxxix

Functions by Category

 xl
Plotting and Data Visualization

Basic Plots and Graphs
bar Vertical bar chart
barh Horizontal bar chart
hist Plot histograms
histc Histogram count
hold Hold current graph
loglog Plot using log-log scales
pie Pie plot
plot Plot vectors or matrices.
polar Polar coordinate plot
semilogx Semi-log scale plot
semilogy Semi-log scale plot
subplot Create axes in tiled positions

Three-Dimensional Plotting
bar3 Vertical 3-D bar chart
bar3h Horizontal 3-D bar chart
comet3 3-D comet plot
cylinder Generate cylinder
fill3 Draw filled 3-D polygons in 3-space
plot3 Plot lines and points in 3-D space
quiver3 3-D quiver (or velocity) plot
slice Volumetric slice plot
sphere Generate sphere
stem3 Plot discrete surface data
waterfall Waterfall plot

Plot Annotation and Grids
clabel Add contour labels to a contour plot
datetick Date formatted tick labels
grid Grid lines for 2-D and 3-D plots
gtext Place text on a 2-D graph using a mouse
legend Graph legend for lines and patches
plotyy Plot graphs with Y tick labels on the left and right
title Titles for 2-D and 3-D plots
xlabel X-axis labels for 2-D and 3-D plots
ylabel Y-axis labels for 2-D and 3-D plots
zlabel Z-axis labels for 3-D plots

Plotting and Data Visualization
Surface, Mesh, and Contour Plots
contour Contour (level curves) plot
contourc Contour computation
contourf Filled contour plot
hidden Mesh hidden line removal mode
meshc Combination mesh/contourplot
mesh 3-D mesh with reference plane
peaks A sample function of two variables
surf 3-D shaded surface graph
surface Create surface low-level objects
surfc Combination surf/contourplot
surfl 3-D shaded surface with lighting
trimesh Triangular mesh plot
trisurf Triangular surface plot

Volume Visualization
coneplot Plot velocity vectors as cones in 3-D vector field
contourslice Draw contours in volume slice plane
curl Compute the curl and angular velocity of a vector field
divergence Compute the divergence of a vector field
flow Generate scalar volume data
interpstreamspeedInterpolate streamline vertices from vector-field magnitudes
isocaps Compute isosurface end-cap geometry
isocolors Compute the colors of isosurface vertices
isonormals Compute normals of isosurface vertices
isosurface Extract isosurface data from volume data
reducepatch Reduce the number of patch faces
reducevolume Reduce number of elements in volume data set
shrinkfaces Reduce the size of patch faces
slice Draw slice planes in volume
smooth3 Smooth 3-D data
stream2 Compute 2-D stream line data
stream3 Compute 3-D stream line data
streamline Draw stream lines from 2- or 3-D vector data
streamparticlesDraws stream particles from vector volume data
streamribbon Draws stream ribbons from vector volume data
streamslice Draws well-spaced stream lines from vector volume data
streamtube Draws stream tubes from vector volume data
surf2patch Convert srface data to patch data
subvolume Extract subset of volume data set
volumebounds Return coordinate and color limits for volume (scalar and vector)
xli

Functions by Category

 xli
Domain Generation
griddata Data gridding and surface fitting
meshgrid Generation of X and Y arrays for 3-D plots

Specialized Plotting
area Area plot
box Axis box for 2-D and 3-D plots
comet Comet plot
compass Compass plot
errorbar Plot graph with error bars
ezcontour Easy to use contour plotter
ezcontourf Easy to use filled contour plotter
ezmesh Easy to use 3-D mesh plotter
ezmeshc Easy to use combination mesh/contour plotter
ezplot Easy to use function plotter
ezplot3 Easy to use 3-D parametric curve plotter
ezpolar Easy to use polar coordinate plotter
ezsurf Easy to use 3-D colored surface plotter
ezsurfc Easy to use combination surface/contour plotter
feather Feather plot
fill Draw filled 2-D polygons
fplot Plot a function
pareto Pareto char
pie3 3-D pie plot
plotmatrix Scatter plot matrix
pcolor Pseudocolor (checkerboard) plot
rose Plot rose or angle histogram
quiver Quiver (or velocity) plot
ribbon Ribbon plot
stairs Stairstep graph
scatter Scatter plot
scatter3 3-D scatter plot
stem Plot discrete sequence data
convhull Convex hull
delaunay Delaunay triangulation
dsearch Search Delaunay triangulation for nearest point
inpolygon True for points inside a polygonal region
polyarea Area of polygon
tsearch Search for enclosing Delaunay triangle
voronoi Voronoi diagram
i

Plotting and Data Visualization
View Control
camdolly Move camera position and target
camlookat View specific objects
camorbit Orbit about camera target
campan Rotate camera target about camera position
campos Set or get camera position
camproj Set or get projection type
camroll Rotate camera about viewing axis
camtarget Set or get camera target
camup Set or get camera up-vector
camva Set or get camera view angle
camzoom Zoom camera in or out
daspect Set or get data aspect ratio
pbaspect Set or get plot box aspect ratio
view 3-D graph viewpoint specification.
viewmtx Generate view transformation matrices
xlim Set or get the currentx-axis limits
ylim Set or get the currenty-axis limits
zlim Set or get the currentz-axis limits

Lighting
camlight Cerate or position Light
light Light object creation function
lighting Lighting mode
lightangle Position light in sphereical coordinates
material Material reflectance mode

Transparency
alpha Set or query transparency properties for objects in current axes
alphamap Specify the figure alphamap
alim Set or query the axes alpha limits

Color Operations
brighten Brighten or darken color map
caxis Pseudocolor axis scaling
colorbar Display color bar (color scale)
colordef Set up color defaults
colormap Set the color look-up table (list of colormaps)
graymon Graphics figure defaults set for grayscale monitor
hsv2rgb Hue-saturation-value to red-green-blue conversion
xliii

Functions by Category

 xli
rgb2hsv RGB to HSVconversion
rgbplot Plot color map
shading Color shading mode
spinmap Spin the colormap
surfnorm 3-D surface normals
whitebg Change axes background color for plots

Colormaps
autumn Shades of red and yellow color map
bone Gray-scale with a tinge of blue color map
contrast Gray color map to enhance image contrast
cool Shades of cyan and magenta color map
copper Linear copper-tone color map
flag Alternating red, white, blue, and black color map
gray Linear gray-scale color map
hot Black-red-yellow-white color map
hsv Hue-saturation-value (HSV) color map
jet Variant of HSV
lines Line color colormap
prism Colormap of prism colors
spring Shades of magenta and yellow color map
summer Shades of green and yellow colormap
winter Shades of blue and green color map

Printing
orient Hardcopy paper orientation
pagesetupdlg Page position dialog box
print Print graph or save graph to file
printdlg Print dialog box
printopt Configure local printer defaults
saveas Save figure to graphic file

Handle Graphics, General
allchild Find all children of specified objects
copyobj Make a copy of a graphics object and its children
findall Find all graphics objects (including hidden handles)
findobj Find objects with specified property values
gcbo Return object whose callback is currently executing
gco Return handle of current object
get Get object properties
v

Plotting and Data Visualization
rotate Rotate objects about specified origin and direction
ishandle True for graphics objects
set Set object properties

Working with Application Data
getappdata Get value of application data
isappdata True if application data exists
rmappdata Remove application data
setappdata Specify application data

Handle Graphics, Object Creation
axes Create Axes object
figure Create Figure (graph) windows
image Create Image (2-D matrix)
light Create Light object (illuminates Patch and Surface)
line Create Line object (3-D polylines)
patch Create Patch object (polygons)
rectangle Create Rectangle object (2-D rectangle)
surface Create Surface (quadrilaterals)
text Create Text object (character strings)
uicontextmenuCreate context menu (popup associated with object)

Handle Graphics, Figure Windows
capture Screen capture of the current figure
clc Clear figure window
clf Clear figure
close Close specified window
closereq Default close request function
gcf Get current figure handle
newplot Graphics M-file preamble forNextPlot property
refresh Refresh figure
saveas Save figure or model to desired output format

Handle Graphics, Axes
axis Plot axis scaling and appearance
cla Clear Axes
gca Get current Axes handle
xlv

Functions by Category

 xlv
Object Manipulation
reset Reset axis or figure
rotate3d Interactively rotate the view of a 3-D plot
selectmoveresizeInteractively select, move, or resize objects

Interactive User Input
ginput Graphical input from a mouse or cursor
zoom Zoom in and out on a 2-D plot

Region of Interest
dragrect Drag XOR rectangles with mouse
drawnow Complete any pending drawing
rbbox Rubberband box
i

Graphical User Interfaces
Graphical User Interfaces

Dialog Boxes
dialog Create a dialog box
errordlg Create error dialog box
helpdlg Display help dialog box
inputdlg Create input dialog box
listdlg Create list selection dialog box
msgbox Create message dialog box
pagedlg Display page layout dialog box
printdlg Display print dialog box
questdlg Create question dialog box
uigetfile Display dialog box to retrieve name of file for reading
uiputfile Display dialog box to retrieve name of file for writing
uisetcolor Interactively set aColorSpec using a dialog box
uisetfont Interactively set a font using a dialog box
warndlg Create warning dialog box

User Interface Deployment
guidata Store or retrieve application data
guihandles Create a structure of handles
movegui Move GUI figure onscreen
openfig Open or raise GUI figure

User Interface Development
guide Open the GUI Layout Editor
inspect Display Property Inspector

User Interface Objects
menu Generate a menu of choices for user input
uicontextmenuCreate context menu
uicontrol Create user interface control
uimenu Create user interface menu

Other Functions
dragrect Drag rectangles with mouse
findfigs Display off-screen visible figure windows
gcbf Return handle of figure containing callback object
xlvii

Functions by Category

 xlv

s

gcbo Return handle of object whose callback is executing
rbbox Create rubberband box for area selection
selectmoveresizeSelect, move, resize, or copy Axes and Uicontrol graphics object
textwrap Return wrapped string matrix for given Uicontrol
uiresume Used withuiwait, controls program execution
uiwait Used withuiresume, controls program execution
waitbar Display wait bar
waitforbuttonpressWait for key/buttonpress over figure
iii

Serial Port I/O
Serial Port I/O

Creating a Serial Port Object
serial Create a serial port object

Writing and Reading Data
fgetl Read one line of text from the device and discard the

terminator
fgets Read one line of text from the device and include the

terminator
fprintf Write text to the device
fread Read binary data from the device
fscanf Read data from the device, and format as text
fwrite Write binary data to the device
readasync Read data asynchronously from the device
stopasync Stop asynchronous read and write operations

Configuring and Returning Properties
get Return serial port object properties
set Configure or display serial port object properties

State Change
fclose Disconnect a serial port object from the device
fopen Connect a serial port object to the device
record Record data and event information to a file

General Purpose
clear Remove a serial port object from the MATLAB workspace
delete Remove a serial port object from memory
disp Display serial port object summary information
instraction Display event information when an event occurs
instrfind Return serial port objects from memory to the MATLAB

workspace
isvalid Determine if serial port objects are valid
length Length of serial port object array
load Load serial port objects and variables into the MATLAB

workspace
save Save serial port objects and variables to a MAT-file
xlix

Functions by Category

 l
serialbreak Send a break to the device connected to the serial port
size Size of serial port object array

Volume 1 Reference

Volume 1 Reference

 2
This volume describes the MATLAB operators, special characters, commands,
and functions listed alphabetically from A through E.

Please note that in the three volumes of the MATLAB Function Reference, operators
and special characters are listed alphabetically according to these categories:

• Arithmetic Operators

• Colon

• Logical Operators

• Special Characters

• Relational Operators

abs
1absPurpose Absolute value and complex magnitude

Syntax Y = abs(X)

Description abs(X) returns the absolute value, , for each element of X.

If X is complex, abs(X) returns the complex modulus (magnitude):

abs(X) = sqrt(real(X).^2 + imag(X).^2)

Examples abs(-5) = 5
abs(3+4i) = 5

See Also angle, sign, unwrap

X

3

acos, acosh
1acos, acoshPurpose Inverse cosine and inverse hyperbolic cosine

Syntax Y = acos(X)
Y = acosh(X)

Description The acos and acosh functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = acos(X) returns the inverse cosine (arccosine) for each element of X. For
real elements of X in the domain , acos(X) is real and in the range

. For real elements of X outside the domain , acos(X) is complex.

Y = acosh(X) returns the inverse hyperbolic cosine for each element of X.

Examples Graph the inverse cosine function over the domain and the inverse
hyperbolic cosine function over the domain

x = -1:.05:1; plot(x,acos(x))
x = 1:pi/40:pi; plot(x,acosh(x))

Algorithm

See Also cos, cosh

1 1,–[]
0 π,[] 1 1,–[]

1– x 1,≤ ≤
1 x π.≤ ≤

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

x

y=
ac

os
(x

)

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y=
ac

os
h(

x)

z()cos 1– i z i 1 z 2–()
1
2

+log–=

z()cosh 1– z z 2 1–()
1
2

+log=
4

acot, acoth
1acot, acothPurpose Inverse cotangent and inverse hyperbolic cotangent

Syntax Y = acot(X)
Y = acoth(X)

Description The acot and acoth functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = acot(X) returns the inverse cotangent (arccotangent) for each element of X.

Y = acoth(X) returns the inverse hyperbolic cotangent for each element of X.

Examples Graph the inverse cotangent over the domains and and
the inverse hyperbolic cotangent over the domains and

x1 = -2∗pi:pi/30:-0.1; x2 = 0.1:pi/30:2∗pi;
plot(x1,acot(x1),x2,acot(x2))
x1 = -30:0.1:-1.1; x2 = 1.1:0.1:30;
plot(x1,acoth(x1),x2,acoth(x2))

Algorithm

See Also cot, coth

2π– x 0<≤ 0 x 2π,≤<
30– x 1–<≤ 1 x 30.≤<

-8 -6 -4 -2 0 2 4 6 8
-1.5

-1

-0.5

0

0.5

1

1.5

x1 x2

y=
ac

ot
(x

)

-30 -20 -10 0 10 20 30
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1,x2

y=
ac

ot
h(

x)

z()cot 1– 1
z
--- 

 tan 1–=

z()coth 1– 1
z
--- 

 tanh 1–=
5

acsc, acsch
1acsc, acschPurpose Inverse cosecant and inverse hyperbolic cosecant

Syntax Y = acsc(X)
Y = acsch(X)

Description The acsc and acsch functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = acsc(X) returns the inverse cosecant (arccosecant) for each element of X.

Y = acsch(X) returns the inverse hyperbolic cosecant for each element of X.

Examples Graph the inverse cosecant over the domains and and
the inverse hyperbolic cosecant over the domains and

x1 = -10:0.01:-1.01; x2 = 1.01:0.01:10;
plot(x1,acsc(x1),x2,acsc(x2))
x1 = -20:0.01:-1; x2 = 1:0.01:20;
plot(x1,acsch(x1),x2,acsch(x2))

Algorithm

10– x 1–<≤ 1 x 10,≤<
20– x 1–≤ ≤ 1 x 20.≤ ≤

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

x1,x2

y=
ac

sc
(x

)

-20 -15 -10 -5 0 5 10 15 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1,x2

y=
ac

sc
h(

x)

z()csc 1– 1
z
--- 

 sin 1–=

z()csch 1– 1
z
--- 

 sinh 1–=
6

acsc, acsch
See Also csc, csch
7

addframe
1addframePurpose Add a frame to an Audio Video Interleaved (AVI) file.

Syntax aviobj = addframe(aviobj,frame)
aviobj = addframe(aviobj,frame1,frame2,frame3,...)
aviobj = addframe(aviobj,mov)
aviobj = addframe(aviobj,h)

Description aviobj = addframe(aviobj,frame) appends the data in frame to the AVI file
identified by aviobj, which was created by a previous call to avifile. frame
can be either an indexed image (m-by-n) or a truecolor image (m-by-n-by-3) of
double or uint8 precision. If frame is not the first frame added to the AVI file,
it must be consistent with the dimensions of the previous frames.

addframe returns a handle to the updated AVI file object, aviobj. For example,
addframe updates the TotalFrames property of the AVI file object each time it
adds a frame to the AVI file.

aviobj = addframe(aviobj,frame1,frame2,frame3,...) adds multiple
frames to an AVI file.

aviobj = addframe(aviobj,mov) appends the frame(s) contained in the
MATLAB movie, mov, to the AVI file, aviobj. MATLAB movies that store
frames as indexed images use the colormap in the first frame as the colormap
for the AVI file, unless the colormap has been previously set.

aviobj = addframe(aviobj,h) captures a frame from the figure or axis handle
h, and appends this frame to the AVI file. addframe renders the figure into an
offscreen array before appending it to the AVI file. This ensures that the figure
is written correctly to the AVI file even if the figure is obscured on the screen
by another window or screen saver.

Note If an animation uses XOR graphics, you must use getframe to capture
the graphics into a frame of a MATLAB movie. You can then add the frame to
an AVI movie using the addframe syntax, aviobj = addframe(aviobj,mov).
See the example for an illustration.

Example This example calls addframe to add frames to the AVI file object, aviobj.
8

addframe
fig=figure;
set(fig,'DoubleBuffer','on');
set(gca,'xlim',[-80 80],'ylim',[-80 80],...

'nextplot','replace','Visible','off')

aviobj = avifile('example.avi')

x = -pi:.1:pi;
radius = 0:length(x);
for i=1:length(x)

h = patch(sin(x)*radius(i),cos(x)*radius(i),...
[abs(cos(x(i))) 0 0]);

set(h,'EraseMode','xor');
frame = getframe(gca);
aviobj = addframe(aviobj,frame);

end

aviobj = close(aviobj);

 See Also avifile, close, movie2avi
9

addpath
1addpathPurpose Add directories to MATLAB’s search path

Graphical
Interface

As an alternative to the addpath function, use the Set Path dialog box. To open
it, select Set Path from the File menu in the MATLAB desktop.

Syntax addpath('directory')
addpath('dir','dir2','dir3' ...)
addpath('dir','dir2','dir3' ...'-flag')
addpath dir1 dir2 dir3 ... -flag

Description addpath('directory') prepends the specified directory to MATLAB’s current
search path, that is, it adds them to the front of the path. Use the full pathname
for directory.

addpath('dir','dir2','dir3' ...) prepends all the specified directories to
the path. Use the full pathname for each dir.

addpath('dir','dir2','dir3' ...'-flag') either prepends or appends
the specified directories to the path depending on the value of flag.

addpath dir1 dir2 dir3 ... -flag is the unquoted form of the syntax.

Examples For the current path, viewed by typing path,

MATLABPATH
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

you can add c:\matlab\mymfiles to the front of the path by typing

addpath('c:\matlab\mymfiles')

Verify that the files were added to the path by typing

flag Argument Result

0 or begin Prepend specified directories

1 or end Append specified directories
10

addpath
path

and MATLAB returns

MATLABPATH
c:\matlab\mymfiles
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

See Also path, pathtool, rehash, rmpath
11

airy
1airyPurpose Airy functions

Syntax W = airy(Z)
W = airy(k,Z)
[W,ierr] = airy(k,Z)

Definition The Airy functions form a pair of linearly independent solutions to:

The relationship between the Airy and modified Bessel functions is:

where,

Description W = airy(Z) returns the Airy function, Ai(Z), for each element of the complex
array Z.

W = airy(k,Z) returns different results depending on the value of k:

Z2

2

d

d W ZW– 0=

Ai Z() 1
π
--- Z 3⁄ K1 3⁄ ζ()=

Bi Z() Z 3⁄ I 1 3⁄– ζ() I1 3⁄ ζ()+[]=

ζ 2
3
---Z3 2⁄

=

k Returns

0 The same result as airy(Z).

1 The derivative, .

2 The Airy function of the second kind, .

3 The derivative, .

Ai′ Z()

Bi Z()

Bi′ Z()
12

airy
[W,ierr] = airy(k,Z) also returns an array of error flags.

See Also besseli, besselj, besselk, bessely

References [1] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[2] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

ierr = 1 Illegal arguments.

ierr = 2 Overflow. Return Inf.

ierr = 3 Some loss of accuracy in argument reduction.

ierr = 4 Unacceptable loss of accuracy, Z too large.

ierr = 5 No convergence. Return NaN.
13

alim
1alimPurpose Set or query the axes alpha limits

Syntax alpha_limits = alim
alim([amin amax])
alim_mode = alim('mode')
alim('alim_mode')
alim(axes_handle,...)

Description alpha_limits = alim returns the alpha limits (the axes ALim property) of the
current axes.

alim([amin amax]) sets the alpha limits to the specified values. amin is the
value of the data mapped to the first alpha value in the alphamap, and amax is
the value of the data mapped to the last alpha value in the alphamap. Data
values in between are linearly interpolated across the alphamap, while data
values outside are clamped to either the first or last alphamap value,
whichever is closest.

alim_mode = alim('mode') returns the alpha limits mode (the axes ALimMode
property) of the current axes.

alim('alim_mode') sets the alpha limits mode on the current axes. alim_mode
can be:

• auto – MATLAB automatically sets the alpha limits based on the alpha data
of the objects in the axes.

• manual – MATLAB does not change the alpha limits.

alim(axes_handle,...) operates on the specified axes.

See Also alpha, alphamap, caxis

Axes ALim and ALimMode properties

Patch FaceVertexAlphaData property

Image and surface AlphaData properties
14

all
1allPurpose Test to determine if all elements are nonzero

Syntax B = all(A)
B = all(A,dim)

Description B = all(A) tests whether all the elements along various dimensions of an
array are nonzero or logical true (1).

If A is a vector, all(A) returns logical true (1) if all of the elements are nonzero,
and returns logical false (0) if one or more elements are zero.

If A is a matrix, all(A) treats the columns of A as vectors, returning a row
vector of 1s and 0s.

If A is a multidimensional array, all(A) treats the values along the first
non-singleton dimension as vectors, returning a logical condition for each
vector.

B = all(A,dim) tests along the dimension of A specified by scalar dim.

Examples Given,

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical true (1) only where A is less than one half:

0 0 1 1 1 1 0

The all function reduces such a vector of logical conditions to a single
condition. In this case, all(B) yields 0.

This makes all particularly useful in if statements,

if all(A < 0.5)
do something

end

1 1 1
1 1 0

A

1 1 0

all(A,1)

1
0

all(A,2)
15

all
where code is executed depending on a single condition, not a vector of possibly
conflicting conditions.

Applying the all function twice to a matrix, as in all(all(A)), always reduces
it to a scalar condition.

all(all(eye(3)))
ans =
 0

See Also any

The logical operators &, |, ~

The relational operators <, <=, >, >=, ==, ~=

The colon operator :

Other functions that collapse an array’s dimensions include:

max, mean, median, min, prod, std, sum, trapz
16

allchild
1allchildPurpose Find all children of specified objects

Syntax child_handles = allchild(handle_list)

Description child_handles = allchild(handle_list) returns the list of all children
(including ones with hidden handles) for each handle. If handle_list is a
single element, allchild returns the output in a vector. Otherwise, the output is
a cell array.

Examples Compare the results returned by these two statements.

get(gca,'Children')
allchild(gca)

See Also findall, findobj
17

alpha
1alphaPurpose Set or query transparency properties for objects in current axes

Syntax alpha(face_alpha)
alpha(alpha_data)
alpha(alpha_data_mapping)
alpha(object_handle,...)

Description alpha sets one of three transparency properties, depending on what arguments
you specify with the call to this function.

FaceAlpha

alpha(face_alpha) set the FaceAlpha property of all image, patch, and
surface objects in the current axes. You can set face_alpha to:

• a number – set the FaceAlpha property to the specified value

• 'flat' – set the FaceAlpha property to flat

• 'interp' – set the FaceAlpha property to interp

• 'texture' – set the FaceAlpha property to texture

• 'opaque' – set the FaceAlpha property to 1

• 'clear' – set the FaceAlpha property to 0

AlphaData

alpha(alpha_data) sets the AlphaData property of all image, patch, and
surface objects in the current axes. You can set alpha_data to:

• a matrix – sets the AlphaData property to the specified value

• 'x' – set the AlphaData property to be the same as XData

• 'y' – set the AlphaData property to be the same as YData

• 'z' – set the AlphaData property to be the same as ZData

• 'color' – set the AlphaData property to be the same as CData

• 'rand' – set the AlphaData property to random values
18

alpha
AlphaDataMapping

alpha(alpha_data_mapping) sets the AlphaDataMapping property of all
image, patch, and surface objects in the current axes. You can set
alpha_data_mapping to:

• 'scaled' – set the AlphaDataMapping property to scaled

• 'direct' – set the AlphaDataMapping property to direct

• 'none' – set the AlphaDataMapping property to none

alpha(object_handle,value) set the transparency property on the object
identified by object_handle.

See Also alim, alphamap

Image: FaceAlpha, AlphaData, AlphaDataMapping

Patch: FaceAlpha, AlphaData, AlphaDataMapping

Surface: FaceAlpha, AlphaData, AlphaDataMapping
19

alphamap
1alphamapPurpose Specify the figure alphamap (transparency)

Syntax alphamap(alpha_map)
alphamap('parameter')
alphamap('parameter',length)
alphamap('parameter’,delta)
alphamap(figure_handle,...)
alpha_map = alphamap
alpha_map = alphamap(figure_handle)
alpha_map = alphamap(’parameter’)

Description alphamap enables you to set or modify a figure’s AlphaMap property. Unless you
specify a figure handle as the first argument, alphamap operates on the current
figure.

alphamap(alpha_map) set the AlphaMap of the current figure to the specified
m-by-1 array of alpha values.

alphamap('parameter') create a new or modify the current alphamap. You
can specify the following parameters:

• default – set the AlphaMap property to the figure’s default alphamap

• rampup – create a linear alphamap with increasing opacity (default length
equals the current alphamap length)

• rampdown – create a linear alphamap with decreasing opacity (default length
equals the current alphamap length)

• vup – create an alphamap that is opaque in the center and becomes more
transparent linearly towards the beginning and end (default length equals
the current alphamap length)

• vdown – create an alphamap that is transparent in the center and becomes
more opaque linearly towards the beginning and end (default length equals
the current alphamap length)

• increase – modify the alphamap making it more opaque (default delta is .1,
which is added to the current values)

• decrease – modify the alphamap making it more transparent (default delta
is .1, which is subtracted from the current values)
20

alphamap
• spin – rotate the current alphamap (default delta is 1; note that delta must
be an integer)

alphamap('parameter',length) creates a new alphamap with the length
specified by length (used with parameters: rampup, rampdown, vup, vdown)

alphamap('parameter',delta) modifies the existing alphamap using the
value specified by delta (used with parameters: increase, decrease, spin).

alphamap(figure_handle,...) performs the operation on the alphamap of the
figure identified by figure_handle.

alpha_map = alphamap return the current alphamap.

alpha_map = alphamap(figure_handle) returns the current alphamap from
the figure identified by figure_handle.

alpha_map = alphamap(’parameter’) retruns the alphamap modified by the
parameter, but does not set the AlphaMap property.

See Also alim, alpha

Image: FaceAlpha, AlphaData, AlphaDataMapping

Patch: FaceAlpha, AlphaData, AlphaDataMapping

Surface: FaceAlpha, AlphaData, AlphaDataMapping
21

angle
1anglePurpose Phase angle

Syntax P = angle(Z)

Description P = angle(Z) returns the phase angles, in radians, for each element of
complex array Z. The angles lie between .

For complex Z, the magnitude and phase angle are given by

R = abs(Z) % magnitude
theta = angle(Z) % phase angle

and the statement

Z = R.∗exp(i∗theta)

converts back to the original complex Z.

Examples Z =
1.0000 - 1.0000i 2.0000 + 1.0000i 3.0000 - 1.0000i 4.0000 + 1.0000i
1.0000 + 2.0000i 2.0000 - 2.0000i 3.0000 + 2.0000i 4.0000 - 2.0000i
1.0000 - 3.0000i 2.0000 + 3.0000i 3.0000 - 3.0000i 4.0000 + 3.0000i
1.0000 + 4.0000i 2.0000 - 4.0000i 3.0000 + 4.0000i 4.0000 - 4.0000i

P = angle(Z)
P =

 -0.7854 0.4636 -0.3218 0.2450

 1.1071 -0.7854 0.5880 -0.4636

 -1.2490 0.9828 -0.7854 0.6435

 1.3258 -1.1071 0.9273 -0.7854

Algorithm angle can be expressed as:

angle(z) = imag(log(z)) = atan2(imag(z),real(z))

See Also abs, unwrap

π±
22

ans
1ansPurpose The most recent answer

Syntax ans

Description The ans variable is created automatically when no output argument is
specified.

Examples The statement

2+2

is the same as

ans = 2+2
23

any
1anyPurpose Test for any nonzeros

Syntax B = any(A)
B = any(A,dim)

Description B = any(A) tests whether any of the elements along various dimensions of an
array are nonzero or logical true (1).

If A is a vector, any(A) returns logical true (1) if any of the elements of A are
nonzero, and returns logical false (0) if all the elements are zero.

If A is a matrix, any(A) treats the columns of A as vectors, returning a row
vector of 1s and 0s.

If A is a multidimensional array, any(A) treats the values along the first
non-singleton dimension as vectors, returning a logical condition for each
vector.

B = any(A,dim) tests along the dimension of A specified by scalar dim.

Examples Given,

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical true (1) only where A is less than one half:

0 0 1 1 1 1 0

The any function reduces such a vector of logical conditions to a single
condition. In this case, any(B) yields 1.

This makes any particularly useful in if statements,

if any(A < 0.5)
do something

end

1 0 1
0 0 0

A

1 0 1

any(A,1)

1
0

any(A,2)
24

any
where code is executed depending on a single condition, not a vector of possibly
conflicting conditions.

Applying the any function twice to a matrix, as in any(any(A)), always reduces
it to a scalar condition.

any(any(eye(3)))
ans =
 1

See Also all

The logical operators &,|,~

The relational operators <, <=, >, >=, ==, ~=

The colon operator :

Other functions that collapse an array’s dimensions include:

max, mean, median, min, prod, std, sum, trapz
25

area
1areaPurpose Area fill of a two-dimensional plot

Syntax area(Y)
area(X,Y)
area(...,ymin)
area(...,'PropertyName',PropertyValue,...)
h = area(...)

Description An area plot displays elements in Y as one or more curves and fills the area
beneath each curve. When Y is a matrix, the curves are stacked showing the
relative contribution of each row element to the total height of the curve at each
x interval.

area(Y) plots the vector Y or the sum of each column in matrix Y. The x-axis
automatically scales depending on length(Y) when Y is a vector and on
size(Y,1)when Y is a matrix.

area(X,Y) plots Y at the corresponding values of X. If X is a vector, length(X)
must equal length(Y) and X must be monotonic. If X is a matrix, size(X) must
equal size(Y) and each column in X must be monotonic. To make a vector or
matrix monotonic, use sort.

area(...,ymin) specifies the lower limit in the y direction for the area fill. The
default ymin is 0.

area(...,'PropertyName',PropertyValue,...) specifies property name and
property value pairs for the patch graphics object created by area.

h = area(...) returns handles of patch graphics objects. area creates one
patch object per column in Y.

Remarks area creates one curve from all elements in a vector or one curve per column in
a matrix. The colors of the curves are selected from equally spaced intervals
throughout the entire range of the colormap.

Examples Plot the values in Y as a stacked area plot.

Y = [1, 5, 3;
3, 2, 7;
26

area
1, 5, 3;
2, 6, 1];

area(Y)
grid on
colormap summer
set(gca,'Layer','top')
title 'Stacked Area Plot'

See Also plot

Stacked Area Plot

1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12
27

Arithmetic Operators + - * / \ ^ '
1Arithmetic Operators + - * / \ ^ 'Purpose Matrix and array arithmetic

Syntax A+B
A–B
A∗B A.∗B
A/B A./B
A\B A.\B
A^B A.^B
A' A.'

Description MATLAB has two different types of arithmetic operations. Matrix arithmetic
operations are defined by the rules of linear algebra. Array arithmetic
operations are carried out element-by-element. The period character (.)
distinguishes the array operations from the matrix operations. However, since
the matrix and array operations are the same for addition and subtraction, the
character pairs .+ and .– are not used.

+ Addition or unary plus. A+B adds A and B. A and B must have the same
size, unless one is a scalar. A scalar can be added to a matrix of any size.

– Subtraction or unary minus. A–B subtracts B from A. A and B must have
the same size, unless one is a scalar. A scalar can be subtracted from a
matrix of any size.

* Matrix multiplication. C = A∗B is the linear algebraic product of the
matrices A and B. More precisely,

For nonscalar A and B, the number of columns of A must equal the
number of rows of B. A scalar can multiply a matrix of any size.

.∗ Array multiplication. A. ∗B is the element-by-element product of the
arrays A and B. A and B must have the same size, unless one of them is a
scalar.

/ Slash or matrix right division. B/A is roughly the same as B∗inv(A).
More precisely, B/A = (A'\B')'. See \.

+

-

*

/

\

^

'

C i j,() A i k,()B k j,()
k 1=

n

∑=
28

Arithmetic Operators + - * / \ ^ '
./ Array right division. A./B is the matrix with elements A(i,j)/B(i,j).
A and B must have the same size, unless one of them is a scalar.

\ Backslash or matrix left division. If A is a square matrix, A\B is roughly
the same as inv(A)∗B, except it is computed in a different way. If A is
an n-by-n matrix and B is a column vector with n components, or a
matrix with several such columns, then X = A\B is the solution to the
equation AX = B computed by Gaussian elimination (see “Algorithm”
for details). A warning message prints if A is badly scaled or nearly
singular.

If A is an m-by-n matrix with m ~= n and B is a column vector with m
components, or a matrix with several such columns, then X = A\B is the
solution in the least squares sense to the under- or overdetermined
system of equations AX = B. The effective rank, k, of A, is determined
from the QR decomposition with pivoting (see “Algorithm” for details).
A solution X is computed which has at most k nonzero components per
column. If k < n, this is usually not the same solution as pinv(A)∗B,
which is the least squares solution with the smallest norm, ||X||.

.\ Array left division. A.\B is the matrix with elements B(i,j)/A(i,j). A
and B must have the same size, unless one of them is a scalar.

^ Matrix power. X^p is X to the power p, if p is a scalar. If p is an integer,
the power is computed by repeated multiplication. If the integer is
negative, X is inverted first. For other values of p, the calculation
involves eigenvalues and eigenvectors, such that if [V,D] = eig(X),
then X^p = V∗D.^p/V.

If x is a scalar and P is a matrix, x^P is x raised to the matrix power P
using eigenvalues and eigenvectors. X^P, where X and P are both
matrices, is an error.

.^ Array power. A.^B is the matrix with elements A(i,j) to the B(i,j)
power. A and B must have the same size, unless one of them is a scalar.

' Matrix transpose. A' is the linear algebraic transpose of A. For complex
matrices, this is the complex conjugate transpose.

.' Array transpose. A.' is the array transpose of A. For complex matrices,
this does not involve conjugation.
29

Arithmetic Operators + - * / \ ^ '
Remarks The arithmetic operators have M-file function equivalents, as shown:

Examples Here are two vectors, and the results of various matrix and array operations on
them, printed with format rat.

Binary addition A+B plus(A,B)

Unary plus +A uplus(A)

Binary subtraction A–B minus(A,B)

Unary minus –A uminus(A)

Matrix multiplication A*B mtimes(A,B)

Array-wise multiplication A.*B times(A,B)

Matrix right division A/B mrdivide(A,B)

Array-wise right division A./B rdivide(A,B)

Matrix left division A\B mldivide(A,B)

Array-wise left division A.\B ldivide(A,B)

Matrix power A^B mpower(A,B)

Array-wise power A.^B power(A,B)

Complex transpose A' ctranspose(A)

Matrix transpose A.' transpose(A)

Matrix Operations Array Operations

x 1
2
3

y 4
5
6

x' 1 2 3 y' 4 5 6

x+y 5
7
9

x–y –3
–3
–3
30

Arithmetic Operators + - * / \ ^ '
x + 2 3
4
5

x–2 –1
0
1

x ∗ y Error x.∗y 4
10
18

x'∗y 32 x'.∗y Error

x∗y' 4 5 6
8 10 12
12 15 18

x.∗y' Error

x∗2 2
4
6

x.∗2 2
4
6

x\y 16/7 x.\y 4
5/2
2

2\x 1/2
1
3/2

2./x 2
1
2/3

x/y 0 0 1/6
0 0 1/3
0 0 1/2

x./y 1/4
2/5
1/2

x/2 1/2
1
3/2

x./2 1/2
1
3/2

x^y Error x.^y 1
32
729

x^2 Error x.^2 1
4
9

Matrix Operations Array Operations
31

Arithmetic Operators + - * / \ ^ '
Algorithm The specific algorithm used for solving the simultaneous linear equations
denoted by X = A\B and X = B/A depends upon the structure of the coefficient
matrix A.

• If A is a triangular matrix, or a permutation of a triangular matrix, then X
can be computed quickly by a permuted backsubstitution algorithm. The
check for triangularity is done for full matrices by testing for zero elements
and for sparse matrices by accessing the sparse data structure. Most
nontriangular matrices are detected almost immediately, so this check
requires a negligible amount of time.

• If A is symmetric, or Hermitian, and has positive diagonal elements, then a
Cholesky factorization is attempted (see chol). If A is found to be positive
definite, the Cholesky factorization attempt is successful and requires less
than half the time of a general factorization. Nonpositive definite matrices
are usually detected almost immediately, so this check also requires little
time. If successful, the Cholesky factorization is
A = R'∗R

where R is upper triangular. The solution X is computed by solving two
triangular systems,
X = R\(R'\B)

If A is sparse, a symmetric minimum degree preordering is applied (see
symmmd and spparms). The algorithm is:
perm = symmmd(A); % Symmetric minimum degree reordering
R = chol(A(perm,perm)); % Cholesky factorization
y = R'\B(perm); % Lower triangular solve
X(perm,:) = R\y; % Upper triangular solve

2^x Error 2.^x 2
4
8

(x+i∗y)' 1 – 4i 2 – 5i 3 – 6i

(x+i∗y).' 1 + 4i 2 + 5i 3 + 6i

Matrix Operations Array Operations
32

Arithmetic Operators + - * / \ ^ '
• If A is Hessenberg, it is reduced to an upper triangular matrix and that
system is solved via substitution.

• If A is square, but not a permutation of a triangular matrix, or is not Hermi-
tian with positive elements, or the Cholesky factorization fails, then a gener-
al triangular factorization is computed by Gaussian elimination with partial
pivoting (see lu). This results in
A = L∗U

where L is a permutation of a lower triangular matrix and U is an upper
triangular matrix. Then X is computed by solving two permuted triangular
systems.
X = U\(L\B)

If A is sparse, a nonsymmetric minimum degree preordering is applied (see
colmmd and spparms). The algorithm is
perm = colmmd(A); % Column minimum degree ordering
[L,U,P] = lu(A(:,perm)); % Cholesky factorization
Y = L\(P*B); % Lower triangular solve
X(perm,:) = U\Y; % Upper triangular solve

• If A is not square and is full, then Householder reflections are used to com-
pute an orthogonal-triangular factorization.
A∗P = Q∗R

where P is a permutation, Q is orthogonal and R is upper triangular (see qr).
The least squares solution X is computed with
X = P∗(R\(Q'∗B)

• If A is not square and is sparse, then MATLAB computes a least squares
solution using the sparse qr factorization of A.

Note Backslash is not implemented for A not square, sparse, and complex.
33

Arithmetic Operators + - * / \ ^ '
MATLAB uses LAPACK routines to compute the various full matrix
factorizations:

Diagnostics From matrix division, if a square A is singular:

Warning: Matrix is singular to working precision.

From element-wise division, if the divisor has zero elements:

Warning: Divide by zero.

The matrix division returns a matrix with each element set to Inf; the
element-wise division produces NaNs or Infs where appropriate.

If the inverse was found, but is not reliable:

Warning: Matrix is close to singular or badly scaled.
 Results may be inaccurate. RCOND = xxx

From matrix division, if a nonsquare A is rank deficient:

Warning: Rank deficient, rank = xxx tol = xxx

See Also det, inv, lu, orth, permute, ipermute, qr, rref

References Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide, Third Edition, SIAM, Philadelphia, 1999.

Matrix Real Complex

Full square, symmetric (Hermitian)
positive definite

DLANGE, DPOTRF,
DPOTRS, DPOCON

ZLANGE, ZPOTRF,
ZPOTRS ZPOCON

Full square, general case DLANGE, DGESV,
DGECON

ZLANGE, ZGESV,
ZGECON

Full non-square DGEQPF, DORMQR,
DTRTRS

ZGEQPF, ZORMQR,
ZTRTRS

For other cases (triangular and Hessenberg) MATLAB does not use
LAPACK.
34

asec, asech
1asec, asechPurpose Inverse secant and inverse hyperbolic secant

Syntax Y = asec(X)
Y = asech(X)

Description The asec and asech functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = asec(X) returns the inverse secant (arcsecant) for each element of X.

Y = asech(X) returns the inverse hyperbolic secant for each element of X.

Examples Graph the inverse secant over the domains and and the
inverse hyperbolic secant over the domain

x1 = -5:0.01:-1; x2 = 1:0.01:5;
plot(x1,asec(x1),x2,asec(x2))
x = 0.01:0.001:1; plot(x,asech(x))

Algorithm

See Also sec, sech

1 x 5≤ ≤ 5– x 1,–≤ ≤
0 x 1.≤<

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

x1,x2

y=
as

ec
(x

)

-20 -15 -10 -5 0 5 10 15 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1,x2

y=
ac

sc
h(

x)

z()sec 1– 1
z
--- 

 cos 1–=

z()sech 1– 1
z
--- 

 cosh 1–=
35

asin, asinh
1asin, asinhPurpose Inverse sine and inverse hyperbolic sine

Syntax Y = asin(X)
Y = asinh(X)

Description The asin and asinh functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = asin(X) returns the inverse sine (arcsine) for each element of X. For real
elements of X in the domain , asin(X) is in the range . For
real elements of x outside the range , asin(X) is complex.

Y = asinh(X) returns the inverse hyperbolic sine for each element of X.

Examples Graph the inverse sine function over the domain and the inverse
hyperbolic sine function over the domain

x = -1:.01:1; plot(x,asin(x))
x = -5:.01:5; plot(x,asinh(x))

Algorithm

See Also sin, sinh

1 1,–[] π– 2⁄ π 2⁄,[]
1 1,–[]

1– x 1,≤ ≤
5– x 5.≤ ≤

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y=
as

in
(x

)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x

y=
as

in
h(

x)

z()sin 1– i iz 1 z 2–()
1
2

+log–=

z()sinh 1– z z 2 1+()
1
2

+log=
36

assignin
1assigninPurpose Assign a value to a workspace variable

Syntax assignin(ws,'var',val)

Description assignin(ws,'var',val) assigns the value val to the variable var in the
workspace ws. var is created if it doesn’t exist. ws can have a value of 'base' or
'caller' to denote the MATLAB base workspace or the workspace of the caller
function.

The assignin function is particularly useful for these tasks:

• Exporting data from a function to the MATLAB workspace

• Within a function, changing the value of a variable that is defined in the
workspace of the caller function (such as a variable in the function argument
list)

Remarks The MATLAB base workspace is the workspace that is seen from the MATLAB
command line (when not in the debugger). The caller workspace is the
workspace of the function that called the M-file. Note the base and caller
workspaces are equivalent in the context of an M-file that is invoked from the
MATLAB command line.

Examples This example creates a dialog box for the image display function, prompting a
user for an image name and a colormap name. The assignin function is used
to export the user–entered values to the MATLAB workspace variables imfile
and cmap.

prompt = {'Enter image name:','Enter colormap name:'};
title = 'Image display - assignin example';
lines = 1;
def = {'my_image','hsv'};
answer = inputdlg(prompt,title,lines,def);
assignin('base','imfile',answer{1});
assignin('base','cmap',answer{2});
37

assignin
See Also evalin
38

atan, atanh
1atan, atanhPurpose Inverse tangent and inverse hyperbolic tangent

Syntax Y = atan(X)
Y = atanh(X)

Description The atan and atanh functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = atan(X) returns the inverse tangent (arctangent) for each element of X.

For real elements of X, atan(X) is in the range .

Y = atanh(X) returns the inverse hyperbolic tangent for each element of X.

Examples Graph the inverse tangent function over the domain and the
inverse hyperbolic tangent function over the domain

x = -20:0.01:20; plot(x,atan(x))
x = -0.99:0.01:0.99; plot(x,atanh(x))

Algorithm

See Also atan2, tan, tanh

π– 2⁄ π 2⁄,[]

20– x 20,≤ ≤
1– x 1.< <

-20 -15 -10 -5 0 5 10 15 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y=
at

an
(x

)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

x

y=
at

an
h(

x)

z()tan 1– i
2
---- i z+

i z–
----------- 

 log=

z()tanh 1– 1
2
---=

1 z+
1 z–
------------ 

 log
39

atan2
1atan2Purpose Four-quadrant inverse tangent

Syntax P = atan2(Y,X)

Description P = atan2(Y,X) returns an array P the same size as X and Y containing the
element-by-element, four-quadrant inverse tangent (arctangent) of the real
parts of Y and X. Any imaginary parts are ignored.

Elements of P lie in the closed interval [-pi,pi], where pi is MATLAB’s floating-
point representation of . The specific quadrant is determined by sign(Y) and
sign(X):

This contrasts with the result of atan(Y/X), which is limited to the interval
, or the right side of this diagram.

Examples Any complex number z = x+iy is converted to polar coordinates with

r = abs(z)
theta = atan2(imag(z),real(z))

To convert back to the original complex number:

z = r ∗exp(i ∗theta)

This is a common operation, so MATLAB provides a function, angle(z), that
simply computes atan2(imag(z),real(z)).

See Also atan, atanh, tan, tanh

π

π/2

π
–π 0

x

y

–π/2

π– 2⁄ π 2⁄,[]
40

auread
1auread

Purpose Read NeXT/SUN (.au) sound file

Graphical
Interface

As an alternative to auread, use the Import Wizard. To activate the Import
Wizard, select Import data from the File menu.

Syntax y = auread('aufile')
[y,Fs,bits] = auread('aufile')
[...] = auread('aufile',N)
[...] = auread('aufile',[N1,N2])
siz = auread('aufile','size')

Description y = auread('aufile') loads a sound file specified by the string aufile,
returning the sampled data in y. The .au extension is appended if no extension
is given. Amplitude values are in the range [–1,+1]. auread supports
multi-channel data in the following formats:

• 8-bit mu-law

• 8-, 16-, and 32-bit linear

• floating-point

[y,Fs,bits] = auread('aufile') returns the sample rate (Fs) in Hertz and
the number of bits per sample (bits) used to encode the data in the file.

[...] = auread('aufile',N) returns only the first N samples from each
channel in the file.

[...] = auread('aufile',[N1 N2]) returns only samples N1 through N2
from each channel in the file.

siz = auread('aufile','size') returns the size of the audio data contained
in the file in place of the actual audio data, returning the vector siz =
[samples channels].

See Also auwrite, wavread
41

auwrite
1auwritePurpose Write NeXT/SUN (.au) sound file

Syntax auwrite(y,'aufile')
auwrite(y,Fs,'aufile')
auwrite(y,Fs,N,'aufile')
auwrite(y,Fs,N,'method','aufile')

Description auwrite(y,'aufile') writes a sound file specified by the string aufile. The
data should be arranged with one channel per column. Amplitude values
outside the range [–1,+1] are clipped prior to writing. auwrite supports
multi-channel data for 8-bit mu-law, and 8- and 16-bit linear formats.

auwrite(y,Fs,'aufile') specifies the sample rate of the data in Hertz.

auwrite(y,Fs,N,'aufile') selects the number of bits in the encoder.
Allowable settings are N = 8 and N = 16.

auwrite(y,Fs,N,'method','aufile') allows selection of the encoding
method, which can be either mu or linear. Note that mu-law files must be 8-bit.
By default, method = 'mu'.

See Also auread, wavwrite
42

avifile
1avifilePurpose Create a new Audio Video Interleaved (AVI) file

Syntax aviobj = avifile(filename)
aviobj =

avifile(filename,'PropertyName',value,'PropertyName',value,...)

Description aviobj = avifile(filename) creates an AVI file, giving it the name specified
in filename, using default values for all AVI file object properties. If filename
does not include an extension, avifile appends .avi to the filename. AVI is a
file format for storing audio and video data.

avifile returns a handle to an AVI file object, aviobj. You use this object to
refer to the AVI file in other functions. An AVI file object supports properties
and methods that control aspects of the AVI file created.

aviobj = avifile(filename,'Param',Value,'Param',Value,...) creates
an AVI file with the specified parameter settings. This table lists available
parameters.

Parameter Value Default

'colormap' An m-by-3 matrix defining the colormap
to be used for indexed AVI movies,
where m must be no greater than 256
(236 if using Indeo compression). You
must set this parameter before calling
addframe, unless you are using
addframe with the MATLAB movie
syntax.

There is no
default
colormap.

'compression' A text string specifying which
compression codec to use.

On Windows:
'Indeo3'
'Indeo5'
'Cinepak'
'MSVC'
'None'

On Unix:
'None'

'Indeo3',
on
Windows.
'None' on
Unix.
43

avifile
You can also use structure syntax to set AVI file object properties. For
example, to set the quality property to 100 use the following syntax:

 aviobj = avifile(filename);
 aviobj.Quality = 100;

Example This example shows how to use the avifile function to create the AVI file
example.avi.

fig=figure;
set(fig,'DoubleBuffer','on');

To use a custom compression codec,
specify the four-character code that
identifies the codec (typically included
in the codec documentation). The
addframe function reports an error if it
can not find the specified custom
compressor.

'fps' A scalar value specifying the speed of
the AVI movie in frames per second
(fps).

15 fps

'keyframe' For compressors that support temporal
compression, this is the number of key
frames per second.

2 key
frames per
second.

'name' A descriptive name for the video
stream. This parameter must be no
greater than 64 characters long.

The default
is the
filename.

'quality' A number between 0 and 100. This
parameter has no effect on
uncompressed movies. Higher quality
numbers result in higher video quality
and larger file sizes. Lower quality
numbers result in lower video quality
and smaller file sizes.

75

Parameter Value Default
44

avifile
set(gca,'xlim',[-80 80],'ylim',[-80 80],...
 'NextPlot','replace','Visible','off')

mov = avifile('example.avi')
x = -pi:.1:pi;
radius = 0:length(x);
for i=1:length(x)

h = patch(sin(x)*radius(i),cos(x)*radius(i),...
[abs(cos(x(i))) 0 0]);

set(h,'EraseMode','xor');
F = getframe(gca);
mov = addframe(mov,F);

end
mov = close(mov);

See Also addframe, close, movie2avi
45

aviinfo
1aviinfoPurpose Return information about an Audio Video Interleaved (AVI) file

Syntax fileinfo = aviinfo(filename)

Description fileinfo = aviinfo(filename) returns a structure whose fields contain
information about the AVI file specified in the string, filename. If filename
does not include an extension, then .avi is used. The file must be in the
current working directory or in a directory on the MATLAB path.

The set of fields in the fileinfo structure are shown below.

Field Name Description

AudioFormat A string containing the name of the format used
to store the audio data, if audio data is present

AudioRate An integer indicating the sample rate in Hertz of
the audio stream, if audio data is present

Filename A string specifying the name of the file

FileModDate A string containing the modification date of the
file

FileSize An integer indicating the size of the file in bytes

FramesPerSecond An integer indicating the desired frames per
second

Height An integer indicating the height of the AVI movie
in pixels

ImageType A string indicating the type of image. Either
'truecolor' for a truecolor (RGB) image, or
'indexed' for an indexed image.

NumAudioChannels An integer indicating the number of channels in
the audio stream, if audio data is present

NumFrames An integer indicating the total number of frames
in the movie
46

aviinfo
See also avifile, aviread

NumColormapEntries An integer specifying the number of colormap
entries

Quality A number between 0 and 100 indicating the video
quality in the AVI file. Higher quality numbers
indicate higher video quality; lower quality
numbers indicate lower video quality. This value
is not always set in AVI files and therefore may be
inaccurate.

VideoCompression A string containing the compressor used to
compress the AVI file. If the compressor is not
Microsoft Video 1, Run Length Encoding (RLE),
Cinepak, or Intel Indeo, aviinfo returns a
four-character code.

Width An integer indicating the width of the AVI movie
in pixels

Field Name Description
47

aviread
1avireadPurpose Read an Audio Video Interleaved (AVI) file.

Syntax mov = aviread(filename)
mov = aviread(filename,index)

Description mov = aviread(filename) reads the AVI movie filename into the MATLAB
movie structure mov. If filename does not include an extension, then .avi is
used. Use the movie function to view the movie, mov. On UNIX, filename must
be an uncompressed AVI file.

mov has two fields, cdata and colormap. The content of these fields varies
depending on the type of image. .

mov = aviread(filename,index) reads only the frame(s) specified by index.
index can be a single index or an array of indices into the video stream. In AVI
files, the first frame has the index value 1, the second frame has the index value
2, and so on.

See also aviinfo, avifile, movie

Image Type mov.cdata Field mov.colormap Field

Truecolor height-by-width-by-3
array

Empty

Indexed height-by-width array m-by-3 array
48

axes
1axesPurpose Create axes graphics object

Syntax axes
axes('PropertyName',PropertyValue,...)
axes(h)
h = axes(...)

Description axes is the low-level function for creating axes graphics objects.

axes creates an axes graphics object in the current figure using default
property values.

axes('PropertyName',PropertyValue,...) creates an axes object having the
specified property values. MATLAB uses default values for any properties that
you do not explicitly define as arguments.

axes(h) makes existing axes h the current axes. It also makes h the first axes
listed in the figure’s Children property and sets the figure’s CurrentAxes
property to h. The current axes is the target for functions that draw image, line,
patch, surface, and text graphics objects.

h = axes(...) returns the handle of the created axes object.

Remarks MATLAB automatically creates an axes, if one does not already exist, when
you issue a command that draws image, light, line, patch, surface, or text
graphics objects.

The axes function accepts property name/property value pairs, structure
arrays, and cell arrays as input arguments (see the set and get commands for
examples of how to specify these data types). These properties, which control
various aspects of the axes object, are described in the “Axes Properties”
section.

Use the set function to modify the properties of an existing axes or the get
function to query the current values of axes properties. Use the gca command
to obtain the handle of the current axes.

The axis (not axes) function provides simplified access to commonly used
properties that control the scaling and appearance of axes.
49

axes
While the basic purpose of an axes object is to provide a coordinate system for
plotted data, axes properties provide considerable control over the way
MATLAB displays data.

Stretch-to-Fill
By default, MATLAB stretches the axes to fill the axes position rectangle (the
rectangle defined by the last two elements in the Position property). This
results in graphs that use the available space in the rectangle. However, some
3-D graphs (such as a sphere) appear distorted because of this stretching, and
are better viewed with a specific three-dimensional aspect ratio.

Stretch-to-fill is active when the DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all auto (the
default). However, stretch-to-fill is turned off when the DataAspectRatio,
PlotBoxAspectRatio, or CameraViewAngle is user-specified, or when one or
more of the corresponding modes is set to manual (which happens
automatically when you set the corresponding property value).

This picture shows the same sphere displayed both with and without the
stretch-to-fill. The dotted lines show the axes Position rectangle.

When stretch-to-fill is disabled, MATLAB sets the size of the axes to be as large
as possible within the constraints imposed by the Position rectangle without
introducing distortion. In the picture above, the height of the rectangle
constrains the axes size.

Stretch-to-fill active

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

8

6

4

2

0

2

4

6

8

1

Stretch-to-fill disabled
50

axes
Examples Zooming

Zoom in using aspect ratio and limits:

sphere
set(gca,'DataAspectRatio',[1 1 1],...

'PlotBoxAspectRatio',[1 1 1],'ZLim',[−0.6 0.6])

Zoom in and out using the CameraViewAngle:

sphere
set(gca,'CameraViewAngle',get(gca,'CameraViewAngle')−5)
set(gca,'CameraViewAngle',get(gca,'CameraViewAngle')+5)

Note that both examples disable MATLAB’s stretch-to-fill behavior.

Positioning the Axes
The axes Position property enables you to define the location of the axes
within the figure window. For example,

h = axes('Position',position_rectangle)

creates an axes object at the specified position within the current figure and
returns a handle to it. Specify the location and size of the axes with a rectangle
defined by a four-element vector,

position_rectangle = [left, bottom, width, height];

The left and bottom elements of this vector define the distance from the
lower-left corner of the figure to the lower-left corner of the rectangle. The
width and height elements define the dimensions of the rectangle. You specify
these values in units determined by the Units property. By default, MATLAB
uses normalized units where (0,0) is the lower-left corner and (1.0,1.0) is the
upper-right corner of the figure window.

You can define multiple axes in a single figure window:

axes('position',[.1 .1 .8 .6])
mesh(peaks(20));
axes('position',[.1 .7 .8 .2])
pcolor([1:10;1:10]);
51

axes
In this example, the first plot occupies the bottom two-thirds of the figure, and
the second occupies the top third.

See Also axis, cla, clf, figure, gca, grid, subplot, title, xlabel, ylabel, zlabel,
view

0
5

10
15

20

0
5

10
15

20
−10

−5

0

5

10

1 2 3 4 5 6 7 8 9 10
1

1.5

2

52

axes
Object
Hierarchy

Setting Default Properties
You can set default axes properties on the figure and root levels:

set(0,'DefaultAxesPropertyName',PropertyValue,...)
set(gcf,'DefaultAxesPropertyName',PropertyValue,...)

where PropertyName is the name of the axes property and PropertyValue is
the value you are specifying. Use set and get to access axes properties.

Property List The following table lists all axes properties and provides a brief description of
each. The property name links take you an expanded description of the
properties.

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

Property Name Property Description Property Value

Controlling Style and Appearance

Box Toggle axes plot box on and off Values: on, off
Default: off

Clipping This property has no effect; axes are
always clipped to the figure window

GridLineStyle Line style used to draw axes grid
lines

Values: −, −−, :, -., none
Default: : (dotted line)
53

axes
Layer Draw axes above or below graphs Values: bottom, top
Default: bottom

LineStyleOrder Sequence of line styles used for
multiline plots

Values: LineSpec
Default: − (solid line for)

LineWidth Width of axis lines, in points (1/72"
per point)

Values: number of points
Default: 0.5 points

SelectionHighlight Highlight axes when selected
(Selected property set to on)

Values: on, off Default: on

TickDir Direction of axis tick marks Values: in, out
Default: in (2-D), out (3-D)

TickDirMode Use MATLAB or user-specified tick
mark direction

Values: auto, manual
Default: auto

TickLength Length of tick marks normalized to
axis line length, specified as
two-element vector

Values: [2-D 3-D]
Default: [0.01 0.025}

Visible Make axes visible or invisible Values: on, off
Default: on

XGrid, YGrid, ZGrid Toggle grid lines on and off in
respective axis

Values: on, off
Default: off

General Information About the Axes

Children Handles of the images, lights, lines,
patches, surfaces, and text objects
displayed in the axes

Values: vector of handles

CurrentPoint Location of last mouse button click
defined in the axes data units

Values: a 2-by-3 matrix

HitTest Specify whether axes can become
the current object (see figure
CurrentObject property)

Values: on, off
Default: on

Property Name Property Description Property Value
54

axes
Parent Handle of the figure window
containing the axes

Values: scalar figure handle

Position Location and size of axes within the
figure

Values: [left bottom width
height]
Default: [0.1300 0.1100
0.7750 0.8150] in
normalized Units

Selected Indicate whether axes is in a
“selected” state

Values: on, off
Default: on

Tag User-specified label Values: any string
Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string 'axes'

Units Units used to interpret the
Position property

Values: inches,
centimeters, characters,
normalized, points, pixels
Default: normalized

UserData User-specified data Values: any matrix
Default: [] (empty matrix)

Selecting Fonts and Labels

FontAngle Select italic or normal font Values: normal, italic,
oblique
Default: normal

FontName Font family name (e.g., Helvetica,
Courier)

Values: a font supported by
your system or the string
FixedWidth
Default: Typically Helvetica

FontSize Size of the font used for title and
labels

Values: an integer in
FontUnits Default: 10

Property Name Property Description Property Value
55

axes
FontUnits Units used to interpret the
FontSize property

Values: points,
normalized, inches,
centimeters, pixels
Default: points

FontWeight Select bold or normal font Values: normal, bold,
light, demi
Default: normal

Title Handle of the title text object Values: any valid text object
handle

XLabel, YLabel, ZLabel Handles of the respective axis label
text objects

Values: any valid text object
handle

XTickLabel,
YTickLabel,
ZTickLabel

Specify tick mark labels for the
respective axis

Values: matrix of strings
Defaults: numeric values
selected automatically by
MATLAB

XTickLabelMode,
YTickLabelMode,
ZTickLabelMode

Use MATLAB or user-specified tick
mark labels

Values: auto, manual
Default: auto

Controlling Axis Scaling

XAxisLocation Specify the location of the x-axis Values: top, bottom
Default: bottom

YAxisLocation Specify the location of the y-axis Values: right left
Default: left

XDir, YDir, ZDir Specify the direction of increasing
values for the respective axes

Values: normal, reverse
Default: normal

XLim, YLim, ZLim Specify the limits to the respective
axes

Values: [min max]
Default: min and max
determined automatically
by MATLAB

Property Name Property Description Property Value
56

axes
XLimMode, YLimMode,
ZLimMode

Use MATLAB or user-specified
values for the respective axis limits

Values: auto, manual
Default: auto

XScale, YScale, ZScale Select linear or logarithmic scaling
of the respective axis

Values: linear, log
Default: linear (changed
by plotting commands that
create nonlinear plots)

XTick, YTick, ZTick Specify the location of the axis ticks
marks

Values: a vector of data
values locating tick marks
Default: MATLAB
automatically determines
tick mark placement

XTickMode, YTickMode,
ZTickMode

Use MATLAB or user-specified
values for the respective tick mark
locations

Values: auto, manual
Default: auto

Controlling the View

CameraPosition Specify the position of point from
which you view the scene

Values: [x,y,z] axes
coordinates
Default: automatically
determined by MATLAB

CameraPositionMode Use MATLAB or user-specified
camera position

Values: auto, manual
Default: auto

CameraTarget Center of view pointed to by camera Values: [x,y,z] axes
coordinates
Default: automatically
determined by MATLAB

CameraTargetMode Use MATLAB or user-specified
camera target

Values: auto, manual
Default: auto

Property Name Property Description Property Value
57

axes
CameraUpVector Direction that is oriented up Values: [x,y,z] axes
coordinates
Default: automatically
determined by MATLAB

CameraUpVectorMode Use MATLAB or user-specified
camera up vector

Values: auto, manual
Default: auto

CameraViewAngle Camera field of view Values: angle in degrees
between 0 and 180
Default: automatically
determined by MATLAB

CameraViewAngleMode Use MATLAB or user-specified
camera view angle

Values: auto, manual
Default: auto

Projection Select type of projection Values: orthographic,
perspective
Default: orthographic

Controlling the Axes Aspect Ratio

DataAspectRatio Relative scaling of data units Values: three relative
values [dx dy dz]
Default: automatically
determined by MATLAB

DataAspectRatioMode Use MATLAB or user-specified data
aspect ratio

Values: auto, manual
Default: auto

PlotBoxAspectRatio Relative scaling of axes plot box Values: three relative
values [dx dy dz]
Default: automatically
determined by MATLAB

PlotBoxAspectRatioMode Use MATLAB or user-specified plot
box aspect ratio

Values: auto, manual
Default: auto

Controlling Callback Routine Execution

Property Name Property Description Property Value
58

axes
BusyAction Specify how to handle events that
interrupt execution callback
routines

Values: cancel, queue
Default: queue

ButtonDownFcn Define a callback routine that
executes when a button is pressed
over the axes

Values: string
Default: an empty string

CreateFcn Define a callback routine that
executes when an axes is created

Values: string
Default: an empty string

DeleteFcn Define a callback routine that
executes when an axes is created

Values: string Default: an
empty string

Interruptible Control whether an executing
callback routine can be interrupted

Values: on, off Default: on

UIContextMenu Associate a context menu with the
axes

Values: handle of a
Uicontextmenu

Specifying the Rendering Mode

DrawMode Specify the rendering method to use
with the Painters renderer

Values: normal, fast
Default: normal

Targeting Axes for Graphics Display

HandleVisibility Control access to a specific axes’
handle

Values: on, callback, off
Default: on

NextPlot Determine the eligibility of the axes
for displaying graphics

Values: add, replace,
replacechildren
Default: replace

Properties that Specify Transparency

ALim Alpha axis limits Values: [amin amax]

ALimMode Alpha axis limits mode Values: auto | manual
Default: auto

Properties that Specify Color

Property Name Property Description Property Value
59

axes
AmbientLightColor Color of the background light in a
scene

Values: ColorSpec
Default: [1 1 1]

CLim Control how data is mapped to
colormap

Values: [cmin cmax]
Default: automatically
determined by MATLAB

CLimMode Use MATLAB or user-specified
values for CLim

Values: auto, manual
Default: auto

Color Color of the axes background Values: none, ColorSpec
Default: none

ColorOrder Line colors used for multiline plots Values: m-by-3 matrix of
RGB values
Default: depends on color
scheme used

XColor, YColor, ZColor Colors of the axis lines and tick
marks

Values: ColorSpec
Default: depends on current
color scheme

Property Name Property Description Property Value
60

Axes Properties
1Axes PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Setting Default Property Values.

Axes Property
Descriptions

This section lists property names along with the types of values each accepts.
Curly braces { } enclose default values.

ALim [amin, amax]

Alpha axis limits. A two-element vector that determines how MATLAB maps
the AlphaData values of surface, patch and image objects to the figure's
alphamap. amin is the value of the data mapped to the first alpha value in the
alphamap, and amax is the value of the data mapped to the last alpha value in
the alphamap. Data values in between are linearly interpolated across the
alphamap, while data values outside are clamped to either the first or last
alphamap value, whichever is closest.

When ALimMode is auto (the default), MATLAB assigns amin the minimum
data value and amax the maximum data value in the graphics object's
AlphaData. This maps AlphaData elements with minimum data values to the
first alphamap entry and those with maximum data values to the last
alphamap entry. Data values in between are mapped linearly to the values

If the axes contains multiple graphics objects, MATLAB sets ALim to span the
range of all objects' AlphaData (or FaceVertexAlphaData for patch objects).

ALimMode {auto} | manual

Alpha axis limits mode. In auto mode, MATLAB sets the ALim property to span
the AlphaData limits of the graphics objects displayed in the axes. If ALimMode
is manual, MATLAB does not change the value of ALim when the AlphaData
limits of axes children change. Setting the ALim property sets ALimMode to
manual.

AmbientLightColor ColorSpec

The background light in a scene. Ambient light is a directionless light that
shines uniformly on all objects in the axes. However, if there are no visible light
61

Axes Properties
objects in the axes, MATLAB does not use AmbientLightColor. If there are
light objects in the axes, the AmbientLightColor is added to the other light
sources.

AspectRatio (Obsolete)

This property produces a warning message when queried or changed. It has
been superseded by the DataAspectRatio[Mode] and
PlotBoxAspectRatio[Mode] properties.

Box on | {off}

Axes box mode. This property specifies whether to enclose the axes extent in a
box for 2-D views or a cube for 3-D views. The default is to not display the box.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked
callback routines always attempt to interrupt it. If the Interruptible property
of the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

• cancel – discard the event that attempted to execute a second callback
routine.

• queue – queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is within the axes, but not over another
graphics object displayed in the axes. For 3-D views, the active area is defined
by a rectangle that encloses the axes.

Define this routine as a string that is a valid MATLAB expression or the name
of an M-file. The expression executes in the MATLAB workspace.
62

Axes Properties
CameraPosition [x, y, z] axes coordinates

The location of the camera. This property defines the position from which the
camera views the scene. Specify the point in axes coordinates.

If you fix CameraViewAngle, you can zoom in and out on the scene by changing
the CameraPosition, moving the camera closer to the CameraTarget to zoom in
and farther away from the CameraTarget to zoom out. As you change the
CameraPosition, the amount of perspective also changes, if Projection is
perspective. You can also zoom by changing the CameraViewAngle; however,
this does not change the amount of perspective in the scene.

CameraPositionMode {auto} | manual

Auto or manual CameraPosition. When set to auto, MATLAB automatically
calculates the CameraPosition such that the camera lies a fixed distance from
the CameraTarget along the azimuth and elevation specified by view. Setting a
value for CameraPosition sets this property to manual.

CameraTarget [x, y, z] axes coordinates

Camera aiming point. This property specifies the location in the axes that the
camera points to. The CameraTarget and the CameraPosition define the vector
(the view axis) along which the camera looks.

CameraTargetMode {auto} | manual

Auto or manual CameraTarget placement. When this property is auto,
MATLAB automatically positions the CameraTarget at the centroid of the axes
plotbox. Specifying a value for CameraTarget sets this property to manual.

CameraUpVector [x, y, z] axes coordinates

Camera rotation. This property specifies the rotation of the camera around the
viewing axis defined by the CameraTarget and the CameraPosition properties.
Specify CameraUpVector as a three-element array containing the x, y, and z
components of the vector. For example, [0 1 0] specifies the positive y-axis as
the up direction.

The default CameraUpVector is [0 0 1], which defines the positive z-axis as the
up direction.

CameraUpVectorMode {auto} | manual

Default or user-specified up vector. When CameraUpVectorMode is auto,
MATLAB uses a value of [0 0 1] (positive z-direction is up) for 3-D views and
63

Axes Properties
[0 1 0] (positive y-direction is up) for 2-D views. Setting a value for
CameraUpVector sets this property to manual.

CameraViewAngle scalar greater than 0 and less than or equal to
180 (angle in degrees)

The field of view. This property determines the camera field of view. Changing
this value affects the size of graphics objects displayed in the axes, but does not
affect the degree of perspective distortion. The greater the angle, the larger the
field of view, and the smaller objects appear in the scene.

CameraViewAngleMode{auto} | manual

Auto or manual CameraViewAngle. When in auto mode, MATLAB sets
CameraViewAngle to the minimum angle that captures the entire scene (up to
180˚).

The following table summarizes MATLAB’s automatic camera behavior.

CameraView
Angle

Camera
Target

Camera
Position

Behavior

auto auto auto CameraTarget is set to plot box centroid,
CameraViewAngle is set to capture entire scene,
CameraPosition is set along the view axis.

auto auto manual CameraTarget is set to plot box centroid,
CameraViewAngle is set to capture entire scene.

auto manual auto CameraViewAngle is set to capture entire scene,
CameraPosition is set along the view axis.

auto manual manual CameraViewAngle is set to capture entire scene.

manual auto auto CameraTarget is set to plot box centroid,
CameraPosition is set along the view axis.

manual auto manual CameraTarget is set to plot box centroid

manual manual auto CameraPosition is set along the view axis.

manual manual manual All Camera properties are user-specified.
64

Axes Properties
Children vector of graphics object handles

Children of the axes. A vector containing the handles of all graphics objects
rendered within the axes (whether visible or not). The graphics objects that can
be children of axes are images, lights, lines, patches, surfaces, and text. You
can change the order of the handles and thereby change the stacking of the
objects on the display.

The text objects used to label the x-, y-, and z-axes are also children of axes, but
their HandleVisibility properties are set to callback. This means their
handles do not show up in the axes Children property unless you set the Root
ShowHiddenHandles property to on.

CLim [cmin, cmax]

Color axis limits. A two-element vector that determines how MATLAB maps
the CData values of surface and patch objects to the figure’s colormap. cmin is
the value of the data mapped to the first color in the colormap, and cmax is the
value of the data mapped to the last color in the colormap. Data values in
between are linearly interpolated across the colormap, while data values
outside are clamped to either the first or last colormap color, whichever is
closest.

When CLimMode is auto (the default), MATLAB assigns cmin the minimum
data value and cmax the maximum data value in the graphics object’s CData.
This maps CData elements with minimum data value to the first colormap
entry and with maximum data value to the last colormap entry.

If the axes contains multiple graphics objects, MATLAB sets CLim to span the
range of all objects’ CData.

CLimMode {auto} | manual

Color axis limits mode. In auto mode, MATLAB sets the CLim property to span
the CData limits of the graphics objects displayed in the axes. If CLimMode is
manual, MATLAB does not change the value of CLim when the CData limits of
axes children change. Setting the CLim property sets this property to manual.

Clipping {on} | off

This property has no effect on axes.
65

Axes Properties
Color {none} | ColorSpec

Color of the axes back planes. Setting this property to none means the axes is
transparent and the figure color shows through. A ColorSpec is a
three-element RGB vector or one of MATLAB’s predefined names. Note that
while the default value is none, the matlabrc.m file may set the axes color to
a specific color.

ColorOrder m-by-3 matrix of RGB values

Colors to use for multiline plots. ColorOrder is an m-by-3 matrix of RGB values
that define the colors used by the plot and plot3 functions to color each line
plotted. If you do not specify a line color with plot and plot3, these functions
cycle through the ColorOrder to obtain the color for each line plotted. To obtain
the current ColorOrder, which may be set during startup, get the property
value:

get(gca,'ColorOrder')

Note that if the axes NextPlot property is set to replace (the default),
high-level functions like plot reset the ColorOrder property before
determining the colors to use. If you want MATLAB to use a ColorOrder that
is different from the default, set NextPlot to replacechildren. You can also
specify your own default ColorOrder.

CreateFcn string

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates an axes object. You must
define this property as a default value for axes. For example, the statement,

set(0,'DefaultAxesCreateFcn','set(gca,''Color'',''b'')')

defines a default value on the Root level that sets the current axes’ background
color to blue whenever you (or MATLAB) create an axes. MATLAB executes
this routine after setting all properties for the axes. Setting this property on an
existing axes object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

CurrentPoint 2-by-3 matrix

Location of last button click, in axes data units. A 2-by-3 matrix containing the
coordinates of two points defined by the location of the pointer. These two
66

Axes Properties
points lie on the line that is perpendicular to the plane of the screen and passes
through the pointer. The 3-D coordinates are the points, in the axes coordinate
system, where this line intersects the front and back surfaces of the axes
volume (which is defined by the axes x, y, and z limits).

The returned matrix is of the form:

MATLAB updates the CurrentPoint property whenever a button-click event
occurs. The pointer does not have to be within the axes, or even the figure
window; MATLAB returns the coordinates with respect to the requested axes
regardless of the pointer location.

DataAspectRatio [dx dy dz]

Relative scaling of data units. A three-element vector controlling the relative
scaling of data units in the x, y, and z directions. For example, setting this
property t o [1 2 1] causes the length of one unit of data in the x direction to
be the same length as two units of data in the y direction and one unit of data
in the z direction.

Note that the DataAspectRatio property interacts with the
PlotBoxAspectRatio, XLimMode, YLimMode, and ZLimMode properties to control
how MATLAB scales the x-, y-, and z-axis. Setting the DataAspectRatio will
disable the stretch-to-fill behavior, if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all auto. The

xback yback zback
xfront yfront zfront
67

Axes Properties
following table describes the interaction between properties when
stretch-to-fill behavior is disabled.

X-, Y-,
Z-Limits

DataAspect
Ratio

PlotBox
AspectRatio

Behavior

auto auto auto Limits chosen to span data range in all
dimensions.

auto auto manual Limits chosen to span data range in all
dimensions. DataAspectRatio is modified to
achieve the requested PlotBoxAspectRatio
within the limits selected by MATLAB.

auto manual auto Limits chosen to span data range in all
dimensions. PlotBoxAspectRatio is modified to
achieve the requested DataAspectRatio within
the limits selected by MATLAB.

auto manual manual Limits chosen to completely fit and center the
plot within the requested PlotBoxAspectRatio
given the requested DataAspectRatio (this may
produce empty space around 2 of the 3
dimensions).

manual auto auto Limits are honored. The DataAspectRatio and
PlotBoxAspectRatio are modified as necessary.

manual auto manual Limits and PlotBoxAspectRatio are honored.
The DataAspectRatio is modified as necessary.

manual manual auto Limits and DataAspectRatio are honored. The
PlotBoxAspectRatio is modified as necessary.

1 manual
2 auto

manual manual The 2 automatic limits are selected to honor the
specified aspect ratios and limit. See
“Examples”

2 or 3
manual

manual manual Limits and DataAspectRatio are honored; the
PlotBoxAspectRatio is ignored.
68

Axes Properties
DataAspectRatioMode{auto} | manual

User or MATLAB controlled data scaling. This property controls whether the
values of the DataAspectRatio property are user defined or selected
automatically by MATLAB. Setting values for the DataAspectRatio property
automatically sets this property to manual. Changing DataAspectRatioMode to
manual disables the stretch-to-fill behavior, if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all auto.

DeleteFcn string

Delete axes callback routine. A callback routine that executes when the axes
object is deleted (e.g., when you issue a delete or a close command). MATLAB
executes the routine before destroying the object’s properties so the callback
routine can query these values.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

DrawMode {normal} | fast

Rendering method. This property controls the method MATLAB uses to render
graphics objects displayed in the axes, when the figure Renderer property is
painters.

• normal mode draws objects in back to front ordering based on the current
view in order to handle hidden surface elimination and object intersections.

• fast mode draws objects in the order in which you specify the drawing
commands, without considering the relationships of the objects in three
dimensions. This results in faster rendering because it requires no sorting of
objects according to location in the view, but may produce undesirable
results because it bypasses the hidden surface elimination and object
intersection handling provided by normal DrawMode.

When the figure Renderer is zbuffer, DrawMode is ignored, and hidden surface
elimination and object intersection handling are always provided.

FontAngle {normal} | italic | oblique

Select italic or normal font. This property selects the character slant for axes
text. normal specifies a nonitalic font. italic and oblique specify italic font.
69

Axes Properties
FontName A name such as Courier or the string FixedWidth

Font family name. The font family name specifying the font to use for axes
labels. To display and print properly, FontNamemust be a font that your system
supports. Note that the x-, y-, and z-axis labels do not display in a new font until
you manually reset them (by setting the XLabel, YLabel, and ZLabel properties
or by using the xlabel, ylabel, or zlabel command). Tick mark labels change
immediately.

Specifying a Fixed-Width Font
If you want an axes to use a fixed-width font that looks good in any locale, you
should set FontName to the string FixedWidth:

set(axes_handle,'FontName','FixedWidth')

This eliminates the need to hardcode the name of a fixed-width font, which may
not display text properly on systems that do not use ASCII character encoding
(such as in Japan where multibyte character sets are used). A properly written
MATLAB application that needs to use a fixed-width font should set FontName
to FixedWidth (note that this string is case sensitive) and rely on
FixedWidthFontName to be set correctly in the end-user’s environment.

End users can adapt a MATLAB application to different locales or personal
environments by setting the root FixedWidthFontName property to the
appropriate value for that locale from startup.m.

Note that setting the root FixedWidthFontName property causes an immediate
update of the display to use the new font.

FontSize Font size specified in FontUnits

Font size. An integer specifying the font size to use for axes labels and titles, in
units determined by the FontUnits property. The default point size is 12. The
x-, y-, and z-axis text labels do not display in a new font size until you manually
reset them (by setting the XLabel, YLabel, or ZLabel properties or by using the
xlabel, ylabel, or zlabel command). Tick mark labels change immediately.

FontUnits {points} | normalized | inches |
centimeters | pixels

Units used to interpret the FontSize property. When set to normalized,
MATLAB interprets the value of FontSize as a fraction of the height of the
axes. For example, a normalized FontSize of 0.1 sets the text characters to a
70

Axes Properties
font whose height is one tenth of the axes’ height. The default units (points),
are equal to 1/72 of an inch.

FontWeight {normal} | bold | light | demi

Select bold or normal font. The character weight for axes text. The x-, y-, and
z-axis text labels do not display in bold until you manually reset them (by
setting the XLabel, YLabel, and ZLabel properties or by using the xlabel,
ylabel, or zlabel commands). Tick mark labels change immediately.

GridLineStyle − | − −| {:} | −. | none

Line style used to draw grid lines. The line style is a string consisting of a
character, in quotes, specifying solid lines (−), dashed lines (−−), dotted lines(:),
or dash-dot lines (−.). The default grid line style is dotted. To turn on grid lines,
use the grid command.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string) and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.
71

Axes Properties
When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the Root’s Currentfigure property, objects do not appear in the Root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s Currentaxes property.

You can set the Root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the axes can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the axes. If HitTest is off, clicking on
the axes selects the object below it (which is usually the figure containing it).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether an axes callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are
affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine. See the BusyAction property for
related information.

Setting Interruptible to on allows any graphics object’s callback routine to
interrupt callback routines originating from an axes property. Note that
MATLAB does not save the state of variables or the display (e.g., the handle
returned by the gca or gcf command) when an interruption occurs.

Layer {bottom} | top

Draw axis lines below or above graphics objects. This property determines if
axis lines and tick marks draw on top or below axes children objects for any 2-D
view (i.e., when you are looking along the x-, y-, or z-axis). This is useful for
placing grid lines and tick marks on top of images.
72

Axes Properties
LineStyleOrder LineSpec

Order of line styles and markers used in a plot. This property specifies which
line styles and markers to use and in what order when creating multiple-line
plots. For example,

set(gca,'LineStyleOrder', '−*|:|o')

sets LineStyleOrder to solid line with asterisk marker, dotted line, and hollow
circle marker. The default is (−), which specifies a solid line for all data plotted.
Alternatively, you can create a cell array of character strings to define the line
styles:

set(gca,'LineStyleOrder',{'−*',':','o'})

MATLAB supports four line styles, which you can specify any number of times
in any order. MATLAB cycles through the line styles only after using all colors
defined by the ColorOrder property. For example, the first eight lines plotted
use the different colors defined by ColorOrder with the first line style.
MATLAB then cycles through the colors again, using the second line style
specified, and so on.

You can also specify line style and color directly with the plot and plot3
functions or by altering the properties of the line objects.

Note that, if the axes NextPlot property is set to replace (the default),
high-level functions like plot reset the LineStyleOrder property before
determining the line style to use. If you want MATLAB to use a
LineStyleOrder that is different from the default, set NextPlot to
replacechildren. You can also specify your own default LineStyleOrder.

LineWidth linewidth in points

Width of axis lines. This property specifies the width, in points, of the x-, y-, and
z-axis lines. The default line width is 0.5 points (1 point = 1/72 inch).

NextPlot add | {replace} | replacechildren

Where to draw the next plot. This property determines how high-level plotting
functions draw into an existing axes.

• add — use the existing axes to draw graphics objects.

• replace — reset all axes properties, except Position, to their defaults and
delete all axes children before displaying graphics (equivalent to cla reset).
73

Axes Properties
• replacechildren— remove all child objects, but do not reset axes properties
(equivalent to cla).

The newplot function simplifies the use of the NextPlot property and is used
by M-file functions that draw graphs using only low-level object creation
routines. See the M-file pcolor.m for an example. Note that figure graphics
objects also have a NextPlot property.

Parent figure handle

Axes parent. The handle of the axes’ parent object. The parent of an axes object
is the figure in which it is displayed. The utility function gcf returns the handle
of the current axes’ Parent. You can reparent axes to other figure objects.

PlotBoxAspectRatio [px py pz]

Relative scaling of axes plotbox. A three-element vector controlling the relative
scaling of the plot box in the x-, y-, and z-directions. The plot box is a box
enclosing the axes data region as defined by the x-, y-, and z-axis limits.

Note that the PlotBoxAspectRatio property interacts with the
DataAspectRatio, XLimMode, YLimMode, and ZLimMode properties to control the
way graphics objects are displayed in the axes. Setting the
PlotBoxAspectRatio disables stretch-to-fill behavior, if
DataAspectRatioMode, PlotBoxAspectRatioMode, and CameraViewAngleMode
are all auto.

PlotBoxAspectRatioMode{auto} | manual

User or MATLAB controlled axis scaling. This property controls whether the
values of the PlotBoxAspectRatio property are user defined or selected
automatically by MATLAB. Setting values for the PlotBoxAspectRatio
property automatically sets this property to manual. Changing the
PlotBoxAspectRatioMode to manual disables stretch-to-fill behavior, if
DataAspectRatioMode, PlotBoxAspectRatioMode, and CameraViewAngleMode
are all auto.

Position four-element vector

Position of axes. A four-element vector specifying a rectangle that locates the
axes within the figure window. The vector is of the form:

[left bottom width height]
74

Axes Properties
where left and bottom define the distance from the lower-left corner of the
figure window to the lower-left corner of the rectangle. width and height are
the dimensions of the rectangle. All measurements are in units specified by the
Units property.

When axes stretch-to-fill behavior is enabled (when DataAspectRatioMode,
PlotBoxAspectRatioMode, CameraViewAngleMode are all auto), the axes are
stretched to fill the Position rectangle. When stretch-to-fill is disabled, the
axes are made as large as possible, while obeying all other properties, without
extending outside the Position rectangle

Projection {orthographic} | perspective

Type of projection. This property selects between two projection types:

• orthographic – This projection maintains the correct relative dimensions of
graphics objects with regard to the distance a given point is from the viewer.
Parallel lines in the data are drawn parallel on the screen.

• perspective – This projection incorporates foreshortening, which allows you
to perceive depth in 2-D representations of 3-D objects. Perspective
projection does not preserve the relative dimensions of objects; a distant line
segment displays smaller than a nearer line segment of the same length.
Parallel lines in the data may not appear parallel on screen.

Selected on | off

Is object selected. When you set this property to on, MATLAB displays selection
“handles” at the corners and midpoints if the SelectionHighlight property is
also on (the default). You can, for example, define the ButtonDownFcn callback
routine to set this property to on, thereby indicating that the axes has been
selected.

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by drawing four edge handles and four corner
handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

Tag string (GUIDE sets this property)

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
75

Axes Properties
define object handles as global variables or pass them as arguments between
callback routines.

For example, suppose you want to direct all graphics output from an M-file to
a particular axes, regardless of user actions that may have changed the current
axes. To do this, identify the axes with a Tag:

axes('Tag','Special Axes')

Then make that axes the current axes before drawing by searching for the Tag
with findobj:

axes(findobj('Tag','Special Axes'))

TickDir in | out

Direction of tick marks. For 2-D views, the default is to direct tick marks
inward from the axis lines; 3-D views direct tick marks outward from the axis
line.

TickDirMode {auto} | manual

Automatic tick direction control. In auto mode, MATLAB directs tick marks
inward for 2-D views and outward for 3-D views. When you specify a setting for
TickDir, MATLAB sets TickDirMode to manual. In manual mode, MATLAB
does not change the specified tick direction.

TickLength [2DLength 3DLength]

Length of tick marks. A two-element vector specifying the length of axes tick
marks. The first element is the length of tick marks used for 2-D views and the
second element is the length of tick marks used for 3-D views. Specify tick mark
lengths in units normalized relative to the longest of the visible X-, Y-, or Z-axis
annotation lines.

Title handle of text object

Axes title. The handle of the text object that is used for the axes title. You can
use this handle to change the properties of the title text or you can set Title to
the handle of an existing text object. For example, the following statement
changes the color of the current title to red:

set(get(gca,'Title'),'Color','r')

To create a new title, set this property to the handle of the text object you want
to use:
76

Axes Properties
set(gca,'Title',text('String','New Title','Color','r'))

However, it is generally simpler to use the title command to create or replace
an axes title:

title('New Title','Color','r')

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For axes objects, Type is always set to 'axes'.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the axes. Assign this property the handle of a
Uicontextmenu object created in the axes’ parent figure. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the axes.

Units inches | centimeters | {normalized} |
points | pixels | characters

Position units. The units used to interpret the Position property. All units are
measured from the lower-left corner of the figure window.

• normalized units map the lower-left corner of the figure window to (0,0) and
the upper-right corner to (1.0, 1.0).

• inches, centimeters, and points are absolute units (one point equals 1/72 of
an inch).

• Character units are defined by characters from the default system font; the
width of one character is the width of the letter x, the height of one character
is the distance between the baselines of two lines of text.

UserData matrix

User specified data. This property can be any data you want to associate with
the axes object. The axes does not use this property, but you can access it using
the set and get functions.

View Obsolete

The functionality provided by the View property is now controlled by the axes
camera properties – CameraPosition, CameraTarget, CameraUpVector, and
CameraViewAngle. See the view command.
77

Axes Properties
Visible {on} | off

Visibility of axes. By default, axes are visible. Setting this property to off
prevents axis lines, tick marks, and labels from being displayed. The visible
property does not affect children of axes.

XAxisLocation top | {bottom}

Location of x-axis tick marks and labels. This property controls where
MATLAB displays the x-axis tick marks and labels. Setting this property to top
moves the x-axis to the top of the plot from its default position at the bottom.

YAxisLocation right | {left}

Location of y-axis tick marks and labels. This property controls where
MATLAB displays the y-axis tick marks and labels. Setting this property to
right moves the y-axis to the right side of the plot from its default position on
the left side. See the plotyy function for a simple way to use two y-axes.

Properties That Control the X-, Y-, or Z-Axis
XColor, YColor, ZColorColorSpec

Color of axis lines. A three-element vector specifying an RGB triple, or a
predefined MATLAB color string. This property determines the color of the axis
lines, tick marks, tick mark labels, and the axis grid lines of the respective x-,
y-, and z-axis. The default axis color is white. See ColorSpec for details on
specifying colors.

XDir, YDir, ZDir {normal} | reverse

Direction of increasing values. A mode controlling the direction of increasing
axis values. axes form a right-hand coordinate system. By default:

• x-axis values increase from left to right. To reverse the direction of increasing
x values, set this property to reverse.
set(gca,'XDir','reverse')

• y-axis values increase from bottom to top (2-D view) or front to back (3-D
view). To reverse the direction of increasing y values, set this property to
reverse.
set(gca,'YDir','reverse')
78

Axes Properties
• z-axis values increase pointing out of the screen (2-D view) or from bottom to
top (3-D view). To reverse the direction of increasing z values, set this
property to reverse.

set(gca,'ZDir','reverse')

XGrid, YGrid, ZGrid on | {off}

Axis gridline mode. When you set any of these properties to on, MATLAB draws
grid lines perpendicular to the respective axis (i.e., along lines of constant x, y,
or z values). Use the grid command to set all three properties on or off at once.

set(gca,'XGrid','on')

XLabel, YLabel, ZLabelhandle of text object

Axis labels. The handle of the text object used to label the x, y, or z-axis,
respectively. To assign values to any of these properties, you must obtain the
handle to the text string you want to use as a label. This statement defines a
text object and assigns its handle to the XLabel property:

set(gca,'Xlabel',text('String','axis label'))

MATLAB places the string 'axis label' appropriately for an x-axis label. Any
text object whose handle you specify as an XLabel, YLabel, or ZLabel property
is moved to the appropriate location for the respective label.

Alternatively, you can use the xlabel, ylabel, and zlabel functions, which
generally provide a simpler means to label axis lines.

XLim, YLim, ZLim [minimum maximum]

Axis limits. A two-element vector specifying the minimum and maximum
values of the respective axis.

Changing these properties affects the scale of the x-, y-, or z-dimension as well
as the placement of labels and tick marks on the axis. The default values for
these properties are [0 1].

XLimMode, YLimMode, ZLimMode{auto} | manual

MATLAB or user-controlled limits. The axis limits mode determines whether
MATLAB calculates axis limits based on the data plotted (i.e., the XData,
YData, or ZData of the axes children) or uses the values explicitly set with the
XLim, YLim, or ZLim property, in which case, the respective limits mode is set to
manual.
79

Axes Properties
XScale, YScale, ZScale{linear} | log

Axis scaling. Linear or logarithmic scaling for the respective axis. See also
loglog, semilogx, and semilogy.

XTick, YTick, ZTickvector of data values locating tick marks

Tick spacing. A vector of x-, y-, or z-data values that determine the location of
tick marks along the respective axis. If you do not want tick marks displayed,
set the respective property to the empty vector, []. These vectors must contain
monotonically increasing values.

XTickLabel, YTickLabel, ZTickLabelstring

Tick labels. A matrix of strings to use as labels for tick marks along the
respective axis. These labels replace the numeric labels generated by
MATLAB. If you do not specify enough text labels for all the tick marks,
MATLAB uses all of the labels specified, then reuses the specified labels.

For example, the statement,

set(gca,'XTickLabel',{'One';'Two';'Three';'Four'})

labels the first four tick marks on the x-axis and then reuses the labels until all
ticks are labeled.

Labels can be specified as cell arrays of strings, padded string matrices, string
vectors separated by vertical slash characters, or as numeric vectors (where
each number is implicitly converted to the equivalent string using num2str).
All of the following are equivalent:

set(gca,'XTickLabel',{'1';'10';'100'})
set(gca,'XTickLabel','1|10|100')
set(gca,'XTickLabel',[1;10;100])
set(gca,'XTickLabel',['1 ';'10 ';'100'])

Note that tick labels do not interpret TeX character sequences (however, the
Title, XLabel, YLabel, and ZLabel properties do).

XTickMode, YTickMode, ZTickMode{auto} | manual

MATLAB or user controlled tick spacing. The axis tick modes determine
whether MATLAB calculates the tick mark spacing based on the range of data
for the respective axis (auto mode) or uses the values explicitly set for any of
80

Axes Properties
the XTick, YTick, and ZTick properties (manual mode). Setting values for the
XTick, YTick, or ZTick properties sets the respective axis tick mode to manual.

XTickLabelMode, YTickLabelMode, ZTickLabelMode{auto} | manual

MATLAB or user determined tick labels. The axis tick mark labeling mode
determines whether MATLAB uses numeric tick mark labels that span the
range of the plotted data (auto mode) or uses the tick mark labels specified
with the XTickLabel, YTickLabel, or ZTickLabel property (manual mode).
Setting values for the XTickLabel, YTickLabel, or ZTickLabel property sets
the respective axis tick label mode to manual.
81

axis
1axisPurpose Axis scaling and appearance

Syntax axis([xmin xmax ymin ymax])
axis([xmin xmax ymin ymax zmin zmax cmin cmax])
v = axis

axis auto
axis manual
axis tight
axis fill

axis ij
axis xy

axis equal
axis image
axis square
axis vis3d
axis normal

axis off
axis on
[mode,visibility,direction] = axis('state')

Description axis manipulates commonly used axes properties. (See Algorithm section.)

axis([xmin xmax ymin ymax]) sets the limits for the x- and y-axis of the
current axes.

axis([xmin xmax ymin ymax zmin zmax cmin cmax]) sets the x-, y-, and
z-axis limits and the color scaling limits (see caxis) of the current axes.

v = axis returns a row vector containing scaling factors for the x-, y-, and
z-axis. v has four or six components depending on whether the current axes is
2-D or 3-D, respectively. The returned values are the current axes’ XLim, Ylim,
and ZLim properties.
82

axis
axis auto sets MATLAB to its default behavior of computing the current axes’
limits automatically, based on the minimum and maximum values of x, y, and
z data. You can restrict this automatic behavior to a specific axis. For example,
axis 'auto x' computes only the x-axis limits automatically; axis 'auto yz'
computes the y- and z-axis limits automatically.

axis manual and axis(axis) freezes the scaling at the current limits, so that
if hold is on, subsequent plots use the same limits. This sets the XLimMode,
YLimMode, and ZLimMode properties to manual.

axis tight sets the axis limits to the range of the data.

axis fill sets the axis limits to the range of the data.

axis ij places the coordinate system origin in the upper-left corner. The i-axis
is vertical, with values increasing from top to bottom. The j-axis is horizontal
with values increasing from left to right.

axis xy draws the graph in the default Cartesian axes format with the
coordinate system origin in the lower-left corner. The x-axis is horizontal with
values increasing from left to right. The y-axis is vertical with values
increasing from bottom to top.

axis equal sets the aspect ratio so that the data units are the same in every
direction. The aspect ratio of the x-, y-, and z-axis is adjusted automatically
according to the range of data units in the x, y, and z directions.

axis image is the same as axis equal except that the plot box fits tightly
around the data.

axis square makes the current axes region square (or cubed when
three-dimensional). MATLAB adjusts the x-axis, y-axis, and z-axis so that they
have equal lengths and adjusts the increments between data units accordingly.

axis vis3d freezes aspect ratio properties to enable rotation of 3-D objects and
overrides stretch-to-fill.

axis normal automatically adjusts the aspect ratio of the axes and the aspect
ratio of the data units represented on the axes to fill the plot box.
83

axis
axis off turns off all axis lines, tick marks, and labels.

axis on turns on all axis lines, tick marks, and labels.

[mode,visibility,direction] = axis('state') returns three strings
indicating the current setting of axes properties:

mode is auto if XLimMode, YLimMode, and ZLimMode are all set to auto. If
XLimMode, YLimMode, or ZLimMode is manual, mode is manual.

Examples The statements

x = 0:.025:pi/2;
plot(x,tan(x),'-ro')

Output Argument Strings Returned

mode 'auto' | 'manual'

visibility 'on' | 'off'

direction 'xy' | 'ij'
84

axis
use the automatic scaling of the y-axis based on ymax = tan(1.57), which is
well over 1000:

The right figure shows a more satisfactory plot after typing

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

200

400

600

800

1000

1200

1400
85

axis
axis([0 pi/2 0 5])

Algorithm When you specify minimum and maximum values for the x-, y-, and z-axes,
axis sets the XLim, Ylim, and ZLim properties for the current axes to the
respective minimum and maximum values in the argument list. Additionally,
the XLimMode, YLimMode, and ZLimMode properties for the current axes are set
to manual.

axis auto sets the current axes’ XLimMode, YLimMode, and ZLimMode properties
to 'auto'.

axis manual sets the current axes’ XLimMode, YLimMode, and ZLimMode
properties to 'manual'.

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

86

axis
The following table shows the values of the axes properties set by axis equal,
axis normal, axis square, and axis image.

See Also axes, get, grid, set, subplot

Properties of axes graphics objects

Axes Property axis equal axis normal axis square axis tightequal

DataAspectRatio [1 1 1] not set not set [1 1 1]

DataAspectRatioMode manual auto auto manual

PlotBoxAspectRatio [3 4 4] not set [1 1 1] auto

PlotBoxAspectRatioMode manual auto manual auto

Stretch-to-fill disabled active disabled disabled
87

balance
1balancePurpose Improve accuracy of computed eigenvalues

Syntax [T,B] = balance(A)
B = balance(A)

Description [T,B] = balance(A) returns a permutation of a diagonal matrix T whose
elements are integer powers of two, and a balanced matrix B so that B = T\A∗T.
If A is symmetric, then B == A and T is the identity matrix.

B = balance(A) returns just the balanced matrix B.

Remarks Nonsymmetric matrices can have poorly conditioned eigenvalues. Small
perturbations in the matrix, such as roundoff errors, can lead to large
perturbations in the eigenvalues. The quantity which relates the size of the
matrix perturbation to the size of the eigenvalue perturbation is the condition
number of the eigenvector matrix,

cond(V) = norm(V)∗norm(inv(V))

where

[V,T] = eig(A)

(The condition number of A itself is irrelevant to the eigenvalue problem.)

Balancing is an attempt to concentrate any ill conditioning of the eigenvector
matrix into a diagonal scaling. Balancing usually cannot turn a nonsymmetric
matrix into a symmetric matrix; it only attempts to make the norm of each row
equal to the norm of the corresponding column. Furthermore, the diagonal
scale factors are limited to powers of two so they do not introduce any roundoff
error.

MATLAB’s eigenvalue function, eig(A), automatically balances A before
computing its eigenvalues. Turn off the balancing with eig(A,'nobalance').

Examples This example shows the basic idea. The matrix A has large elements in the
upper right and small elements in the lower left. It is far from being symmetric.

A = [1 100 10000; .01 1 100; .0001 .01 1]
A =

1.0e+04 ∗
0.0001 0.0100 1.0000
88

balance
0.0000 0.0001 0.0100
0.0000 0.0000 0.0001

Balancing produces a diagonal T matrix with elements that are powers of two
and a balanced matrix B that is closer to symmetric than A.

[T,B] = balance(A)
T =

1.0e+03 ∗
2.0480 0 0

0 0.0320 0
0 0 0.0003

B =
1.0000 1.5625 1.2207
0.6400 1.0000 0.7813
0.8192 1.2800 1.0000

To see the effect on eigenvectors, first compute the eigenvectors of A.

[V,E] = eig(A); V
V =

-1.0000 0.9999 0.9937
0.0050 0.0100 -0.1120
0.0000 0.0001 0.0010

Note that all three vectors have the first component the largest. This indicates
V is badly conditioned; in fact cond(V) is 8.7766e+003. Next, look at the
eigenvectors of B.

[V,E] = eig(B); V
V =

-0.8873 0.6933 0.0898
 0.2839 0.4437 -0.6482
 0.3634 0.5679 -0.7561

Now the eigenvectors are well behaved and cond(V) is 1.4421. The ill
conditioning is concentrated in the scaling matrix; cond(T) is 8192.

This example is small and not really badly scaled, so the computed eigenvalues
of A and B agree within roundoff error; balancing has little effect on the
computed results.
89

balance
Algorithm The eig function automatically uses balancing to prepare its input matrix.
balance uses LAPACK routines DGEBAL (real) and ZGEBAL (complex). If you
request the output T, it also uses the LAPACK routines DGEBAK (real) and
ZGEBAK (complex).

Limitations Balancing can destroy the properties of certain matrices; use it with some care.
If a matrix contains small elements that are due to roundoff error, balancing
may scale them up to make them as significant as the other elements of the
original matrix.

See Also condeig, eig, hess, schur

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide, Third Edition, SIAM, Philadelphia, 1999.
90

bar, barh
1bar, barhPurpose Bar chart

Syntax bar(Y)
bar(x,Y)
bar(...,width)
bar(...,'style')
bar(...,LineSpec)
[xb,yb] = bar(...)
h = bar(...)

barh(...)
[xb,yb] = barh(...)
h = barh(...)

Description A bar chart displays the values in a vector or matrix as horizontal or vertical
bars.

bar(Y) draws one bar for each element in Y. If Y is a matrix, bar groups the bars
produced by the elements in each row. The x-axis scale ranges from 1 to
length(Y) when Y is a vector, and 1 to size(Y,1), which is the number of rows,
when Y is a matrix.

bar(x,Y) draws a bar for each element in Y at locations specified in x, where x
is a monotonically increasing vector defining the x-axis intervals for the
vertical bars. If Y is a matrix, bar clusters the elements in the same row in Y at
locations corresponding to an element in x.

bar(...,width) sets the relative bar width and controls the separation of bars
within a group. The default width is 0.8, so if you do not specify x, the bars
within a group have a slight separation. If width is 1, the bars within a group
touch one another.

bar(...,'style') specifies the style of the bars. 'style' is 'group' or
'stack'. 'group' is the default mode of display.

• 'group' displays n groups of m vertical bars, where n is the number of rows
and m is the number of columns in Y. The group contains one bar per column
in Y.
91

bar, barh
• 'stack' displays one bar for each row in Y. The bar height is the sum of the
elements in the row. Each bar is multi-colored, with colors corresponding to
distinct elements and showing the relative contribution each row element
makes to the total sum.

bar(...,LineSpec) displays all bars using the color specified by LineSpec.

[xb,yb] = bar(...) returns vectors that you plot using plot(xb,yb) or
patch(xb,yb,C). This gives you greater control over the appearance of a graph,
for example, to incorporate a bar chart into a more elaborate plot statement.

h = bar(...) returns a vector of handles to patch graphics objects. bar creates
one patch graphics object per column in Y.

barh(...), [xb,yb] = barh(...), and h = barh(...) create horizontal
bars. Y determines the bar length. The vector x is a monotonic vector defining
the y-axis intervals for horizontal bars.

Examples Plot a bell shaped curve:

x = –2.9:0.2:2.9;
bar(x,exp(–x.*x))
colormap hsv

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

92

bar, barh
Create four subplots showing the effects of various bar arguments:

Y = round(rand(5,3)*10);
subplot(2,2,1)
bar(Y,'group')
title 'Group'

subplot(2,2,2)
bar(Y,'stack')
title 'Stack'

subplot(2,2,3)
barh(Y,'stack')
title 'Stack'

subplot(2,2,4)
bar(Y,1.5)
title 'Width = 1.5'
93

bar, barh
See Also bar3, ColorSpec, patch, stairs, hist

1 2 3 4 5
0

2

4

6

8

10
Group

1 2 3 4 5
0

5

10

15

20

25
Stack

0 5 10 15 20 25

1

2

3

4

5

Stack

1 2 3 4 5
0

2

4

6

8

10
Width = 1.5
94

bar3, bar3h
1bar3, bar3hPurpose Three-dimensional bar chart

Syntax bar3(Y)
bar3(x,Y)
bar3(...,width)
bar3(...,'style')
bar3(...,LineSpec)
h = bar3(...)

bar3h(...)
h = bar3h(...)

Description bar3 and bar3h draw three-dimensional vertical and horizontal bar charts.

bar3(Y) draws a three-dimensional bar chart, where each element in Y
corresponds to one bar. When Y is a vector, the x-axis scale ranges from 1 to
length(Y). When Y is a matrix, the x-axis scale ranges from 1 to size(Y,2),
which is the number of columns, and the elements in each row are grouped
together.

bar3(x,Y) draws a bar chart of the elements in Y at the locations specified in
x, where x is a monotonic vector defining the y-axis intervals for vertical bars.
If Y is a matrix, bar3 clusters elements from the same row in Y at locations
corresponding to an element in x. Values of elements in each row are grouped
together.

bar3(...,width) sets the width of the bars and controls the separation of bars
within a group. The default width is 0.8, so if you do not specify x, bars within
a group have a slight separation. If width is 1, the bars within a group touch
one another.

bar3(...,'style') specifies the style of the bars. 'style' is 'detached',
'grouped', or 'stacked'. 'detached' is the default mode of display.

• 'detached' displays the elements of each row in Y as separate blocks behind
one another in the x direction.

• 'grouped' displays n groups of m vertical bars, where n is the number of
rows and m is the number of columns in Y. The group contains one bar per
column in Y.
95

bar3, bar3h
• 'stacked' displays one bar for each row in Y. The bar height is the sum of
the elements in the row. Each bar is multi-colored, with colors corresponding
to distinct elements and showing the relative contribution each row element
makes to the total sum.

bar3(...,LineSpec) displays all bars using the color specified by LineSpec.

h = bar3(...) returns a vector of handles to patch graphics objects. bar3
creates one patch object per column in Y.

bar3h(...) and h = bar3h(...) create horizontal bars. Y determines the bar
length. The vector x is a monotonic vector defining the y-axis intervals for
horizontal bars.

Examples This example creates six subplots showing the effects of different arguments for
bar3. The data Y is a seven-by-three matrix generated using the cool colormap:

Y = cool(7);
subplot(3,2,1)
bar3(Y,’detached’)
title(‘Detached’)

subplot(3,2,2)
bar3(Y,0.25,’detached’)
title(‘Width = 0.25’)

subplot(3,2,3)
bar3(Y,’grouped’)
title(‘Grouped’)

subplot(3,2,4)
bar3(Y,0.5,’grouped’)
title(‘Width = 0.5’)
96

bar3, bar3h
subplot(3,2,5)
bar3(Y,’stacked’)
title(‘Stacked’)

subplot(3,2,6)
bar3(Y,0.3,’stacked’)
title(‘Width = 0.3’)

colormap([1 0 0;0 1 0;0 0 1])
97

bar3, bar3h
See Also bar, LineSpec, patch

1
2

3
4

5
6

7

0

0.5

1

Detached

1
2

3
4

5
6

7

0

0.5

1

Width = 0.25

1
2

3
4

5
6

7

0

0.5

1
Grouped

1
2

3
4

5
6

7

0

0.5

1
Width = 0.5

1
2

3
4

5
6

7

0

0.5

1

1.5

2
Stacked

1
2

3
4

5
6

7

0

0.5

1

1.5

2
Width = 0.3
98

base2dec
1base2decPurpose Base to decimal number conversion

Syntax d = base2dec('strn',base)

Description d = base2dec('strn',base) converts the string number strn of the specified
base into its decimal (base 10) equivalent. base must be an integer between 2
and 36. If 'strn' is a character array, each row is interpreted as a string in the
specified base.

Examples The expression base2dec('212',3) converts 2123 to decimal, returning 23.

See Also dec2base
99

beep
1beepPurpose Produce a beep sound

Syntax beep
beep on
beep off
s = beep

Description beep produces you computer’s default beep sound

beep on turns the beep on

beep off turn the beep off

s = beep returns the current beep mode (on or off)
100

besselh
1besselhPurpose Bessel functions of the third kind (Hankel functions)

Syntax H = besselh(nu,K,Z)
H = besselh(nu,Z)
H = besselh(nu,1,Z,1)
H = besselh(nu,2,Z,1)
[H,ierr] = besselh(...)

Definitions The differential equation

where ν is a nonnegative constant, is called Bessel’s equation, and its solutions
are known as Bessel functions. and form a fundamental set of
solutions of Bessel’s equation for noninteger ν. is a second solution of
Bessel’s equation—linearly independent of — defined by:

The relationship between the Hankel and Bessel functions is:

Description H = besselh(nu,K,Z) for K = 1 or 2 computes the Hankel functions

 or for each element of the complex array Z. If nu and Z are
arrays of the same size, the result is also that size. If either input is a scalar, it
is expanded to the other input's size. If one input is a row vector and the other
is a column vector, the result is a two-dimensional table of function values.

H = besselh(nu,Z) uses K = 1.

H = besselh(nu,1,Z,1) scales by exp(-i∗z).

H = besselh(nu,2,Z,1) scales by exp(+i∗z).

z2

z2

2

d

d y z dy
dz
------- z2 ν2

–() y+ + 0=

Jν z() J ν– z()
Y ν z()

Jν z()

Y ν z()
Jν z() νπ()cos J ν– z()–

νπ()sin
---=

Hν
1() z() Jν z() i Y ν z()+=

Hν
1() z() Hν

2() z()

Hν
1() z()

Hν
2() z()
101

besselh
[H,ierr] = besselh(...) also returns an array of error flags:

ierr = 1 Illegal arguments.

ierr = 2 Overflow. Return Inf.

ierr = 3 Some loss of accuracy in argument reduction.

ierr = 4 Unacceptable loss of accuracy, Z or nu too large.

ierr = 5 No convergence. Return NaN.
102

besseli, besselk
1besseli, besselkPurpose Modified Bessel functions

Syntax I = besseli(nu,Z) Modified Bessel function of the 1st kind
K = besselk(nu,Z) Modified Bessel function of the 2nd kind
I = besseli(nu,Z,1)
K = besselk(nu,Z,1)
[I,ierr] = besseli(...)
[K,ierr] = besselk(...)

Definitions The differential equation

where ν is a real constant, is called the modified Bessel’s equation, and its
solutions are known as modified Bessel functions.

 and form a fundamental set of solutions of the modified Bessel’s
equation for noninteger ν. is a second solution, independent of .

and are defined by:

Description I = besseli(nu,Z) computes modified Bessel functions of the first kind,
for each element of the array Z. The order nu need not be an integer, but

must be real. The argument Z can be complex. The result is real where Z is
positive.

If nu and Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

z2
z2

2

d

d y z dy
dz
------- z2 ν2+() y–+ 0=

Iν z() I ν– z()
K ν z() Iν z()

Iν z() K ν z()

Iν z() z
2
--- 

  ν z2

4
----- 

 
k

k! Γ ν k 1+ +()
--,k 0=

∞∑=

K ν z() π
2
--- 

  I ν– z() Iν z()–

νπ()sin
------------------------------------=

where Γ a() is the gamma function

Iν z(),
103

besseli, besselk
K = besselk(nu,Z) computes modified Bessel functions of the second kind,
 for each element of the complex array Z.

I = besseli(nu,Z,1) computes besseli(nu,Z).∗exp(-abs(real(Z))).

K = besselk(nu,Z,1) computes besselk(nu,Z).∗exp(Z).

[I,ierr] = besseli(...) and [K,ierr] = besselk(...) also return an
array of error flags.

Examples format long
z = (0:0.2:1)';

besseli(1,z)

ans =
 0
 0.10050083402813
 0.20402675573357
 0.31370402560492
 0.43286480262064
 0.56515910399249

besselk(1,z)

ans =
 Inf
 4.77597254322047
 2.18435442473269
 1.30283493976350
 0.86178163447218
 0.60190723019723

ierr = 1 Illegal arguments.

ierr = 2 Overflow. Return Inf.

ierr = 3 Some loss of accuracy in argument reduction.

ierr = 4 Unacceptable loss of accuracy, Z or nu too large.

ierr = 5 No convergence. Return NaN.

K ν z(),
104

besseli, besselk
besseli(3:9,(0:.2,10)',1) generates the entire table on page 423 of
Abramowitz and Stegun, Handbook of Mathematical Functions.

besselk(3:9,(0:.2:10)',1) generates part of the table on page 424 of
Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besseli and besselk functions use a Fortran MEX-file to call a library
developed by D. E. Amos [3] [4].

See Also airy, besselj, bessely

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[4] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.
105

besselj, bessely
1besselj, besselyPurpose Bessel functions

Syntax J = besselj(nu,Z) Bessel function of the 1st kind
Y = bessely(nu,Z) Bessel function of the 2nd kind
J = besselj(nu,Z,1)
Y = bessely(nu,Z,1)
[J,ierr] = besselj(nu,Z)
[Y,ierr] = bessely(nu,Z)

Definition The differential equation

where ν is a real constant, is called Bessel’s equation, and its solutions are
known as Bessel functions.

 and form a fundamental set of solutions of Bessel’s equation for
noninteger ν. is defined by:

is a second solution of Bessel’s equation that is linearly independent of
 and defined by:

Description J = besselj(nu,Z) computes Bessel functions of the first kind, for each
element of the complex array Z. The order nu need not be an integer, but must
be real. The argument Z can be complex. The result is real where Z is positive.

z2

z2

2

d

d y z dy
dz
------- z2 ν2

–() y+ + 0=

Jν z() J ν– z()
Jν z()

Jν z() z
2
--- 

  ν z2

4
-----– 

 
k

k! Γ ν k 1+ +()
--,k 0=

∞∑=

where Γ a() is the gamma function

Y ν z()
Jν z()

Y ν z()
Jν z() νπ()cos J ν– z()–

νπ()sin
---=

Jν z(),
106

besselj, bessely
If nu and Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

Y = bessely(nu,Z) computes Bessel functions of the second kind, for
real, nonnegative order nu and argument Z.

J = besselj(nu,Z,1) computes besselj(nu,Z).∗exp(-abs(imag(Z))).

Y = bessely(nu,Z,1) computes bessely(nu,Z).∗exp(-abs(imag(Z))).

[J,ierr] = besselj(nu,Z) and [Y,ierr] = bessely(nu,Z) also return an
array of error flags.

Remarks The Bessel functions are related to the Hankel functions, also called Bessel
functions of the third kind:

where is besselj, and is bessely. The Hankel functions also form
a fundamental set of solutions to Bessel’s equation (see besselh).

Examples format long
z = (0:0.2:1)';

besselj(1,z)

ans =

ierr = 1 Illegal arguments.

ierr = 2 Overflow. Return Inf.

ierr = 3 Some loss of accuracy in argument reduction.

ierr = 4 Unacceptable loss of accuracy, Z or nu too large.

ierr = 5 No convergence. Return NaN.

Y ν z(),

Hν
1() z() Jν z() i Y ν z()+=

Hν
2() z() Jν z() i Y ν z()–=

Jν z() Y ν z()
107

besselj, bessely
 0
 0.09950083263924
 0.19602657795532
 0.28670098806392
 0.36884204609417
 0.44005058574493

bessely(1,z)

ans =
 -Inf
 -3.32382498811185
 -1.78087204427005
 -1.26039134717739
 -0.97814417668336
 -0.78121282130029

besselj(3:9,(0:.2:10)') generates the entire table on page 398 of
Abramowitz and Stegun, Handbook of Mathematical Functions.

bessely(3:9,(0:.2:10)') generates the entire table on page 399 of
Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besselj and bessely functions use a Fortran MEX-file to call a library
developed by D. E. Amos [3] [4].

See Also airy, besseli, besselk

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[4] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.
108

beta, betainc, betaln
1beta, betainc, betalnPurpose Beta functions

Syntax B = beta(Z,W)
I = betainc(X,Z,W)
L = betaln(Z,W)

Definition The beta function is:

where is the gamma function. The incomplete beta function is:

Description B = beta(Z,W) computes the beta function for corresponding elements of the
complex arrays Z and W. The arrays must be the same size (or either can be
scalar).

I = betainc(X,Z,W) computes the incomplete beta function. The elements of
X must be in the closed interval

L = betaln(Z,W) computes the natural logarithm of the beta function,
log(beta(Z,W)), without computing beta(Z,W). Since the beta function can
range over very large or very small values, its logarithm is sometimes more
useful.

Examples format rat
beta((0:10)',3)

ans =

1/0
1/3
1/12
1/30
1/60
1/105
1/168

B z w,() t z 1– 1 t–()w 1– td
0

1

∫ Γ z()Γ w()
Γ z w+()
-------------------------= =

Γ z()

Ix z w,() 1
B z w,()
-------------------- tz 1– 1 t–()w 1– td

0

x

∫=

0 1[,] .
109

beta, betainc, betaln
1/252
1/360
1/495
1/660

In this case, with integer arguments,

beta(n,3)
= (n-1)!∗2!/(n+2)!
= 2/(n∗(n+1)∗(n+2))

is the ratio of fairly small integers and the rational format is able to recover the
exact result.

For x = 510, betaln(x,x) = -708.8616, which is slightly less than
log(realmin). Here beta(x,x) would underflow (or be denormal).

Algorithm beta(z,w) = exp(gammaln(z)+gammaln(w)-gammaln(z+w))
betaln(z,w) = gammaln(z)+gammaln(w)-gammaln(z+w)
110

bicg
1bicgPurpose BiConjugate Gradients method

Syntax x = bicg(A,b)
bicg(A,b,tol)
bicg(A,b,tol,maxit)
bicg(A,b,tol,maxit,M)
bicg(A,b,tol,maxit,M1,M2)
bicg(A,b,tol,maxit,M1,M2,x0)
bicg(afun,b,tol,maxit,mfun1,mfun2,x0,p1,p2,...)
[x,flag] = bicg(A,b,...)
[x,flag,relres] = bicg(A,b,...)
[x,flag,relres,iter] = bicg(A,b,...)
[x,flag,relres,iter,resvec] = bicg(A,b,...)

Description x = bicg(A,b) attempts to solve the system of linear equations A*x = b for x.
The n-by-n coefficient matrix A must be square and the column vector b must
have length n. A can be a function afun such that afun(x) returns A*x and
afun(x,'transp') returns A'*x.

If bicg converges, a message to that effect is displayed. If bicg fails to converge
after the maximum number of iterations or halts for any reason, a warning
message is printed displaying the relative residual norm(b-A*x)/norm(b) and
the iteration number at which the method stopped or failed.

bicg(A,b,tol specifies the tolerance of the method. If tol is [], then bicg
uses the default, 1e-6.

bicg(A,b,tol,maxit) specifies the maximum number of iterations. If maxit
is [], then bicg uses the default, min(n,20).

bicg(A,b,tol,maxit,M) and bicg(A,b,tol,maxit,M1,M2) use the
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then bicg applies no preconditioner.
M can be a function mfun such that mfun(x) returns M\x and mfun(x,'transp')
returns M'\x.

bicg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [], then
bicg uses the default, an all-zero vector.
111

bicg
bicg(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2,... to functions afun(x,p1,p2,...) and
afun(x,p1,p2,...,'transp'), and similarly to the preconditioner functions
m1fun and m2fun.

[x,flag] = bicg(A,b,...) also returns a convergence flag.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the flag
output is specified.

[x,flag,relres] = bicg(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicg(A,b,...) also returns the iteration number
at which x was computed, where 0 ≤ iter ≤ maxit.

[x,flag,relres,iter,resvec] = bicg(A,b,...) also returns a vector of the
residual norms at each iteration including norm(b-A*x0).

Examples Example 1.

n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;

Flag Convergence

0 bicg converged to the desired tolerance tol within maxit
iterations.

1 bicg iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 bicg stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during bicg became
too small or too large to continue computing.
112

bicg
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

x = bicg(A,b,tol,maxit,M1,M2,[]);
bicg converged at iteration 9 to a solution with relative
residual 5.3e-009

Alternatively, use this matrix-vector product function

function y = afun(x,n,transp_flag)
if (nargin > 2) & strcmp(transp_flag,'transp')
 y = 4 * x;
 y(1:n-1) = y(1:n-1) - 2 * x(2:n);
 y(2:n) = y(2:n) - x(1:n-1);
else
 y = 4 * x;
 y(2:n) = y(2:n) - 2 * x(1:n-1);
 y(1:n-1) = y(1:n-1) - x(2:n);
end

as input to bicg.

 x1 = bicg(@afun,b,tol,maxit,M1,M2,[],n);

Example 2. Start with A = west0479 and make the true solution the vector of
all ones.

load west0479;
A = west0479;
b = sum(A,2);

You can accurately solve A*x = b using backslash since A is not so large.

x = A \ b;
norm(b-A*x) / norm(b)

ans =
 1.2454e-017

Now try to solve A*x = b with bicg.

[x,flag,relres,iter,resvec] = bicg(A,b)
113

bicg
flag =
 1
relres =
 1
iter =
 0

The value of flag indicates that bicg iterated the default 20 times without
converging. The value of iter shows that the method behaved so badly that the
initial all-zero guess was better than all the subsequent iterates. The value of
relres supports this: relres = norm(b-A*x)/norm(b) = norm(b)/norm(b) = 1.
You can confirm that the unpreconditioned method oscillates rather wildly by
plotting the relative residuals at each iteration.

semilogy(0:20,resvec/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')

0 2 4 6 8 10 12 14 16 18 20
10

0

10
1

10
2

10
3

10
4

10
5

iteration number

re
la

tiv
e

re
si

du
al
114

bicg
Now, try an incomplete LU factorization with a drop tolerance of 1e-5 for the
preconditioner.

[L1,U1] = luinc(A,1e-5);
Warning: Incomplete upper triangular factor has 1 zero diagonal.

It cannot be used as a preconditioner for an iterative
 method.

nnz(A)
ans =
 1887
nnz(L1)
ans =
 5562
nnz(U1)
ans =
 4320

The zero on the main diagonal of the upper triangular U1 indicates that U1 is
singular. If you try to use it as a preconditioner,

[x,flag,relres,iter,resvec] = bicg(A,b,1e-6,20,L1,U1)

flag =
 2
relres =
 1
iter =
 0
resvec =
 7.0557e+005

the method fails in the very first iteration when it tries to solve a system of
equations involving the singular U1 using backslash. bicg is forced to return
the initial estimate since no other iterates were produced.

Try again with a slightly less sparse preconditioner.

[L2,U2] = luinc(A,1e-6)

nnz(L2)
115

bicg
ans =
 6231
nnz(U2)
ans =
 4559

This time U2 is nonsingular and may be an appropriate preconditioner.

[x,flag,relres,iter,resvec] = bicg(A,b,1e-15,10,L2,U2)

flag =
 0
relres =
 2.0248e-16
iter =
 8

and bicg converges to within the desired tolerance at iteration number 8.
Decreasing the value of the drop tolerance increases the fill-in of the incomplete
factors but also increases the accuracy of the approximation to the original
matrix. Thus, the preconditioned system becomes closer to
inv(U)*inv(L)*L*U*x = inv(U)*inv(L)*b, where L and U are the true LU
factors, and closer to being solved within a single iteration.

The next graph shows the progress of bicg using six different incomplete LU
factors as preconditioners. Each line in the graph is labeled with the drop
tolerance of the preconditioner used in bicg.
116

bicg
This does not give us any idea of the time involved in creating the incomplete
factors and then computing the solution. The following graph plots the drop
tolerance of the incomplete LU factors against the time to compute the
preconditioner, the time to iterate once the preconditioner has been computed,
and their sum, the total time to solve the problem. The time to produce the
factors does not increase very quickly with the fill-in, but it does slow down the
average time for an iteration. Since fewer iterations are performed, the total
time to solve the problem decreases. west0479 is quite a small matrix, only
139-by-139, and preconditioned bicg still takes longer than backslash.

0 1 2 3 4 5 6 7 8

10
−15

10
−10

10
−5

10
0

1e−61e−8
1e−10

1e−12

1e−14

iteration number

re
la

tiv
e

re
si

du
al
117

bicg
See Also bicgstab, cgs, gmres, lsqr, luinc, minres, pcg, qmr, symmlq

@ (function handle), \ (backslash)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

drop tolerance of incomplete LU preconditioner

tim
e

to
 p

re
co

nd
iti

on
 a

nd
 c

on
ve

rg
e

to
 1

e−
12

precondition and iterate
iterate
compute preconditioner
118

bicgstab
1bicgstabPurpose BiConjugate Gradients Stabilized method

Syntax x = bicgstab(A,b)
bicgstab(A,b,tol)
bicgstab(A,b,tol,maxit)
bicgstab(A,b,tol,maxit,M)
bicgstab(A,b,tol,maxit,M1,M2)
bicgstab(A,b,tol,maxit,M1,M2,x0)
bicgstab(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = bicgstab(A,b,...)
[x,flag,relres] = bicgstab(A,b,...)
[x,flag,relres,iter] = bicgstab(A,b,...)
[x,flag,relres,iter,resvec] = bicgstab(A,b,...)

Description x = bicgstab(A,b) attempts to solve the system of linear equations A*x=b for
x. The n-by-n coefficient matrix A must be square and the column vector b must
have length n. A can be a function afun such that afun(x) returns A*x.

If bicgstab converges, a message to that effect is displayed. If bicgstab fails
to converge after the maximum number of iterations or halts for any reason, a
warning message is printed displaying the relative residual norm(b-A*x)/
norm(b) and the iteration number at which the method stopped or failed.

bicgstab(A,b,tol) specifies the tolerance of the method. If tol is [], then
bicgstab uses the default, 1e-6.

bicgstab(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then bicgstab uses the default, min(n,20).

bicgstab(A,b,tol,maxit,M) and bicgstab(A,b,tol,maxit,M1,M2) use
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then bicgstab applies no
preconditioner. M can be a function that returns M\x.

bicgstab(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [],
then bicgstab uses the default, an all zero vector.
119

bicgstab
bicgstab(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes
parameters p1,p2,... to functions afun(x,p1,p2,...), m1fun(x,p1,p2,...),
and m2fun(x,p1,p2,...).

[x,flag] = bicgstab(A,b,...) also returns a convergence flag.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the flag
output is specified.

[x,flag,relres] = bicgstab(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicgstab(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit. iter can be an
integer + 0.5, indicating convergence half way through an iteration.

[x,flag,relres,iter,resvec] = bicgstab(A,b,...) also returns a vector of
the residual norms at each half iteration, including norm(b-A*x0).

Example Example 1.

A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12;
maxit = 15;

Flag Convergence

0 bicgstab converged to the desired tolerance tol within
maxit iterations.

1 bicgstab iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 bicgstab stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during bicgstab
became too small or too large to continue computing.
120

bicgstab
M1 = diag([10:-1:1 1 1:10]);

x = bicgstab(A,b,tol,maxit,M1,[],[]);
bicgstab converged at iteration 12.5 to a solution with relative
residual 1.2e-014

Alternatively, use this matrix-vector product function

function y = afun(x,n)
y = [0;
 x(1:n-1)] + [((n-1)/2:-1:0)';
 (1:(n-1)/2)'] .*x + [x(2:n);
 0];

and this preconditioner backsolve function

function y = mfun(r,n)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

as inputs to bicgstab

x1 = bicgstab(@afun,b,tol,maxit,@mfun,[],[],21);

Note that both afun and mfun must accept bicgstab's extra input n=21.

Example 2.

load west0479;
A = west0479;
b = sum(A,2);
[x,flag] = bicgstab(A,b)

flag is 1 because bicgstab does not converge to the default tolerance 1e-6
within the default 20 iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = bicgstab(A,b,1e-6,20,L1,U1)

flag1 is 2 because the upper triangular U1 has a zero on its diagonal. This
causes bicgstab to fail in the first iteration when it tries to solve a system such
as U1*y = r using backslash.

[L2,U2] = luinc(A,1e-6);
[x2,flag2,relres2,iter2,resvec2] = bicgstab(A,b,1e-15,10,L2,U2)
121

bicgstab
flag2 is 0 because bicgstab converges to the tolerance of 3.1757e-016 (the
value of relres2) at the sixth iteration (the value of iter2) when
preconditioned by the incomplete LU factorization with a drop tolerance of
1e-6. resvec2(1) = norm(b) and resvec2(13) = norm(b-A*x2). You can
follow the progress of bicgstab by plotting the relative residuals at the halfway
point and end of each iteration starting from the initial estimate (iterate
number 0).

semilogy(0:0.5:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')

See Also bicg, cgs, gmres, lsqr, luinc, minres, pcg, qmr, symmlq

@ (function handle), \ (backslash)

0 1 2 3 4 5 6
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
la

tiv
e

re
si

du
al
122

bicgstab
References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] van der Vorst, H. A., “BI-CGSTAB: A fast and smoothly converging variant
of BI-CG for the solution of nonsymmetric linear systems”, SIAM J. Sci. Stat.
Comput., March 1992,Vol. 13, No. 2, pp. 631-644.
123

bin2dec
1bin2decPurpose Binary to decimal number conversion

Syntax bin2dec(binarystr)

Description bin2dec(binarystr) interprets the binary string binarystr and returns the
equivalent decimal number.

Examples bin2dec('010111') returns 23.

See Also dec2bin
124

bitand
1bitandPurpose Bit-wise AND

Syntax C = bitand(A,B)

Description C = bitand(A,B) returns the bit-wise AND of two nonnegative integer
arguments A and B. To ensure the operands are integers, use the ceil, fix,
floor, and round functions.

Examples The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bit-wise AND on these numbers yields
01001, or 9.

C = bitand(13,27)

C =

 9

See Also bitcmp, bitget, bitmax, bitor, bitset, bitshift, bitxor
125

bitcmp
1bitcmpPurpose Complement bits

Syntax C = bitcmp(A,n)

Description C = bitcmp(A,n) returns the bit-wise complement of A as an n-bit
floating-point integer (flint).

Example With eight-bit arithmetic, the ones’ complement of 01100011 (99, decimal) is
10011100 (156, decimal).

C = bitcmp(99,8)

C =

 156

See Also bitand, bitget, bitmax, bitor, bitset, bitshift, bitxor
126

bitget
1bitgetPurpose Get bit

Syntax C = bitget(A,bit)

Description C = bitget(A,bit) returns the value of the bit at position bit in A. Operand
A must be a nonnegative integer, and bit must be a number between 1 and the
number of bits in the floating-point integer (flint) representation of A (52 for
IEEE flints). To ensure the operand is an integer, use the ceil, fix, floor, and
round functions.

Example The dec2bin function converts decimal numbers to binary. However, you can
also use the bitget function to show the binary representation of a decimal
number. Just test successive bits from most to least significant:

disp(dec2bin(13))
1101
C = bitget(13,4:-1:1)

C =
 1 1 0 1

See Also bitand, bitcmp, bitmax, bitor, bitset, bitshift, bitxor
127

bitmax
1bitmaxPurpose Maximum floating-point integer

Syntax bitmax

Description bitmax returns the maximum unsigned floating-point integer for your
computer. It is the value when all bits are set, namely the value .

See Also bitand, bitcmp, bitget, bitor, bitset, bitshift, bitxor

253 1–
128

bitor
1bitorPurpose Bit-wise OR

Syntax C = bitor(A,B)

Description C = bitor(A,B) returns the bit-wise OR of two nonnegative integer
arguments A and B. To ensure the operands are integers, use the ceil, fix,
floor, and round functions.

Examples The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bit-wise OR on these numbers yields 11111,
or 31.

C = bitor(13,27)

C =

 31

See Also bitand, bitcmp, bitget, bitmax, bitset, bitshift, bitxor
129

bitset
1bitsetPurpose Set bit

Syntax C = bitset(A,bit)
C = bitset(A,bit,v)

Description C = bitset(A,bit) sets bit position bit in A to 1 (on). A must be a nonnegative
integer and bit must be a number between 1 and the number of bits in the
floating-point integer (flint) representation of A (52 for IEEE flints). To ensure
the operand is an integer, use the ceil, fix, floor, and round functions.

C = bitset(A,bit,v) sets the bit at position bit to the value v, which must be
either 0 or 1.

Examples Setting the fifth bit in the five-bit binary representation of the integer 9 (01001)
yields 11001, or 25.

C = bitset(9,5)

C =

 25

See Also bitand, bitcmp, bitget, bitmax, bitor, bitshift, bitxor
130

bitshift
1bitshiftPurpose Bit-wise shift

Syntax C = bitshift(A,k,n)
C = bitshift(A,k)

Description C = bitshift(A,k,n) returns the value of A shifted by k bits. If k>0, this is
same as a multiplication by 2k (left shift). If k<0, this is the same as a division
by 2k (right shift). An equivalent computation for this function is
C = fix(A*2^k).

If the shift causes C to overflow n bits, the overflowing bits are dropped. A must
contain nonnegative integers between 0 and BITMAX, which you can ensure by
using the ceil, fix, floor, and round functions.

C = bitshift(A,k) uses the default value of n = 53.

Examples Shifting 1100 (12, decimal) to the left two bits yields 110000 (48, decimal).

C = bitshift(12,2)

C =

 48

See Also bitand, bitcmp, bitget, bitmax, bitor, bitset, bitxor, fix
131

bitxor
1bitxorPurpose Bit-wise XOR

Syntax C = bitxor(A,B)

Description C = bitxor(A,B) returns the bit-wise XOR of the two arguments A and B. Both
A and B must be integers. You can ensure this by using the ceil, fix, floor,
and round functions.

Examples The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bit-wise XOR on these numbers yields 10110,
or 22.

C = bitxor(13,27)

C =
 22

See Also bitand, bitcmp, bitget, bitmax, bitor, bitset, bitshift
132

blanks
1blanksPurpose A string of blanks

Syntax blanks(n)

Description blanks(n) is a string of n blanks.

Examples blanks is useful with the display function. For example,

disp(['xxx' blanks(20) 'yyy'])

displays twenty blanks between the strings 'xxx' and 'yyy'.

disp(blanks(n)') moves the cursor down n lines.

See Also clc, format, home
133

blkdiag
1blkdiagPurpose Construct a block diagonal matrix from input arguments

Syntax out = blkdiag(a,b,c,d,...)

Description out = blkdiag(a,b,c,d,...) where a, b, ... are matrices outputs a block
diagonal matrix of the form:

The input matrics do not have to be square, nor do they have to be of equal size.

blkdiag works not only for matrices, but for any MATLAB objects which
support horzcat and vertcat operations.

See Also diag

a 0 0 0 0
0 b 0 0 0
0 0 c 0 0
0 0 0 d 0
0 0 0 0 …
134

box
1boxPurpose Control axes border

Syntax box on
box off
box
box(axes_handle,...)

Description box on displays the boundary of the current axes.

box off does not display the boundary of the current axes.

box toggles the visible state of the current axes’ boundary.

box(axes_handle,...) uses the axes specified by axes_handle instead of the
current axes.

Algorithm The box function sets the axes Box property to on or off.

See Also axes, grid
135

break
1breakPurpose Terminate execution of a for loop or while loop

Syntax break

Description break terminates the execution of a for loop or while loop. In nested loops,
break exits from the innermost loop only.

Remarks If you use break outside of a for or while loop in a MATLAB script or function,
break terminates the script or function at that point.

If break is executed in anif, switch-case, or try-catch statement, it termi-
nates the statement at that point.

Examples The example below shows a while loop that reads the contents of the file fft.m
into a MATLAB character array. A break statement is used to exit the while
loop when the first empty line is encountered. The resulting character array
contains the M-file help for the fft program.

fid = fopen('fft.m','r');
s = '';
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line), break, end
 s = strvcat(s,line);
end
disp(s)

See Also end, for, return, while
136

brighten
1brightenPurpose Brighten or darken colormap

Syntax brighten(beta)
brighten(h,beta)
newmap = brighten(beta)
newmap = brighten(cmap,beta)

Description brighten increases or decreases the color intensities in a colormap. The
modified colormap is brighter if 0 < beta < 1 and darker if –1 < beta < 0.

brighten(beta) replaces the current colormap with a brighter or darker
colormap of essentially the same colors. brighten(beta), followed by
brighten(–beta), where beta < 1, restores the original map.

brighten(h,beta) brightens all objects that are children of the figure having
the handle h.

newmap = brighten(beta) returns a brighter or darker version of the current
colormap without changing the display.

newmap = brighten(cmap,beta) returns a brighter or darker version of the
colormap cmap without changing the display.

Examples Brighten and then darken the current colormap:

beta = .5; brighten(beta);
beta = —.5; brighten(beta);

Algorithm The values in the colormap are raised to the power of gamma, where gamma is

brighten has no effect on graphics objects defined with true color.

See Also colormap, rgbplot

γ
1 β, β 0>–

1
1 β+
-------------, β 0≤




=

137

builtin
1builtinPurpose Execute builtin function from overloaded method

Syntax builtin(function,x1,...,xn)
[y1,..,yn] = builtin(function,x1,...,xn)

Description builtin is used in methods that overload builtin functions to execute the
original builtin function. If function is a string containing the name of a
builtin function,then:

builtin(function,x1,...,xn) evaluates that function at the given
arguments.

[y1,..,yn] = builtin(function,x1,...,xn) returns multiple output
arguments.

Remarks builtin(...) is the same as feval(...) except that it calls the original builtin
version of the function even if an overloaded one exists. (For this to work you
must never overload builtin.)

See Also feval
138

bvp4c
1bvp4cPurpose Solve two-point boundary value problems (BVPs) for ordinary differential
equations

Syntax sol = bvp4c(odefun,bcfun,solinit)
sol = bvp4c(odefun,bcfun,solinit,options)
sol = bvp4c(odefun,bcfun,solinit,options,p1,p2...)

Arguments odefun A function that evaluates the differential equations . It can
have the form

dydx = odefun(x,y)
dydx = odefun(x,y,p1,p2,...)
dydx = odefun(x,y,parameters)
dydx = odefun(x,y,parameters,p1,p2,...)

where x is a scalar corresponding to , and y is a column vector
corresponding to . parameters is a vector of unknown
parameters, and p1,p2,... are known parameters. The output
dydx is a column vector.

bcfun A function that computes the residual in the boundary conditions
. It can have the form

res = bcfun(ya,yb)
res = bcfun(ya,yb,p1,p2,...)
res = bcfun(ya,yb,parameters)
res = bcfun(ya,yb,parameters,p1,p2,...)

where ya and yb are column vectors corresponding to and
. parameters is a vector of unknown parameters, and

p1,p2,... are known parameters. The output res is a column
vector.

solinit A structure with fields:

x Ordered nodes of the initial mesh. Boundary
conditions are imposed at a = solinit.x(1) and
b = solinit.x(end).

y Initial guess for the solution such that
solinit.y(:,i) is a guess for the solution at the
node solinit.x(i).

f x y,()

x
y

bc y a() y b(),()

y a()
y b()
139

bvp4c
Description sol = bvp4c(odefun,bcfun,solinit) integrates a system of ordinary
differential equations of the form

on the interval [a,b] subject to general two-point boundary conditions

The bvp4c solver can also find unknown parameters for problems of the form

where corresponds to parameters. You provide bvp4c an initial guess for any
unknown parameters in solinit.parameters. The bvp4c solver returns the
final values of these unknown parameters in sol.parameters.

bvp4c produces a solution that is continuous on [a,b] and has a continuous first
derivative there. Use the function bvpval and the output sol of bvp4c to
evaluate the solution at specific points xint in the interval [a,b].

yint = bvpval(sol,xint)

The structure sol returned by bvp4c has the following fields:

parameters Optional. A vector that provides an initial guess for
unknown parameters.

The structure can have any name, but the fields must be named x,
y, and parameters. You can form solinit with the helper function
bvpinit. See bvpinit for details.

options Optional integration argument. A structure you create using the
bvpset function. See bvpset for details.

p1,p2... Optional. Known parameters that the solver passes to odefun,
bcfun, and all the functions the user specifies in options.

x Mesh selected by bvp4c

y Approximation to at the mesh points of sol.x

y′ f x y,()=

bc y a() y b(),() 0=

p

y′ f x y p, ,()=

bc y a() y b() p, ,() 0=

p

y x()
140

bvp4c
The structure sol can have any name, and bvp4c creates the fields x, y, yp, and
parameters.

sol = bvp4c(odefun,bcfun,solinit,options) solves as above with default
integration properties replaced by the values in options, a structure created
with the bvpset function. See bvpset for details.

sol = bvp4c(odefun,bcfun,solinit,options,p1,p2...) passes constant
known parameters, p1, p2, ..., to odefun, bcfun, and all the functions the user
specifies in options. Use options = [] as a placeholder if no options are set.

Examples Example 1. Boundary value problems can have multiple solutions and one
purpose of the initial guess is to indicate which solution you want. The second
order differential equation

has exactly two solutions that satisfy the boundary conditions

Prior to solving this problem with bvp4c, the differential equation must be
written as a system of two first order ODEs

Here and . This system has the required form

The function and the boundary conditions are coded in MATLAB as
functions twoode and twobc.

function dydx = twoode(x,y)
 dydx = [y(2)

yp Approximation to at the mesh points of sol.x

parameters Values returned by bvp4c for the unknown parameters, if any

y′ x()

y′′ y+ 0=

y 0() 0=

y 4() 2–=

y1′ y2=

y2′ y1–=

y1 y= y2 y′=

y′ f x y,()=

bc y a() y b(),() 0=

f bc
141

bvp4c
 -abs(y(1))];

function res = twobc(ya,yb)
 res = [ya(1)
 yb(1) + 2];

A guess structure consisting of an initial mesh of five equally spaced points in
[0,4] and a guess of constant values and is formed by

solinit = bvpinit(linspace(0,4,5),[1 0]);

The problem is solved with the command

sol = bvp4c(@twoode,@twobc,solinit);

The numerical solution is evaluated at 100 equally spaced points and is
plotted with

y = bvpval(sol,linspace(0,4));
plot(x,y(1,:));

The other solution of this problem can be obtained with the initial guess

solinit = bvpinit(linspace(0,4,5),[-1 0]);

y1 x() 1≡ y2 x() 0≡

y x()

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y

142

bvp4c
Example 2. This boundary value problem involves an unknown parameter.
The task is to compute the fourth () eigenvalue of Mathieu's equation

Because the unknown parameter is present, this second order differential
equation is subject to three boundary conditions

It is convenient to use subfunctions to place all the functions required by bvp4c
in a single M-file.

function mat4bvp

lambda = 15;
solinit = bvpinit(linspace(0,pi,10),@mat4init,lambda);
sol = bvp4c(@mat4ode,@mat4bc,solinit);

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y

q 5= λ

y′′ λ 2– q 2xcos() y+ 0=

λ

y′ 0() 0=

y′ π() 0=

y 0() 1=
143

bvp4c
fprintf('The fourth eigenvalue is approximately %7.3f.\n',...
 sol.parameters)

xint = linspace(0,pi);
Sxint = bvpval(sol,xint);
plot(xint,Sxint(1,:))
axis([0 pi -1 1.1])
title('Eigenfunction of Mathieu''s equation.')
xlabel('x')
ylabel('solution y')
% --
function dydx = mat4ode(x,y,lambda)
q = 5;
dydx = [y(2)
 -(lambda - 2*q*cos(2*x))*y(1)];
% --
function res = mat4bc(ya,yb,lambda)
res = [ya(2)
 yb(2)
 ya(1)-1];
% --
function yinit = mat4init(x)
yinit = [cos(4*x)
 -4*sin(4*x)];

The differential equation (converted to a first order system) and the boundary
conditions are coded as subfunctions mat4ode and mat4bc, respectively.
Because unknown parameters are present, these functions must accept three
input arguments, even though some of the arguments are not used.

The guess structure solinit is formed with bvpinit. An initial guess for the
solution is supplied in the form of a function mat4init. We chose
because it satisfies the boundary conditions and has the correct qualitative
behavior (the correct number of sign changes). In the call to bvpinit, the third
argument (lambda = 15) provides an initial guess for the unknown parameter

.

After the problem is solved with bvp4c, the field sol.parameters returns the
value , and the plot shows the eigenfunction associated with this
eigenvalue.

y 4xcos=

λ

λ 17.097=
144

bvp4c
Algorithms bvp4c is a finite difference code that implements the three-stage Lobatto IIIa
formula. This is a collocation formula and the collocation polynomial provides
a C1-continuous solution that is fourth order accurate uniformly in [a,b]. Mesh
selection and error control are based on the residual of the continuous solution.

See Also @ (function_handle), bvpget, bvpinit, bvpset, bvpval

References [1] Shampine, L.F., M.W. Reichelt, and J. Kierzenka, “Solving Boundary Value
Problems for Ordinary Differential Equations in MATLAB with bvp4c,”
available at ftp://ftp.mathworks.com/pub/doc/papers/bvp/.

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Eigenfunction of Mathieu’s equation.

x

so
lu

tio
n

y

145

bvpget
1bvpgetPurpose Extract properties from the options structure created with bvpset

Syntax val = bvpget(options,'name')
val = bvpget(options,'name',default)

Description val = bvpget(options,'name') extracts the value of the named property
from the structure options, returning an empty matrix if the property value is
not specified in options. It is sufficient to type only the leading characters that
uniquely identify the property. Case is ignored for property names. [] is a valid
options argument.

val = bvpget(options,'name',default) extracts the named property as
above, but returns val = default if the named property is not specified in
options. For example,

val = bvpget(opts,'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in opts.

See Also bvp4c, bvpinit, bvpset, bvpval
146

bvpinit
1bvpinitPurpose Form the initial guess for bvp4c

Syntax solinit = bvpinit(x,v)
solinit = bvpinit(x,v,parameters)

Description solinit = bvpinit(x,v) forms the initial guess for bvp4c in common
circumstances.

x is a vector that specifies an initial mesh. If you want to solve the boundary
value problem (BVP) on [a,b], then specify x(1) as a and x(end) as b. The
function bvp4c adapts this mesh to the solution, so often a guess like
x = linspace(a,b,10) suffices. However, in difficult cases, you must place
mesh points where the solution changes rapidly. The entries of x must be
ordered and distinct, so if a < b, then x(1) < x(2) < ... < x(end), and
similarly for a > b.

v is a guess for the solution. It can be either a vector, or a function:

• Vector – For each component of the solution, bvpinit replicates the
corresponding element of the vector as a constant guess across all mesh
points. That is, v(i) is a constant guess for the ith component y(i,:) of the
solution at all the mesh points in x.

• Function – For a given mesh point, the function must return a vector whose
elements are guesses for the corresponding components of the solution. The
function must be of the form

y = guess(x)

where x is a mesh point and y is a vector whose length is the same as the
number of components in the solution. For example, if you use @guess,
bvpinit calls this function for each mesh point y(:,j) = guess(x(j)).

solinit = bvpinit(x,v,parameters) indicates that the BVP involves
unknown parameters. Use the vector parameters to provide a guess for all
unknown parameters.
147

bvpinit
solinit is a structure with the following fields. The structure can have any
name, but the fields must be named x, y, and parameters.

See Also @ (function_handle), bvp4c, bvpget, bvpset, bvpval

x Ordered nodes of the initial mesh.

y Initial guess for the solution with solinit.y(:,i) a guess for
the solution at the node solinit.x(i).

parameters Optional. A vector that provides an initial guess for unknown
parameters.
148

bvpset
1bvpsetPurpose Create/alter boundary value problem (BVP) options structure

Syntax options = bvpset('name1',value1,'name2',value2,...)
options = bvpset(oldopts'name1',value1,...)
options = bvpset(oldopts,newopts)
bvpset

Description options = bvpset('name1',value1,'name2',value2,...) creates a
structure options in which the named properties have the specified values.
Any unspecified properties have default values. It is sufficient to type only the
leading characters that uniquely identify the property. Case is ignored for
property names.

options = bvpset(oldopts,'name1',value1,...) alters an existing options
structure oldopts.

options = bvpset(oldopts,newopts) combines an existing options structure
oldopts with a new options structure newopts. Any new properties overwrite
corresponding old properties.

bvpset with no input arguments displays all property names and their possible
values.

BVP Properties RelTol – Relative tolerance for the residual [positive scalar {1e-3}]

This scalar applies to all components of the residual vector, and defaults to
1e-3 (0.1% accuracy). The computed solution is the exact solution of

. On each subinterval of the mesh, the residual
 satisfies

AbsTol – Absolute tolerance for the residual [positive scalar or vector {1e-6}]

A scalar tolerance applies to all components of the residual vector. Elements of
a vector of tolerances apply to corresponding components of the residual vector.
AbsTol defaults to 1e-6.

FJacobian – Analytic partial derivatives of ODEFUN [function]

S x()
S′ x() F x S x(),() res x()+=
res x()

res i() max abs F i()() AbsTol i() RelTol⁄,()⁄() RelTol≤
149

bvpset
For example, when solving , set this property to @FJAC if
DFDY = FJAC(X,Y) evaluates the Jacobian of with respect to . If the
problem involves unknown parameters , [DFDY,DFDP] = FJAC(X,Y,P) must
also return the partial derivative of with respect to .

BCJacobian – Analytic partial derivatives of BCFUN [function]

For example, for boundary conditions , set this property to
@BCJAC if [DBCDYA,DBCDYB] = BCJAC(YA,YB) evaluates the partial derivatives
of with respect to and to . If the problem involves unknown
parameters , [DBCDYA,DBCDYB,DBCDP] = BCJAC(YA,YB,P) must also return
the partial derivative of with respect to .

Nmax – Maximum number of mesh points allowed
[positive integer {floor(1000/n)}]

Stats – Display computational cost statistics [on | {off}]

See Also @ (function_handle), bvp4c, bvpget, bvpinit, bvpval

y′ f x y,()=
f y

p
f p

bc ya yb,() 0=

bc ya yb
p

bc p
150

bvpval
1bvpvalPurpose Evaluate the numerical solution of a boundary value problem (BVP) using the
output of bvp4c

Syntax sxint = bvpval(sol,xint)

Description sxint = bvpval(sol,xint) uses sol, the output of bvp4c, to evaluate the
solution of a boundary value problem at each element of the vector xint. For
each i, sxint(:,i) is the solution corresponding to xint(i).

See Also bvp4c, bvpinit, bvpget, bvpset
151

calendar
1calendarPurpose Calendar

Syntax c = calendar
c = calendar(d)
c = calendar(y,m)

calendar(...)

Description c = calendar returns a 6-by-7 matrix containing a calendar for the current
month. The calendar runs Sunday (first column) to Saturday.

c = calendar(d), where d is a serial date number or a date string, returns a
calendar for the specified month.

c = calendar(y,m), where y and m are integers, returns a calendar for the
specified month of the specified year.

calendar(...) displays the calendar on the screen.

Examples The command:

calendar(1957,10)

reveals that the Space Age began on a Friday (on October 4, 1957, when
Sputnik 1 was launched).

 Oct 1957
 S M Tu W Th F S
 0 0 1 2 3 4 5
 6 7 8 9 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28 29 30 31 0 0
 0 0 0 0 0 0 0

See Also datenum
152

camdolly
1camdollyPurpose Move the camera position and target

Syntax camdolly(dx,dy,dz)
camdolly(dx,dy,dz,'targetmode')
camdolly(dx,dy,dz,'targetmode','coordsys')
camdolly(axes_handle,...)

Description camdolly moves the camera position and the camera target by the specified
amounts.

camdolly(dx,dy,dz) moves the camera position and the camera target by the
specified amounts (see “Coordinate Systems”).

camdolly(dx,dy,dz,'targetmode') The targetmode argument can take on
two values that determine how MATLAB moves the camera:

• movetarget (default) – move both the camera and the target

• fixtarget – move only the camera

camdolly(dx,dy,dz,'targetmode','coordsys') The coordsys argument can
take on three values that determine how MATLAB interprets dx, dy, and dz:

Coordinate Systems

• camera (default) – move in the camera’s coordinate system. dx moves
left/right, dy moves down/up, and dz moves along the viewing axis. The units
are normalized to the scene.

For example, setting dx to 1 moves the camera to the right, which pushes the
scene to the left edge of the box formed by the axes position rectangle. A
negative value moves the scene in the other direction. Setting dz to 0.5
moves the camera to a position halfway between the camera position and the
camera target

• pixels – interpret dx and dy as pixel offsets. dz is ignored.

• data – interpret dx, dy, and dz as offesets in axes data coordinates.

camdolly(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camdolly
operates on the current axes.
153

camdolly
Remarks camdolly sets the axes CameraPosition and CameraTarget properties, which in
turn causes the CameraPositionMode and CameraTargetMode properties to be
set to manual.

Examples This example moves the camera along the x- and y-axes in a series of steps.

surf(peaks)
axis vis3d
t = 0:pi/20:2*pi;
dx = sin(t)./40;
dy = cos(t)./40;
for i = 1:length(t);

camdolly(dx(i),dy(i),0)
drawnow

end

See Also axes, campos, camproj, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

See Defining Scenes with Camera Graphics for more information on camera
properties.
154

camlight
1camlightPurpose Create or move a light object in camera coordinates

Syntax camlight headlight
camlight right
camlight left
camlight
camlight(az,el)
camlight(...‘style’)
camlight(light_handle,...)
light_handle = camlight(...)

Description camlight('headlight') creates a light at the camera position.

camlight('right') creates a light right and up from camera.

camlight('left') creates a light left and up from camera.

camlight with no arguments is the same as camlight('right').

camlight(az,el) creates a light at the specified azimuth (az) and elevation
(el) with respect to the camera position. The camera target is the center of
rotation and az and el are in degrees.

camlight(...,'style') The style argument can take on the two values:

• local (default) – the light is a point source that radiates from the location in
all directions.

• infinite – the light shines in parallel rays.

camlight(light_handle,...) uses the light specified in light_handle.

light_handle = camlight(...) returns the light’s handle.

Remarks camlight sets the light object Position and Style properties. A light created
with camlight will not track the camera. In order for the light to stay in a
constant position relative to the camera, you must call camlight whenever you
move the camera.
155

camlight
Examples This example creates a light positioned to the left of the camera and then
repositions the light each time the camera is moved:

surf(peaks)
axis vis3d
h = camlight('left');
for i = 1:20;

camorbit(10,0)
camlight(h,'left')
drawnow;

end
156

camlookat
1camlookatPurpose Position the camera to view an object or group of objects

Syntax camlookat(object_handles)
camlookat(axes_handle)
camlookat

Description camlookat(object_handles) views the objects identified in the vector
object_handles. The vector can contain the handles of axes children.

camlookat(axes_handle) views the objects that are children of the axes
identified by axes_handle.

camlookat views the objects that are in the current axes.

Remarks camlookat moves the camera position and camera target while preserving the
relative view direction and camera view angle. The object (or objects) being
viewed roughly fill the axes position rectangle.

camlookat sets the axes CameraPosition and CameraTarget properties.

Examples This example creates three spheres at different locations and then
progressively positions the camera so that each sphere is the object around
which the scene is composed:

[x y z] = sphere;
s1 = surf(x,y,z);
hold on
s2 = surf(x+3,y,z+3);
s3 = surf(x,y,z+6);
daspect([1 1 1])
view(30,10)
camproj perspective
camlookat(gca) % Compose the scene around the current axes
pause(2)
camlookat(s1) % Compose the scene around sphere s1
pause(2)
camlookat(s2) % Compose the scene around sphere s2
pause(2)
157

camlookat
camlookat(s3) % Compose the scene around sphere s3
pause(2)
camlookat(gca)

See Also campos, camtarget
158

camorbit
1camorbitPurpose Rotate the camera position around the camera target

Syntax camorbit(dtheta,dphi)
camorbit(dtheta,dphi,'coordsys')
camorbit(dtheta,dphi,'coordsys','direction')
camorbit(axes_handle,...)

Description camorbit(dtheta,dphi) rotates the camera position around the camera target
by the amounts specified in dtheta and dphi (both in degrees). dtheta is the
horizontal rotation and dphi is the vertical rotation.

camorbit(dtheta,dphi,'coordsys') The coordsys argument determines the
center of rotation. It can take on two values:

• data (default) – rotate the camera around an axis defined by the camera
target and the direction (default is the positive z direction).

• camera – rotate the camera about the point defined by the camera target.

camorbit(dtheta,dphi,'coordsys','direction') Thedirectionargument,
in conjunction with the camera target, defines the axis of rotation for the data
coordinate system. Specify direction as a three-element vector containing the
x, y, and z-components of the direction or one of the characters, x, y, or z, to
indicate [1 0 0], [0 1 0], or [0 0 1] respectively.

camorbit(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camorbit
operates on the current axes.

Examples Compare rotation in the two coordinate systems with these for loops. The first
rotates the camera horizontally about a line defined by the camera target point
and a direction that is parallel to the y-axis. Visualize this rotation as a cone
formed with the camera target at the apex and the camera position forming the
base:

surf(peaks)
axis vis3d
for i=1:36

camorbit(10,0,'data',[0 1 0])
drawnow

end
159

camorbit
Rotation in the camera coordinate system orbits the camera around the axes
along a circle while keeping the center of a circle at the camera target.

surf(peaks)
axis vis3d
for i=1:36

camorbit(10,0,'camera')
drawnow

end

See Also axes, axis('vis3d'), camdolly, campan, camzoom, camroll
160

campan
1campanPurpose Rotate the camera target around the camera position

Syntax campan(dtheta,dphi)
campan(dtheta,dphi,'coordsys')
campan(dtheta,dphi,'coordsys','direction')
campan(axes_handle,...)

Description campan(dtheta,dphi) rotates the camera target around the camera position
by the amounts specified in dtheta and dphi (both in degrees). dtheta is the
horizontal rotation and dphi is the vertical rotation.

campan(dtheta,dphi,'coordsys') The coordsys argument determines the
center of rotation. It can take on two values:

• data (default) – rotate the camera target around an axis defined by the
camera position and the direction (default is the positive z direction)

• camera – rotate the camera about the point defined by the camera target.

campan(dtheta,dphi,'coordsys','direction') Thedirectionargument, in
conjunction with the camera position, defines the axis of rotation for the data
coordinate system. Specify direction as a three-element vector containing the
x, y, and z-components of the direction or one of the characters, x, y, or z, to
indicate [1 0 0], [0 1 0], or [0 0 1] respectively.

campan(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, campan
operates on the current axes.

See Also axes, camdolly, camorbit, camtarget, camzoom, camroll
161

campos
1camposPurpose Set or query the camera position

Syntax campos
campos([camera_position])
campos('mode')
campos('auto'
campos('manual')
campos(axes_handle,...)

Description campos with no arguments returns the camera position in the current axes.

campos([camera_position]) sets the position of the camera in the current
axes to the specified value. Specify the position as a three-element vector
containing the x-, y-, and z-coordinates of the desired location in the data units
of the axes.

campos('mode') returns the value of the camera position mode, which can be
either auto (the default) or manual.

campos('auto') sets the camera position mode to auto.

campos('manual') sets the camera position mode to manual.

campos(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
campos operates on the current axes.

Remarks campos sets or queries values of the axes CameraPosition and
CameraPositionMode properties. The camera position is the point in the
Cartesian coordinate system of the axes from which you view the scene.

Examples This example moves the camera along the x-axis in a series of steps:

surf(peaks)
axis vis3d off
for x = −200:5:200

campos([x,5,10])
drawnow

end
162

campos
See Also axis, camproj, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection
163

camproj
1camprojPurpose Set or query the projection type

Syntax camproj
camproj(projection_type)
camproj(axes_handle,...)

Description The projection type determines whether MATLAB uses a perspective or
orthographic projection for 3-D views.

camproj with no arguments returns the projection type setting in the current
axes.

camproj('projection_type') sets the projection type in the current axes to
the specified value. Possible values for projection_type are: orthographic
and perspective.

camproj(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
camproj operates on the current axes.

Remarks camproj sets or queries values of the axes object Projection property.

See Also campos, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection
164

camroll
1camrollPurpose Rotate the camera about the view axis

Syntax camroll(dtheta)
camroll(axes_handle,dtheta)

Description camroll(dtheta) rotates the camera around the camera viewing axis by the
amounts specified in dtheta (in degrees). The viewing axis is defined by the line
passing through the camera position and the camera target.

camroll(axes_handle,dtheta) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camroll
operates on the current axes.

Remarks camroll set the axes CameraUpVector property and thereby also sets the
CameraUpVectorMode property to manual.

See Also axes, axis('vis3d'), camdolly, camorbit, camzoom, campan
165

camtarget
1camtargetPurpose Set or query the location of the camera target

Syntax camtarget
camtarget([camera_target])
camtarget('mode')
camtarget('auto')
camtarget('manual')
camtarget(axes_handle,...)

Description The camera target is the location in the axes that the camera points to. The
camera remains oriented toward this point regardless of its position.

camtarget with no arguments returns the location of the camera target in the
current axes.

camtarget([camera_target]) sets the camera target in the current axes to
the specified value. Specify the target as a three-element vector containing the
x-, y-, and z-coordinates of the desired location in the data units of the axes.

camtarget('mode') returns the value of the camera target mode, which can be
either auto (the default) or manual.

camtarget('auto') sets the camera target mode to auto.

camtarget('manual') sets the camera target mode to manual.

camtarget(axes_handle,...) performs the set or query on the axes identified
by the first argument, axes_handle. When you do not specify an axes handle,
camtarget operates on the current axes.

Remarks camtarget sets or queries values of the axes object Cameratarget and
CameraTargetMode properties.

When the camera target mode is auto, MATLAB positions the camera target
at the center of the axes plot box.

Examples This example moves the camera position and the camera target along the
x-axis in a series of steps:

surf(peaks);
166

camtarget
axis vis3d
xp = linspace(−150,40,50);
xt = linspace(25,50,50);
for i=1:50
 campos([xp(i),25,5]);
 camtarget([xt(i),30,0])
 drawnow
end

See Also axis, camproj, campos, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection
167

camup
1camupPurpose Set or query the camera up vector

Syntax camup
camup([up_vector])
camup('mode')
camup('auto')
camup('manual')
camup(axes_handle,...)

Description The camera up vector specifies the direction that is oriented up in the scene.

camup with no arguments returns the camera up vector setting in the current
axes.

camup([up_vector]) sets the up vector in the current axes to the specified
value. Specify the up vector as x-, y-, and z-components. See Remarks.

camup('mode') returns the current value of the camera up vector mode, which
can be either auto (the default) or manual.

camup('auto') sets the camera up vector mode to auto. In auto mode,
MATLAB uses a value for the up vector of [0 1 0] for 2-D views. This means
the z-axis points up.

camup('manual') sets the camera up vector mode to manual. In manual mode,
MATLAB does not change the value of the camera up vector.

camup(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
camup operates on the current axes.

Remarks camup sets or queries values of the axes object CameraUpVector and
CameraUpVectorMode properties.

Specify the camera up vector as the x-, y-, and z-coordinates of a point in the
axes coordinate system that forms the directed line segment PQ, where P is the
point (0,0,0) and Q is the specified x-, y-, and z-coordinates. This line always
points up. The length of the line PQ has no effect on the orientation of the
scene. This means a value of [0 0 1] produces the same results as [0 0 25].
168

camup
See Also axis, camproj, campos, camtarget, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection
169

camva
1camvaPurpose Set or query the camera view angle

Syntax camva
camva(view_angle)
camva('mode')
camva('auto')
camva('manual')
camva(axes_handle,...)

Description The camera view angle determines the field of view of the camera. Larger
angles produce a smaller view of the scene. You can implement zooming by
changing the camera view angle.

camva with no arguments returns the camera view angle setting in the current
axes.

camva(view_angle) sets the view angle in the current axes to the specified
value. Specify the view angle in degrees.

camva('mode') returns the current value of the camera view angle mode,
which can be either auto (the default) or manual. See Remarks.

camva('auto') sets the camera view angle mode to auto.

camva('manual') sets the camera view angle mode to manual. See Remarks.

camva(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
camva operates on the current axes.

Remarks camva sets or queries values of the axes object CameraViewAngle and
CameraViewAngleMode properties.

When the camera view angle mode is auto, MATLAB adjusts the camera view
angle so that the scene fills the available space in the window. If you move the
camera to a different position, MATLAB changes the camera view angle to
maintain a view of the scene that fills the available area in the window.
170

camva
Setting a camera view angle or setting the camera view angle to manual
disables MATLAB’s stretch-to-fill feature (stretching of the axes to fit the
window). This means setting the camera view angle to its current value,

camva(camva)

can cause a change in the way the graph looks. See the Remarks section of the
axes reference page for more information.

Examples This example creates two pushbuttons, one that zooms in and another that
zooms out.

uicontrol('Style','pushbutton',...
'String','Zoom In',...
'Position',[20 20 60 20],...
'Callback','if camva <= 1;return;else;camva(camva-1);end');

uicontrol('Style','pushbutton',...
'String','Zoom Out',...
'Position',[100 20 60 20],...
'Callback','if camva >= 179;return;else;camva(camva+1);end');

Now create a graph to zoom in and out on:

surf(peaks);

Note the range checking in the callback statements. This keeps the values for
the camera view angle in the range, greater than zero and less than 180.

See Also axis, camproj, campos, camup, camtarget

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection
171

camzoom
1camzoomPurpose Zoom in and out on a scene

Syntax camzoom(zoom_factor)
camzoom(axes_handle,...)

Description camzoom(zoom_factor) zooms in or out on the scene depending on the value
specified by zoom_factor. If zoom_factor is greater than 1, the scene appears
larger; if zoom_factor is greater than zero and less than 1, the scene appears
smaller.

camzoom(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camzoom
operates on the current axes.

Remarks camzoom sets the axes CameraViewAngle property, which in turn causes the
CameraViewAngleMode property to be set to manual. Note that setting the
CameraViewAngle property disables MATLAB’s stretch-to-fill feature
(stretching of the axes to fit the window). This may result in a change to the
aspect ratio of your graph. See the axes function for more information on this
behavior.

See Also axes, camdolly, camorbit, campan, camroll, camva
172

capture
1capturePurpose capture is obsolete in Release 11 (5.3). getframe provides the same
functionality and supports TrueColor displays by returning TrueColor images.

Syntax capture
capture(h)
[X,cmap] = capture(h)

Description capture creates a bitmap copy of the contents of the current figure, including
any uicontrol graphics objects. It creates a new figure and displays the bitmap
copy as an image graphics object in the new figure.

capture(h) creates a new figure that contains a copy of the figure identified by
h.

[X,cmap] = capture(h) returns an image matrix X and a colormap. You
display this information using the statements

colormap(cmap)
image(X)

Remarks The resolution of a bitmap copy is less than that obtained with the print
command.

See Also image, print
173

cart2pol
1cart2polPurpose Transform Cartesian coordinates to polar or cylindrical

Syntax [THETA,RHO,Z] = cart2pol(X,Y,Z)
[THETA,RHO] = cart2pol(X,Y)

Description [THETA,RHO,Z] = cart2pol(X,Y,Z) transforms three-dimensional Cartesian
coordinates stored in corresponding elements of arrays X, Y, and Z, into
cylindrical coordinates. THETA is a counterclockwise angular displacement in
radians from the positive x-axis, RHO is the distance from the origin to a point
in the x-y plane, and Z is the height above the x-y plane. Arrays X, Y, and Z must
be the same size (or any can be scalar).

[THETA,RHO] = cart2pol(X,Y) transforms two-dimensional Cartesian
coordinates stored in corresponding elements of arrays X and Y into polar
coordinates.

Algorithm The mapping from two-dimensional Cartesian coordinates to polar
coordinates, and from three-dimensional Cartesian coordinates to cylindrical
coordinates is:

theta = atan2(y,x)
rho = sqrt(x.^2 + y.^2)

Three-Dimensional Mapping

Z

Y

X

rho
theta

P

z

Two-Dimensional Mapping

P

X

Y

rh
o

theta

theta = atan2(y,x)
rho = sqrt(x.^2 + y.^2)

z = z
174

cart2pol
See Also cart2sph, pol2cart, sph2cart
175

cart2sph
1cart2sphPurpose Transform Cartesian coordinates to spherical

Syntax [THETA,PHI,R] = cart2sph(X,Y,Z)

Description [THETA,PHI,R] = cart2sph(X,Y,Z) transforms Cartesian coordinates stored
in corresponding elements of arrays X, Y, and Z into spherical coordinates.
Azimuth THETA and elevation PHI are angular displacements in radians
measured from the positive x-axis, and the x-y plane, respectively; and R is the
distance from the origin to a point.

Arrays X, Y, and Z must be the same size.

Algorithm The mapping from three-dimensional Cartesian coordinates to spherical
coordinates is:

See Also cart2pol, pol2cart, sph2cart

Z

Y

X

theta

P

theta = atan2(y,x)
phi = atan2(z, sqrt(x.^2 + y.^2))

r = sqrt(x.^2+y.^2+z.^2)

phi

r

176

case
1casePurpose Case switch

Description case is part of the switch statement syntax, which allows for conditional
execution.

A particular case consists of the case statement itself, followed by a case
expression, and one or more statements.

A case is executed only if its associated case expression (case_expr) is the first
to match the switch expression (switch_expr).

Examples The general form of the switch statement is:

switch switch_expr
case case_expr

statement,...,statement
case {case_expr1,case_expr2,case_expr3,...}

statement,...,statement
...

otherwise
statement,...,statement

end

See Also switch
177

cat
1catPurpose Concatenate arrays

Syntax C = cat(dim,A,B)
C = cat(dim,A1,A2,A3,A4...)

Description C = cat(dim,A,B) concatenates the arrays A and B along dim.

C = cat(dim,A1,A2,A3,A4,...) concatenates all the input arrays (A1, A2, A3,
A4, and so on) along dim.

cat(2,A,B) is the same as [A,B] and cat(1,A,B) is the same as [A;B].

Remarks When used with comma separated list syntax, cat(dim,C{:}) or
cat(dim,C.field) is a convenient way to concatenate a cell or structure array
containing numeric matrices into a single matrix.

Examples Given,

A = B =
 1 2 5 6
 3 4 7 8

concatenating along different dimensions produces:

The commands

A = magic(3); B = pascal(3);
C = cat(4,A,B);

produce a 3-by-3-by-1-by-2 array.

See Also num2cell

The special character []

5 6
7 8

C = cat(1,A,B) C = cat(2,A,B) C = cat(3,A,B)

1 2
3 4 5 6

7 8
1 2
3 4

5 6
7 8

1 2
3 4
178

catch
1catchPurpose Begin catch block

Description The general form of a try statement is:

try,
statement,
...,
statement,

catch,
statement,
...,
statement,

end

Normally, only the statements between the try and catch are executed.
However, if an error occurs while executing any of the statements, the error is
captured into lasterr, and the statements between the catch and end are
executed. If an error occurs within the catch statements, execution stops
unless caught by another try...catch block. The error string produced by a
failed try block can be obtained with lasterr.

See Also end, eval, evalin, try
179

caxis
1caxisPurpose Color axis scaling

Syntax caxis([cmin cmax])
caxis auto
caxis manual
caxis(caxis)
v = caxis
caxis(axes_handle,...)

Description caxis controls the mapping of data values to the colormap. It affects any
surfaces, patches, and images with indexed CData and CDataMapping set to
scaled. It does not affect surfaces, patches, or images with true color CData or
with CDataMapping set to direct.

caxis([cmin cmax]) sets the color limits to specified minimum and maximum
values. Data values less than cmin or greater than cmax map to cmin and cmax,
respectively. Values between cmin and cmax linearly map to the current
colormap.

caxis auto lets MATLAB compute the color limits automatically using the
minimum and maximum data values. This is MATLAB’s default behavior.
Color values set to Inf map to the maximum color, and values set to −Inf map
to the minimum color. Faces or edges with color values set to NaN are not
drawn.

caxis manual and caxis(caxis) freeze the color axis scaling at the current
limits. This enables subsequent plots to use the same limits when hold is on.

v = caxis returns a two-element row vector containing the [cmin cmax]
currently in use.

caxis(axes_handle,...) uses the axes specified by axes_handle instead of
the current axes.

Remarks caxis changes the CLim and CLimMode properties of axes graphics objects.

How Color Axis Scaling Works
Surface, patch, and image graphics objects having indexed CData and
CDataMapping set to scaled, map CData values to colors in the figure colormap
180

caxis
each time they render. CData values equal to or less than cmin map to the first
color value in the colormap, and CData values equal to or greater than cmaxmap
to the last color value in the colormap. MATLAB performs the following linear
transformation on the intermediate values (referred to as C below) to map them
to an entry in the colormap (whose length is m, and whose row index is referred
to as index below).

index = fix((C–cmin)/(cmax–cmin)∗m)+1

Examples Create (X,Y,Z) data for a sphere and view the data as a surface.

[X,Y,Z] = sphere;
C = Z;
surf(X,Y,Z,C)

Values of C have the range [−1 1]. Values of C near −1 are assigned the lowest
values in the colormap; values of C near 1 are assigned the highest values in the
colormap.

To map the top half of the surface to the highest value in the color table, use

caxis([−1 0])

To use only the bottom half of the color table, enter

caxis([−1 3])

which maps the lowest CData values to the bottom of the colormap, and the
highest values to the middle of the colormap (by specifying a cmax whose value
is equal to cmin plus twice the range of the CData).

The command

caxis auto

resets axis scaling back to auto-ranging and you see all the colors in the surface.
In this case, entering

caxis

returns

[–1 1]
181

caxis
Adjusting the color axis can be useful when using images with scaled color
data. For example, load the image data and colormap for Cape Cod,
Massachusetts.

load cape

This command loads the images data X and the image’s colormap map into the
workspace. Now display the image with CDataMapping set to scaled and install
the image’s colormap.

image(X,'CDataMapping','scaled')
colormap(map)

MATLAB sets the color limits to span the range of the image data, which is 1
to 192:

caxis
ans =

1 192
182

caxis
The blue color of the ocean is the first color in the colormap and is mapped to
the lowest data value (1). You can effectively move sealevel by changing the
lower color limit value. For example,

See Also axes, axis, colormap, get, mesh, pcolor, set, surf

The CLim and CLimMode properties of axes graphics objects.

The Colormap property of figure graphics objects.

Axes Color Limits

Caxis = [1 192]

100 200 300

50

100

150

200

250

300

Caxis = [3 192]

100 200 300

50

100

150

200

250

300

Caxis = [5 192]

100 200 300

50

100

150

200

250

300

Caxis = [6 192]

100 200 300

50

100

150

200

250

300
183

cd
1cdPurpose Change working directory

Graphical
Interface

As an alternative to the cd function, use the Current Directory field in the
MATLAB desktop toolbar.

Syntax cd
w = cd
cd('directory')
cd('..')
cd directory or cd ..

Description cd prints out the current working directory.

w = cd assigns the current working directory to w.

cd('directory') sets the current working directory to directory. Use the full
pathname for directory. On UNIX platforms, the character ~ is interpreted as
the user’s root directory.

cd('..') changes the current working directory to the directory above it.

cd directory or cd .. is the unquoted form of the syntax.

Examples On UNIX

cd('/usr/local/matlab/toolbox/demos')

changes the current working directory to demos.

On Windows

cd('C:\TOOLBOX\MATLAB\DEMOS')

changes the current working directory to DEMOS. Then typing

cd ..

changes the current working directory to MATLAB.

See Also dir, path, pwd, what
184

cdf2rdf
1cdf2rdfPurpose Convert complex diagonal form to real block diagonal form

Syntax [V,D] = cdf2rdf(V,D)

Description If the eigensystem [V,D] = eig(X) has complex eigenvalues appearing in
complex-conjugate pairs, cdf2rdf transforms the system so D is in real diagonal
form, with 2-by-2 real blocks along the diagonal replacing the complex pairs
originally there. The eigenvectors are transformed so that

X = V∗D/V

continues to hold. The individual columns of V are no longer eigenvectors, but
each pair of vectors associated with a 2-by-2 block in D spans the corresponding
invariant vectors.

Examples The matrix

X =
1 2 3
0 4 5
0 -5 4

has a pair of complex eigenvalues.

[V,D] = eig(X)

V =

 1.0000 -0.0191 - 0.4002i -0.0191 + 0.4002i
 0 0 - 0.6479i 0 + 0.6479i
 0 0.6479 0.6479

D =

1.0000 0 0
0 4.0000 + 5.0000i 0
0 0 4.0000 - 5.0000i

Converting this to real block diagonal form produces

[V,D] = cdf2rdf(V,D)
185

cdf2rdf
V =

 1.0000 -0.0191 -0.4002
 0 0 -0.6479
 0 0.6479 0

D =

 1.0000 0 0
 0 4.0000 5.0000
 0 -5.0000 4.0000

Algorithm The real diagonal form for the eigenvalues is obtained from the complex form
using a specially constructed similarity transformation.

See Also eig, rsf2csf
186

ceil
1ceilPurpose Round toward infinity

Syntax B = ceil(A)

Description B = ceil(A) rounds the elements of A to the nearest integers greater than or
equal to A. For complex A, the imaginary and real parts are rounded
independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7, 2.4+3.6i]

a =
 Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

 Columns 5 through 6
 7.0000 2.4000 + 3.6000i

ceil(a)

ans =
 Columns 1 through 4
 -1.0000 0 4.0000 6.0000

 Columns 5 through 6
 7.0000 3.0000 + 4.0000i

See Also fix, floor, round
187

cell
1cellPurpose Create cell array

Syntax c = cell(n)
c = cell(m,n) or c = cell([m n])
c = cell(m,n,p,...) or c = cell([m n p ...])
c = cell(size(A))
c = cell(javaobj)

Description c = cell(n) creates an n-by-n cell array of empty matrices. An error message
appears if n is not a scalar.

c = cell(m,n) or c = cell([m,n]) creates an m-by-n cell array of empty
matrices. Arguments m and n must be scalars.

c = cell(m,n,p,...) or c = cell([m n p ...]) creates an m-by-n-by-p-...
cell array of empty matrices. Arguments m, n, p,... must be scalars.

c = cell(size(A)) creates a cell array the same size as A containing all empty
matrices.

c = cell(javaobj) converts a Java array or Java object, javaobj, into a
MATLAB cell array. Elements of the resulting cell array will be of the
MATLAB type (if any) closest to the Java array elements or Java object.

Examples This example creates a cell array that is the same size as another array, A.

A = ones(2,2)

A =
 1 1
 1 1

c = cell(size(A))

c =
 [] []
 [] []

The next example converts an array of java.lang.String objects into a
MATLAB cell array.
188

cell
strArray = java_array('java.lang.String',3);
strArray(1) = java.lang.String('one');
strArray(2) = java.lang.String('two');
strArray(3) = java.lang.String('three');

cellArray = cell(strArray)
cellArray =
 'one'
 'two'
 'three'

See Also num2cell, ones, rand, randn, zeros
189

cell2struct
1cell2structPurpose Convert cell array to structure array

Syntax s = cell2struct(c,fields,dim)

Description s = cell2struct(c,fields,dim) converts the cell array c into the structure s
by folding the dimension dim of c into fields of s. The length of c along the
specified dimension (size(c,dim)) must match the number of fields names in
fields. Argument fields can be a character array or a cell array of strings.

Examples c = {'tree',37.4,'birch'};
f = {'category','height','name'};
s = cell2struct(c,f,2)

s =

 category: 'tree'
 height: 37.4000
 name: 'birch'

See Also fieldnames, struct2cell
190

celldisp
1celldispPurpose Display cell array contents.

Syntax celldisp(C)
celldisp(C,name)

Description celldisp(C) recursively displays the contents of a cell array.

celldisp(C,name) uses the string name for the display instead of the name of
the first input (or ans).

Example Use celldisp to display the contents of a 2-by-3 cell array:

C = {[1 2] 'Tony' 3+4i; [1 2;3 4] -5 'abc'};
celldisp(C)

C{1,1} =
 1 2

C{2,1} =
 1 2
 3 4

C{1,2} =
Tony

C{2,2} =
 -5

C{1,3} =
 3.0000+ 4.0000i

C{2,3} =
abc

See Also cellplot
191

cellfun
1cellfunPurpose Apply a function to each element in a cell array

Syntax D = cellfun('fname',C)
D = cellfun('size',C,k)
D = cellfun('isclass',C,classname)

Description D = cellfun('fname',C) applies the function fname to the elements of the cell
array C and returns the results in the double array D. Each element of D
contains the value returned by fname for the corresponding element in C. The
output array D is the same size as the cell array C.

These functions are supported:

D = cellfun('size',C,k) returns the size along the k-th dimension of each
element of C.

D = cellfun('isclass',C,'classname') returns true for each element of C
that matches classname. This function syntax returns false for objects that
are a subclass of classname.

Limitations If the cell array contains objects, cellfun does not call overloaded versions of
the function fname.

Example Consider this 2-by-3 cell array:

C{1,1} = [1 2; 4 5];
C{1,2} = 'Name';

Function Return Value

isempty true for an empty cell element

islogical true for a logical cell element

isreal true for a real cell element

length Length of the cell element

ndims Number of dimensions of the cell element

prodofsize Number of elements in the cell element
192

cellfun
C{1,3} = pi;
C{2,1} = 2 + 4i;
C{2,2} = 7;
C{2,3} = magic(3);

cellfun returns a 2-by-3 double array:

D = cellfun('isreal',C)

D =
 1 1 1
 0 1 1

len = cellfun('length',C)

len =
 2 4 1
 1 1 3

isdbl = cellfun('isclass',C,'double')

isdbl =
 1 0 1
 1 1 1

See Also isempty, islogical, isreal, length, ndims, size
193

cellplot
1cellplotPurpose Graphically display the structure of cell arrays

Syntax cellplot(c)
cellplot(c,'legend')
handles = cellplot(...)

Description cellplot(c) displays a figure window that graphically represents the contents
of c. Filled rectangles represent elements of vectors and arrays, while scalars
and short text strings are displayed as text.

cellplot(c,'legend') also puts a legend next to the plot.

handles = cellplot(c) displays a figure window and returns a vector of
surface handles.

Limitations The cellplot function can display only two-dimensional cell arrays.

Examples Consider a 2-by-2 cell array containing a matrix, a vector, and two text strings:

c{1,1} = '2-by-2';
c{1,2} = 'eigenvalues of eye(2)';
c{2,1} = eye(2);
c{2,2} = eig(eye(2));

 The command cellplot(c) produces:

2−by−2
194

cellstr
1cellstrPurpose Create cell array of strings from character array

Syntax c = cellstr(S)

Description c = cellstr(S) places each row of the character array S into separate cells of
c. Use the char function to convert back to a string matrix.

Examples Given the string matrix

S=['abc ';'defg';'hi ']

S =
 abc
 defg
 hi

whos S
 Name Size Bytes Class
 S 3x4 24 char array

The following command returns a 3-by-1 cell array.

c = cellstr(S)

c =
 'abc'
 'defg'
 'hi'

whos c
 Name Size Bytes Class
 c 3x1 294 cell array

See Also iscellstr, strings
195

cgs
1cgsPurpose Conjugate Gradients Squared method

Syntax x = cgs(A,b)
cgs(A,b,tol)
cgs(A,b,tol,maxit)
cgs(A,b,tol,maxit,M)
cgs(A,b,tol,maxit,M1,M2)
cgs(A,b,tol,maxit,M1,M2,x0)
cgs(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = cgs(A,b,...)
[x,flag,relres] = cgs(A,b,...)
[x,flag,relres,iter] = cgs(A,b,...)
[x,flag,relres,iter,resvec] = cgs(A,b,...)

Description x = cgs(A,b) attempts to solve the system of linear equations A*x = b for x.
The n-by-n coefficient matrix A must be square and the column vector b must
have length n. A can be a function afun such that afun(x) returns A*x.

If cgs converges, a message to that effect is displayed. If cgs fails to converge
after the maximum number of iterations or halts for any reason, a warning
message is printed displaying the relative residual norm(b-A*x)/norm(b) and
the iteration number at which the method stopped or failed.

cgs(A,b,tol) specifies the tolerance of the method, tol. If tol is [], then cgs
uses the default, 1e-6.

cgs(A,b,tol,maxit) specifies the maximum number of iterations, maxit. If
maxit is [] then cgs uses the default, min(n,20).

cgs(A,b,tol,maxit,M) and cgs(A,b,tol,maxit,M1,M2) use the
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then cgs applies no preconditioner. M
can be a function that returns M\x.

cgs(A,b,tol,maxit,M1,M2,x0) specifies the initial guess x0. If x0 is [], then
cgs uses the default, an all-zero vector.
196

cgs
cgs(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2,... to functions afun(x,p1,p2,...), m1fun(x,p1,p2,...), and
m2fun(x,p1,p2,...)

[x,flag] = cgs(A,b,...) returns a solution x and a flag that describes the
convergence of cgs.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = cgs(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, then relres ≤ tol.

[x,flag,relres,iter] = cgs(A,b,...) also returns the iteration number at
which x was computed, where 0 ≤ iter ≤ maxit.

[x,flag,relres,iter,resvec] = cgs(A,b,...) also returns a vector of the
residual norms at each iteration, including norm(b-A*x0).

Examples Example 1.

A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12; maxit = 15;
M1 = diag([10:-1:1 1 1:10]);
x = cgs(A,b,tol,maxit,M1,[],[]);

Flag Convergence

0 cgs converged to the desired tolerance tol within maxit
iterations.

1 cgs iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 cgs stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during cgs became
too small or too large to continue computing.
197

cgs
Alternatively, use this matrix-vector product function

function y = afun(x,n)
y = [0;

x(1:n-1)] + [((n-1)/2:-1:0)';
(1:(n-1)/2)'] .*x + [x(2:n);
0];

and this preconditioner backsolve function

function y = mfun(r,n)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

as inputs to cgs.

x1 = cgs(@afun,b,tol,maxit,@mfun,[],[],21);

Note that both afun and mfun must accept cgs’s extra input n=21.

Example 2.

load west0479
A = west0479
b = sum(A,2)
[x,flag] = cgs(A,b)

flag is 1 because cgs does not converge to the default tolerance 1e-6 within the
default 20 iterations.

[L1,U1] = luinc(A,1e-5)
[x1,flag1] = cgs(A,b,1e-6,20,L1,U1)

flag1 is 2 because the upper triangular U1 has a zero on its diagonal, and cgs
fails in the first iteration when it tries to solve a system such as U1*y = r for y
with backslash.

[L2,U2] = luinc(A,1e-6)
[x2,flag2,relres2,iter2,resvec2] = cgs(A,b,1e-15,10,L2,U2)

flag2 is 0 because cgs converges to the tolerance of 6.344e-16 (the value of
relres2) at the fifth iteration (the value of iter2) when preconditioned by the
incomplete LU factorization with a drop tolerance of 1e-6.
resvec2(1) = norm(b) and resvec2(6) = norm(b-A*x2). You can follow the
198

cgs
progress of cgs by plotting the relative residuals at each iteration starting from
the initial estimate (iterate number 0) with

semilogy(0:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')

See Also bicg, bicgstab, gmres, lsqr, luinc, minres, pcg, qmr, symmlq

@ (function handle), \ (backslash)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Sonneveld, Peter, “CGS: A fast Lanczos-type solver for nonsymmetric linear
systems”, SIAM J. Sci. Stat. Comput., January 1989, Vol. 10, No. 1, pp. 36-52.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
la

tiv
e

re
si

du
al
199

char
1charPurpose Create character array (string)

Syntax S = char(X)
S = char(C)
S = char(t1,t2.t3...)

Description S = char(X) converts the array X that contains positive integers representing
character codes into a MATLAB character array (the first 127 codes are ASCII).
The actual characters displayed depend on the character set encoding for a
given font. The result for any elements of X outside the range from 0 to 65535
is not defined (and may vary from platform to platform). Use double to convert
a character array into its numeric codes.

S = char(C) when C is a cell array of strings, places each element of C into the
rows of the character array s. Use cellstr to convert back.

S = char(t1,t2,t3,..) forms the character array S containing the text
strings T1,T2,T3,... as rows, automatically padding each string with blanks to
form a valid matrix. Each text parameter,Ti, can itself be a character array.
This allows the creation of arbitarily large character arrays. Empty strings are
significant.

Remarks Ordinarily, the elements of A are integers in the range 32:127, which are the
printable ASCII characters, or in the range 0:255, which are all 8-bit values.
For noninteger values, or values outside the range 0:255, the characters
printed are determined by fix(rem(A,256)).

Examples To print a 3-by-32 display of the printable ASCII characters:

ascii = char(reshape(32:127,32,3)')
ascii =
! ” # $ % & ' () ∗ + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _
' a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~
200

char
See Also cellstr, double, get, set, strings, strvcat, text
201

checkin
1checkinPurpose Check in file

Graphical
Interface

As an alternative to the checkin function, use Source Control Check In in the
Editor, Simulink, or Stateflow File menu.

Syntax checkin('filename','comments','string')
checkin({'filename1','filename2','filename3', ...},'comments',

'string')
checkin('filename','option','value', ...)

Description checkin('filename','comments','string') checks in the file named
filename to the source control system. Use the full pathname for the filename.
You must save the file before checking it in. The file can be open or closed when
you use checkin. The string argument is a MATLAB string containing
check-in comments for the source control system. You must supply the
comments argument and 'string'.

checkin({'filename1','filename2','filename3', ...},'comments',
'string') checks in the files named filename1 through filenamen to the
source control system. Use the full pathnames for the files. Additional
arguments apply to all files checked in.

checkin('filename','option','value', ...) provides additional checkin
options. The option and value arguments are shown in the table below.

You can check in a file that you checked out in a previous MATLAB session or
that you checked out directly from your source control system.

option
Argument

Purpose value Argument

'force' When set to on, filename is checked in
even if the file has not changed since it
was checked out. The default value for
force is off.

'on'
'off' (default)

'lock' When set to on, filename remains
checked out. Comments are submitted.
The default value for lock is off.

'on'
'off' (default)
202

checkin
If you use the Merant PVCS source control system, you must specify the
project file in cmopts.m. See cmopts for instructions.

Examples Example 1 - Check in a File with Comments
Typing

checkin('/matlab/mymfiles/clock.m','comments','Adjustment for
Y2K')

checks in the file /matlab/mymfiles/clock.m to the source control system with
the comment Adjustment for Y2K.

Example 2 - Check in Multiple Files with Comments
Typing

checkin({'/matlab/mymfiles/clock.m', ...
'/matlab/mymfiles/calendar.m'},'comments','Adjustment for Y2K')

checks two files into the source control system using the same comment for
each.

Example 3 - Check a File in and Keep It Checked out
Typing

checkin('/matlab/mymfiles/clock.m','comments','Adjustment for
Y2K','lock','on')

checks the file /matlab/mymfiles/clock.m into the source control system and
keeps the file checked out.

See Also checkout, cmopts, undocheckout
203

checkout
1checkoutPurpose Check out file

Graphical
Interface

As an alternative to the checkout function, use Source Control Check Out in
the Editor, Simulink, or Stateflow File menu.

Syntax checkout('filename')
checkout({'filename1','filename2','filename3', ...})
checkout('filename','option','value', ...)

Description checkout('filename') checks out the file named filename from the source
control system. filename must be the full pathname for the file. The file can be
open or closed when you use checkout.

checkout({'filename1','filename2','filename3', ...}) checks out the
files named filename1 through filenamen from the source control system. Use
the full pathnames for the files. Additional arguments apply to all files checked
out.
204

checkout
checkout('filename','option','value', ...) provides additional
checkout options. The option and value arguments are shown in the table
below.

If you end the MATLAB session, the file remains checked out. You can check in
the file from within MATLAB during a later session, or directly from your
source control system.

If you use the PVCS source control system, you must specify the project file in
cmopts.m. See cmopts for instructions.

Examples Example 1 - Check out a File
Typing

checkout('/matlab/mymfiles/clock.m')

checks out the file /matlab/mymfiles/clock.m from the source control system.

option
Argument

Purpose value
Argument

'force' When set to on, the checkout is forced,
even if you already have the file checked
out. This is effectively an undocheckout
followed by a checkout. When force is
set to off, you can’t check out the file if
you already have it checked out.

'on'
'off' (default)

'lock' When set to on, the checkout gets the file,
allows you to write to it, and locks the file
so that access to the file for others is read
only. When set to off, the checkout gets a
read-only version of the file, allowing
another user to check out the file for
updating. With lock set to off, you don’t
have to check in a file after checking it
out.

'on' (default)
'off'

'revision' Checks out the specified revision of the
file.

'version_num'
205

checkout
Example 2 - Check out Multiple Files
Typing

checkout({'/matlab/mymfiles/clock.m',...
'/matlab/mymfiles/calendar.m'})

checks out /matlab/mymfiles/clock.m and
/matlab/mymfiles/calendar.m from the source control system.

Example 3 - Force a Checkout, Even If File Is Already Checked out
Typing

checkout('/matlab/mymfiles/clock.m','force','on')

checks out /matlab/mymfiles/clock.m even if clock.m is already checked out
to you.

Example 4 - Check out Specified Revision of File
Typing

checkout('/matlab/mymfiles/clock.m','revision','1.1')

checks out revision 1.1 of clock.m .

See Also checkin, cmopts, undocheckout
206

chol
1cholPurpose Cholesky factorization

Syntax R = chol(X)
[R,p] = chol(X)

Description The chol function uses only the diagonal and upper triangle of X. The lower
triangular is assumed to be the (complex conjugate) transpose of the upper.
That is, X is Hermitian.

R = chol(X), where X is positive definite produces an upper triangular R so
that R'*R = X. If X is not positive definite, an error message is printed.

[R,p] = chol(X), with two output arguments, never produces an error
message. If X is positive definite, then p is 0 and R is the same as above. If X is
not positive definite, then p is a positive integer and R is an upper triangular
matrix of order q = p-1 so that R'*R = X(1:q,1:q).

Examples The binomial coefficients arranged in a symmetric array create an interesting
positive definite matrix.

n = 5;
X = pascal(n)
X =

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

It is interesting because its Cholesky factor consists of the same coefficients,
arranged in an upper triangular matrix.

R = chol(X)
R =

1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1
207

chol
Destroy the positive definiteness (and actually make the matrix singular) by
subtracting 1 from the last element.

X(n,n) = X(n,n)-1

X =
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 69

Now an attempt to find the Cholesky factorization fails.

Algorithm chol uses the the LAPACK subroutines DPOTRF (real) and ZPOTRF (complex).

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide, Third Edition, SIAM, Philadelphia, 1999.

See Also cholinc, cholupdate
208

cholinc
1cholincPurpose Sparse incomplete Cholesky and Cholesky-Infinity factorizations

Syntax R = cholinc(X,droptol)
R = cholinc(X,options)
R = cholinc(X,'0')
[R,p] = cholinc(X,'0')
R = cholinc(X,'inf')

Description cholinc produces two different kinds of incomplete Cholesky factorizations:
the drop tolerance and the 0 level of fill-in factorizations. These factors may be
useful as preconditioners for a symmetric positive definite system of linear
equations being solved by an iterative method such as pcg (Preconditioned
Conjugate Gradients). cholinc works only for sparse matrices.

R = cholinc(X,droptol) performs the incomplete Cholesky factorization of X,
with drop tolerance droptol.

R = cholinc(X,options) allows additional options to the incomplete
Cholesky factorization. options is a structure with up to three fields:

Only the fields of interest need to be set.

droptol is a non-negative scalar used as the drop tolerance for the incomplete
Cholesky factorization. This factorization is computed by performing the
incomplete LU factorization with the pivot threshold option set to 0 (which
forces diagonal pivoting) and then scaling the rows of the incomplete upper
triangular factor, U, by the square root of the diagonal entries in that column.
Since the nonzero entries U(i,j) are bounded below by droptol*norm(X(:,j))
(see luinc), the nonzero entries R(i,j) are bounded below by the local drop
tolerance droptol*norm(X(:,j))/R(i,i).

Setting droptol = 0 produces the complete Cholesky factorization, which is the
default.

droptol Drop tolerance of the incomplete factorization

michol Modified incomplete Cholesky

rdiag Replace zeros on the diagonal of R
209

cholinc
michol stands for modified incomplete Cholesky factorization. Its value is
either 0 (unmodified, the default) or 1 (modified). This performs the modified
incomplete LU factorization of X and scales the returned upper triangular
factor as described above.

rdiag is either 0 or 1. If it is 1, any zero diagonal entries of the upper triangular
factor R are replaced by the square root of the local drop tolerance in an
attempt to avoid a singular factor. The default is 0.

R = cholinc(X,'0') produces the incomplete Cholesky factor of a real sparse
matrix that is symmetric and positive definite using no fill-in. The upper
triangular R has the same sparsity pattern as triu(X), although R may be zero
in some positions where X is nonzero due to cancellation. The lower triangle of
X is assumed to be the transpose of the upper. Note that the positive
definiteness of X does not guarantee the existence of a factor with the required
sparsity. An error message results if the factorization is not possible. If the
factorization is successful, R'*R agrees with X over its sparsity pattern.

[R,p] = cholinc(X,'0') with two output arguments, never produces an error
message. If R exists, p is 0. If R does not exist, then p is a positive integer and R
is an upper triangular matrix of size q-by-n where q = p-1. In this latter case,
the sparsity pattern of R is that of the q-by-n upper triangle of X. R'*R agrees
with X over the sparsity pattern of its first q rows and first q columns.

R = cholinc(X,'inf') produces the Cholesky-Infinity factorization. This
factorization is based on the Cholesky factorization, and additionally handles
real positive semi-definite matrices. It may be useful for finding a solution to
systems which arise in interior-point methods. When a zero pivot is
encountered in the ordinary Cholesky factorization, the diagonal of the
Cholesky-Infinity factor is set to Inf and the rest of that row is set to 0. This
forces a 0 in the corresponding entry of the solution vector in the associated
system of linear equations. In practice, X is assumed to be positive semi-definite
so even negative pivots are replaced with a value of Inf.

Remarks The incomplete factorizations may be useful as preconditioners for solving
large sparse systems of linear equations. A single 0 on the diagonal of the upper
triangular factor makes it singular. The incomplete factorization with a drop
tolerance prints a warning message if the upper triangular factor has zeros on
the diagonal. Similarly, using the rdiag option to replace a zero diagonal only
210

cholinc
gets rid of the symptoms of the problem, but it does not solve it. The
preconditioner may not be singular, but it probably is not useful, and a warning
message is printed.

The Cholesky-Infinity factorization is meant to be used within interior-point
methods. Otherwise, its use is not recommended.

Examples Example 1.
Start with a symmetric positive definite matrix, S.

S = delsq(numgrid('C',15));

S is the two-dimensional, five-point discrete negative Lapacian on the grid
generated by numgrid('C',15).

Compute the Cholesky factorization and the incomplete Cholesky factorization
of level 0 to compare the fill-in. Make S singular by zeroing out a diagonal entry
and compute the (partial) incomplete Cholesky factorization of level 0.

C = chol(S);
R0 = cholinc(S,'0');
S2 = S; S2(101,101) = 0;
[R,p] = cholinc(S2,'0');

Fill-in occurs within the bands of S in the complete Cholesky factor, but none
in the incomplete Cholesky factor. The incomplete factorization of the singular
S2 stopped at row p = 101 resulting in a 100-by-139 partial factor.

D1 = (R0'*R0).*spones(S)-S;
D2 = (R'*R).*spones(S2)-S2;
211

cholinc
D1 has elements of the order of eps, showing that R0'*R0 agrees with S over its
sparsity pattern. D2 has elements of the order of eps over its first 100 rows and
first 100 columns, D2(1:100,:) and D2(:,1:100).

Example 2.
The first subplot below shows that cholinc(S,0), the incomplete Cholesky
factor with a drop tolerance of 0, is the same as the Cholesky factor of S.

0 50 100

0

20

40

60

80

100

120

140

nz = 643

S

0 50 100

0

20

40

60

80

100

120

140

nz = 1557

C= chol(S)

0 50 100

0

20

40

60

80

100

120

140

nz = 391

R0=cholinc(S,’0’)

0 50 100

0

20

40

60

80

100

nz = 290

Partial factor [R,p]=cholinc(S2,’0’)
212

cholinc
Increasing the drop tolerance increases the sparsity of the incomplete factors,
as seen below.

Unfortunately, the sparser factors are poor approximations, as is seen by the
plot of drop tolerance versus norm(R'*R-S,1)/norm(S,1) in the next figure.

0 50 100

0

20

40

60

80

100

120

140

nz = 1557

cholinc(S,0)

0 50 100

0

20

40

60

80

100

120

140

nz = 1211

cholinc(S,1e−3)

0 50 100

0

20

40

60

80

100

120

140

nz = 671

cholinc(S,1e−2)

0 50 100

0

20

40

60

80

100

120

140

nz = 391

cholinc(S,1e−1)

10
−4

10
−3

10
−2

10
−1

10
0

0

500

1000

1500
Drop tolerance vs nnz(cholinc(S,droptol))

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

Drop tolerance vs norm(R’*R−S)/norm(S)
213

cholinc
Example 3.
The Hilbert matrices have (i,j) entries 1/(i+j-1) and are theoretically positive
definite:

H3 = hilb(3)
H3 =
 1.0000 0.5000 0.3333
 0.5000 0.3333 0.2500
 0.3333 0.2500 0.2000

R3 = chol(H3)
R3 =
 1.0000 0.5000 0.3333
 0 0.2887 0.2887
 0 0 0.0745

In practice, the Cholesky factorization breaks down for larger matrices:

H20 = sparse(hilb(20));
[R,p] = chol(H20);
p =
 14

For hilb(20), the Cholesky factorization failed in the computation of row 14
because of a numerically zero pivot. You can use the Cholesky-Infinity
factorization to avoid this error. When a zero pivot is encountered, cholinc
places an Inf on the main diagonal, zeros out the rest of the row, and continues
with the computation:

Rinf = cholinc(H20,'inf');

In this case, all subsequent pivots are also too small, so the remainder of the
upper triangular factor is:

full(Rinf(14:end,14:end))
ans =
 Inf 0 0 0 0 0 0
 0 Inf 0 0 0 0 0
 0 0 Inf 0 0 0 0
 0 0 0 Inf 0 0 0
 0 0 0 0 Inf 0 0
 0 0 0 0 0 Inf 0
214

cholinc
 0 0 0 0 0 0 Inf

Limitations cholinc works on square sparse matrices only. For cholinc(X,'0') and
cholinc(X,'inf'), X must be real.

Algorithm R = cholinc(X,droptol) is obtained from [L,U] = luinc(X,options), where
options.droptol = droptol and options.thresh = 0. The rows of the
uppertriangular U are scaled by the square root of the diagonal in that row, and
this scaled factor becomes R.

R = cholinc(X,options) is produced in a similar manner, except the rdiag
option translates into the udiag option and the milu option takes the value of
the michol option.

R = cholinc(X,'0') is based on the “KJI” variant of the Cholesky
factorization. Updates are made only to positions which are nonzero in the
upper triangle of X.

R = cholinc(X,'inf') is based on the algorithm in Zhang ([2]).
215

cholinc
See Also chol, luinc, pcg

References [1] Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS Publishing
Company, 1996, Chapter 10 - Preconditioning Techniques.

[2] Zhang, Yin, Solving Large-Scale Linear Programs by Interior-Point Methods
Under the MATLAB Environment, Department of Mathematics and Statistics,
University of Maryland Baltimore County, Technical Report TR96-01
216

cholupdate
1cholupdatePurpose Rank 1 update to Cholesky factorization

Syntax R1 = cholupdate(R,x)
R1 = cholupdate(R,x,'+')
R1 = cholupdate(R,x,'-')
[R1,p] = cholupdate(R,x,'-')

Description R1 = cholupdate(R,x) where R = chol(A) is the original Cholesky
factorization of A, returns the upper triangular Cholesky factor of A + x*x',
where x is a column vector of appropriate length. cholupdate uses only the
diagonal and upper triangle of R. The lower triangle of R is ignored.

R1 = cholupdate(R,x,'+') is the same as R1 = cholupdate(R,x).

R1 = cholupdate(R,x,'-') returns the Cholesky factor of A - x*x'. An
error message reports when R is not a valid Cholesky factor or when the
downdated matrix is not positive definite and so does not have a Cholesky
factoriza- tion.

[R1,p] = cholupdate(R,x,'-') will not return an error message. If p is 0,
R1 is the Cholesky factor of A - x*x'. If p is greater than 0, R1 is the Cholesky
factor of the original A. If p is 1, cholupdate failed because the downdated
matrix is not positive definite. If p is 2, cholupdate failed because the upper
triangle of R was not a valid Cholesky factor.

Remarks cholupdate works only for full matrices.

Example A = pascal(4)
A =

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 20
217

cholupdate
R = chol(A)
R =

 1 1 1 1
 0 1 2 3
 0 0 1 3
 0 0 0 1

x = [0 0 0 1]';

This is called a rank one update to A since rank(x*x') is 1:

A + x*x'
ans =

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 21

Instead of computing the Cholesky factor with R1 = chol(A + x*x'), we can
use cholupdate:

R1 = cholupdate(R,x)
R1 =

 1.0000 1.0000 1.0000 1.0000
 0 1.0000 2.0000 3.0000
 0 0 1.0000 3.0000
 0 0 0 1.4142

Next destroy the positive definiteness (and actually make the matrix singular)
by subtracting 1 from the last element of A. The downdated matrix is:
218

cholupdate
A - x*x'
ans =

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 19

Compare chol with cholupdate:

R1 = chol(A-x*x')
??? Error using ==> chol
Matrix must be positive definite.

R1 = cholupdate(R,x,'-')
??? Error using ==> cholupdate
Downdated matrix must be positive definite.

However, subtracting 0.5 from the last element of A produces a positive
definite matrix, and we can use cholupdate to compute its Cholesky factor:

x = [0 0 0 1/sqrt(2)]';
R1 = cholupdate(R,x,'-')
R1 =
 1.0000 1.0000 1.0000 1.0000
 0 1.0000 2.0000 3.0000
 0 0 1.0000 3.0000
 0 0 0 0.7071

Algorithm cholupdate uses the algorithms from the LINPACK subroutines ZCHUD and
ZCHDD. cholupdate is useful since computing the new Cholesky factor from
scratch is an algorithm, while simply updating the existing factor in
this way is an algorithm.

References Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users'
Guide, SIAM, Philadelphia, 1979.

See Also chol, qrupdate

O N3()
O N2()
219

cla
1claPurpose Clear current axes

Syntax cla
cla reset

Description cla deletes from the current axes all graphics objects whose handles are not
hidden (i.e., their HandleVisibility property is set to on).

cla reset deletes from the current axes all graphics objects regardless of the
setting of their HandleVisibility property and resets all axes properties,
except Position and Units, to their default values.

Remarks The cla command behaves the same way when issued on the command line as
it does in callback routines – it does not recognize the HandleVisibility
setting of callback. This means that when issued from within a callback
routine, cla deletes only those objects whose HandleVisibility property is set
to on.

See Also clf, hold, newplot, reset
220

clabel
1clabelPurpose Contour plot elevation labels

Syntax clabel(C,h)
clabel(C,h,v)
clabel(C,h,'manual')

clabel(C)
clabel(C,v)
clabel(C,'manual')

Description The clabel function adds height labels to a two-dimensional contour plot.

clabel(C,h) rotates the labels and inserts them in the contour lines. The
function inserts only those labels that fit within the contour, depending on the
size of the contour.

clabel(C,h,v) creates labels only for those contour levels given in vector v,
then rotates the labels and inserts them in the contour lines.

clabel(C,h,'manual') places contour labels at locations you select with a
mouse. Press the left mouse button (the mouse button on a single-button
mouse) or the space bar to label a contour at the closest location beneath the
center of the cursor. Press the Return key while the cursor is within the figure
window to terminate labeling. The labels are rotated and inserted in the
contour lines.

clabel(C) adds labels to the current contour plot using the contour structure
C output from contour. The function labels all contours displayed and
randomly selects label positions.

clabel(C,v) labels only those contour levels given in vector v.

clabel(C,'manual') places contour labels at locations you select with a
mouse.

Remarks When the syntax includes the argument h, this function rotates the labels and
inserts them in the contour lines (see Example). Otherwise, the labels are
displayed upright and a '+' indicates which contour line the label is
annotating.
221

clabel
Examples Generate, draw, and label a simple contour plot.

[x,y] = meshgrid(–2:.2:2);
z = x.^exp(–x.^2–y.^2);
[C,h] = contour(x,y,z);
clabel(C,h);

See Also contour, contourc, contourf

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−
0.2

−0
.2

−
9.869e−

17

−9.869e−17

0.2

0.2

0.2

0.
2

0.
2

0.
4

0.4

0.4

0.
4

0.6
0.

6

0.6

0.
6

0.
6

0.
8

0.8

0.8

0.8

0.
8

1

1

1
1

222

class
1classPurpose Create object or return class of object

Syntax str = class(object)
obj = class(s,'class_name')
obj = class(s,'class_name',parent1,parent2...)
obj = class(struct([]),'class_name',parent1,parent2...)

Description str = class(object) returns a string specifying the class of object.

The following table lists the object class names that may be returned. All
except the last one are MATLAB classes.

obj = class(s,'class_name') creates an object of MATLAB class
'class_name' using structure s as a template. This syntax is valid only in a
function named class_name.m in a directory named @class_name (where
'class_name' is the same as the string passed into class).

obj = class(s,'class_name',parent1,parent2,...) creates an object of
MATLAB class 'class_name' that inherits the methods and fields of the

cell Cell array

char Characters array

double Double-precision floating point number array

int8 8-bit signed integer array

int16 16-bit signed integer array

int32 32-bit signed integer array

sparse 2-D real (or complex) sparse array

struct Structure array

uint8 8-bit unsigned integer array

uint16 16-bit unsigned integer array

uint32 32-bit unsigned integer array

'matlab_class_name' Name of user-defined MATLAB class

'java_class_name' Name of Java class
223

class
parent objects parent1, parent2, and so on. Structure s is used as a template
for the object.

obj = class(struct([]),'class_name',parent1,parent2,...) creates an
object of MATLAB class 'class_name' that inherits the methods and fields of
the parent objects parent1, parent2, and so on. Specifying the empty structure,
struct([]), as the first argument ensures that the object created contains no
fields other than those that are inherited from the parent objects.

Examples To return in nameStr the name of the class of Java object j

nameStr = class(j)

To create a user-defined MATLAB object of class polynom

p = class(p,'polynom')

See Also inferiorto, isa, superiorto

The “MATLAB Classes and Objects” and the “Calling Java from MATLAB”
chapters in Programming and Data Types.
224

clc
1clcPurpose Clear Command Window

Graphical
Interface

As an alternative to the clc function, use Clear Command Window in the
MATLAB desktop Edit menu.

Syntax clc

Description clc clears all input and output from the Command Window display, giving you
a “clean screen.”

After using clc, you cannot use the scroll bar to see the history of functions, but
still can use the up arrow to see one previous line at a time.

Examples Use clc in an M-file to always display output in the same starting position on
the screen.

See Also clf, home
225

clear
1clearPurpose Remove items from the workspace

Graphical
Interface

As an alternative to the clear function, use Clear Workspace in the MATLAB
desktop Edit menu, or in the context menu in the Workspace browser.

Syntax clear
clear name
clear name1 name2 name3 ...
clear global name
clear keyword
clear('name1','name2','name3',...)

Description clear removes all variables from the workspace.

clear name removes just the M-file or MEX-file function or variable name from
the workspace. If name is global, it is removed from the current workspace, but
left accessible to any functions declaring it global. If name has been locked by
mlock, it remains in memory.

Use a partial path to distinguish between different overloaded versions of a
function. For example, clear inline/display clears only the display method
for inline objects, leaving any other implementations in memory.

clear name1 name2 name3 ... removes name1, name2, and name3 from the
workspace.

clear global name removes the global variable name. If name is global, clear
name removes name from the current workspace, but leaves it accessible to any
functions declaring it global. Use clear global name to completely remove a
global variable.

clear keyword clears the items indicated by keyword.

Keyword Items Cleared

all Removes all variables, functions, and MEX-files from
memory, leaving the workspace empty.
226

clear
clear('name1','name2','name3',...) is the function form of the syntax. Use
this form when the variable name or function name is stored in a string.

Remarks You can use wildcards (*) to remove items selectively. For example, clear my*
removes any variables whose names begin with the string my. You can also use
clear in the form of a function, such as clear('name').

Clearing a function has the side effect of removing debugging breakpoints and
reinitializing persistent variables, since the breakpoints for a function and
persistent variables are cleared whenever the M-file is changed or cleared.

When you use clear in a function, it has the following effect on items in your
function and base workspaces:

• clear name - If name is the name of a function, the function is cleared in both
the function workspace and in your base workspace.

• clear functions - All functions are cleared in both the function workspace
and in your base workspace.

• clear global - All global variables are cleared in both the function
workspace and in your base workspace.

• clear all - All functions, global variables, and classes are cleared in both
the function workspace and in your base workspace.

classes The same as clear all, but also clears MATLAB class
definitions. If any objects exist outside the workspace
(e.g., in user data or persistent variables in a locked
M-file), a warning is issued and the class definition is
not cleared. Issue a clear classes function if the
number or names of fields in a class are changed.

functions Clears all the currently compiled M-functions and
MEX-functions from memory.

global Clears all global variables from the workspace.

import Removes the Java packages import list.

variables Clears all variables from the workspace.
227

clear
Limitations clear does not affect the amount of memory allocated to the MATLAB process
under UNIX.

Examples Given a workspace containing the following variables

 Name Size Bytes Class

 c 3x4 1200 cell array
 frame 1x1 java.awt.Frame
 gbl1 1x1 8 double array (global)
 gbl2 1x1 8 double array (global)
 xint 1x1 1 int8 array

You can clear a single variable, xint, by typing

clear xint

To clear all global variables, type

clear global
whos
 Name Size Bytes Class

 c 3x4 1200 cell array
 frame 1x1 java.awt.Frame

To clear all compiled M- and MEX-functions from memory, type clear
functions. In the case shown below, clear functions was unable to clear one
M-file function, testfun, from memory because the function is locked.

clear functions % Attempt to clear all functions.

inmem
ans =

'testfun' % One M-file function remains in memory.

mislocked testfun
ans =
 1 % This function is locked in memory.

Once you unlock the function from memory, you can clear it.

munlock testfun
228

clear
clear functions

inmem
ans =
 Empty cell array: 0-by-1

See Also import, mlock, munlock, pack, persistent, who, whos
229

clear (serial)
1clear (serial)Purpose Remove a serial port object from the MATLAB workspace

Syntax clear obj

Arguments

Description clear obj removes obj from the MATLAB workspace.

Remarks If obj is connected to the device and it is cleared from the workspace, then obj
remains connected to the device. You can restore obj to the workspace with the
instrfind function. A serial port object connected to the device has a Status
property value of open.

To disconnect obj from the device, use the fclose function. To remove obj from
memory, use the delete function. You should remove invalid serial port objects
from the workspace with clear.

If you use the help command to display help for clear, then you need to supply
the pathname shown below.

help serial/private/clear

Example This example creates the serial port object s, copies s to a new variable scopy,
and clears s from the MATLAB workspace. s is then restored to the workspace
with instrfind and is shown to be identical to scopy.

s = serial('COM1');
scopy = s;
clear s
s = instrfind;
isequal(scopy,s)
ans =
 1

See Also Functions
delete, fclose, instrfind, isvalid

Properties
Status

obj A serial port object or an array of serial port objects.
230

clf
1clfPurpose Clear current figure window

Syntax clf
clf reset

Description clf deletes from the current figure all graphics objects whose handles are not
hidden (i.e., their HandleVisibility property is set to on).

clf reset deletes from the current figure all graphics objects regardless of the
setting of their HandleVisibility property and resets all figure properties,
except Position, Units, PaperPosition, and PaperUnits to their default
values.

Remarks The clf command behaves the same way when issued on the command line as
it does in callback routines – it does not recognize the HandleVisibility
setting of callback. This means that when issued from within a callback
routine, clf deletes only those objects whose HandleVisibility property is set
to on.

See Also cla, clc, hold, reset
231

clipboard
1clipboardPurpose Copy and paste strings to and from the system clipboard.

Graphical
Interface

As an alternative to clipboard, use the Import Wizard. To use the Import
Wizard to copy data from the clipboard, select Paste Special from the Edit
menu.

Syntax clipboard('copy',data)
str = clipboard('paste')
data = clipboard('pastespecial')

Description CLIPBOARD('copy', data) sets the clipboard contents to data. If data is not a
character array, clipboard uses mat2str to convert it to a string.

STR = CLIPBOARD('paste') returns the current contents of the clipboard as a
string or as an empty string (' '), if the current clipboard content cannot be
converted to a string.

DATA = CLIPBOARD('pastespecial') returns the current contents of the
clipboard as an array using uiimport.

Note Requires an active X display on Unix and Java elsewhere.

See Also load, uiimport
232

clock
1clockPurpose Current time as a date vector

Syntax c = clock

Description c = clock returns a 6-element date vector containing the current date and
time in decimal form:

c = [year month day hour minute seconds]

The first five elements are integers. The seconds element is accurate to several
digits beyond the decimal point. The statement fix(clock) rounds to integer
display format.

See Also cputime, datenum, datevec, etime, tic, toc
233

close
1closePurpose Delete specified figure

Syntax close
close(h)
close name
close all
close all hidden
status = close(...)

Description close deletes the current figure or the specified figure(s). It optionally returns
the status of the close operation.

close deletes the current figure (equivalent to close(gcf)).

close(h) deletes the figure identified by h. If h is a vector or matrix, close
deletes all figures identified by h.

close name deletes the figure with the specified name.

close all deletes all figures whose handles are not hidden.

close all hidden deletes all figures including those with hidden handles.

status = close(...) returns 1 if the specified windows have been deleted
and 0 otherwise.

Remarks The close function works by evaluating the specified figure’s CloseRequestFcn
property with the statement:

eval(get(h,'CloseRequestFcn'))

The default CloseRequestFcn, closereq, deletes the current figure using
delete(get(0,'CurrentFigure')). If you specify multiple figure handles,
close executes each figure’s CloseRequestFcn in turn. If MATLAB encounters
an error that terminates the execution of a CloseRequestFcn, the figure is not
deleted. Note that using your computer’s window manager (i.e., the Close
menu item) also calls the figure’s CloseRequestFcn.

If a figure’s handle is hidden (i.e., the figure’s HandleVisibility property is set
to callback or off and the root ShowHiddenHandles property is set on), you
234

close
must specify the hidden option when trying to access a figure using the all
option.

To delete all figures unconditionally, use the statements:

set(0,'ShowHiddenHandles','on')
delete(get(0,'Children'))

The delete function does not execute the figure’s CloseRequestFcn; it simply
deletes the specified figure.

The figure CloseRequestFcn allows you to either delay or abort the closing of a
figure once the close function has been issued. For example, you can display a
dialog box to see if the user really wants to delete the figure or save and clean
up before closing.

See Also delete, figure, gcf

The figure HandleVisibility property

The root ShowHiddenHandles property
235

close (AVI)
1close (AVI)Purpose Close Audio Video Interleaved (AVI) file

Syntax aviobj = close(aviobj)

Description aviobj = close(aviobj) finishes writing and closes the AVI file associated
with aviobj, which is an AVI file object, created using the avifile function.

See Also avifile, addframe, movie2avi
236

closereq
1closereqPurpose Default figure close request function

Syntax closereq

Description closereq delete the current figure.

See Also The figure CloseRequestFcn property
237

cmopts
1cmoptsPurpose Get name of source control system, and for PVCS, get project filename

Graphical
Interface

As an alternative to cmopts, use preferences. Select File -> Preferences in the
MATLAB desktop, and then select General -> Source Control.

Syntax cmopts
out = cmopts('DefaultConfigFile')

Description cmopts returns the name of the source control system you selected using
preferences, which is one of the following:

clearcase
pvcs
rcs
sourcesafe

If you have not selected a source control system, cmopts returns

none

out = cmopts('DefaultConfigFile') returns the name of the project
configuration file. This is used for the PVCS source control system only.

Specifying a Source Control System
To specify the source control system:

1 From the MATLAB Editor window or from a Simulink or Stateflow model
window, select File>Source Control>Preferences.

The Preferences dialog box opens.

2 In the left pane, click the + for General, and then select Source Control.

The currently selected system is shown.

3 Select the system you want to use from the Source control system list.

4 Click OK.

For PVCS Only: Specifying the Project Configuration File
If you use the PVCS source control system, you must specify a project
configuration file in cmopts.m. The cmopts.m file is located in
238

cmopts
$matlabroot\toolbox\local, where $matlabroot is the directory in which
MATLAB is installed.

Open cmopts.m in the MATLAB Editor or another text editor. Specify the
project configuration file in the section that starts with % BEGIN
CUSTOMIZATION SECTION. Assign the name of your project file, including the full
pathname, to the variable 'DefaultConfigFile'. Then save cmopts.m.

Examples Example - Specify the Project Configuration File for PVCS
If the project configuration file is Projmgr.cfg, add the following line in
cmopts.m.

DefaultConfigFile =
'c:\\PVCS\\PVCSPROJ\\Projmgr.prj\\Projmgr.cfg'

Then, typing

cmopts('DefaultConfigFile')

returns

'c:\\PVCS\\PVCSPROJ\\Projmgr.prj\\Projmgr.cfg'

See Also checkin, checkout, customverctrl
239

colamd
1colamdPurpose Column approximate minimum degree permutation

Syntax p = colamd(S)
p = colamd(S,knobs)
[p,stats] = colamd(S)
[p,stats] = colamd(S,knobs)

Description p = colamd(S) returns the column approximate minimum degree
permutation vector for the sparse matrix S. For a non-symmetric matrix S,
S(:,p) tends to have sparser LU factors than S. The Cholesky factorization of
S(:,p)' * S(:,p) also tends to be sparser than that of S'*S.

knobs is a two-element vector. If S is m-by-n, then rows with more than
(knobs(1))*n entries are ignored. Columns with more than (knobs(2))*m
entries are removed prior to ordering, and ordered last in the output
permutation p. If the knobs parameter is not present, then
knobs(1) = knobs(2) = spparms('wh_frac').

stats is an optional vector that provides data about the ordering and the
validity of the matrix S.

Although, MATLAB built-in functions generate valid sparse matrices, a user
may construct an invalid sparse matrix using the MATLAB C or Fortran APIs
and pass it to colamd. For this reason, colamd verifies that S is valid:

stats(1) Number of dense or empty rows ignored by colamd

stats(2) Number of dense or empty columns ignored by colamd

stats(3) Number of garbage collections performed on the internal data
structure used by colamd (roughly of size
2.2*nnz(S) + 4*m + 7*n integers)

stats(4) 0 if the matrix is valid, or 1 if invalid

stats(5) Rightmost column index that is unsorted or contains duplicate
entries, or 0 if no such column exists

stats(6) Last seen duplicate or out-of-order row index in the column
index given by stats(5), or 0 if no such row index exists

stats(7) Number of duplicate and out-of-order row indices
240

colamd
• If a row index appears two or more times in the same column, colamd ignores
the duplicate entries, continues processing, and provides information about
the duplicate entries in stats(4:7).

• If row indices in a column are out of order, colamd sorts each column of its
internal copy of the matrix S (but does not repair the input matrix S),
continues processing, and provides information about the out-of-order
entries in stats(4:7).

• If S is invalid in any other way, colamd cannot continue. It prints an error
message, and returns no output arguments (p or stats) .

The ordering is followed by a column elimination tree post-ordering.

Note colamd tends to be faster than colmmd and tends to return a better
ordering.

See Also colmmd, colperm, spparms, symamd, symmmd, symrcm

References The authors of the code for colamd are Stefan I. Larimore and Timothy A. Davis
(davis@cise.ufl.edu), University of Florida. The algorithm was developed in
collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge
National Laboratory. Sparse Matrix Algorithms Research at the University of
Florida: http://www.cise.ufl.edu/research/sparse/
241

colmmd
1colmmdPurpose Sparse column minimum degree permutation

Syntax p = colmmd(S)

Description p = colmmd(S) returns the column minimum degree permutation vector for
the sparse matrix S. For a nonsymmetric matrix S, this is a column
permutation p such that S(:,p) tends to have sparser LU factors than S.

The colmmd permutation is automatically used by \ and / for the solution of
nonsymmetric and symmetric indefinite sparse linear systems.

Use spparms to change some options and parameters associated with heuristics
in the algorithm.

Algorithm The minimum degree algorithm for symmetric matrices is described in the
review paper by George and Liu [1]. For nonsymmetric matrices, MATLAB’s
minimum degree algorithm is new and is described in the paper by Gilbert,
Moler, and Schreiber [2]. It is roughly like symmetric minimum degree for
A'∗A, but does not actually form A'∗A.

Each stage of the algorithm chooses a vertex in the graph of A'∗A of lowest
degree (that is, a column of A having nonzero elements in common with the
fewest other columns), eliminates that vertex, and updates the remainder of
the graph by adding fill (that is, merging rows). If the input matrix S is of size
m-by-n, the columns are all eliminated and the permutation is complete after n
stages. To speed up the process, several heuristics are used to carry out
multiple stages simultaneously.

Examples The Harwell-Boeing collection of sparse matrices and the MATLAB demos
directory include a test matrix WEST0479. It is a matrix of order 479 resulting
from a model due to Westerberg of an eight-stage chemical distillation column.
The spy plot shows evidence of the eight stages. The colmmd ordering
scrambles this structure.

load west0479
A = west0479;
p = colmmd(A);
spy(A)
spy(A(:,p))
242

colmmd
Comparing the spy plot of the LU factorization of the original matrix with that
of the reordered matrix shows that minimum degree reduces the time and
storage requirements by better than a factor of 2.8. The nonzero counts are
16777 and 5904, respectively.

spy(lu(A))
spy(lu(A(:,p)))

0 100 200 300 400

0

100

200

300

400

nz = 1887

A

0 100 200 300 400

0

100

200

300

400

nz = 1887

A(:,p)

0 100 200 300 400

0

100

200

300

400

nz = 16777

lu(A)

0 100 200 300 400

0

100

200

300

400

nz = 5904

lu(A(:,p))
243

colmmd
See Also colamd, colperm, lu, spparms, symamd, symmmd, symrcm

The arithmetic operator \

References [1] George, Alan and Liu, Joseph, “The Evolution of the Minimum Degree
Ordering Algorithm,” SIAM Review, 1989, 31:1-19,.

[2] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse Matrices in
MATLAB: Design and Implementation,” SIAM Journal on Matrix Analysis
and Applications 13, 1992, pp. 333-356.
244

Colon :
1Colon :Purpose Create vectors, array subscripting, and for loop iterations

Description The colon is one of the most useful operators in MATLAB. It can create vectors,
subscript arrays, and specify for iterations.

The colon operator uses the following rules to create regularly spaced vectors:

where i,j, and k are all scalars.

Below are the definitions that govern the use of the colon to pick out selected
rows, columns, and elements of vectors, matrices, and higher-dimensional
arrays:

j:k is the same as [j,j+1,...,k]

j:k is empty if j > k

j:i:k is the same as [j,j+i,j+2i, ...,k]

j:i:k is empty if i > 0 and j > k or if i < 0 and j < k

A(:,j) is the j-th column of A

A(i,:) is the i-th row of A

A(:,:) is the equivalent two-dimensional array. For matrices this is
the same as A.

A(j:k) is A(j), A(j+1),...,A(k)

A(:,j:k) is A(:,j), A(:,j+1),...,A(:,k)

A(:,:,k) is the kth page of three-dimensional array A.

A(i,j,k,:) is a vector in four-dimensional array A. The vector includes
A(i,j,k,1), A(i,j,k,2), A(i,j,k,3), and so on.

A(:) is all the elements of A, regarded as a single column. On the
left side of an assignment statement, A(:) fills A, preserving
its shape from before. In this case, the right side must contain
the same number of elements as A.
245

Colon :
Examples Using the colon with integers,

D = 1:4

results in

D =
 1 2 3 4

Using two colons to create a vector with arbitrary real increments between the
elements,

E = 0:.1:.5

results in

E =
 0 0.1000 0.2000 0.3000 0.4000 0.5000

The command

A(:,:,2) = pascal(3)

generates a three-dimensional array whose first page is all zeros.

A(:,:,1) =
 0 0 0
 0 0 0
 0 0 0

A(:,:,2) =
 1 1 1
 1 2 3
 1 3 6

See Also for, linspace, logspace, reshape
246

colorbar
1 colorbarPurpose Display colorbar showing the color scale

Syntax colorbar
colorbar('vert')
colorbar('horiz')
colorbar(h)
h = colorbar(...)
colorbar(...,'peer',axes_handle)

Description The colorbar function displays the current colormap in the current figure and
resizes the current axes to accommodate the colorbar.

colorbar updates the most recently created colorbar or, when the current axes
does not have a colorbar, colorbar adds a new vertical colorbar.

colorbar('vert') adds a vertical colorbar to the current axes.

colorbar('horiz') adds a horizontal colorbar to the current axes.

colorbar(h) uses the axes h to create the colorbar. The colorbar is horizontal
if the width of the axes is greater than its height, as determined by the axes
Position property.

h = colorbar(...) returns a handle to the colorbar, which is an axes graphics
object.

colorbar(...,'peer',axes_handle) creates a colorbar associated with the
axes axes_handle instead of the current axes.

Remarks colorbar works with two-dimensional and three-dimensional plots.

Examples Display a colorbar beside the axes.

surf(peaks(30))
colormap cool
247

colorbar
colorbar

See Also colormap

0
5

10
15

20
25

30

0

5

10

15

20

25

30
−8

−6

−4

−2

0

2

4

6

8

10

−6

−4

−2

0

2

4

6

8

248

colordef
1colordefPurpose Sets default property values to display different color schemes

Syntax colordef white
colordef black
colordef none
colordef(fig,color_option)
h = colordef('new',color_option)

Description colordef enables you to select either a white or black background for graphics
display. It sets axis lines and labels to show up against the background color.

colordef white sets the axis background color to white, the axis lines and
labels to black, and the figure background color to light gray.

colordef black sets the axis background color to black, the axis lines and
labels to white, and the figure background color to dark gray.

colordef none sets the figure coloring to that used by MATLAB Version 4
(essentially a black background).

colordef(fig,color_option) sets the color scheme of the figure identified by
the handle fig to the color option 'white', 'black', or 'none'.

h = colordef('new',color_option) returns the handle to a new figure
created with the specified color options (i.e., 'white', 'black', or 'none').

Remarks colordef affects only subsequently drawn figures, not those currently on the
display. This is because colordef works by setting default property values (on
the root or figure level). You can list the currently set default values on the root
level with the statement:

get(0,'defaults')

You can remove all default values using the reset command:

reset(0)

See the get and reset references pages for more information.

See Also whitebg
249

colormap
1colormapPurpose Set and get the current colormap

Syntax colormap(map)
colormap('default')
cmap = colormap

Description A colormap is an m-by-3 matrix of real numbers between 0.0 and 1.0. Each row
is an RGB vector that defines one color. The kth row of the colormap defines the
k-th color, where map(k,:) = [r(k) g(k) b(k)]) specifies the intensity of red,
green, and blue.

colormap(map) sets the colormap to the matrix map. If any values in map are
outside the interval [0 1], MATLAB returns the error: Colormap must have
values in [0,1].

colormap('default') sets the current colormap to the default colormap.

cmap = colormap; retrieves the current colormap. The values returned are in
the interval [0 1].

Specifying Colormaps
M-files in the color directory generate a number of colormaps. Each M-file
accepts the colormap size as an argument. For example,

colormap(hsv(128))

creates an hsv colormap with 128 colors. If you do not specify a size, MATLAB
creates a colormap the same size as the current colormap.

Supported Colormaps
MATLAB supports a number of colormaps.

• autumn varies smoothly from red, through orange, to yellow.

• bone is a grayscale colormap with a higher value for the blue component.
This colormap is useful for adding an “electronic” look to grayscale images.

• colorcube contains as many regularly spaced colors in RGB colorspace as
possible, while attempting to provide more steps of gray, pure red, pure
green, and pure blue.
250

colormap
• cool consists of colors that are shades of cyan and magenta. It varies
smoothly from cyan to magenta.

• copper varies smoothly from black to bright copper.

• flag consists of the colors red, white, blue, and black. This colormap
completely changes color with each index increment.

• gray returns a linear grayscale colormap.

• hot varies smoothly from black, through shades of red, orange, and yellow,
to white.

• hsv varies the hue component of the hue-saturation-value color model. The
colors begin with red, pass through yellow, green, cyan, blue, magenta, and
return to red. The colormap is particularly appropriate for displaying
periodic functions. hsv(m) is the same as hsv2rgb([h ones(m,2)]) where h
is the linear ramp, h = (0:m–1)'/m.

• jet ranges from blue to red, and passes through the colors cyan, yellow, and
orange. It is a variation of the hsv colormap. The jet colormap is associated
with an astrophysical fluid jet simulation from the National Center for
Supercomputer Applications. See the “Examples” section.

• lines produces a colormap of colors specified by the axes ColorOrder
property and a shade of gray.

• pink contains pastel shades of pink. The pink colormap provides sepia tone
colorization of grayscale photographs.

• prism repeats the six colors red, orange, yellow, green, blue, and violet.

• spring consists of colors that are shades of magenta and yellow.

• summer consists of colors that are shades of green and yellow.

• white is an all white monochrome colormap.

• winter consists of colors that are shades of blue and green.

Examples The images and colormaps demo, imagedemo, provides an introduction to
colormaps. Select Color Spiral from the menu. This uses the pcolor function
to display a 16-by-16 matrix whose elements vary from 0 to 255 in a rectilinear
spiral. The hsv colormap starts with red in the center, then passes through
yellow, green, cyan, blue, and magenta before returning to red at the outside
end of the spiral. Selecting Colormap Menu gives access to a number of other
colormaps.
251

colormap
The rgbplot function plots colormap values. Try rgbplot(hsv),
rgbplot(gray), and rgbplot(hot).

The following commands display the flujet data using the jet colormap.

load flujet
image(X)
colormap(jet)

The demos directory contains a CAT scan image of a human spine. To view the
image, type the following commands:

load spine
image(X)
252

colormap
colormap bone

Algorithm Each figure has its own Colormap property. colormap is an M-file that sets and
gets this property.

See Also brighten, caxis, contrast, hsv2rgb, pcolor, rgb2hsv, rgbplot

The Colormap property of figure graphics objects.

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350
253

ColorSpec
1ColorSpecPurpose Color specification

Description ColorSpec is not a command; it refers to the three ways in which you specify
color in MATLAB:

• RGB triple

• Short name

• Long name

The short names and long names are MATLAB strings that specify one of eight
predefined colors. The RGB triple is a three-element row vector whose
elements specify the intensities of the red, green, and blue components of the
color; the intensities must be in the range [0 1]. The following table lists the
predefined colors and their RGB equivalents.

Remarks The eight predefined colors and any colors you specify as RGB values are not
part of a figure’s colormap, nor are they affected by changes to the figure’s
colormap. They are referred to as fixed colors, as opposed to colormap colors.

Examples To change the background color of a figure to green, specify the color with a
short name, a long name, or an RGB triple. These statements generate
equivalent results:

whitebg('g')

RGB Value Short Name Long Name

[1 1 0] y yellow

[1 0 1] m magenta

[0 1 1] c cyan

[1 0 0] r red

[0 1 0] g green

[0 0 1] b blue

[1 1 1] w white

[0 0 0] k black
254

ColorSpec
whitebg('green')
whitebg([0 1 0]);

You can use ColorSpec anywhere you need to define a color. For example, this
statement changes the figure background color to pink:

set(gcf,'Color',[1,0.4,0.6])

See Also bar, bar3, colordef, colormap, fill, fill3, whitebg
255

colperm
1colpermPurpose Sparse column permutation based on nonzero count

Syntax j = colperm(S)

Description j = colperm(S) generates a permutation vector j such that the columns of
S(:,j) are ordered according to increasing count of nonzero entries. This is
sometimes useful as a preordering for LU factorization; in this case use
lu(S(:,j)).

If S is symmetric, then j = colperm(S) generates a permutation j so that both
the rows and columns of S(j,j) are ordered according to increasing count of
nonzero entries. If S is positive definite, this is sometimes useful as a
preordering for Cholesky factorization; in this case use chol(S(j,j)).

Algorithm The algorithm involves a sort on the counts of nonzeros in each column.

Examples The n-by-n arrowhead matrix

A = [ones(1,n); ones(n-1,1) speye(n-1,n-1)]

has a full first row and column. Its LU factorization, lu(A), is almost
completely full. The statement

j = colperm(A)

returns j = [2:n 1]. So A(j,j) sends the full row and column to the bottom
and the rear, and lu(A(j,j)) has the same nonzero structure as A itself.

On the other hand, the Bucky ball example, B = bucky,

has exactly three nonzero elements in each row and column, so
j = colperm(B) is the identity permutation and is no help at all for reducing
fill-in with subsequent factorizations.

See Also chol, colamd, colmmd, lu, spparms, symamd, symmmd, symrcm
256

comet
1cometPurpose Two-dimensional comet plot

Syntax comet(y)
comet(x,y)
comet(x,y,p)

Description A comet plot is an animated graph in which a circle (the comet head) traces the
data points on the screen. The comet body is a trailing segment that follows the
head. The tail is a solid line that traces the entire function.

comet(y) displays a comet plot of the vector y.

comet(x,y) displays a comet plot of vector y versus vector x.

comet(x,y,p) specifies a comet body of length p*length(y). p defaults to 0.1.

Remarks Note that the trace left by comet is created by using an EraseMode of none,
which means you cannot print the plot (you get only the comet head) and it
disappears if you cause a redraw (e.g., by resizing the window).

Examples Create a simple comet plot:

t = 0:.01:2*pi;
x = cos(2∗t).*(cos(t).^2);
y = sin(2∗t).*(sin(t).^2);
comet(x,y);

See Also comet3
257

comet3
1comet3Purpose Three-dimensional comet plot

Syntax comet3(z)
comet3(x,y,z)
comet3(x,y,z,p)

Description A comet plot is an animated graph in which a circle (the comet head) traces the
data points on the screen. The comet body is a trailing segment that follows the
head. The tail is a solid line that traces the entire function.

comet3(z) displays a three-dimensional comet plot of the vector z.

comet3(x,y,z) displays a comet plot of the curve through the points
[x(i),y(i),z(i)].

comet3(x,y,z,p) specifies a comet body of length p∗length(y).

Remarks Note that the trace left by comet3 is created by using an EraseMode of none,
which means you cannot print the plot (you get only the comet head) and it
disappears if you cause a redraw (e.g., by resizing the window).

Examples Create a three-dimensional comet plot.

t = -10*pi:pi/250:10*pi;
comet3((cos(2*t).^2).*sin(t),(sin(2*t).^2).*cos(t),t);

See Also comet
258

compan
1companPurpose Companion matrix

Syntax A = compan(u)

Description A = compan(u) returns the corresponding companion matrix whose first row is
-u(2:n)/u(1), where u is a vector of polynomial coefficients. The eigenvalues
of compan(u) are the roots of the polynomial.

Examples The polynomial has a companion matrix
given by

u = [1 0 -7 6]
A = compan(u)
A =

0 7 -6
1 0 0
0 1 0

The eigenvalues are the polynomial roots:

eig(compan(u))
ans =

-3.0000
2.0000
1.0000

This is also roots(u).

See Also eig, poly, polyval, roots

x 1–() x 2–() x 3+() x3 7x– 6+=
259

compass
1compassPurpose Plot arrows emanating from the origin

Syntax compass(X,Y)
compass(Z)
compass(...,LineSpec)
h = compass(...)

Description A compass plot displays direction or velocity vectors as arrows emanating from
the origin. X, Y, and Z are in Cartesian coordinates and plotted on a circular
grid.

compass(X,Y) displays a compass plot having n arrows, where n is the number
of elements in X or Y. The location of the base of each arrow is the origin. The
location of the tip of each arrow is a point relative to the base and determined
by [X(i),Y(i)].

compass(Z) displays a compass plot having n arrows, where n is the number of
elements in Z. The location of the base of each arrow is the origin. The location
of the tip of each arrow is relative to the base as determined by the real and
imaginary components of Z. This syntax is equivalent to
compass(real(Z),imag(Z)).

compass(...,LineSpec) draws a compass plot using the line type, marker
symbol, and color specified by LineSpec.

h = compass(...) returns handles to line objects.

Examples Draw a compass plot of the eigenvalues of a matrix.

Z = eig(randn(20,20));
compass(Z)
260

compass
See Also feather, LineSpec, rose

 1.0538

 2.1076

 3.1613

 4.2151

 5.2689

30

210

60

240

90

270

120

300

150

330

180 0
261

complex
1 complexPurpose Construct complex data from real and imaginary components

Syntax c = complex(a,b)
c = complex(a)

Description c = complex(a,b) creates a complex output, c, from the two real inputs.

c = a + bi

The output is the same size as the inputs, which must be equally sized vectors,
matrices, or multi-dimensional arrays.

The complex function provides a useful substitute for expressions such as

a + i*b or a + j*b

in cases when the names “i” and “j” may be used for other variables (and do
not equal), or when a and b are not double-precision.

c = complex(a) uses input a as the real component of the complex output. The
imaginary component is zero.

c = a + 0i

Example Create complex uint8 vector from two real uint8 vectors.

a = uint8([1;2;3;4])
b = uint8([2;2;7;7])

c = complex(a,b)

c =
 1.0000 + 2.0000i
 2.0000 + 2.0000i
 3.0000 + 7.0000i
 4.0000 + 7.0000i

See Also imag, real

1–
262

computer
1computerPurpose Identify the computer on which MATLAB is running

Syntax str = computer
[str,maxsize] = computer

Description str = computer returns a string with the computer type on which MATLAB is
running.

[str,maxsize] = computer returns the integer maxsize, which contains the
maximum number of elements allowed in an array with this version of
MATLAB.

The list of supported computers changes as new computers are added and
others become obsolete. A typical list follows

Remarks SGI64 users prior to R12 must migrate to SGI with R12.
LNX86 users prior to R12 must migrate to GLNX86 with R12.

See Also isunix

String Computer

ALPHA Compaq Alpha

HP700 HP 9000/700

IBM_RS IBM RS6000 workstation

GLNX86 Linux on PC compatible

PCWIN MS-Windows

SGI Silicon Graphics

SOL2 Solaris 2 SPARC workstation
263

cond
1condPurpose Condition number with respect to inversion

Syntax c = cond(X)
c = cond(X,p)

Description The condition number of a matrix measures the sensitivity of the solution of a
system of linear equations to errors in the data. It gives an indication of the
accuracy of the results from matrix inversion and the linear equation solution.
Values of cond(X) and cond(X,p) near 1 indicate a well-conditioned matrix.

c = cond(X) returns the 2-norm condition number, the ratio of the largest
singular value of X to the smallest.

c = cond(X,p) returns the matrix condition number in p-norm:

norm(X,p) * norm(inv(X),p

Algorithm The algorithm for cond (when p = 2) uses the singular value decomposition,
svd.

See Also condeig, condest, norm, normest, rank, rcond, svd

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide, Third Edition, SIAM, Philadelphia, 1999.

If p is... Then cond(X,p) returns the...

1 1-norm condition number

2 2-norm condition number

'fro' Frobenius norm condition number

inf Infinity norm condition number
264

condeig
1condeigPurpose Condition number with respect to eigenvalues

Syntax c = condeig(A)
[V,D,s] = condeig(A)

Description c = condeig(A) returns a vector of condition numbers for the eigenvalues of A.
These condition numbers are the reciprocals of the cosines of the angles
between the left and right eigenvectors.

[V,D,s] = condeig(A) is equivalent to: [V,D] = eig(A); s = condeig(A);.

Large condition numbers imply that A is near a matrix with multiple
eigenvalues.

See Also balance, cond, eig
265

condest
1condestPurpose 1-norm condition number estimate

Syntax c = condest(A)
[c,v] = condest(A)

Description c = condest(A) computes a lower bound C for the 1-norm condition number of
a square matrix A.

c = condest(A,t) changes t, a positive integer parameter equal to the
number of columns in an underlying iteration matrix. Increasing the number
of columns usually gives a better condition estimate but increases the cost. The
default is t = 2, which almost always gives an estimate correct to within a
factor 2.

[c,v] = condest(A) also computes a vector v which is an approximate null
vector if c is large. v satisfies norm(A*v,1) = norm(A,1)*norm(v,1)/c.

Note condest invokes rand. If repeatable results are required then invoke
rand('state',j), for some j, before calling this function.

This function is particularly useful for sparse matrices.

condest uses block 1-norm power method of Higham and Tisseur.

See Also cond, norm, normest

Reference [1] Higham, N. J. and F. Tisseur, “A Block Algorithm for Matrix 1-Norm
Estimation, with an Application to 1-Norm Pseudospectra,” SIAM Journal
Matrix Anal. Appl., Vol. 21, No. 4, 2000, pp.1185-1201.
266

coneplot
1coneplotPurpose Plot velocity vectors as cones in a 3-D vector field

Syntax coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz)
coneplot(U,V,W,Cx,Cy,Cz)
coneplot(...,s)
coneplot(...,color)
coneplot(...,'quiver')
coneplot(...,'method')
coneplot(X,Y,Z,U,V,W,'nointerp')
h = coneplot(...)

Description coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz) plots velocity vectors as cones pointing in
the direction of the velocity vector and having a length proportional to the
magnitude of the velocity vector.

• X, Y, Z define the coordinates for the vector field.

• U, V, W define the vector field. These arrays must be the same size, monotonic,
and 3-D plaid (such as the data produced by meshgrid).

• Cx, Cy, Cz define the location of the cones in vector field. The section "Starting
Points for Stream Plots" in Visualization Techniques provides more
information on defining starting points.

coneplot(U,V,W,Cx,Cy,Cz) (omitting the X, Y, and Z arguments) assumes
[X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p]= size(U).

coneplot(...,s) MATLAB automatically scales the cones to fit the graph and
then stretches them by the scale factor s. If you do not specify a value for s,
MATLAB uses a value of 1. Use s = 0 to plot the cones without automatic
scaling.

coneplot(...,color) interpolates the array color onto the vector field and
then colors the cones according to the interpolated values. The size of the color
array must be the same size as the U, V, W arrays. This option works only with
cones (i.e., not with the quiver option).

coneplot(...,'quiver') draws arrows instead of cones (see quiver3 for an
illustration of a quiver plot).
267

coneplot
coneplot(...,'method') specifies the interpolation method to use. method
can be: linear, cubic, nearest. linear is the default (see interp3 for a
discussion of these interpolation methods)

coneplot(X,Y,Z,U,V,W,'nointerp') does not interpolate the positions of the
cones into the volume. The cones are drawn at positions defined by X, Y, Z and
are oriented according to U, V, W. Arrays X, Y, Z, U, V, W must all be the same size.

h = coneplot(...) returns the handle to the patch object used to draw the
cones. You can use the set command to change the properties of the cones.

Remarks coneplot automatically scales the cones to fit the graph, while keeping them
in proportion to the respective velocity vectors.

It is usually best to set the data aspect ratio of the axes before calling coneplot.
You can set the ratio using the daspect command,

daspect([1,1,1])

Examples This example plots the velocity vector cones for vector volume data
representing the motion of air through a rectangular region of space. The final
graph employs a number of enhancements to visualize the data more
effectively. These include:

• Cone plots indicate the magnitude and direction of the wind velocity.

• Slice planes placed at the limits of the data range provide a visual context for
the cone plots within the volume.

• Directional lighting provides visual queues as to the orientation of the cones.

• View adjustments compose the scene to best reveal the information content
of the data by selecting the view point, projection type, and magnification.

1. Load and Inspect Data
The winds data set contains six 3-D arrays: u, v, and w specify the vector
components at each of the coordinate specified in x, y, and z. The coordinates
define a lattice grid structure where the data is sampled within the volume.
268

coneplot
It is useful to establish the range of the data to place the slice planes and to
specify where you want the cone plots (min, max).

load wind
xmin = min(x(:));
xmax = max(x(:));
ymin = min(y(:));
ymax = max(y(:));
zmin = min(z(:));

2. Create the Cone Plot

• Decide where in data space you want to plot cones. This example selects the
full range of x and y in eight steps and the range 3 to 15 in four steps in z
(linspace, meshgrid).

• Use daspect to set the data aspect ratio of the axes before calling coneplot
so MATLAB can determine the proper size of the cones.

• Draw the cones, setting the scale factor to 5 to make the cones larger than
the default size.

• Set the coloring of each cone (FaceColor, EdgeColor).

daspect([2,2,1])
xrange = linspace(xmin,xmax,8);
yrange = linspace(ymin,ymax,8);
zrange = 3:4:15;
[cx cy cz] = meshgrid(xrange,yrange,zrange);
hcones = coneplot(x,y,z,u,v,w,cx,cy,cz,5);
set(hcones,'FaceColor','red','EdgeColor','none')
269

coneplot
3. Add the Slice Planes

• Calculate the magnitude of the vector field (which represents wind speed) to
generate scalar data for the slice command.

• Create slice planes along the x-axis at xmin and xmax, along the y-axis at
ymax, and along the z-axis at zmin.

• Specify interpolated face color so the slice coloring indicates wind speed and
do not draw edges (hold, slice, FaceColor, EdgeColor).

hold on
wind_speed = sqrt(u.^2 + v.^2 + w.^2);
hsurfaces = slice(x,y,z,wind_speed,[xmin,xmax],ymax,zmin);
set(hsurfaces,'FaceColor','interp','EdgeColor','none')
hold off

4. Define the View

• Use the axis command to set the axis limits equal to the range of the data.

• Orient the view to azimuth = 30 and elevation = 40 (rotate3d is a useful
command for selecting the best view).

• Select perspective projection to provide a more realistic looking volume
(camproj).

• Zoom in on the scene a little to make the plot as large as possible (camzoom).

axis tight; view(30,40); axis off
camproj perspective; camzoom(1.5)

5. Add Lighting to the Scene
The light source affects both the slice planes (surfaces) and the cone plots
(patches). However, you can set the lighting characteristics of each
independently.

• Add a light source to the right of the camera and use Phong lighting give the
cones and slice planes a smooth, three-dimensional appearance (camlight,
lighting).

• Increase the value of the AmbientStrength property for each slice plane to
improve the visibility of the dark blue colors. (Note that you can also specify
a different colormap to change to coloring of the slice planes.)
270

coneplot
• Increase the value of the DiffuseStrength property of the cones to brighten
particularly those cones not showing specular reflections.

camlight right; lighting phong
set(hsurfaces,'AmbientStrength',.6)
set(hcones,'DiffuseStrength',.8)

See Also isosurface, patch, reducevolume, smooth3, streamline, stream2, stream3,
subvolume
271

conj
1conjPurpose Complex conjugate

Syntax ZC = conj(Z)

Description ZC = conj(Z) returns the complex conjugate of the elements of Z.

Algorithm If Z is a complex array:

conj(Z) = real(Z) - i∗imag(Z)

See Also i, j, imag, real
272

continue
1continuePurpose Pass control to the next iteration of for or while loop

Syntax continue

Description continue passes control to the next iteration of the for or while loop in which
it appears, skipping any remaining statements in the body of the loop.

In nested loops, continue passes control to the next iteration of the for or
while loop enclosing it.

See Also break, for, return, while
273

contour
1contourPurpose Two-dimensional contour plot

Syntax contour(Z)
contour(Z,n)
contour(Z,v)
contour(X,Y,Z)
contour(X,Y,Z,n)
contour(X,Y,Z,v)
contour(...,LineSpec)
[C,h] = contour(...)

Description A contour plot displays isolines of matrix Z. Label the contour lines using
clabel.

contour(Z) draws a contour plot of matrix Z, where Z is interpreted as heights
with respect to the x-y plane. Z must be at least a 2-by-2 matrix. The number
of contour levels and the values of the contour levels are chosen automatically
based on the minimum and maximum values of Z. The ranges of the x- and
y-axis are [1:n] and [1:m], where [m,n] = size(Z).

contour(Z,n) draws a contour plot of matrix Z with n contour levels.

contour(Z,v) draws a contour plot of matrix Z with contour lines at the data
values specified in vector v. The number of contour levels is equal to length(v).
To draw a single contour of level i, use contour(Z,[i i]).

contour(X,Y,Z), contour(X,Y,Z,n), and contour(X,Y,Z,v) draw contour
plots of Z. X and Y specify the x- and y-axis limits. When X and Y are matrices,
they must be the same size as Z, in which case they specify a surface as surf
does.

contour(...,LineSpec) draws the contours using the line type and color
specified by LineSpec. contour ignores marker symbols.

[C,h] = contour(...) returns the contour matrix C (see contourc) and a
vector of handles to graphics objects. clabel uses the contour matrix C to create
the labels. contour creates patch graphics objects unless you specify LineSpec,
in which case contour creates line graphics objects.
274

contour
Remarks If you do not specify LineSpec, colormap and caxis control the color.

If X or Y is irregularly spaced, contour calculates contours using a regularly
spaced contour grid, then transforms the data to X or Y.

Examples To view a contour plot of the function

over the range –2 ≤ x ≤ 2, –2 ≤ y ≤ 3, create matrix Z using the statements

[X,Y] = meshgrid(–2:.2:2,–2:.2:3);
Z = X.∗exp(–X.^2–Y.^2);

Then, generate a contour plot of Z.

[C,h] = contour(X,Y,Z);
clabel(C,h)
colormap cool

View the same function over the same range with 20 evenly spaced contour
lines and colored with the default colormap jet.

z xe x2 y2––()=

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

−0.3

−0.2

−0.2

−0.1

−0.1

−0.1

 0
 0

 0.1

 0.1

 0.1

 0.2

 0
.2

 0.3

 0.4
275

contour
contour(X,Y,Z,20)

Use interp2 and contour to create smoother contours.

Z = magic(4);
[C,h] = contour(interp2(Z,4));
clabel(C,h)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

276

contour
See Also clabel, contour3, contourc, contourf, interp2, quiver

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

 4

 6

 8
 8

 8

 8

 8

 8
 8

10

10

10

10

10

12
277

contour3
1contour3Purpose Three-dimensional contour plot

Syntax contour3(Z)
contour3(Z,n)
contour3(Z,v)
contour3(X,Y,Z)
contour3(X,Y,Z,n)
contour3(X,Y,Z,v)
contour3(...,LineSpec)
[C,h] = contour3(...)

Description contour3 creates a three-dimensional contour plot of a surface defined on a
rectangular grid.

contour3(Z) draws a contour plot of matrix Z in a three-dimensional view. Z is
interpreted as heights with respect to the x-y plane. Z must be at least a 2-by-2
matrix. The number of contour levels and the values of contour levels are
chosen automatically. The ranges of the x- and y-axis are [1:n] and [1:m],
where [m,n] = size(Z).

contour3(Z,n) draws a contour plot of matrix Z with n contour levels in a
three-dimensional view.

contour3(Z,v) draws a contour plot of matrix Z with contour lines at the
values specified in vector v. The number of contour levels is equal to length(v).
To draw a single contour of level i, use contour(Z,[i i]).

contour3(X,Y,Z), contour3(X,Y,Z,n), and contour3(X,Y,Z,v) use X and Y
to define the x- and y-axis limits. If X is a matrix, X(1,:) defines the x-axis. If
Y is a matrix, Y(:,1) defines the y-axis. When X and Y are matrices, they must
be the same size as Z, in which case they specify a surface as surf does.

contour3(...,LineSpec) draws the contours using the line type and color
specified by LineSpec.

[C,h] = contour3(...) returns the contour matrix C as described in the
function contourc and a column vector containing handles to graphics objects.
contour3 creates patch graphics objects unless you specify LineSpec, in which
case contour3 creates line graphics objects.
278

contour3
Remarks If you do not specify LineSpec, colormap and caxis control the color.

If X or Y is irregularly spaced, contour3 calculates contours using a regularly
spaced contour grid, then transforms the data to X or Y.

Examples Plot the three-dimensional contour of a function and superimpose a surface
plot to enhance visualization of the function.

[X,Y] = meshgrid([-2:.25:2]);
Z = X.*exp(-X.^2-Y.^2);
contour3(X,Y,Z,30)
surface(X,Y,Z,’EdgeColor’,[.8 .8 .8],’FaceColor’,’none’)
grid off
view(-15,25)
colormap cool

See Also contour, contourc, meshc, meshgrid, surfc

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2

−0.5

0

0.5
279

contourc
1contourcPurpose Low-level contour plot computation

Syntax C = contourc(Z)
C = contourc(Z,n)
C = contourc(Z,v)
C = contourc(x,y,Z)
C = contourc(x,y,Z,n)
C = contourc(x,y,Z,v)

Description contourc calculates the contour matrix C used by contour, contour3, and
contourf. The values in Z determine the heights of the contour lines with
respect to a plane. The contour calculations use a regularly spaced grid
determined by the dimensions of Z.

C = contourc(Z) computes the contour matrix from data in matrix Z, where Z
must be at least a 2-by-2 matrix. The contours are isolines in the units of Z. The
number of contour lines and the corresponding values of the contour lines are
chosen automatically.

C = contourc(Z,n) computes contours of matrix Z with n contour levels.

C = contourc(Z,v) computes contours of matrix Z with contour lines at the
values specified in vector v. The length of v determines the number of contour
levels. To compute a single contour of level i, use contourc(Z,[i i]).

C = contourc(x,y,Z), C = contourc(x,y,Z,n), and C = contourc(x,y,Z,v)
compute contours of Z using vectors x and y to determine the x- and y-axis
limits. x and y must be monotonically increasing.

Remarks C is a two-row matrix specifying all the contour lines. Each contour line defined
in matrix C begins with a column that contains the value of the contour
(specified by v and used by clabel), and the number of (x,y) vertices in the
contour line. The remaining columns contain the data for the (x,y)pairs.

C = [value1 xdata(1) xdata(2)...value2 xdata(1) xdata(2)...;
dim1 ydata(1) ydata(2)...dim2 ydata(1) ydata(2)...]

Specifying irregularly spaced x and y vectors is not the same as contouring
irregularly spaced data. If x or y is irregularly spaced, contourc calculates
280

contourc
contours using a regularly spaced contour grid, then transforms the data to x
or y.

See Also clabel, contour, contour3, contourf
281

contourf
1contourfPurpose Filled two-dimensional contour plot

Syntax contourf(Z)
contourf(Z,n)
contourf(Z,v)
contourf(X,Y,Z)
contourf(X,Y,Z,n)
contourf(X,Y,Z,v)
[C,h,CF] = contourf(...)

Description A filled contour plot displays isolines calculated from matrix Z and fills the
areas between the isolines using constant colors. The color of the filled areas
depends on the current figure’s colormap.

contourf(Z) draws a contour plot of matrix Z, where Z is interpreted as
heights with respect to a plane. Z must be at least a 2-by-2 matrix. The number
of contour lines and the values of the contour lines are chosen automatically.

contourf(Z,n) draws a contour plot of matrix Z with n contour levels.

contourf(Z,v) draws a contour plot of matrix Z with contour levels at the
values specified in vector v.

contourf(X,Y,Z), contourf(X,Y,Z,n), and contourf(X,Y,Z,v) produce
contour plots of Z using X and Y to determine the x- and y-axis limits. When X
and Y are matrices, they must be the same size as Z, in which case they specify
a surface as surf does.

[C,h,CF] = contourf(...) returns the contour matrix C as calculated by the
function contourc and used by clabel, a vector of handles h to patch graphics
objects, and a contour matrix CF for the filled areas.

Remarks If X or Y is irregularly spaced, contourf calculates contours using a regularly
spaced contour grid, then transforms the data to X or Y.

Examples Create a filled contour plot of the peaks function.

[C,h] = contourf(peaks(20),10);
282

contourf
colormap autumn

See Also clabel, contour, contour3, contourc, quiver

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20
283

contourslice
1contourslicePurpose Draw contours in volume slice planes

Syntax contourslice(X,Y,Z,V,Sx,Sy,Sz)
contourslice(X,Y,Z,V,Xi,Yi,Zi)
contourslice(V,Sx,Sy,Sz), contourslice(V,Xi,Yi,Zi)
contourslice(...,n)
contourslice(...,cvals)
contourslice(...,[cv cv])
contourslice(...,'method')
h = contourslice(...)

Description contourslice(X,Y,Z,V,Sx,Sy,Sz) draws contours in the x-, y-, and z-axis
aligned planes at the points in the vectors Sx, Sy, Sz. The arrays X, Y, and Z
define the coordinates for the volume V and must be monotonic and 3-D plaid
(such as the data produced by meshgrid) The color at each contour is
determined by the volume V, which must be an m-by-n-by-p volume array.

contourslice(X,Y,Z,V,Xi,Yi,Zi) draws contours through the volume V
along the surface defined by the arrays Xi,Yi,Zi.

contourslice(V,Sx,Sy,Sz) and contourslice(V,Xi,Yi,Zi) (omitting the X,
Y, and Z arguments) assumes [X,Y,Z] = meshgrid(1:n,1:m,1:p) where
[m,n,p]= size(v).

contourslice(...,n) draws n contour lines per plane, overriding the
automatic value.

contourslice(...,cvals) draws length(cval) contour lines per plane at the
values specified in vector cvals.

contourslice(...,[cv cv]) computes a single contour per plane at the level
cv.

contourslice(...,'method') specifies the interpolation method to use.
method can be: linear, cubic, nearest. nearest is the default except when the
contours are being drawn along the surface defined by Xi, Yi, Zi, in which case
linear is the default (see interp3 for a discussion of these interpolation
methods).

h = contourslice(...) returns a vector of handles to patch objects that are
used to implement the contour lines.
284

contourslice
Examples This example uses the flow data set to illustrate the use of contoured slice
planes (type help flow for more information on this data set). Notice that this
example:

• Specifies a vector of length = 9 for Sx, an empty vector for the Sy, and a
scalar value (0) for Sz. This creates nine contour plots along the x direction
in the y-z plane, and one in the x-y plane at z = 0.

• Uses linspace to define a ten-element linearly spaced vector of values from
-8 to 2 that specifies the number of contour lines to draw at each interval.

• Defines the view and projection type (camva, camproj, campos)

• Sets figure (gcf) and axes (gca) characteristics.

[x y z v] = flow;
h = contourslice(x,y,z,v,[1:9],[],[0],linspace(-8,2,10));
axis([0,10,-3,3,-3,3]); daspect([1,1,1])
camva(24); camproj perspective;
campos([-3,-15,5])
set(gcf,'Color',[.5,.5,.5],'Renderer','zbuffer')
set(gca,'Color','black','XColor','white', ...

'YColor','white','ZColor','white')
box on
285

contourslice
See Also isosurface, smooth3, subvolume, reducevolume

1
2

3
4

5
6

7
8

9
10

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

286

contrast
1contrastPurpose Grayscale colormap for contrast enhancement

Syntax cmap = contrast(X)
cmap = contrast(X,m)

Description The contrast function enhances the contrast of an image. It creates a new gray
colormap, cmap, that has an approximately equal intensity distribution. All
three elements in each row are identical.

cmap = contrast(X) returns a gray colormap that is the same length as the
current colormap.

cmap = contrast(X,m) returns an m-by-3 gray colormap.

Examples Add contrast to the clown image defined by X.

load clown;
cmap = contrast(X);
image(X);
colormap(cmap);

See Also brighten, colormap, image
287

conv
1convPurpose Convolution and polynomial multiplication

Syntax w = conv(u,v)

Description w = conv(u,v) convolves vectors u and v. Algebraically, convolution is the
same operation as multiplying the polynomials whose coefficients are the
elements of u and v.

Definition Let m = length(u) and n = length(v). Then w is the vector of length m+n-1
whose kth element is

The sum is over all the values of j which lead to legal subscripts for u(j) and
v(k+1-j), specifically j = max(1,k+1-n): min(k,m). When m = n, this gives

w(1) = u(1)∗v(1)
w(2) = u(1)∗v(2)+u(2)∗v(1)
w(3) = u(1)*v(3)+u(2)∗v(2)+u(3)∗v(1)
...
w(n) = u(1)∗v(n)+u(2)∗v(n-1)+ ... +u(n)∗v(1)
...
w(2∗n-1) = u(n)∗v(n)

Algorithm The convolution theorem says, roughly, that convolving two sequences is the
same as multiplying their Fourier transforms. In order to make this precise, it
is necessary to pad the two vectors with zeros and ignore roundoff error. Thus,
if

X = fft([x zeros(1,length(y)-1)]) and Y = fft([y zeros(1,length(x)-1)])

then conv(x,y) = ifft(X.∗Y)

See Also conv2, convn, deconv, filter

convmtx and xcorr in the Signal Processing Toolbox

w k() u j()v k 1 j–+()
j

∑=
288

conv2
1conv2Purpose Two-dimensional convolution

Syntax C = conv2(A,B)
C = conv2(hcol,hrow,A)
C = conv2(...,'shape')

Description C = conv2(A,B) computes the two-dimensional convolution of matrices A and
B. If one of these matrices describes a two-dimensional FIR filter, the other
matrix is filtered in two dimensions.

The size of C in each dimension is equal to the sum of the corresponding
dimensions of the input matrices, minus one. That is, if the size of A is [ma,na]
and the size of B is [mb,nb], then the size of C is [ma+mb-1,na+nb-1].

C = conv2(hcol,hrow,A) convolves A separably with hcol in the column
direction and hrow in the row direction. hcol and hrow should both be vectors.

C = conv2(...,'shape') returns a subsection of the two-dimensional
convolution, as specified by the shape parameter:

Examples In image processing, the Sobel edge finding operation is a two-dimensional
convolution of an input array with the special matrix

s = [1 2 1; 0 0 0; -1 -2 -1];

These commands extract the horizontal edges from a raised pedestal:

A = zeros(10);
A(3:7,3:7) = ones(5);
H = conv2(A,s);
mesh(H)

These commands display first the vertical edges of A, then both horizontal and
vertical edges.

full Returns the full two-dimensional convolution (default).
same Returns the central part of the convolution of the same size as A.
valid Returns only those parts of the convolution that are computed

without the zero-padded edges. Using this option, C has size
[ma-mb+1,na-nb+1] when size(A) > size(B).
289

conv2
V = conv2(A,s');
mesh(V)
mesh(sqrt(H.^2+V.^2))

See Also conv, convn, filter2

xcorr2 in the Signal Processing Toolbox
290

convhull
1convhullPurpose Convex hull

Syntax K = convhull(x,y)
K = convhull(x,y,TRI)

Description K = convhull(x,y) returns indices into the x and y vectors of the points on the
convex hull.

K = convhull(x,y,TRI) uses the triangulation (as obtained from delaunay)
instead of computing it each time.

Examples xx = -1:.05:1; yy = abs(sqrt(xx));
[x,y] = pol2cart(xx,yy);
k = convhull(x,y);
plot(x(k),y(k),'r-',x,y,'b+')

See Also convhull, delaunay, polyarea, voronoi

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

291

convhulln
1convhullnPurpose n-D convex hull

Syntax K = convhulln(X)

Description K = convhulln(X) returns the indices K of the points in X that comprise the
facets of the convex hull of X. X is an m-by-n array representing m points in n-D
space. If the convex hull has p facets then K is p-by-n+1.

Note convhulln is based on qhull [1]. For information about qhull, see
http://www.geom.umn.edu/software/qhull/. For copyright information, see
http://www.geom.umn.edu/software/download/COPYING.html.

See Also convhull, delaunayn, voronoin

Reference [1] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.
292

convn
1convnPurpose N-dimensional convolution

Syntax C = convn(A,B)
C = convn(A,B,'shape')

Description C = convn(A,B) computes the N-dimensional convolution of the arrays A and
B. The size of the result is size(A)+size(B)-1.

C = convn(A,B,'shape') returns a subsection of the N-dimensional
convolution, as specified by the shape parameter:

• 'full' returns the full N-dimensional convolution (default).

• 'same' returns the central part of the result that is the same size as A.

• 'valid' returns only those parts of the convolution that can be computed
without assuming that the array A is zero-padded. The size of the result is

max(size(A)-size(B) + 1, 0).

See Also conv, conv2
293

copyfile
1copyfilePurpose Copy file

Graphical
Interface

As an alternative to the copyfile function, you can copy files using the Current
Directory browser. To open it, select Current Directory from the View menu
in the MATLAB desktop.

Syntax copyfile source dest
copyfile source dest writable
status = copyfile('source','dest',...)
[status,msg] = copyfile('source','dest',...)

Description copyfile source dest copies the file, source, to directory or file, dest. The
source and dest arguments may be absolute pathnames or pathnames relative
to the current directory. The pathname to dest must exist, but dest cannot be
an existing filename in the current directory.

copyfile source dest writable makes the destination file writable
following the file copy.

status = copyfile('source','dest',...) returns a status of 1 if the file
is copied successfully and 0 otherwise.

[status,msg] = copyfile('source','dest',...) returns status and a
nonempty error message string when an error occurs.

Example To make a copy of a file in the same directory,

copyfile myfun.m myfun2.m

To copy a file to another directory, keeping the same filename,

file_copied = copyfile('myfun.m','../testfun/private')
file_copied =
 1

See Also delete, mkdir
294

copyobj
1copyobjPurpose Copy graphics objects and their descendants

Syntax new_handle = copyobj(h,p)

Description copyobj creates copies of graphics objects. The copies are identical to the
original objects except the copies have different values for their Parent
property and a new handle. The new parent must be appropriate for the copied
object (e.g., you can copy a line object only to another axes object).

new_handle = copyobj(h,p) copies one or more graphics objects identified by
h and returns the handle of the new object or a vector of handles to new objects.
The new graphics objects are children of the graphics objects specified by p.

Remarks h and p can be scalars or vectors. When both are vectors, they must be the same
length and the output argument, new_handle, is a vector of the same length.
In this case, new_handle(i) is a copy of h(i) with its Parent property set to
p(i).

When h is a scalar and p is a vector, h is copied once to each of the parents in p.
Each new_handle(i) is a copy of h with its Parent property set to p(i), and
length(new_handle) equals length(p).

When h is a vector and p is a scalar, each new_handle(i) is a copy of h(i) with
its Parent property set to p. The length of new_handle equals length(h).

Graphics objects are arranged as a hierarchy. Here, each graphics object is
shown connected below its appropriate parent object.

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle
295

copyobj
Examples Copy a surface to a new axes within a different figure.

h = surf(peaks);
colormap hot
figure % Create a new figure
axes % Create an axes object in the figure
new_handle = copyobj(h,gca);
colormap hot
view(3)
grid on

Note that while the surface is copied, the colormap (figure property), view, and
grid (axes properties) are not copies.

See Also findobj, gcf, gca, gco, get, set

Parent property for all graphics objects
296

corrcoef
1corrcoefPurpose Correlation coefficients

Syntax S = corrcoef(X)
S = corrcoef(x,y)

Description S = corrcoef(X) returns a matrix of correlation coefficients calculated from
an input matrix whose rows are observations and whose columns are variables.
The matrix S = corrcoef(X) is related to the covariance matrix C = cov(X)
by

corrcoef(X) is the zeroth lag of the covariance function, that is, the zeroth lag
of xcov(x,'coeff') packed into a square array.

S = corrcoef(x,y) where x and y are column vectors is the same as
corrcoef([x y]).

See Also xcorr, xcov in the Signal Processing Toolbox, and:

cov, mean, std

S i j,() C i j,()
C i i,()C j j,()

---------------------------------------=
297

cos, cosh
1cos, coshPurpose Cosine and hyperbolic cosine

Syntax Y = cos(X)
Y = cosh(X)

Description The cos and cosh functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = cos(X) returns the circular cosine for each element of X.

Y = cosh(X) returns the hyperbolic cosine for each element of X.

Examples Graph the cosine function over the domain and the hyperbolic
cosine function over the domain

x = -pi:0.01:pi; plot(x,cos(x))
x = -5:0.01:5; plot(x,cosh(x))

The expression cos(pi/2) is not exactly zero but a value the size of the
floating-point accuracy, eps, because pi is only a floating-point approximation
to the exact value of π.

Algorithm

See Also acos, acosh

π– x π,≤ ≤
5– x 5.≤ ≤

-3 -2 -1 0 1 2 3 4
x

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

x

y=
co

sh
(x

)

x iy+()cos x() y()coshcos i x() y()sinsin–=

z()cos eiz e iz–+
2

-----------------------=

z()cosh ez e z–+
2

-------------------=
298

cot, coth
1cot, cothPurpose Cotangent and hyperbolic cotangent

Syntax Y = cot(X)
Y = coth(X)

Description The cot and coth functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = cot(X) returns the cotangent for each element of X.

Y = coth(X) returns the hyperbolic cotangent for each element of X.

Examples Graph the cotangent and hyperbolic cotangent over the domains and

x1 = -pi+0.01:0.01:-0.01; x2 = 0.01:0.01:pi-0.01;
plot(x1,cot(x1),x2,cot(x2))
plot(x1,coth(x1),x2,coth(x2))

Algorithm

See Also acot, acoth

π– x 0< <
0 x π.< <

-4 -3 -2 -1 0 1 2 3 4
-100

-80

-60

-40

-20

0

20

40

60

80

100

x1,x2

y=
co

t(
x)

-4 -3 -2 -1 0 1 2 3 4
-100

-50

0

50

100

150

x1,x2

y=
co

th
(x

)

z()cot 1
z()tan

------------------=

z()coth 1
z()tanh

---------------------=
299

cov
1covPurpose Covariance matrix

Syntax C = cov(X)
C = cov(x,y)

Description C = cov(x) where x is a vector returns the variance of the vector elements. For
matrices where each row is an observation and each column a variable, cov(x)
is the covariance matrix. diag(cov(x)) is a vector of variances for each
column, and sqrt(diag(cov(x))) is a vector of standard deviations.

C = cov(x,y), where x and y are column vectors of equal length, is equivalent
to cov([x y]).

Remarks cov removes the mean from each column before calculating the result.

The covariance function is defined as

where E is the mathematical expectation and µi= Exi.

Examples Consider A = [-1 1 2 ; -2 3 1 ; 4 0 3]. To obtain a vector of variances for
each column of A:

v = diag(cov(A))'
v =
 10.3333 2.3333 1.0000

Compare vector v with covariance matrix C:

C =
 10.3333 -4.1667 3.0000
 -4.1667 2.3333 -1.5000
 3.0000 -1.5000 1.0000

The diagonal elements C(i,i) represent the variances for the columns of A.
The off-diagonal elements C(i,j) represent the covariances of columns i and j.

See Also xcorr, xcov in the Signal Processing Toolbox, and:

corrcoef, mean, std

cov x1,x2() E x1 µ1–() x2 µ2–()[]=
300

cplxpair
1cplxpairPurpose Sort complex numbers into complex conjugate pairs

Syntax B = cplxpair(A)
B = cplxpair(A,tol)
B = cplxpair(A,[],dim)
B = cplxpair(A,tol,dim)

Description B = cplxpair(A) sorts the elements along different dimensions of a complex
array, grouping together complex conjugate pairs.

The conjugate pairs are ordered by increasing real part. Within a pair, the
element with negative imaginary part comes first. The purely real values are
returned following all the complex pairs. The complex conjugate pairs are
forced to be exact complex conjugates. A default tolerance of 100∗eps relative
to abs(A(i)) determines which numbers are real and which elements are
paired complex conjugates.

If A is a vector, cplxpair(A) returns A with complex conjugate pairs grouped
together.

If A is a matrix, cplxpair(A) returns A with its columns sorted and complex
conjugates paired.

If A is a multidimensional array, cplxpair(A) treats the values along the first
non-singleton dimension as vectors, returning an array of sorted elements.

B = cplxpair(A,tol) overrides the default tolerance.

B = cplxpair(A,[],dim) sorts A along the dimension specified by scalar dim.

B = cplxpair(A,tol,dim) sorts A along the specified dimension and overrides
the default tolerance.

Diagnostics If there are an odd number of complex numbers, or if the complex numbers
cannot be grouped into complex conjugate pairs within the tolerance, cplxpair
generates the error message:

Complex numbers can't be paired.
301

cputime
1cputimePurpose Elapsed CPU time

Syntax cputime

Description cputime returns the total CPU time (in seconds) used by MATLAB from the
time it was started. This number can overflow the internal representation and
wrap around.

Examples The following code returns the CPU time used to run surf(peaks(40)).

t = cputime; surf(peaks(40)); e = cputime-t

e =
0.4667

See Also clock, etime, tic, toc
302

cross
1crossPurpose Vector cross product

Syntax C = cross(A,B)
C = cross(A,B,dim)

Description C = cross(A,B) returns the cross product of the vectors A and B. That is,
C = A x B. A and B must be 3-element vectors. If A and B are multidimensional
arrays, cross returns the cross product of A and B along the first dimension of
length 3.

C = cross(A,B,dim) where A and B are multidimensional arrays, returns the
cross product of A and B in dimension dim . A and B must have the same size,
and both size(A,dim) and size(B,dim) must be 3.

Remarks To perform a dot (scalar) product of two vectors of the same size, use
c = dot(a,b).

Examples The cross and dot products of two vectors are calculated as shown:

a = [1 2 3]; b = [4 5 6];
c = cross(a,b)

c =
 -3 6 -3

d = dot(a,b)

d =
 32

See Also dot
303

csc, csch
1csc, cschPurpose Cosecant and hyperbolic cosecant

Syntax Y = csc(x)
Y = csch(x)

Description The csc and csch functions operate element-wise on arrays. The functions’
domains and ranges include complex values. All angles are in radians.

Y = csc(x) returns the cosecant for each element of x.

Y = csch(x) returns the hyperbolic cosecant for each element of x.

Examples Graph the cosecant and hyperbolic cosecant over the domains and
.

x1 = -pi+0.01:0.01:-0.01; x2 = 0.01:0.01:pi-0.01;
plot(x1,csc(x1),x2,csc(x2))
plot(x1,csch(x1),x2,csch(x2))

Algorithm

See Also acsc, acsch

π– x 0< <
0 x π< <

-4 -3 -2 -1 0 1 2 3 4
-150

-100

-50

0

50

100

150

x1,x2

y=
cs

c(
x)

-4 -3 -2 -1 0 1 2 3 4
-100

-80

-60

-40

-20

0

20

40

60

80

100

x1,x2

y=
cs

ch
(x

)

z()csc 1
z()sin

-----------------=

z()csch 1
z()sinh

--------------------=
304

cumprod
1cumprodPurpose Cumulative product

Syntax B = cumprod(A)
B = cumprod(A,dim)

Description B = cumprod(A) returns the cumulative product along different dimensions of
an array.

If A is a vector, cumprod(A) returns a vector containing the cumulative product
of the elements of A.

If A is a matrix, cumprod(A) returns a matrix the same size as A containing the
cumulative products for each column of A.

If A is a multidimensional array, cumprod(A) works on the first nonsingleton
dimension.

B = cumprod(A,dim) returns the cumulative product of the elements along the
dimension of A specified by scalar dim. For example, cumprod(A,1) increments
the first (row) index, thus working along the rows of A.

Examples cumprod(1:5) = [1 2 6 24 120]

A = [1 2 3; 4 5 6];

disp(cumprod(A))
 1 2 3
 4 10 18

disp(cumprod(A,2))
 1 2 6
 4 20 120

See Also cumsum, prod, sum
305

cumsum
1cumsumPurpose Cumulative sum

Syntax B = cumsum(A)
B = cumsum(A,dim)

Description B = cumsum(A) returns the cumulative sum along different dimensions of an
array.

If A is a vector, cumsum(A) returns a vector containing the cumulative sum of
the elements of A.

If A is a matrix, cumsum(A) returns a matrix the same size as A containing the
cumulative sums for each column of A.

If A is a multidimensional array, cumsum(A) works on the first nonsingleton
dimension.

B = cumsum(A,dim) returns the cumulative sum of the elements along the
dimension of A specified by scalar dim. For example, cumsum(A,1) works across
the first dimension (the rows).

Examples cumsum(1:5) = [1 3 6 10 15]

A = [1 2 3; 4 5 6];

disp(cumsum(A))
 1 2 3
 5 7 9

disp(cumsum(A,2))
 1 3 6
 4 9 15

See Also cumprod, prod, sum
306

cumtrapz
1cumtrapzPurpose Cumulative trapezoidal numerical integration

Syntax Z = cumtrapz(Y)
Z = cumtrapz(X,Y)
Z = cumtrapz(... dim)

Description Z = cumtrapz(Y) computes an approximation of the cumulative integral of Y
via the trapezoidal method with unit spacing. (This is similar to cumsum(Y),
except that trapezoidal approximation is used.) To compute the integral with
other than unit spacing, multiply Z by the spacing increment.

For vectors, cumtrapz(Y) is the cumulative integral of Y.

For matrices, cumtrapz(Y) is a row vector with the cumulative integral over
each column.

For multidimensional arrays, cumtrapz(Y) works across the first nonsingleton
dimension.

Z = cumtrapz(X,Y) computes the cumulative integral of Y with respect to X
using trapezoidal integration. X and Y must be vectors of the same length, or X
must be a column vector and Y an array.

If X is a column vector and Y an array whose first nonsingleton dimension is
length(X), cumtrapz(X,Y) operates across this dimension.

Z = cumtrapz(... dim) integrates across the dimension of Y specified by
scalar dim. The length of X must be the same as size(Y,dim).

Example Example: If Y = [0 1 2; 3 4 5]

cumtrapz(Y,1)
ans =

0 1.0000 2.0000
 1.5000 2.5000 3.5000

and

cumtrapz(Y,2)
ans =

0 0.5000 2.0000
 3.0000 3.5000 8.0000
307

cumtrapz
See Also cumsum, trapz
308

curl
1curlPurpose Computes the curl and angular velocity of a vector field

Syntax [curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W)
[curlx,curly,curlz,cav] = curl(U,V,W)
[curlz,cav]= curl(X,Y,U,V)
[curlz,cav]= curl(U,V)
[curlx,curly,curlz] = curl(...), [curlx,curly] = curl(...)
cav = curl(...)

Description [curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W) computes the curl and
angular velocity perpendicular to the flow (in radians per time unit) of a 3-D
vector field U, V, W. The arrays X, Y, Z define the coordinates for U, V, W and must
be monotonic and 3-D plaid (as if produced by meshgrid).

[curlx,curly,curlz,cav] = curl(U,V,W) assumes X, Y, and Z are
determined by the expression:

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

[curlz,cav]= curl(X,Y,U,V) computes the curl z-component and the
angular velocity perpendicular to z (in radians per time unit) of a 2-D vector
field U, V. The arrays X, Y define the coordinates for U, V and must be monotonic
and 2-D plaid (as if produced by meshgrid).

[curlz,cav]= curl(U,V) assumes X and Y are determined by the expression:

[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

[curlx,curly,curlz] = curl(...), curlx,curly] = curl(...) returns
only the curl.

cav = curl(...) returns only the curl angular velocity.

Examples This example uses colored slice planes to display the curl angular velocity at
specified locations in the vector field.
309

curl
load wind
cav = curl(x,y,z,u,v,w);
slice(x,y,z,cav,[90 134],[59],[0]);
shading interp
daspect([1 1 1]); axis tight
colormap hot(16)
camlight

This example views the curl angular velocity in one plane of the volume and
plots the velocity vectors (quiver) in the same plane.

load wind
k = 4;
x = x(:,:,k); y = y(:,:,k); u = u(:,:,k); v = v(:,:,k);
cav = curl(x,y,u,v);
pcolor(x,y,cav); shading interp
hold on;
quiver(x,y,u,v,'y')
hold off
colormap copper
310

curl
See Also streamribbon, divergence
311

customverctrl
1customverctrlPurpose Allow custom version control system

Syntax customverctrl(filename, arguments)

Description This function is supplied for customers who want to integrate a version control
system that is not supported with MATLAB. This function must conform to the
structure of one of the supported version control systems, for example RCS. See
the files clearcase.m, pvcs.m, rcs.m, and sourcesafe.m in
$matlabroot\toolbox\matlab\verctrl as examples.

See Also checkin, checkout, cmopts, undocheckout
312

cylinder
1cylinderPurpose Generate cylinder

Syntax [X,Y,Z] = cylinder
[X,Y,Z] = cylinder(r)
[X,Y,Z] = cylinder(r,n)
cylinder(...)

Description cylinder generates x, y, and z coordinates of a unit cylinder. You can draw the
cylindrical object using surf or mesh, or draw it immediately by not providing
output arguments.

[X,Y,Z] = cylinder returns the x, y, and z coordinates of a cylinder with a
radius equal to 1. The cylinder has 20 equally spaced points around its
circumference.

[X,Y,Z] = cylinder(r) returns the x, y, and z coordinates of a cylinder using
r to define a profile curve. cylinder treats each element in r as a radius at
equally spaced heights along the unit height of the cylinder. The cylinder has
20 equally spaced points around its circumference.

[X,Y,Z] = cylinder(r,n) returns the x, y, and z coordinates of a cylinder
based on the profile curve defined by vector r. The cylinder has n equally spaced
points around its circumference.

cylinder(...), with no output arguments, plots the cylinder using surf.

Remarks cylinder treats its first argument as a profile curve. The resulting surface
graphics object is generated by rotating the curve about the x-axis, and then
aligning it with the z-axis.

Examples Create a cylinder with randomly colored faces.

cylinder
axis square
h = findobj('Type','surface');
313

cylinder
set(h,'CData',rand(size(get(h,'CData'))))

Generate a cylinder defined by the profile function 2+sin(t).

t = 0:pi/10:2*pi;
[X,Y,Z] = cylinder(2+cos(t));
surf(X,Y,Z)
axis square

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

314

cylinder
See Also sphere, surf

−4

−2

0

2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

315

daspect
1daspectPurpose Set or query the axes data aspect ratio

Syntax daspect
daspect([aspect_ratio])
daspect('mode')
daspect('auto')
daspect('manual')
daspect(axes_handle,...)

Description The data aspect ratio determines the relative scaling of the data units along the
x-, y-, and z-axes.

daspect with no arguments returns the data aspect ratio of the current axes.

daspect([aspect_ratio]) sets the data aspect ratio in the current axes to the
specified value. Specify the aspect ratio as three relative values representing
the ratio of the x-, y-, and z-axis scaling (e.g., [1 1 3] means one unit in x is
equal in length to one unit in y and three unit in z).

daspect('mode') returns the current value of the data aspect ratio mode,
which can be either auto (the default) or manual. See Remarks.

daspect('auto') sets the data aspect ratio mode to auto.

daspect('manual') sets the data aspect ratio mode to manual.

daspect(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
daspect operates on the current axes.

Remarks daspect sets or queries values of the axes object DataAspectRatio and
DataAspectRatioMode properties.

When the data aspect ratio mode is auto, MATLAB adjusts the data aspect
ratio so that each axis spans the space available in the figure window. If you
are displaying a representation of a real-life object, you should set the data
aspect ratio to [1 1 1] to produce the correct proportions.

Setting a value for data aspect ratio or setting the data aspect ratio mode to
manual disables MATLAB’s stretch-to-fill feature (stretching of the axes to fit
319

daspect
the window). This means setting the data aspect ratio to a value, including its
current value,

daspect(daspect)

can cause a change in the way the graphs look. See the Remarks section of the
axes description for more information.

Examples The following surface plot of the function is useful to illustrate
the data aspect ratio. First plot the function over the range –2 ≤ x ≤ 2, –2 ≤ y ≤ 2,

[x,y] = meshgrid([-2:.2:2]);
z = x.*exp(-x.^2 - y.^2);
surf(x,y,z)

Querying the data aspect ratio shows how MATLAB has drawn the surface.

daspect
ans =

4 4 1

Setting the data aspect ratio to [1 1 1] produces a surface plot with equal
scaling along each axis.

z xe x2 y2––()=

−2
−1

0
1

2

−2

−1

0

1

2
−0.5

0

0.5
320

daspect
daspect([1 1 1])

See Also axis, pbaspect, xlim, ylim, zlim

The axes properties DataAspectRatio, PlotBoxAspectRatio, XLim, YLim, ZLim

The discussion of axes aspect ratio in Visualization Techniques.

−2

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−0.5

0

0.5
321

date
1datePurpose Current date string

Syntax str = date

Description str = date returns a string containing the date in dd-mmm-yyyy format.

See Also clock, datenum, now
322

datenum
1datenumPurpose Serial date number

Syntax N = datenum(str)
N = datenum(str,P)
N = datenum(Y,M,D)
N = datenum(Y,M,D,H,MI,S)

Description The datenum function converts date strings and date vectors into serial date
numbers. Date numbers are serial days elapsed from some reference date. By
default, the serial day 1 corresponds to 1-Jan-0000.

N = datenum(str) converts the date string str into a serial date number. Date
strings with two-character years, e.g., 12-june-12, are assumed to lie within
the 100-year period centered about the current year.

NOTE The string str must be in one of the date formats 0, 1, 2, 6, 13, 14, 15,
or 16 as defined by datestr.

N = datenum(str,P) uses the specified pivot year as the starting year of the
100-year range in which a two-character year resides. The default pivot year is
the current year minus 50 years.

N = datenum(Y,M,D) returns the serial date number for corresponding
elements of the Y, M, and D (year, month, day) arrays. Y, M, and D must be arrays
of the same size (or any can be a scalar). Values outside the normal range of
each array are automatically “carried” to the next unit.

N = datenum(Y,M,D,H,MI,S) returns the serial date number for
corresponding elements of the Y, M, D, H, MI, and S (year, month, hour, minute,
and second) array values. Y, M, D, H, MI, and S must be arrays of the same size
(or any can be a scalar).
323

datenum
Examples Convert a date string to a serial date number.

n = datenum('19-May-1995')

n =
 728798

Specifying year, month, and day, convert a date to a serial date number.

n = datenum(1994,12,19)

n =
 728647

Convert a date string to a serial date number using the default pivot year

n = datenum('12-june-12')

n =
 735032

Convert the same date string to a serial date number using 1900 as the pivot
year.

n = datenum('12-june-12', 1900)

n =
 698507

See Also datestr, datevec, now
324

datestr
1datestrPurpose Date string format

Syntax str = datestr(D,dateform)
str = datestr(D,dateform,P)

Description str = datestr(D,dateform) converts each element of the array of serial date
numbers (D) to a string. Date strings with two-character years, e.g.,
12-june-12, are assumed to lie within the 100-year period centered about the
current year.

str = datestr(D,dateform,P) uses the specified pivot year as the starting
year of the 100-year range in which a two-character year resides. The default
pivot year is the current year minus 50 years.

The optional argument dateform specifies the date format of the result.
dateform can be either a number or a string:

dateform (number) dateform (string) Example

0 'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000
15:45:17

1 'dd-mmm-yyyy' 01-Mar-2000

2 'mm/dd/yy' 03/01/00

3 'mmm' Mar

4 'm' M

5 'mm' 03

6 'mm/dd' 03/01

7 'dd' 01

8 'ddd' Wed

9 'd' W

10 'yyyy' 2000

11 'yy' 00
325

datestr
NOTE dateform numbers 0, 1, 2, 6, 13, 14, 15, 16, and 23 produce a string
suitable for input to datenum or datevec. Other date string formats will not
work with these functions.

12 'mmmyy' Mar00

13 'HH:MM:SS' 15:45:17

14 'HH:MM:SS PM' 3:45:17 PM

15 'HH:MM' 15:45

16 'HH:MM PM' 3:45 PM

17 'QQ-YY' Q1-01

18 'QQ' Q1

19 'dd/mm' 01/03

20 'dd/mm/yy' 01/03/00

21 'mmm.dd.yyyy HH:MM:SS' Mar.01,2000
15:45:17

22 'mmm.dd.yyyy' Mar.01.2000

23 'mm/dd/yyyy' 03/01/2000

24 'dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd' 00/03/01

26 'yyyy/mm/dd' 2000/03/01

27 'QQ-YYYY’ Q1-2001

28 'mmmyyyy' Mar2000

dateform (number) dateform (string) Example
326

datestr
Time formats like 'h:m:s', 'h:m:s.s', 'h:m pm', ... may also be part of the
input array D. If you do not specify dateform, the date string format defaults to

See Also date, datenum, datevec

1 if D contains data information only (01-Mar-1995)

16 if D contains time information only (03:45 PM)

0 if D contains both date and time information (01-Mar-1995 03:45)
327

datetick
1datetickPurpose Label tick lines using dates

Syntax datetick(tickaxis)
datetick(tickaxis,dateform)

Description datetick(tickaxis) labels the tick lines of an axis using dates, replacing the
default numeric labels. tickaxis is the string 'x', 'y', or 'z'. The default is
'x'. datetick selects a label format based on the minimum and maximum
limits of the specified axis.

datetick(tickaxis,dateform) formats the labels according to the integer
dateform (see table). To produce correct results, the data for the specified axis
must be serial date numbers (as produced by datenum).

dateform (number) dateform (string) Example

0 'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000
15:45:17

1 'dd-mmm-yyyy' 01-Mar-2000

2 'mm/dd/yy' 03/01/00

3 'mmm' Mar

4 'm' M

5 'mm' 03

6 'mm/dd' 03/01

7 'dd' 01

8 'ddd' Wed

9 'd' W

10 'yyyy' 2000

11 'yy' 00

12 'mmmyy' Mar00

13 'HH:MM:SS' 15:45:17
328

datetick
Remarks datetick calls datestr to convert date numbers to date strings.

To change the tick spacing and locations, set the appropriate axes property
(i.e., XTick, YTick, or ZTick) before calling datetick.

Example Consider graphing population data based on the 1990 U.S. census:

t = (1900:10:1990)'; % Time interval
p = [75.995 91.972 105.711 123.203 131.669 ...

150.697 179.323 203.212 226.505 249.633]'; % Population
plot(datenum(t,1,1),p) % Convert years to date numbers and plot
grid on

14 'HH:MM:SS PM' 3:45:17 PM

15 'HH:MM' 15:45

16 'HH:MM PM' 3:45 PM

17 'QQ-YY' Q1–01

18 'QQ' Q1

19 'dd/mm' 01/03

20 'dd/mm/yy' 01/03/00

21 'mmm.dd.yyyy HH:MM:SS' Mar.01,2000
15:45:17

22 'mmm.dd.yyyy' Mar.01.2000

23 'mm/dd/yyyy' 03/01/2000

24 'dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd' 00/03/01

26 'yyyy/mm/dd' 2000/03/01

27 'QQ-YYYY’ Q1-2001

28 'mmmyyyy' Mar2000

dateform (number) dateform (string) Example
329

datetick
datetick('x',11) % Replace x-axis ticks with 2-digit year labels

See Also The axes properties XTick, YTick, and ZTick.

datenum, datestr

00 20 40 60 80 00
60

80

100

120

140

160

180

200

220

240

260
330

datevec
1datevecPurpose Date components

C = datevec(A)
C = datevec(A,P)
[Y,M,D,H,MI,S] = datevec(A)

Description C = datevec(A) splits its input into an n-by-6 array with each row containing
the vector [Y,M,D,H,MI,S]. The first five date vector elements are integers.
Input A can either consist of strings of the sort produced by the datestr
function, or scalars of the sort produced by the datenum and now functions. Date
strings with two-character years, e.g., 12-june-12, are assumed to lie within
the 100-year period centered about the current year.

C = datevec(A,P) uses the specified pivot year as the starting year of the
100-year range in which a two-character year resides. The default pivot year is
the current year minus 50 years..

[Y,M,D,H,MI,S] = datevec(A) returns the components of the date vector as
individual variables.

When creating your own date vector, you need not make the components
integers. Any components that lie outside their conventional ranges affect the
next higher component (so that, for instance, the anomalous June 31 becomes
July 1). A zeroth month, with zero days, is allowed.

Examples An example of using a string as input:

datevec('12/24/1984')

ans =
1984 12 24 0 0 0

An example of using a serial date number as input:

t = datenum('12/24/1984')

t =
 725000

datevec(t)
331

datevec
ans =
1984 12 24 0 0 0

See Also clock, datenum, datestr, now
332

dbclear
1dbclearPurpose Clear breakpoints

Syntax dbclear all
dbclear all in mfile
dbclear in mfile
dbclear in mfile at lineno
dbclear in mfile at subfun
dbclear if error
dbclear if warning
dbclear if naninf
dbclear if infnan

Description dbclear all removes all breakpoints in all M-files, as well as pauses set for
error, warning, and naninf/infnan using dbstop.

dbclear all in mfile removes breakpoints in mfile.

dbclear in mfile removes the breakpoint set at the first executable line in
mfile.

dbclear in mfile at lineno removes the breakpoint set at the line number
lineno in mfile.

dbclear in mfile at subfun removes the breakpoint set at the subfunction
subfun in mfile.

dbclear if error removes the pause set using dbstop if error.

dbclear if warning removes the pause set using dbstop if warning.

dbclear if naninf removes the pause set using dbstop if naninf.

dbclear if infnan removes the pause set using dbstop if infnan.

Remarks The at, in, and if keywords, familiar to users of the UNIX debugger dbx, are
optional.

See Also dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup,
partialpath
333

dbcont
1dbcontPurpose Resume execution

Syntax dbcont

Description dbcont resumes execution of an M-file from a breakpoint. Execution continues
until either another breakpoint is encountered, an error occurs, or MATLAB
returns to the base workspace prompt.

See Also dbclear, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup
334

dbdown
1dbdownPurpose Change local workspace context

Syntax dbdown

Description dbdown changes the current workspace context to the workspace of the called
M-file when a breakpoint is encountered. You must have issued the dbup
function at least once before you issue this function. dbdown is the opposite of
dbup.

Multiple dbdown functions change the workspace context to each successively
executed M-file on the stack until the current workspace context is the current
breakpoint. It is not necessary, however, to move back to the current
breakpoint to continue execution or to step to the next line.

See Also dbclear, dbcont, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup
335

dblquad
1dblquadPurpose Numerically evaluate double integral

Syntax q = dblquad(fun,xmin,xmax,ymin,ymax)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method,p1,p2,...)

Description q = dblquad(fun,xmin,xmax,ymin,ymax) calls the quad function to evaluate
the double integral fun(x,y) over the rectangle xmin <= x <= xmax, ymin <=
y <= ymax. fun(x,y) must accept a vector x and a scalar y and return a vector
of values of the integrand.

q = dblquad(fun,xmin,xmax,ymin,ymax,tol) uses a tolerance tol instead of
the default, which is 1.0e-6.

q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method) uses the specified
quadrature function instead of the default quad. Valid values for method are
@quadl or a function handle of a user-defined quadrature method that has the
same calling sequence as quad and quadl.

dblquad(fun,xmin,xmax,ymin,ymax,tol,method,p1,p2,...) passes the
additional parameters p1,p2,... to fun(x,y,p1,p2,...). Use [] as a
placeholder if you do not specify tol or method.
dblquad(fun,xmin,xmax,ymin,ymax,[],[],p1,p2,...) is the same as
dblquad(fun,xmin,xmax,ymin,ymax,1.e-6,@quad,p1,p2,...)

Example fun can be an inline object

Q = dblquad(inline('y*sin(x)+x*cos(y)'), pi, 2*pi, 0, pi)

or a function handle

Q = dblquad(@integrnd, pi, 2*pi, 0, pi)

where integrnd.m is an M-file.

function z = integrnd(x, y)
z = y*sin(x)+x*cos(y);
336

dblquad
The integrnd function integrates y*sin(x)+x*cos(y) over the square
pi <= x <= 2*pi, 0 <= y <= pi. Note that the integrand can be evaluated
with a vector x and a scalar y .

Nonsquare regions can be handled by setting the integrand to zero outside of
the region. For example, the volume of a hemisphere is

dblquad(inline('sqrt(max(1-(x.^2+y.^2),0))'),-1,1,-1,1)

or

dblquad(inline('sqrt(1-(x.^2+y.^2)).*(x.^2+y.^2<=1)'),-1,1,-1,1)

See Also inline, quad, quadl, @ (function handle)
337

dbmex
1dbmexPurpose Enable MEX-file debugging

Syntax dbmex on
dbmex off
dbmex stop
dbmex print

Description dbmex on enables MEX-file debugging for UNIX platforms. To use this option,
first start MATLAB from within a debugger by typing: matlab -Ddebugger,
where debugger is the name of the debugger.

dbmex off disables MEX-file debugging.

dbmex stop returns to the debugger prompt.

dbmex print displays MEX-file debugging information.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup
338

dbquit
1dbquitPurpose Quit debug mode

Syntax dbquit

Description dbquit immediately terminates the debugger and returns control to the base
workspace prompt. The M-file being processed is not completed and no results
are returned.

All breakpoints remain in effect.

See Also dbclear, dbcont, dbdown, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup
339

dbstack
1dbstackPurpose Display function call stack

Syntax dbstack
[ST,I] = dbstack

Description dbstack displays the line numbers and M-file names of the function calls that
led to the current breakpoint, listed in the order in which they were executed.
In other words, the line number of the most recently executed function call (at
which the current breakpoint occurred) is listed first, followed by its calling
function, which is followed by its calling function, and so on, until the topmost
M-file function is reached.

[ST,I] = dbstack returns the stack trace information in an m-by-1 structure
ST with the fields:

The current workspace index is returned in I.

Examples dbstack

In /usr/local/matlab/toolbox/matlab/cond.m at line 13
In test1.m at line 2
In test.m at line 3

See Also dbclear, dbcont, dbdown, dbquit, dbstatus, dbstep, dbstop, dbtype, dbup

name Function name

line Function line number
340

dbstatus
1dbstatus

Purpose List all breakpoints

Syntax dbstatus
dbstatus function
s = dbstatus(...)

Description dbstatus lists all breakpoints in effect including error, warning, and naninf.

dbstatus function displays a list of the line numbers for which breakpoints
are set in the specified M-file.

s = dbstatus(...) returns the breakpoint information in an m-by-1
structure with the fields:

Use dbstatus class/function or dbstatus private/function or
dbstatus class/private/function to determine the status for methods,
private functions, or private methods (for a class named class). In all of these
forms you can further qualify the function name with a subfunction name as in
dbstatus function/subfunction.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstep, dbstop, dbtype, dbup

name Function name

line Function line number

cond Condition string (error, warning, or
naninf)
341

dbstep
1dbstepPurpose Execute one or more lines from a breakpoint

Syntax dbstep
dbstep nlines
dbstep in

Description This function allows you to debug an M-file by following its execution from the
current breakpoint. At a breakpoint, the dbstep function steps through
execution of the current M-file one line at a time or at the rate specified by
nlines.

dbstep, by itself, executes the next executable line of the current M-file. dbstep
steps over the current line, skipping any breakpoints set in functions called by
that line.

dbstep nlines executes the specified number of executable lines.

dbstep in steps to the next executable line. If that line contains a call to
another M-file, execution resumes with the first executable line of the called
file. If there is no call to an M-file on that line, dbstep in is the same as dbstep.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstop, dbtype, dbup
342

dbstop
1dbstopPurpose Set breakpoints in an M-file function

Syntax dbstop in mfile
dbstop in mfile at lineno
dbstop in mfile at subfun
dbstop if error
dbstop if warning
dbstop if naninf
dbstop if infnan

Description dbstop in mfile temporarily stops execution of mfile when you run it, at the
first executable line, putting MATLAB in debug mode. If you have graphical
debugging enabled, the MATLAB Debugger opens with a breakpoint at the
first executable line of mfile. You can then use the debugging utilities, review
the workspace, or issue any valid MATLAB function. Use dbcont or dbstep to
resume execution of mfile. Use dbquit to exit from the Debugger.

dbstop in mfile at lineno temporarily stops execution of mfile when you
run it, just prior to execution of the line whose number is lineno, putting
MATLAB in debug mode. If you have graphical debugging enabled, the
MATLAB Debugger opens mfile with a breakpoint at line lineno. If that line
is not executable, execution stops and the breakpoint is set at the next
executable line following lineno. When execution stops, you can use the
debugging utilities, review the workspace, or issue any valid MATLAB
function. Use dbcont or dbstep to resume execution of mfile. Use dbquit to
exit from the Debugger.

dbstop in mfile at subfun temporarily stops execution of mfile when you
run it, just prior to execution of the subfunction subfun, putting MATLAB in
debug mode. If you have graphical debugging enabled, the MATLAB Debugger
opens mfile with a breakpoint at the subfunction specified by subfun. You can
then use the debugging utilities, review the workspace, or issue any valid
MATLAB function. Use dbcont or dbstep to resume execution of mfile. Use
dbquit to exit from the Debugger.

dbstop if error stops execution when any M-file you subsequently run
produces a run-time error, putting MATLAB in debug mode, paused at the line
343

dbstop
that generated the error. You cannot resume execution after an error. Use
dbquit to exit from the Debugger.

dbstop if warning stops execution when any M-file you subsequently run
produces a run-time warning, putting MATLAB in debug mode, paused at the
line that generated the warning. Use dbcont or dbstep to resume execution.

dbstop if naninf stops execution when any M-file you subsequently run
encounters an infinite value (Inf), putting MATLAB in debug mode, paused at
the line where Inf was encountered. Use dbcont or dbstep to resume
execution. Use dbquit to exit from the Debugger.

dbstop if infnan stops execution when any M-file you subsequently run
encounters a value that is not a number (NaN), putting MATLAB in debug
mode, paused at the line where NaN was encountered. Use dbcont or dbstep to
resume execution. Use dbquit to exit from the Debugger.

Remarks The at, in, and if keywords, familiar to users of the UNIX debugger dbx, are
optional.

Examples The file buggy, used in these examples, consists of three lines.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Example 1 – Stop at First Executable Line
The statements

dbstop in buggy
buggy(2:5)

stop execution at the first executable line in buggy

n = length(x);

The function

dbstep

advances to the next line, at which point, you can examine the value of n.
344

dbstop
Example 2 – Stop if Error
Because buggy only works on vectors, it produces an error if the input x is a full
matrix. The statements

dbstop if error
buggy(magic(3))

produce

??? Error using ==> ./
Matrix dimensions must agree.
Error in ==> c:\buggy.m
On line 3 ==> z = (1:n)./x;
K»

and put MATLAB in debug mode.

Example 3 – Stop if Inf
In buggy, if any of the elements of the input x are zero, a division by zero occurs.
The statements

dbstop if naninf
buggy(0:2)

produce

Warning: Divide by zero.
> In c:\buggy.m at line 3
K»

and put MATLAB in debug mode.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbtype, dbup,
partialpath
345

dbtype
1dbtypePurpose List M-file with line numbers

Syntax dbtype function
dbtype function start:end

Description dbtype function displays the contents of the specified M-file function with
line numbers preceding each line. function must be the name of an M-file
function or a MATLABPATH relative partial pathname.

dbtype function start:end displays the portion of the file specified by a
range of line numbers.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbup,
partialpath
346

dbup
1dbupPurpose Change local workspace context

Syntax dbup

Description This function allows you to examine the calling M-file by using any other
MATLAB function. In this way, you determine what led to the arguments being
passed to the called function.

dbup changes the current workspace context (at a breakpoint) to the workspace
of the calling M-file.

Multiple dbup functions change the workspace context to each previous calling
M-file on the stack until the base workspace context is reached. (It is not
necessary, however, to move back to the current breakpoint to continue
execution or to step to the next line.)

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype
347

ddeadv
1ddeadvPurpose Set up advisory link

Syntax rc = ddeadv(channel,'item','callback')
rc = ddeadv(channel,'item','callback','upmtx')
rc = ddeadv(channel,'item','callback','upmtx',format)
rc = ddeadv(channel,'item','callback','upmtx',format,timeout)

Description ddeadv sets up an advisory link between MATLAB and a server application.
When the data identified by the item argument changes, the string specified by
the callback argument is passed to the eval function and evaluated. If the
advisory link is a hot link, DDE modifies upmtx, the update matrix, to reflect
the data in item.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

If successful, ddeadv returns 1 in variable, rc. Otherwise it returns 0.

Arguments channel Conversation channel from ddeinit.

item String specifying the DDE item name for the advisory link.
Changing the data identified by item at the server triggers the
advisory link.

callback String specifying the callback that is evaluated on update
notification. Changing the data identified by item at the server
causes callback to get passed to the eval function to be
evaluated.

upmtx
(optional)

String specifying the name of a matrix that holds data sent
with an update notification. If upmtx is included, changing
item at the server causes upmtx to be updated with the revised
data. Specifying upmtx creates a hot link. Omitting upmtx or
specifying it as an empty string creates a warm link. If upmtx
exists in the workspace, its contents are overwritten. If upmtx
does not exist, it is created.
348

ddeadv
Examples Set up a hot link between a range of cells in Excel (Row 1, Column 1 through
Row 5, Column 5) and the matrix x. If successful, display the matrix:

rc = ddeadv(channel, 'r1c1:r5c5', 'disp(x)', 'x');

Communication with Excel must have been established previously with a
ddeinit command.

See Also ddeexec, ddeinit, ddepoke, ddereq, ddeterm, ddeunadv

format
(optional)

Two-element array specifying the format of the data to be sent
on update. The first element specifies the Windows clipboard
format to use for the data. The only currently supported format
is cf_text, which corresponds to a value of 1. The second
element specifies the type of the resultant matrix. Valid types
are numeric (the default, which corresponds to a value of 0)
and string (which corresponds to a value of 1). The default
format array is [1 0].

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). If
advisory link is not established within timeout milliseconds,
the function fails. The default value of timeout is three
seconds.
349

ddeexec
1ddeexecPurpose Send string for execution

Syntax rc = ddeexec(channel,'command')
rc = ddeexec(channel,'command','item')
rc = ddeexec(channel,'command','item',timeout)

Description ddeexec sends a string for execution to another application via an established
DDE conversation. Specify the string as the command argument.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

If successful, ddeexec returns 1 in variable, rc. Otherwise it returns 0.

Arguments

Examples Given the channel assigned to a conversation, send a command to Excel:

rc = ddeexec(channel,'[formula.goto("r1c1")]')

Communication with Excel must have been established previously with a
ddeinit command.

See Also ddeadv, ddeinit, ddepoke, ddereq, ddeterm, ddeunadv

channel Conversation channel from ddeinit.

command String specifying the command to be executed.

item
(optional)

String specifying the DDE item name for execution. This
argument is not used for many applications. If your application
requires this argument, it provides additional information for
command. Consult your server documentation for more
information.

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.
350

ddeinit
1ddeinitPurpose Initiate DDE conversation

Syntax channel = ddeinit('service','topic')

Description channel = ddeinit('service','topic') returns a channel handle assigned
to the conversation, which is used with other MATLAB DDE functions.
'service' is a string specifying the service or application name for the
conversation. 'topic' is a string specifying the topic for the conversation.

Examples To initiate a conversation with Excel for the spreadsheet 'stocks.xls':

channel = ddeinit('excel','stocks.xls')

channel =
0.00

See Also ddeadv, ddeexec, ddepoke, ddereq, ddeterm, ddeunadv
351

ddepoke

352
1ddepokePurpose Send data to application

Syntax rc = ddepoke(channel,'item',data)
rc = ddepoke(channel,'item',data,format)
rc = ddepoke(channel,'item',data,format,timeout)

Description ddepoke sends data to an application via an established DDE conversation.
ddepoke formats the data matrix as follows before sending it to the server
application:

• String matrices are converted, element by element, to characters and the
resulting character buffer is sent.

• Numeric matrices are sent as tab-delimited columns and carriage-return,
line-feed delimited rows of numbers. Only the real part of nonsparse
matrices are sent.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

If successful, ddepoke returns 1 in variable, rc. Otherwise it returns 0.

Arguments

Examples Assume that a conversation channel with Excel has previously been
established with ddeinit. To send a 5-by-5 identity matrix to Excel, placing the
data in Row 1, Column 1 through Row 5, Column 5:

channel Conversation channel from ddeinit.

item String specifying the DDE item for the data sent. Item is the
server data entity that is to contain the data sent in the data
argument.

data Matrix containing the data to send.

format
(optional)

Scalar specifying the format of the data requested. The value
indicates the Windows clipboard format to use for the data
transfer. The only format currently supported is cf_text,
which corresponds to a value of 1.

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.

ddepoke
rc = ddepoke(channel, 'r1c1:r5c5', eye(5));

See Also ddeadv, ddeexec, ddeinit, ddereq, ddeterm, ddeunadv
353

ddereq
1ddereqPurpose Request data from application

Syntax data = ddereq(channel,'item')
data = ddereq(channel,'item',format)
data = ddereq(channel,'item',format,timeout)

Description ddereq requests data from a server application via an established DDE
conversation. ddereq returns a matrix containing the requested data or an
empty matrix if the function is unsuccessful.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

If successful, ddereq returns a matrix containing the requested data in
variable, data. Otherwise, it returns an empty matrix.

Arguments

Examples Assume that we have an Excel spreadsheet stocks.xls. This spreadsheet
contains the prices of three stocks in row 3 (columns 1 through 3) and the
number of shares of these stocks in rows 6 through 8 (column 2). Initiate
conversation with Excel with the command:

channel = ddeinit('excel','stocks.xls')

channel Conversation channel from ddeinit.

item String specifying the server application's DDE item name for
the data requested.

format
(optional)

Two-element array specifying the format of the data requested.
The first element specifies the Windows clipboard format to
use. The only currently supported format is cf_text, which
corresponds to a value of 1. The second element specifies the
type of the resultant matrix. Valid types are numeric (the
default, which corresponds to 0) and string (which
corresponds to a value of 1). The default format array is [1 0].

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.
354

ddereq
DDE functions require the rxcy reference style for Excel worksheets. In Excel
terminology the prices are in r3c1:r3c3 and the shares in r6c2:r8c2.

To request the prices from Excel:

prices = ddereq(channel,'r3c1:r3c3')

prices =
42.50 15.00 78.88

To request the number of shares of each stock:

shares = ddereq(channel, 'r6c2:r8c2')

shares =
100.00
500.00
300.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddeterm, ddeunadv
355

ddeterm

356
1ddetermPurpose Terminate DDE conversation

Syntax rc = ddeterm(channel)

Description rc = ddeterm(channel) accepts a channel handle returned by a previous call
to ddeinit that established the DDE conversation. ddeterm terminates this
conversation. rc is a return code where 0 indicates failure and 1 indicates
success.

Examples To close a conversation channel previously opened with ddeinit:

rc = ddeterm(channel)

rc =

1.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddereq, ddeunadv

ddeunadv
1ddeunadvPurpose Release advisory link

Syntax rc = ddeunadv(channel,'item')
rc = ddeunadv(channel,'item',format)
rc = ddeunadv(channel,'item',format,timeout)

Description ddeunadv releases the advisory link between MATLAB and the server
application established by an earlier ddeadv call. The channel, item, and
format must be the same as those specified in the call to ddeadv that initiated
the link. If you include the timeout argument but accept the default format,
you must specify format as an empty matrix.

If successful, ddeunadv returns 1 in variable, rc. Otherwise it returns 0.

Arguments

Example To release an advisory link established previously with ddeadv:

rc = ddeunadv(channel, 'r1c1:r5c5')
rc =

1.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddereq, ddeterm

channel Conversation channel from ddeinit.

item String specifying the DDE item name for the advisory link.
Changing the data identified by item at the server triggers the
advisory link.

format
(optional)

Two-element array. This must be the same as the format
argument for the corresponding ddeadv call.

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.
357

deal
1dealPurpose Deal inputs to outputs

Syntax [Y1,Y2,Y3,...] = deal(X)
[Y1,Y2,Y3,...] = deal(X1,X2,X3,...)

Description [Y1,Y2,Y3,...] = deal(X) copies the single input to all the requested
outputs. It is the same as Y1 = X, Y2 = X, Y3 = X, ...

[Y1,Y2,Y3,...] = deal(X1,X2,X3,...) is the same as Y1 = X1; Y2 = X2;
Y3 = X3; ...

Remarks deal is most useful when used with cell arrays and structures via comma
separated list expansion. Here are some useful constructions:

[S.field] = deal(X) sets all the fields with the name field in the structure
array S to the value X. If S doesn't exist, use [S(1:m).field] = deal(X).

[X{:}] = deal(A.field) copies the values of the field with name field to
the cell array X. If X doesn't exist, use [X{1:m}] = deal(A.field).

[Y1,Y2,Y3,...] = deal(X{:}) copies the contents of the cell array X to the
separate variables Y1,Y2,Y3,...

[Y1,Y2,Y3,...] = deal(S.field) copies the contents of the fields with the
name field to separate variables Y1,Y2,Y3,...

Examples Use deal to copy the contents of a 4-element cell array into four separate
output variables.

C = {rand(3) ones(3,1) eye(3) zeros(3,1)};
[a,b,c,d] = deal(C{:})

a =

 0.9501 0.4860 0.4565
 0.2311 0.8913 0.0185
 0.6068 0.7621 0.8214

b =
358

deal
 1
 1
 1

c =

 1 0 0
 0 1 0
 0 0 1

d =

 0
 0
 0

Use deal to obtain the contents of all the name fields in a structure array:

A.name = 'Pat'; A.number = 176554;
A(2).name = 'Tony'; A(2).number = 901325;
[name1,name2] = deal(A(:).name)

name1 =

Pat

name2 =

Tony
359

deblank
1deblankPurpose Strip trailing blanks from the end of a string

Syntax str = deblank(str)
c = deblank(c)

Description str = deblank(str) removes the trailing blanks from the end of a character
string str.

c = deblank(c), when c is a cell array of strings, applies deblank to each
element of c.

Thedeblank function is useful for cleaning up the rows of a character array.

Examples A{1,1} = 'MATLAB ';
A{1,2} = 'SIMULINK ';
A{2,1} = 'Toolboxes ';
A{2,2} = 'The MathWorks ';

A =

 'MATLAB ' 'SIMULINK '
 'Toolboxes ' 'The MathWorks '

deblank(A)

ans =

 'MATLAB' 'SIMULINK'
 'Toolboxes' 'The MathWorks'
360

dec2base
1dec2basePurpose Decimal number to base conversion

Syntax str = dec2base(d,base)
str = dec2base(d,base,n)

Description str = dec2base(d,base) converts the nonnegative integer d to the specified
base.d must be a nonnegative integer smaller than 2^52, and base must be an
integer between 2 and 36. The returned argument str is a string.

str = dec2base(d,base,n) produces a representation with at least n digits.

Examples The expression dec2base(23,2) converts 2310 to base 2, returning the string
'10111'.

See Also base2dec
361

dec2bin
1dec2binPurpose Decimal to binary number conversion

Syntax str = dec2bin(d)
str = dec2bin(d,n)

Description str = dec2bin(d) returns the binary representation of d as a string. d must
be a nonnegative integer smaller than .

str = dec2bin(d,n) produces a binary representation with at least n bits.

Examples
ans =
 10111

See Also bin2dec, dec2hex

252
362

dec2hex
1dec2hexPurpose Decimal to hexadecimal number conversion

Syntax str = dec2hex(d)
str = dec2hex(d,n)

Description str = dec2hex(d) converts the decimal integer d to its hexadecimal
representation stored in a MATLAB string. d must be a nonnegative integer
smaller than .

str = dec2hex(d,n) produces a hexadecimal representation with at least n
digits.

Examples To convert decimal 1023 to hexadecimal,

dec2hex(1023)

ans =
 3FF

See Also dec2bin, format, hex2dec, hex2num

252
363

deconv
1deconvPurpose Deconvolution and polynomial division

Syntax [q,r] = deconv(v,u)

Description [q,r] = deconv(v,u) deconvolves vector u out of vector v, using long division.
The quotient is returned in vector q and the remainder in vector r such that v
= conv(u,q)+r.

If u and v are vectors of polynomial coefficients, convolving them is equivalent
to multiplying the two polynomials, and deconvolution is polynomial division.
The result of dividing v by u is quotient q and remainder r.

Examples If

u = [1 2 3 4]
v = [10 20 30]

the convolution is

c = conv(u,v)
c =

 10 40 100 160 170 120

Use deconvolution to recover u:

[q,r] = deconv(c,u)
q =

 10 20 30
r =

 0 0 0 0 0 0

This gives a quotient equal to v and a zero remainder.

Algorithm deconv uses the filter primitive.

See Also conv, residue
364

default4
1default4Purpose MATLAB Version 4.0 figure and axes defaults

Syntax default4
default4(h)

Description default4 sets figure and axes defaults to match MATLAB Version 4.0 defaults.

default4(h) only affects the figure with handle h.

See Also colordef
365

del2
1del2Purpose Discrete Laplacian

Syntax L = del2(U)
L = del2(U,h)
L = del2(U,hx,hy)
L = del2(U,hx,hy,hz,...)

Definition If the matrix U is regarded as a function u(x,y) evaluated at the point on a
square grid, then 4∗del2(U) is a finite difference approximation of Laplace’s
differential operator applied to u, that is:

where:

in the interior. On the edges, the same formula is applied to a cubic
extrapolation.

For functions of more variables u(x,y,z,...), del2(U) is an approximation,

where N is the number of variables in u.

l ∇2u
4

----------- 1
4
--- d2u

dx2
---------- d2u

d y2
----------+

 
 
 

==

lij
1
4
--- ui 1 j,+ ui 1 j,– ui j 1+, ui j 1–,+ + +() ui j,–=

l ∇2u
2N
----------- 1

2N
--------- d2u

dx2
---------- d2u

d y2
---------- d2u

dz2
---------- …+ + +

 
 
 

==
366

del2
Description L = del2(U) where U is a rectangular array is a discrete approximation of

The matrix L is the same size as U with each element equal to the difference
between an element of U and the average of its four neighbors.

L = del2(U) when U is an multidimensional array, returns an approximation
of

where N is ndims(u).

L = del2(U,h) where H is a scalar uses H as the spacing between points in each
direction (h=1 by default).

L = del2(U,hx,hy) when U is a rectangular array, uses the spacing specified
by hx and hy. If hx is a scalar, it gives the spacing between points in the
x-direction. If hx is a vector, it must be of length size(u,2) and specifies the
x-coordinates of the points. Similarly, if hy is a scalar, it gives the spacing
between points in the y-direction. If hy is a vector, it must be of length
size(u,1) and specifies the y-coordinates of the points.

L = del2(U,hx,hy,hz,...) where U is multidimensional uses the spacing
given by hx, hy, hz, ...

l ∇2u
4

----------- 1
4
--- d2u

dx2
---------- d2u

d y2
----------+

 
 
 

==

∇2u
2N

367

del2
Examples The function

has

For this function, 4∗del2(U) is also 4.

[x,y] = meshgrid(–4:4,–3:3);
U = x.∗x+y.∗y
U =

25 18 13 10 9 10 13 18 25
20 13 8 5 4 5 8 13 20
17 10 5 2 1 2 5 10 17
16 9 4 1 0 1 4 9 16
17 10 5 2 1 2 5 10 17
20 13 8 5 4 5 8 13 20
25 18 13 10 9 10 13 18 25

V = 4∗del2(U)
V =

4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4

See Also diff, gradient

u x y,() x2 y2+=

u∇2 4=
368

delaunay
1delaunayPurpose Delaunay triangulation

Syntax TRI = delaunay(x,y)
TRI = delaunay(x,y,'sorted')

Definition Given a set of data points, the Delaunay triangulation is a set of lines
connecting each point to its natural neighbors. The Delaunay triangulation is
related to the Voronoi diagram— the circle circumscribed about a Delaunay
triangle has its center at the vertex of a Voronoi polygon.

Description TRI = delaunay(x,y) returns a set of triangles such that no data points are
contained in any triangle's circumscribed circle. Each row of the m-by-3 matrix
TRI defines one such triangle and contains indices into the vectors x and y.

To avoid the degeneracy of collinear data, delaunay adds some random fuzz to
the data. The default fuzz standard deviation 4*sqrt(eps) has been chosen to
maintain about seven digits of accuracy in the data.

tri = delaunay(x,y,fuzz) uses the specified value for the fuzz standard
deviation. It is possible that no value of fuzz produces a correct triangulation.
In this unlikely situation, you need to preprocess your data to avoid collinear
or nearly collinear data.

TRI = delaunay(x,y,'sorted') assumes that the points x and y are sorted
first by y and then by x and that duplicate points have already been eliminated.

Remarks The Delaunay triangulation is used with: griddata (to interpolate scattered
data), convhull, voronoi (to compute the voronoi diagram), and is useful by
itself to create a triangular grid for scattered data points.

Delaunay triangle
Voronoi polygon

x

369

delaunay
The functions dsearch and tsearch search the triangulation to find nearest
neighbor points or enclosing triangles, respectively.

Note delaunay is based on qhull [1]. For information about qhull, see
http://www.geom.umn.edu/software/qhull/. For copyright information, see
http://www.geom.umn.edu/software/download/COPYING.html.

Examples This code plots the Delaunay triangulation for 10 randomly generated points.

rand('state',0);
x = rand(1,10);
y = rand(1,10);
TRI = delaunay(x,y);
subplot(1,2,1),...
trimesh(TRI,x,y,zeros(size(x))); view(2),...
axis([0 1 0 1]); hold on;
plot(x,y,'o');
set(gca,'box','on');

Compare the Voronoi diagram of the same points:

[vx, vy] = voronoi(x,y,TRI);
subplot(1,2,2),...
plot(x,y,'r+',vx,vy,'b–'),...
370

delaunay
axis([0 1 0 1])

See Also convhull, delaunay3, delaunayn, dsearch, griddata, trimesh, trisurf,
tsearch, voronoi, voronoin

References [1] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

371

delaunay3
1delaunay3Purpose 3-D Delaunay tesselation

Syntax TES = delaunay3(x,y,z)

Description TES = delaunay3(x,y,z) returns an array TES, each row of which contains the
indices of the points in (x,y,z) that make up a tetrahedron in the tesselation
of (x,y,z). TES is a numtes-by-4 array where numtes is the number of facets in
the tesselation. x, y, and z are vectors of equal length.

delaunay3 is based on qhull [1]. For information about qhull, see http://
www.geom.umn.edu/software/qhull/. For copyright information, see http://
www.geom.umn.edu/software/download/COPYING.html.

Example d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];
% [x,y,z] are corners of a cube plus the center.
Tes = delaunay3(x,y,z)

Tes =

 9 7 3 5
 1 9 3 5
 1 2 9 5
 4 9 7 3
 4 9 7 8
 4 1 9 3
 4 1 2 9
 6 2 9 5
 6 9 7 5
 6 9 7 8
 6 4 9 8
 6 4 2 9

See Also delaunay, delaunayn
372

delaunay3
Reference [2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.
373

delaunayn
1delaunaynPurpose n-D Delaunay tessellation

Syntax T = delaunayn(X)

Description T = delaunayn(X) computes a set of simplices such that no data points of X are
contained in any circumspheres of the simplices. The set of simplices forms the
Delaunay tessellation. X is an m-by-n array representing m points in n-D space.
T is a numt-by-(n+1) array where each row contains the indices into X of the
vertices of the corresponding simplex.

Note delaunayn is based on qhull [1]. For information about qhull, see
http://www.geom.umn.edu/software/qhull/. For copyright information, see
http://www.geom.umn.edu/software/download/COPYING.html.

Example d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];
% [x,y,z] are corners of a cube plus the center.
X = [x(:) y(:) z(:)];
Tes = delaunayn(X)

Tes =

 9 7 3 5
 1 9 3 5
 1 2 9 5
 4 9 7 3
 4 9 7 8
 4 1 9 3
 4 1 2 9
 6 2 9 5
 6 9 7 5
 6 9 7 8
 6 4 9 8
 6 4 2 9
374

delaunayn
See Also convhulln, delaunayn, delaunay3, voronoin

Reference [1] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.
375

delete
1deletePurpose Delete files or graphics objects

Graphical
Interface

As an alternative to the delete function, you can delete files using the Current
Directory browser. To open it, select Current Directory from the View menu
in the MATLAB desktop.

Syntax delete filename
delete(h)
delete('filename')

Description delete filename deletes the named file from the disk. The filename may
include an absolute pathname or a pathname relative to the current directory.
The filename may also include wildcards, (*).

delete(h) deletes the graphics object with handle h. The function deletes the
object without requesting verification even if the object is a window.

delete('filename') is the function form of delete. Use this form when the
filename is stored in a string.

Examples To delete all files with a .mat extension in the ../mytests/ directory,

delete('../mytests/*.mat')

To delete a directory, use !rmdir rather than delete.

!rmdir mydirectory

See Also dir, type
376

delete (serial)
1delete (serial)Purpose Remove a serial port object from memory

Syntax delete(obj)

Arguments

Description delete(obj) removes obj from memory.

Remarks When you delete obj, it becomes an invalid object. Since you cannot connect an
invalid serial port object to the device, you should remove it from the workspace
with the clear command. If multiple references to obj exist in the workspace,
then deleting one reference invalidates the remaining references.

If you attempt to delete obj while it is connected to the device, then an error is
returned. A connected serial port object has a Status property value of open.
You can disconnect obj from the device with the fclose function.

If you use the help command to display help for delete, then you need to
supply the pathname shown below.

help serial/delete

Example This example creates the serial port object s, connects s to the device, writes
and reads text data, disconnects s from the device, removes s from memory
using delete, and then removes s from the workspace using clear.

s = serial('COM1');
fopen(s)
fprintf(s,'*IDN?')
idn = fscanf(s);
fclose(s)
delete(s)
clear s

See Also Functions
clear, fclose, isvalid

Properties
Status

obj A serial port object or an array of serial port objects.
377

depdir
1depdirPurpose List the dependent directories of an M-file or P-file

Syntax list = depdir('file_name');
[list,prob_files,prob_sym,prob_strings] = depdir('file_name');
[...] = depdir('file_name1','file_name2',...);

Description The depdir function lists the directories of all of the functions that a specified
M-file or P-file needs to operate. This function is useful for finding all of the
directories that need to be included with a runtime application and for
determining the runtime path.

list = depdir('file_name') creates a cell array of strings containing the
directories of all the M-files and P-files that file_name.m or file_name.p uses.
This includes the second-level files that are called directly by file_name, as
well as the third-level files that are called by the second-level files, and so on.

[list,prob_files,prob_sym,prob_strings] = depdir('file_name')
creates three additional cell arrays containing information about any problems
with the depdir search. prob_files contains filenames that depdir was
unable to parse. prob_sym contains symbols that depdir was unable to find.
prob_strings contains callback strings that depdir was unable to parse.

[...] = depdir('file_name1','file_name2',...) performs the same
operation for multiple files. The dependent directories of all files are listed
together in the output cell arrays.

Example list = depdir('mesh')

See Also depfun
378

depfun
1depfunPurpose List the dependent functions of an M-file or P-file

Syntax list = depfun('file_name');
[list,builtins,classes] = depfun('file_name');
[list,builtins,classes,prob_files,prob_sym,eval_strings,...

called_from,java_classes] = depfun('file_name');
[...] = depfun('file_name1','file_name2',...);
[...] = depfun('fig_file_name');
[...] = depfun(...,'-toponly');

Description The depfun function lists all of the functions and scripts, as well as built-in
functions, that a specified M-file needs to operate. This is useful for finding all
of the M-files that you need to compile for a MATLAB runtime application.

list = depfun('file_name') creates a cell array of strings containing the
paths of all the files that file_name.m uses. This includes the second-level files
that are called directly by file_name.m, as well as the third-level files that are
called by the second-level files, and so on.

Note If depfun reports that “These files could not be parsed:” or if the
prob_files output below is nonempty, then the rest of the output of depfun
might be incomplete. You should correct the problematic files and invoke
depfun again.

[list,builtins,classes] = depfun('file_name') creates three cell arrays
containing information about dependent functions. list contains the paths of
all the files that file_name and its subordinates use. builtins contains the
built-in functions that file_name and its subordinates use. classes contains
the MATLAB classes that file_name and its subordinates use.

[list,builtins,classes,prob_files,prob_sym,eval_strings,...
called_from,java_classes] = depfun('file_name') creates additional cell
arrays or structure arrays containing information about any problems with the
depfun search and about where the functions in list are invoked. The
additional outputs are:
379

depfun
• prob_files, which indicates which files depfun was unable to parse, find, or
access. Parsing problems can arise from MATLAB syntax errors. prob_files
is a structure array whose fields are:

- name, which gives the names of the files

- listindex, which tells where the files appeared in list

- errmsg, which describes the problems

• prob_sym, which indicates which symbols depfun was unable to resolve as
functions or variables. It is a structure array whose fields are:

- fcn_id, which tells where the files appeared in list

- name, which gives the names of the problematic symbols

• eval_strings, which indicates usage of these evaluation functions: eval,
evalc, evalin, feval. When preparing a runtime application, you should
examine this output to determine whether an evaluation function invokes a
function that does not appear in list. The output eval_strings is a
structure array whose fields are:

- fcn_name, which give the names of the files that use evaluation functions

- lineno, which gives the line numbers in the files where the evaluation
functions appear

• called_from, a cell array of the same length as list. This cell array is
arranged so that
list(called_from{i})

returns all functions in file_name that invoke the function list{i}.

• java_classes, a cell array of Java class names that file_name and its
subordinates use

[...] = depfun('file_name1','file_name2',...) performs the same
operation for multiple files. The dependent functions of all files are listed
together in the output arrays.

[...] = depfun('fig_file_name') looks for dependent functions among the
callback strings of the GUI elements that are defined in the .fig or .mat file
named fig_file_name.

[...] = depfun(...,'-toponly') differs from the other syntaxes of depfun
in that it examines only the files listed explicitly as input arguments. It does
380

depfun
not examine the files on which they depend. In this syntax, the flag '-toponly'
must be the last input argument.

Notes

1 If depfun does not find a file called hginfo.mat on the path, then it creates
one. This file contains information about Handle Graphics callbacks.

2 If your application uses toolbar items from MATLAB’s default figure
window, then you must include 'FigureToolBar.fig' in your input to
depfun.

3 If your application uses menu items from MATLAB’s default figure window,
then you must include 'FigureMenuBar.fig' in your input to depfun.

4 Because many built-in Handle Graphics functions invoke newplot, the list
produced by depfun always includes the functions on which newplot is
dependent:
- 'matlabroot\toolbox\matlab\graphics\newplot.m'
- 'matlabroot\toolbox\matlab\graphics\closereq.m'
- 'matlabroot\toolbox\matlab\graphics\gcf.m'
- 'matlabroot\toolbox\matlab\graphics\gca.m'
- 'matlabroot\toolbox\matlab\graphics\private\clo.m'
- 'matlabroot\toolbox\matlab\general\@char\delete.m'
- 'matlabroot\toolbox\matlab\lang\nargchk.m'
- 'matlabroot\toolbox\matlab\uitools\allchild.m'
- 'matlabroot\toolbox\matlab\ops\setdiff.m'
- 'matlabroot\toolbox\matlab\ops\@cell\setdiff.m'
- 'matlabroot\toolbox\matlab\iofun\filesep.m'
- 'matlabroot\toolbox\matlab\ops\unique.m'
- 'matlabroot\toolbox\matlab\elmat\repmat.m'
- 'matlabroot\toolbox\matlab\datafun\sortrows.m'
- 'matlabroot\toolbox\matlab\strfun\deblank.m'
- 'matlabroot\toolbox\matlab\ops\@cell\unique.m'
- 'matlabroot\toolbox\matlab\strfun\@cell\deblank.m'
- 'matlabroot\toolbox\matlab\datafun\@cell\sort.m'
- 'matlabroot\toolbox\matlab\strfun\cellstr.m'
- 'matlabroot\toolbox\matlab\datatypes\iscell.m'
- 'matlabroot\toolbox\matlab\strfun\iscellstr.m'
- 'matlabroot\toolbox\matlab\datatypes\cellfun.dll'
381

depfun
Examples list = depfun('mesh'); % Files mesh.m depends on
list = depfun('mesh','-toponly') % Files mesh.m depends on
directly
[list,builtins,classes] = depfun('gca');

See Also depdir
382

det
1detPurpose Matrix determinant

Syntax d = det(X)

Description d = det(X) returns the determinant of the square matrix X. If X contains only
integer entries, the result d is also an integer.

Remarks Using det(X) == 0 as a test for matrix singularity is appropriate only for
matrices of modest order with small integer entries. Testing singularity using
abs(det(X)) <= tolerance is not recommended as it is difficult to choose the
correct tolerance. The function cond(X) can check for singular and nearly
singular matrices.

Algorithm The determinant is computed from the triangular factors obtained by Gaussian
elimination

[L,U] = lu(A)
s = det(L) % This is always +1 or –1
det(A) = s∗prod(diag(U))

Examples The statement A = [1 2 3; 4 5 6; 7 8 9]

produces

A =
1 2 3
4 5 6
7 8 9

This happens to be a singular matrix, so d = det(A) produces d = 0.
Changing A(3,3) with A(3,3) = 0 turns A into a nonsingular matrix. Now
d = det(A) produces d = 27.

See Also cond, condest, inv, lu, rref

The arithmetic operators \, /
383

detrend
1detrendPurpose Remove linear trends.

Syntax y = detrend(x)
y = detrend(x,'constant')
y = detrend(x,'linear',bp)

Description detrend removes the mean value or linear trend from a vector or matrix,
usually for FFT processing.

y = detrend(x) removes the best straight-line fit from vector x and returns it
in y. If x is a matrix, detrend removes the trend from each column.

y = detrend(x,'constant') removes the mean value from vector x or, if x is
a matrix, from each column of the matrix.

y = detrend(x,'linear',bp) removes a continuous, piecewise linear trend
from vector x or, if x is a matrix, from each column of the matrix. Vector bp
contains the indices of the breakpoints between adjacent linear segments. The
breakpoint between two segments is defined as the data point that the two
segments share.

detrend(x,'linear'), with no breakpoint vector specified, is the same as
detrend(x).

Example sig = [0 1 -2 1 0 1 -2 1 0]; % signal with no linear trend
trend = [0 1 2 3 4 3 2 1 0]; % two-segment linear trend
x = sig+trend; % signal with added trend
y = detrend(x,'linear',5) % breakpoint at 5th element

y =

breakpoints
384

detrend
-0.0000
 1.0000
 -2.0000
 1.0000
 0.0000
 1.0000
 -2.0000
 1.0000
 -0.0000

Note that the breakpoint is specified to be the fifth element, which is the data
point shared by the two segments.

Algorithm detrend computes the least-squares fit of a straight line (or composite line for
piecewise linear trends) to the data and subtracts the resulting function from
the data. To obtain the equation of the straight-line fit, use polyfit.

See Also polyfit
385

diag
1diagPurpose Diagonal matrices and diagonals of a matrix

Syntax X = diag(v,k)
X = diag(v)
v = diag(X,k)
v = diag(X)

Description X = diag(v,k) when v is a vector of n components, returns a square matrix X
of order n+abs(k), with the elements of v on the kth diagonal. k = 0 represents
the main diagonal, k > 0 above the main diagonal, and k < 0 below the main
diagonal.

X = diag(v) puts v on the main diagonal, same as above with k = 0.

v = diag(X,k) for matrix X, returns a column vector v formed from the
elements of the kth diagonal of X.

v = diag(X) returns the main diagonal of X, same as above with k = 0.

Examples diag(diag(X)) is a diagonal matrix.

sum(diag(X)) is the trace of X.

The statement

diag(–m:m)+diag(ones(2∗m,1),1)+diag(ones(2∗m,1),–1)

produces a tridiagonal matrix of order 2∗m+1.

See Also spdiags, tril, triu

k > 0

k < 0

k = 0
386

dialog
1dialogPurpose Create and display dialog box

Syntax h = dialog('PropertyName',PropertyValue,...)

Description h = dialog('PropertyName',PropertyValue,...) returns a handle to a
dialog box. This function creates a figure graphics object and sets the figure
properties recommended for dialog boxes. You can specify any valid figure
property value.

See Also errordlg, figure, helpdlg, inputdlg, pagedlg, printdlg, questdlg, uiwait,
uiresume, warndlg
387

diary
1diaryPurpose Save session to a file

Syntax diary
diary('filename')
diary off
diary on
diary filename

Description The diary function creates a log of keyboard input and the resulting output
(except it does not include graphics). The output of diary is an ASCII file,
suitable for printing or for inclusion in reports and other documents. If you do
not specify filename, MATLAB creates a file named diary in the current
directory.

diary toggles diary mode on and off. To see the status of diary, type
get(0,'Diary'). MATLAB returns either on or off indicating the diary
status.

diary('filename') writes a copy of all subsequent keyboard input and the
resulting output (except it does not include graphics) to the named file. If the
file already exists, output is appended to the end of the file. You cannot use a
filename called off or on. To see the name of the diary file, use
get(0,'DiaryFile'). Type get(0,'DiaryName'), and MATLAB returns
filename.

diary off suspends the diary.

diary on resumes diary mode using the current filename, or the default
filename diary if none has yet been specified.

diary filename is the unquoted form of the syntax.

See Also Command History window
388

diff
1diffPurpose Differences and approximate derivatives

Syntax Y = diff(X)
Y = diff(X,n)
Y = diff(X,n,dim)

Description Y = diff(X) calculates differences between adjacent elements of X.

If X is a vector, then diff(X) returns a vector, one element shorter than X, of
differences between adjacent elements:

[X(2)–X(1) X(3)–X(2) ... X(n)–X(n–1)]

If X is a matrix, then diff(X) returns a matrix of row differences:

[X(2:m,:)–X(1:m–1,:)]

In general, diff(X) returns the differences calculated along the first
non-singleton (size(X,dim) > 1) dimension of X.

Y = diff(X,n) applies diff recursively n times, resulting in the nth
difference. Thus, diff(X,2) is the same as diff(diff(X)).

Y = diff(X,n,dim) is the nth difference function calculated along the
dimension specified by scalar dim. If order n equals or exceeds the length of
dimension dim, diff returns an empty array.

Remarks Since each iteration of diff reduces the length of X along dimension dim, it is
possible to specify an order n sufficiently high to reduce dim to a singleton
(size(X,dim) = 1) dimension. When this happens, diff continues calculating
along the next nonsingleton dimension.

Examples The quantity diff(y)./diff(x) is an approximate derivative.

x = [1 2 3 4 5];
y = diff(x)
y =
 1 1 1 1

z = diff(x,2)
z =
389

diff
 0 0 0

Given,

A = rand(1,3,2,4);

diff(A) is the first-order difference along dimension 2.

diff(A,3,4) is the third-order difference along dimension 4.

See Also gradient, prod, sum
390

dir
1dirPurpose Display a directory listing

Graphical
Interface

As an alternative to the dir function, use the Current Directory browser. To
open it, select Current Directory from the View menu in the MATLAB
desktop.

Syntax dir
dir name
files = dir('name')

Description dir lists the files in the current working directory.

dir name lists the specified files. The name argument can be a pathname,
filename, or can include both. You can use absolute and relative pathnames
and wildcards.

files = dir('directory') returns the list of files in the specified directory
(or the current directory, if dirname is not specified) to an m-by-1 structure with
the fields:

Examples To view the MAT files in your current working directory,

dir *java*.mat
java_array.mat javafrmobj.mat testjava.mat

To view the M-files in the MATLAB audio directory, type

dir(fullfile(matlabroot,'toolbox/matlab/audio/*.m'))

Contents.m lin2mu.m sound.m wavread.m
auread.m mu2lin.m soundsc.m wavrecord.m
auwrite.m saxis.m wavplay.m wavwrite.m

To return the list of files to the variable audio_files, type

name Filename

date Modification date

bytes Number of bytes allocated to the file

isdir 1 if name is a directory; 0 if not
391

dir
audio_files=dir(fullfile(matlabroot,'toolbox/matlab/audio/*.m'))

MATLAB returns the information in a structure array.

audio_files =
12x1 struct array with fields:
 name
 date
 bytes
 isdir

Index into the structure to access a particular item. For example,

audio_files(3).name
ans =
auwrite.m

See Also cd, delete, filebrowser, ls, type, what
392

disp
1dispPurpose Display text or array

Syntax disp(X)

Description disp(X) displays an array, without printing the array name. If X contains a
text string, the string is displayed.

Another way to display an array on the screen is to type its name, but this
prints a leading “X =,” which is not always desirable.

Examples One use of disp in an M-file is to display a matrix with column labels:

disp(' Corn Oats Hay')
disp(rand(5,3))

which results in

Corn Oats Hay
 0.2113 0.8474 0.2749
 0.0820 0.4524 0.8807
 0.7599 0.8075 0.6538
 0.0087 0.4832 0.4899
 0.8096 0.6135 0.7741

See Also format, int2str, num2str, rats, sprintf
393

disp (serial)
1disp (serial)Purpose Display serial port object summary information

Syntax obj
disp(obj)

Arguments

Description obj or disp(obj) displays summary information for obj.

Remarks In addition to the syntax shown above, you can display summary information
for obj by excluding the semicolon when:

• Creating a serial port object

• Configuring property values using the dot notation

Use the display summary to quickly view the communication settings,
communication state information, and information associated with read and
write operations.

Example The following commands display summary information for the serial port
object s.

s = serial('COM1')
s.BaudRate = 300

s

obj A serial port object or an array of serial port objects.
394

divergence
1divergencePurpose Computes the divergence of a vector field

Syntax div = divergence(X,Y,Z,U,V,W)
div = divergence(U,V,W)
div = divergence(X,Y,U,V)
div = divergence(U,V)

Description div = divergence(X,Y,Z,U,V,W) computes the divergence of a 3-D vector
field U, V, W. The arrays X, Y, Z define the coordinates for U, V, W and must be
monotonic and 3-D plaid (as if produced by meshgrid).

div = divergence(U,V,W) assumes X, Y, and Z are determined by the
expression:

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

div = divergence(X,Y,U,V) computes the divergence of a 2-D vector field U,
V. The arrays X, Y define the coordinates for U, V and must be monotonic and 2-D
plaid (as if produced by meshgrid).

div = divergence(U,V) assumes X and Y are determined by the expression:

[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

Examples This example displays the divergence of vector volume data as slice planes
using color to indicate divergence.

load wind
div = divergence(x,y,z,u,v,w);
slice(x,y,z,div,[90 134],[59],[0]);
shading interp
daspect([1 1 1])
camlight
395

divergence
See Also streamtube, curl, isosurface
396

dlmread
1dlmreadPurpose Read an ASCII delimited file into a matrix

Graphical
Interface

As an alternative to dlmread, use the Import Wizard. To activate the Import
Wizard, select Import data from the File menu.

Syntax M = dlmread(filename,delimiter)
M = dlmread(filename,delimiter,R,C)
M = dlmread(filename,delimiter,range)

Description M = dlmread(filename,delimiter) reads numeric data from the ASCII
delimited file filename, using the delimiter delimiter. A comma (,) is the
default delimiter. Use '\t' to specify a tab delimiter.

M = dlmread(filename,delimiter,R,C) reads numeric data from the ASCII
delimited file filename, using the delimiter delimiter. R and C specify the row
and column where the upper-left corner of the data lies in the file. R and C are
zero based so that R=0, C=0 specifies the first value in the file, which is the
upper left corner.

M = dlmread(filename,delimiter,range) reads the range specified by
range = [R1 C1 R2 C2] where (R1,C1) is the upper-left corner of the data to
be read and (R2,C2) is the lower-right corner. range can also be specified using
spreadsheet notation as in range = 'A1..B7'.

Remarks dlmread fills empty delimited fields with zero. Data files having lines that end
with a non-space delimiter, such as a semi-colon, produce a result that has an
additional last column of zeros.

See Also dlmwrite, textread, wk1read, wk1write
397

dlmwrite
1dlmwritePurpose Write a matrix to an ASCII delimited file

Syntax dlmwrite(filename,M,delimiter)
dlmwrite(filename,M,delimiter,R,C)

Description dlmwrite(filename,M,delimiter) writes matrix M into an ASCII-format file,
using delimiter to separate matrix elements. The data is written to the upper
left-most cell of the spreadsheet filename. A comma (,) is the default delimiter.
Use '\t' to produce tab-delimited files.

dlmwrite(filename,M,delimiter,R,C) writes matrix A into an ASCII-format
file, using delimiter to separate matrix elements. The data is written to the
spreadsheet filename, starting at spreadsheet cell R and C, where R is the row
offset and C is the column offset. R and C are zero based so that R=0, C=0
specifies the first value in the file, which is the upper left corner.

Remarks The resulting file is readable by spreadsheet programs.

See Also dlmread, wk1read, wk1write
398

dmperm
1dmpermPurpose Dulmage-Mendelsohn decomposition

Syntax p = dmperm(A)
[p,q,r] = dmperm(A)
[p,q,r,s] = dmperm(A)

Description If A is a reducible matrix, the linear system Ax = b can be solved by permuting
A to a block upper triangular form, with irreducible diagonal blocks, and then
performing block backsubstitution. Only the diagonal blocks of the permuted
matrix need to be factored, saving fill and arithmetic in the blocks above the
diagonal.

p = dmperm(A) returns a row permutation p so that if A has full column rank,
A(p,:) is square with nonzero diagonal. This is also called a maximum
matching.

[p,q,r] = dmperm(A) where A is a square matrix, finds a row permutation p
and a column permutation q so that A(p,q) is in block upper triangular form.
The third output argument r is an integer vector describing the boundaries of
the blocks: The kth block of A(p,q) has indices r(k):r(k+1)–1.

[p,q,r,s] = dmperm(A), where A is not square, finds permutations p and q
and index vectors r and s so that A(p,q) is block upper triangular. The blocks
have indices (r(i):r(i+1)–1, s(i):s(i+1)–1).

In graph theoretic terms, the diagonal blocks correspond to strong Hall
components of the adjacency graph of A.
399

doc
1docPurpose Display online documentation in the MATLAB Help browser

Graphical
Interface

As an alternative to the doc function, use the Help browser Search tab. Set the
Search type to Function Name, type the function name, and click Go.

Syntax doc
doc function
doc toolbox/
doc toolbox/function

Description doc opens the Help browser, if it is not already running.

doc function displays the reference page for the MATLAB function function
in the Help browser. If function is overloaded, doc displays the reference page
for the first function on the search path and lists the overloaded functions in
the MATLAB Command Window. If a reference page for the function does not
exist, doc displays M-file help in the Help browser.

doc toolbox/ displays the Roadmap page, a summary of the most pertinent
documentation for toolbox, in the Help browser.

doc toolbox/function displays the reference page for function that belongs
to the specified toolbox, in the Help browser.

See Also help, helpbrowser, lookfor, type, web
400

docopt
1docopt

Purpose Display location of help file directory for UNIX platforms

Syntax docopt
[doccmd,options,docpath] = docopt

Description docopt displays the location of the online help files directory (online
documentation location) for UNIX platforms if the web function is used with the
-browser option. It is also used for UNIX platforms that do not support Java
GUIs – see the R12 Release Notes for more information about these platforms.
You specify where the online help directory will be located when you install
MATLAB. It can be on a disk or CD-ROM drive in your local system. If you
relocate your online help file directory, edit the docopt.m file, changing the
location in it. (For the PC and for UNIX platforms that support Java GUIs,
select File -> Preferences -> Help to view or change the documentation
location.)

[doccmd,options,docpath] = docopt displays three strings: doccmd,
options, and docpath.

Remarks To globally replace the online help file directory location, update $matlabroot/
toolbox/local/docopt.m.

To override the global setting, copy $matlabroot/toolbox/local/docopt.m to
$HOME/matlab/docopt.m and make changes there. For the changes to take
effect in the current MATLAB session, $HOME/matlab must be on your
MATLAB path.

See Also doc, help, helpbrowser, helpdesk, lookfor, type

doccmd The function that doc uses to display MATLAB documentation.
The default is netscape.

options Additional configuration options for use with doccmd.

docpath The path to the MATLAB online help files. If docpath is empty,
the doc function assumes the help files are in the default
location.
401

dos
1dos

Purpose Execute a DOS command and return the result

Syntax dos command
status = dos('command')
[status,result] = dos('command')
[status,result] = dos('command','-echo')

Description dos command calls upon the shell to execute the given command for Windows
systems.

status = dos('command') returns completion status to the status variable.

[status,result] = dos('command') in addition to completion status, returns
the result of the command to the result variable.

[status,result] = dos('command','-echo') forces the output to the
Command Window, even though it is also being assigned into a variable.

Both console (DOS) programs and Windows programs may be executed, but the
syntax causes different results based on the type of programs. Console
programs have stdout and their output is returned to the result variable. They
are always run in an iconified DOS or Command Prompt Window except as
noted below. Console programs never execute in the background. Also,
MATLAB will always wait for the stdout pipe to close before continuing
execution. Windows programs may be executed in the background as they have
no stdout.

The ampersand, &, character has special meaning. For console programs this
causes the console to open. Omitting this character will cause console
programs to run iconically. For Windows programs, appending this character
will cause the application to run in the background. MATLAB will continue
processing.

Examples The following example performs a directory listing, returning a zero (success)
in s and the string containing the listing in w.

[s, w] = dos('dir');

To open the DOS 5.0 editor in a DOS window
402

dos
dos('edit &')

To open the notepad editor and return control immediately to MATLAB

dos('notepad file.m &')

The next example returns a zero in s because the shell executed correctly, but
it returns an error message in w because foo is not a valid shell command.

[s, w] = dos('foo')

This example echoes the results of the dir command to the Command Window
as it executes as well as assigning the results to w.

[s, w] = dos('dir', '-echo');

See Also Special Characters
403

dot
1dotPurpose Vector dot product

Syntax C = dot(A,B)
C = dot(A,B,dim)

Description C = dot(A,B) returns the scalar product of the vectors A and B. A and B must
be vectors of the same length. When A and B are both column vectors, dot(A,B)
is the same as A'*B.

For multidimensional arrays A and B, dot returns the scalar product along the
first non-singleton dimension of A and B. A and B must have the same size.

C = dot(A,B,dim) returns the scalar product of A and B in the dimension dim.

Examples The dot product of two vectors is calculated as shown:

a = [1 2 3]; b = [4 5 6];
c = dot(a,b)

c =
 32

See Also cross
404

double
1doublePurpose Convert to double-precision

Syntax double(X)

Description double(x) returns the double-precision value for X. If X is already a
double-precision array, double has no effect.

 Remarks double is called for the expressions in for, if, and while loops if the expression
isn't already double-precision. double should be overloaded for any object when
it makes sense to convert it to a double-precision value.
405

dragrect
1dragrectPurpose Drag rectangles with mouse

Syntax [finalrect] = dragrect(initialrect)
[finalrect] = dragrect(initialrect,stepsize)

Description [finalrect] = dragrect(initialrect) tracks one or more rectangles
anywhere on the screen. The n-by-4 matrix, rect, defines the rectangles. Each
row of rect must contain the initial rectangle position as
[left bottom width height] values. dragrect returns the final position of the
rectangles in finalrect.

[finalrect] = dragrect(initialrect,stepsize) moves the rectangles in
increments of stepsize. The lower-left corner of the first rectangle is
constrained to a grid of size stepsize starting at the lower-left corner of the
figure, and all other rectangles maintain their original offset from the first
rectangle. [finalrect] = dragrect(...) returns the final positions of the
rectangles when the mouse button is released. The default stepsize is 1.

Remarks dragrect returns immediately if a mouse button is not currently pressed. Use
dragrect in a ButtonDownFcn, or from the command line in conjunction with
waitforbuttonpress to ensure that the mouse button is down when dragrect
is called. dragrect returns when you release the mouse button.

Example Drag a rectangle that is 50 pixels wide and 100 pixels in height.

waitforbuttonpress
point1 = get(gcf,'CurrentPoint') % button down detected
rect = [point1(1,1) point1(1,2) 50 100]
[r2] = dragrect(rect)

See Also rbbox, waitforbuttonpress
406

drawnow
1drawnowPurpose Complete pending drawing events

Syntax drawnow

Description drawnow flushes the event queue and updates the figure window.

Remarks Other events that cause MATLAB to flush the event queue and draw the figure
windows include:

• Returning to the MATLAB prompt

• A pause statement

• A waitforbuttonpress statement

• A waitfor statement

• A getframe statement

• A figure statement

Examples Executing the statements,

x = –pi:pi/20:pi;
plot(x,cos(x))
drawnow
title('A Short Title')
grid on

as an M-file updates the current figure after executing the drawnow function
and after executing the final statement.

See Also waitfor, pause, waitforbuttonpress
407

dsearch
1dsearchPurpose Search for nearest point

Syntax K = dsearch(x,y,TRI,xi,yi)
K = dsearch(x,y,TRI,xi,yi,S)

Description K = dsearch(x,y,TRI,xi,yi) returns the index of the nearest (x,y) point to
the point (xi,yi). dsearch requires a triangulation TRI of the points x,y
obtained from delaunay.

K = dsearch(x,y,TRI,xi,yi,S) uses the sparse matrix S instead of
computing it each time:

S = sparse(TRI(:,[1 1 2 2 3 3]),TRI(:,[2 3 1 3 1 2]),1,nxy,nxy)

where nxy = prod(size(x)).

See Also delaunay, tsearch, voronoi
408

dsearchn
1dsearchnPurpose n-D nearest point search

Syntax k = dsearchn(X,T,XI)
k = dsearchn(X,T,XI,outval)
k = dsearchn(X,XI)
[k,d] = dsearchn(X,...)

Description k = dsearchn(X,T,XI) returns the indices k of the closest points in X for each
point in XI. X is an m-by-n matrix representing m points in n-D space. XI is a
p-by-n matrix, representing p points in n-D space. T is a numt-by-n+1 matrix, a
tessellation of the data X generated by delaunayn. The output k is a column
vector of length p.

k = dsearchn(X,T,XI,outval) returns the indices k of the closest points in X
for each point in XI, unless a point is outside the convex hull. If XI(J,:) is
outside the convex hull, then K(J) is assigned outval, a scalar double. Inf is
often used for outval. If outval is [], then k is the same as in the case
k = dsearchn(X,T,XI).

k = dsearchn(X,XI) performs the search without using a tessellation. With
large X and small XI, this approach is faster and uses much less memory.

[k,d] = dsearchn(X,...) also returns the distances d to the closest points. d
is a column vector of length p.

See Also tsearch, dsearch, tsearchn, griddatan, delaunayn
409

echo
1echoPurpose Echo M-files during execution

Syntax echo on
echo off
echo
echo fcnname on
echo fcnname off
echo fcnname
echo on all
echo off all

Description The echo command controls the echoing of M-files during execution. Normally,
the commands in M-files do not display on the screen during execution.
Command echoing is useful for debugging or for demonstrations, allowing the
commands to be viewed as they execute.

The echo command behaves in a slightly different manner for script files and
function files. For script files, the use of echo is simple; echoing can be either
on or off, in which case any script used is affected.

With function files, the use of echo is more complicated. If echo is enabled on a
function file, the file is interpreted, rather than compiled. Each input line is
then displayed as it is executed. Since this results in inefficient execution, use
echo only for debugging.

See Also function

echo on Turns on the echoing of commands in all script files.

echo off Turns off the echoing of commands in all script files.

echo Toggles the echo state.

echo fcnname on Turns on echoing of the named function file.

echo fcnname off Turns off echoing of the named function file.

echo fcnname Toggles the echo state of the named function file.

echo on all Set echoing on for all function files.

echo off all Set echoing off for all function files.
410

edit
1editPurpose Edit an M-file

Graphical
Interface

As an alternative to the edit function, select New or Open from the File menu
in the MATLAB desktop.

Syntax edit
edit fun
edit file.ext
edit class/fun
edit private/fun
edit class/private/fun

Description edit opens a new editor window.

edit fun opens the M-file fun.m in the default editor.

edit file.ext opens the specified text file.

edit class/fun, edit private/fun, or edit class/private/fun can be
used to edit a method, private function, or private method (for the class named
class).

Remarks Specify the default editor for MATLAB in the Command Window. Select
Preferences from the File menu. On the Editor/Debugger panel, select
MATLAB’s Editor/Debugger or specify another.
411

eig
1eigPurpose Find eigenvalues and eigenvectors

Syntax d = eig(A)
d = eig(A,B)
[V,D] = eig(A)
[V,D] = eig(A,'nobalance')
[V,D] = eig(A,B)
[V,D] = eig(A,B,flag)

Description d = eig(A) returns a vector of the eigenvalues of matrix A.

Note You can use the d = eig(S) syntax, where S is sparse and symmetric,
to returns the eigenvalues of S. To request eigenvectors, and in all other cases,
use eigs to find the eigenvalues or eigenvectors of sparse matrices.

d = eig(A,B) returns a vector containing the generalized eigenvalues, if A and
B are square matrices.

[V,D] = eig(A) produces matrices of eigenvalues (D) and eigenvectors (V) of
matrix A, so that A∗V = V∗D. Matrix D is the canonical form of A – a diagonal
matrix with A’s eigenvalues on the main diagonal. Matrix V is the modal
matrix—its columns are the eigenvectors of A.

For eig(A), the eigenvectors are scaled so that the norm of each is 1.0. Use
[W,D] = eig(A.'); W = W.' to compute the left eigenvectors, which satisfy
W∗A = D∗W.

[V,D] = eig(A,'nobalance') finds eigenvalues and eigenvectors without a
preliminary balancing step. Ordinarily, balancing improves the conditioning of
the input matrix, enabling more accurate computation of the eigenvectors and
eigenvalues. However, if a matrix contains small elements that are really due
to roundoff error, balancing may scale them up to make them as significant as
the other elements of the original matrix, leading to incorrect eigenvectors. Use
the nobalance option in this event. See the balance function for more details.
412

eig
[V,D] = eig(A,B) produces a diagonal matrix D of generalized eigenvalues
and a full matrix V whose columns are the corresponding eigenvectors so that
A∗V = B∗V∗D.

[V,D] = eig(A,B,flag) specifies the algorithm used to compute eigenvalues
and eigenvectors. flag can be:

Remarks The eigenvalue problem is to determine the nontrivial solutions of the equation

where A is an n-by-n matrix, x is a length n column vector, and λ is a scalar. The
n values of λ that satisfy the equation are the eigenvalues, and the
corresponding values of x are the right eigenvectors. In MATLAB, the function
eig solves for the eigenvalues λ, and optionally the eigenvectors x.

The generalized eigenvalue problem is to determine the nontrivial solutions of
the equation

where both A and B are n-by-n matrices and λ is a scalar. The values of λ that
satisfy the equation are the generalized eigenvalues and the corresponding
values of x are the generalized right eigenvectors.

If B is nonsingular, the problem could be solved by reducing it to a standard
eigenvalue problem

Because B can be singular, an alternative algorithm, called the QZ method, is
necessary.

When a matrix has no repeated eigenvalues, the eigenvectors are always
independent and the eigenvector matrix V diagonalizes the original matrix A if
applied as a similarity transformation. However, if a matrix has repeated

'chol' Computes the generalized eigenvalues of A and B using the
Cholesky factorization of B. This is the default for symmetric
(Hermitian) A and symmetric (Hermitian) positive definite B.

'qz' Ignores the symmetry, if any, and uses the QZ algorithm as it
would for nonsymmetric (non-Hermitian) A and B.

Ax λx=

Ax λBx=

B 1– Ax λx=
413

eig
eigenvalues, it is not similar to a diagonal matrix unless it has a full
(independent) set of eigenvectors. If the eigenvectors are not independent then
the original matrix is said to be defective. Even if a matrix is defective, the
solution from eig satisfies A∗X = X∗D.

Examples The matrix

B = [3 -2 -.9 2*eps;-2 4 -1 -eps;-eps/4 eps/2 -1 0;-.5 -.5 .1 1];

has elements on the order of roundoff error. It is an example for which the
nobalance option is necessary to compute the eigenvectors correctly. Try the
statements

[VB,DB] = eig(B)
B∗VB - VB∗DB
[VN,DN] = eig(B,'nobalance')
B∗VN - VN∗DN

Algorithm MATLAB uses LAPACK routines to compute eigenvalues and eigenvectors:

Case Routine

Real symmetric A DSYEV

Real nonsymmetric A:

• With preliminary balance step DGEEV

• d = eig(A,'nobalance') DGEHRD, DHSEQR

• [V,D] = eig(A,'nobalance') DGEHRD, DORGHR, DHSEQR, DTREVC

Hermitian A ZHEEV

Non-Hermitian A:

• With preliminary balance step ZGEEV

• d = eig(A,'nobalance') ZGEHRD, ZHSEQR

• [V,D] = eig(A,'nobalance') ZGEHRD, ZUNGHR, ZHSEQR, ZTREVC
414

eig
See Also balance, condeig, eigs, hess, qz, schur

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide, Third Edition, SIAM, Philadelphia, 1999.

Real symmetric A,
symmetric positive definite B.

DSYGV

Special case:
eig(A,B,'qz') for real A, B
(same as real nonsymmetric A, real
general B)

DGGEV

Real nonsymmetric A, real general B DGGEV

Complex Hermitian A,
Hermitian positive definite B.

ZHEGV

Special case:
eig(A,B,'qz') for complex A or B
(same as complex non-Hermitian A,
complex B)

ZGGEV

Complex non-Hermitian A, complex B ZGGEV

Case Routine
415

eigs
1eigsPurpose Find a few eigenvalues and eigenvectors of a square large sparse matrix

Syntax d = eigs(A)
d = eigs(A,B)
d = eigs(A,k)
d = eigs(A,B,k)
d = eigs(A,k,sigma)
d = eigs(A,B,k,sigma)
d = eigs(A,k,sigma,options)
d = eigs(A,B,k,sigma,options)
d = eigs(Afun,n)
d = eigs(Afun,n,B)
d = eigs(Afun,n,k)
d = eigs(Afun,n,B,k)
d = eigs(Afun,n,k,sigma)
d = eigs(Afun,n,B,k,sigma)
d = eigs(Afun,n,k,sigma,options)
d = eigs(Afun,n,B,k,sigma,options)
d = eigs(Afun,n,k,sigma,options,p1,p2...)
d = eigs(Afun,n,B,k,sigma,options,p1,p2...)
[V,D] = eigs(A,...)
[V,D] = eigs(Afun,n,...)
[V,D,flag] = eigs(A,...)
[V,D,flag] = eigs(Afun,n,...)

Description d = eigs(A) returns a vector of A's six largest magnitude eigenvalues.

[V,D] = eigs(A) returns a diagonal matrix D of A's six largest magnitude
eigenvalues and a matrix V whose columns are the corresponding eigenvectors.

[V,D,flag] = eigs(A) also returns a convergence flag. If flag is 0 then all
the eigenvalues converged; otherwise not all converged.

eigs(Afun,n) accepts the function Afun instead of the matrix A. y = Afun(x)
should return y = A*x, where x is an n-by-1 vector, and n is the size of A. The
matrix A represented by Afun is assumed to be real and nonsymmetric. In all
these calling sequences, eigs(A,...) can be replaced by eigs(Afun,n,...).
416

eigs
eigs(A,B) solves the generalized eigenvalue problem A*V == B*V*D. B must
be symmetric (or Hermitian) positive definite and the same size as A.
eigs(A,[],...) indicates the standard eigenvalue problem A*V == V*D.

eigs(A,k) and eigs(A,B,k) return the k largest magnitude eigenvalues.

eigs(A,k,sigma) and eigs(A,B,k,sigma) return k eigenvalues based on
sigma, which can take any of the following values:

Note The MATLAB 5 value sigma = 'be' is obsolete for nonsymmetric and
complex problems.

scalar The eigenvalues closest to sigma. If A is a function, Afun returns
A\x (standard) or (A-sigma*B)\x (generalized). Note, B need only
be symmetric (Hermitian) positive semi-definite.

'lm' Largest magnitude (default)

'sm' Smallest magnitude

For real symmetric problems, the following are also options:

'la' Largest algebraic ('lr' in MATLAB 5)

'sa' Smallest algebraic ('sr' in MATLAB 5)

'be' Both ends (one more from high end if k is odd)

For nonsymmetric and complex problems, the following are also options:

'lr' Largest real part

'sr' Smallest real part

'li' Largest imaginary part

'si' Smallest imaginary part
417

eigs
eigs(A,K,sigma,opts) and eigs(A,B,k,sigma,opts) specify an options
structure:

Note MATLAB 5 options stagtol and cheb are no longer allowed.

Parameter Description Default
Value

options.issym 1 if A or A-sigma*B represented by
Afun is symmetric, 0 otherwise.

0

options.isreal 1 if A or A-sigma*B represented by
Afun is real, 0 otherwise.

1

options.tol Convergence:
abs(lamda_comp-lamda_true) <
tol*abs(lamda_comp).

eps

options.maxit Maximum number of iterations. 300

options.p Number of basis vectors. p >= 2k
(p >= 2k+1 real nonsymmetric)
advised. Note: p must satisfy
k < p <= n for real symmetric,
k+1 < p <= n otherwise.

2k

options.v0 Starting vector. Randomly
generatedby
ARPACK

options.disp Diagnostic information display level. 1

options.cholB 1 if B is really its Cholesky factor
chol(B), 0 otherwise.

0

options.permB Permutation vector permB if sparse B is
really chol(B(permB,permB)).

1:N
418

eigs
eigs(Afun,n,k,sigma,opts,p1,p2,...) and
eigs(Afun,n,B,k,sigma,opts,p1,p2,...) provide for additional arguments
which are passed to Afun(x,p1,p2,...).

Remarks d = eigs(A,k) is not a substitute for

d = eig(full(A))
d = sort(d)
d = d(end-k+1:end)

but is most appropriate for large sparse matrices. If the problem fits into
memory, it may be quicker to use eig(full(A)).

Algorithm eigs provides the reverse communication required by the Fortran library
ARPACK, namely the routines DSAUPD, DSEUPD, DNAUPD, DNEUPD, ZNAUPD, and
ZNEUPD.

Examples Example 1: This example shows the use of function handles.

A = delsq(numgrid('C',15));
d1 = eigs(A,5,'sm');

Equivalently, if dnRk is the following one-line function:

function y = dnRk(x,R,k)
y = (delsq(numgrid(R,k))) * x;

then pass dnRk's additional arguments, 'C' and 15, to eigs.

n = size(A,1);
opts.issym = 1;
d2 = eigs(@dnRk,n,5,'sm',opts,'C',15);

Example 2: west0479 is a real 479-by-479 sparse matrix with both real and
pairs of complex conjugate eigenvalues. eig computes all 479 eigenvalues. eigs
easily picks out the largest magnitude eigenvalues.

This plot shows the 8 largest magnitude eigenvalues of west0479 as computed
by eig and eigs.

load west0479
d = eig(full(west0479))
dlm = eigs(west0479,8)
419

eigs
[dum,ind] = sort(abs(d));
plot(dlm,'k+')
hold on
plot(d(ind(end-7:end)),'ks')
hold off
legend('eigs(west0479,8)','eig(full(west0479))')

Example 3: A = delsq(numgrid('C',30)) is a symmetric positive definite
matrix of size 632 with eigenvalues reasonably well-distributed in the interval
(0 8), but with 18 eigenvalues repeated at 4. The eig function computes all 632
eigenvalues. It computes and plots the six largest and smallest magnitude
eigenvalues of A successfully with:

A = delsq(numgrid('C',30));
d = eig(full(A));
[dum,ind] = sort(abs(d));
dlm = eigs(A);
dsm = eigs(A,6,'sm');

−150 −100 −50 0 50 100 150
−2000

−1500

−1000

−500

0

500

1000

1500

2000
eigs(west0479,8)
eig(full(west0479))
420

eigs
subplot(2,1,1)
plot(dlm,'k+')
hold on
plot(d(ind(end:-1:end-5)),'ks')
hold off
legend('eigs(A)','eig(full(A))',3)
set(gca,'XLim',[0.5 6.5])

subplot(2,1,2)
plot(dsm,'k+')
hold on
plot(d(ind(1:6)),'ks')
hold off
legend('eigs(A,6,''sm'')','eig(full(A))',2)
set(gca,'XLim',[0.5 6.5])

However, the repeated eigenvalue at 4 must be handled more carefully. The
call eigs(A,18,4.0) to compute 18 eigenvalues near 4.0 tries to find
eigenvalues of A - 4.0*I. This involves divisions of the form 1/

1 2 3 4 5 6
7.8

7.85

7.9

7.95

8

eigs(A)
eig(full(A))

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2
eigs(A,6,’SM’)
eig(full(A))
421

eigs
(lambda - 4.0), where lambda is an estimate of an eigenvalue of A. As lambda
gets closer to 4.0, eigs fails. We must use sigma near but not equal to 4 to find
those 18 eigenvalues.

sigma = 4 - 1e-6
[V,D] = eigs(A,18,sigma)

The plot shows the 20 eigenvalues closest to 4 that were computed by eig, along
with the 18 eigenvalues closest to 4 - 1e-6 that were computed by eigs.

See Also arpackc, eig, svds

References [1] Lehoucq, R.B. and D.C. Sorensen, “Deflation Techniques for an Implicitly
Re-Started Arnoldi Iteration,” SIAM J. Matrix Analysis and Applications, Vol.
17, 1996, pp. 789-821.

[2] Lehoucq, R.B., D.C. Sorensen, and C. Yang, ARPACK Users' Guide: Solution
of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods,
SIAM Publications, Philadelphia, 1998.

2 4 6 8 10 12 14 16 18 20
3.97

3.98

3.99

4

4.01

4.02

4.03
18 repeated eigenvalues of delsq(numgrid(’C’,30)) at 4

eigs(A,18,sigma)
eig(A)
422

eigs
[3] Sorensen, D.C., “Implicit Application of Polynomial Filters in a k-Step
Arnoldi Method,” SIAM J. Matrix Analysis and Applications, Vol. 13, 1992,
pp. 357-385.
423

ellipj
1ellipjPurpose Jacobi elliptic functions

Syntax [SN,CN,DN] = ellipj(U,M)
[SN,CN,DN] = ellipj(U,M,tol)

Definition The Jacobi elliptic functions are defined in terms of the integral:

Then

Some definitions of the elliptic functions use the modulus k instead of the
parameter m. They are related by:

The Jacobi elliptic functions obey many mathematical identities; for a good
sample, see [1].

Description [SN,CN,DN] = ellipj(U,M) returns the Jacobi elliptic functions SN, CN, and
DN, evaluated for corresponding elements of argument U and parameter M.
Inputs U and M must be the same size (or either can be scalar).

[SN,CN,DN] = ellipj(U,M,tol) computes the Jacobi elliptic functions to
accuracy tol. The default is eps; increase this for a less accurate but more
quickly computed answer.

Algorithm ellipj computes the Jacobi elliptic functions using the method of the
arithmetic-geometric mean [1]. It starts with the triplet of numbers:

u θd

1 m θsin2–()
1
2

0

φ
∫=

sn u() φsin cn u(), φcos= = dn u(), 1 m φsin2–()
1
2

= am u(), φ=

k2 m αsin2= =

a0 1,= b0 1 m–()
1
2

,= c0 m()

1
2

=

424

ellipj
ellipj computes successive iterates with:

Next, it calculates the amplitudes in radians using:

being careful to unwrap the phases correctly. The Jacobian elliptic functions
are then simply:

Limitations The ellipj function is limited to the input domain . Map other values
of M into this range using the transformations described in [1], equations 16.10
and 16.11. U is limited to real values.

See Also ellipke

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, 1965, 17.6.

ai
1
2
--- ai 1– bi 1–+()=

bi ai 1– bi 1–()
1
2

=

ci
1
2
--- ai 1– bi 1––()=

2φn 1– φn–()sin
cn
an
------ φn()sin=

sn u() φ0sin=

cn u() φ0cos=

dn u() 1 m sn u()2⋅–()
1
2

=

0 m 1≤ ≤
425

ellipke
1ellipkePurpose Complete elliptic integrals of the first and second kind

Syntax K = ellipke(M)
[K,E] = ellipke(M)
[K,E] = ellipke(M,tol)

Definition The complete elliptic integral of the first kind [1] is:

where F, the elliptic integral of the first kind, is:

The complete elliptic integral of the second kind,

is:

Some definitions of K and E use the modulus k instead of the parameter m. They
are related by:

K m() F π 2⁄ m(),=

K m() 1 t2–() 1 mt2–()[]
1–
2

0

1

∫ dt 1 m θsin2–()
1–
2

θd
0

π
2

∫= =

E m() E K m()() E π 2⁄ m〈 | 〉,= =

E m() 1 t2–()
1–
2

1 mt2–()
1
2

0

1

∫= dt 1 m θsin2–()
1
2

0

π
2

∫ dθ=

k2 m αsin2= =
426

ellipke
Description K = ellipke(M) returns the complete elliptic integral of the first kind for the
elements of M.

[K,E] = ellipke(M) returns the complete elliptic integral of the first and
second kinds.

[K,E] = ellipke(M,tol) computes the Jacobian elliptic functions to accuracy
tol. The default is eps; increase this for a less accurate but more quickly
computed answer.

Algorithm ellipke computes the complete elliptic integral using the method of the
arithmetic-geometric mean described in [1], section 17.6. It starts with the
triplet of numbers:

ellipke computes successive iterations of ai, bi, and ci with:

stopping at iteration n when cn ≈ 0, within the tolerance specified by eps. The
complete elliptic integral of the first kind is then:

Limitations ellipke is limited to the input domain .

See Also ellipj

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, 1965, 17.6.

a0 1= b0, 1 m–()
1
2

= c0, m()
1
2

=

ai
1
2
--- ai 1– bi 1–+()=

bi ai 1– bi 1–()
1
2

=

ci
1
2
--- ai 1– bi 1––()=

K m() π
2an
----------=

0 m 1≤ ≤
427

else
1elsePurpose Conditionally execute statements

Syntax if expression
statements

else
statements

end

Description The else command is used to delineate an alternate block of statements.

if expression
statements

else
statements

end

The second set of statements is executed if the expression has any zero
elements. The expression is usually the result of

expression rop expression

where rop is ==, <, >, <=, >=, or ~=.

See Also break, elseif, end, for, if, return, switch, while
428

elseif
1elseifPurpose Conditionally execute statements

Syntax if expression
statements

elseif expression
statements

end

Description The elseif command conditionally executes statements.

if expression
statements

elseif expression
statements

end

The second block of statements executes if the first expression has any zero
elements and the second expression has all nonzero elements. The expression
is usually the result of

expression rop expression

where rop is ==, <, >, <=, >=, or ~=.

else if, with a space between the else and the if, differs from elseif, with
no space. The former introduces a new, nested, if, which must have a matching
end. The latter is used in a linear sequence of conditional statements with only
one terminating end.

The two segments

if A if A
x = a x = a

else elseif B
if B x = b

x = b elseif C
else x = c

if C else
x = c x = d

else end
x = d

end
429

elseif
end
end

produce identical results. Exactly one of the four assignments to x is executed,
depending upon the values of the three logical expressions, A, B, and C.

See Also break, else, end, for, if, return, switch, while
430

end
1endPurpose Terminate for, while, switch, try, and if statements or indicate last index

Syntax while expression% (or if, for, or try)
statements

end

B = A(index:end,index)

Description end is used to terminate for, while, switch, try, and if statements. Without
an end statement, for, while, switch, try, and if wait for further input. Each
end is paired with the closest previous unpaired for, while, switch, try, or if
and serves to delimit its scope.

The end command also serves as the last index in an indexing expression. In
that context, end = (size(x,k)) when used as part of the kth index. Examples
of this use are X(3:end) and X(1,1:2:end-1). When using end to grow an
array, as in X(end+1)=5, make sure X exists first.

You can overload the end statement for a user object by defining an end method
for the object. The end method should have the calling sequence end(obj,k,n),
where obj is the user object, k is the index in the expression where the end
syntax is used, and n is the total number of indices in the expression. For
example, consider the expression

A(end-1,:)

MATLAB will call the end method defined for A using the syntax

end(A,1,2)

Examples This example shows end used with the for and if statements.

for i = 1:n
if a(i) == 0

a(i) = a(i) + 2;
end

end

In this example, end is used in an indexing expression.

A = magic(5)
431

end
A =

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

B = A(end,2:end)

B =

 18 25 2 9

See Also break, for, if, return, switch, try, while
432

eomday
1eomdayPurpose End of month

Syntax E = eomday(Y,M)

Description E = eomday(Y,M) returns the last day of the year and month given by
corresponding elements of arrays Y and M.

Examples Because 1996 is a leap year, the statement eomday(1996,2) returns 29.

To show all the leap years in this century, try:

y = 1900:1999;
E = eomday(y,2∗ones(length(y),1)');
y(find(E==29))'

ans =
 Columns 1 through 6

1904 1908 1912 1916 1920 1924

 Columns 7 through 12
1928 1932 1936 1940 1944 1948

 Columns 13 through 18
1952 1956 1960 1964 1968 1972

 Columns 19 through 24
1976 1980 1984 1988 1992 1996

See Also datenum, datevec, weekday
433

eps
1epsPurpose Floating-point relative accuracy

Syntax eps

Description eps returns the distance from 1.0 to the next largest floating-point number.

The value eps is a default tolerance for pinv and rank, as well as several other
MATLAB functions. eps = 2^(-52), which is roughly 2.22e-16.

See Also realmax, realmin
434

erf, erfc, erfcx, erfinv
1erf, erfc, erfcx, erfinvPurpose Error functions

Syntax Y = erf(X) Error function
Y = erfc(X) Complementary error function
Y = erfcx(X) Scaled complementary error function
X = erfinv(Y) Inverse of the error function

Definition The error function erf(X) is twice the integral of the Gaussian distribution
with 0 mean and variance of :

The complementary error function erfc(X) is defined as:

The scaled complementary error function erfcx(X) is defined as:

For large X, erfcx(X) is approximately

Description Y = erf(X) returns the value of the error function for each element of real
array X.

Y = erfc(X) computes the value of the complementary error function.

Y = erfcx(X) computes the value of the scaled complementary error function.

X = erfinv(Y) returns the value of the inverse error function for each element
of Y. The elements of Y must fall within the domain

Remarks The relationship between the error function and the standard normal
probability distribution is:

x = -5:0.1:5;
standard_normal_cdf = (1 + (erf(x/sqrt(2))))./2;

Examples erfinv(1) is Inf

erfinv(-1) is -Inf.

1 2⁄

erf x() 2
π

------- e t2–
0

x

∫ dt=

erfc x() 2
π

------- e t2– td
x

∞
∫ 1 erf x()–= =

erfcx x() ex2erfc x()=

1
π

------- 
  1

x

1– Y 1.< <
435

erf, erfc, erfcx, erfinv
For abs(Y) > 1, erfinv(Y) is NaN.

Algorithms For the error functions, the MATLAB code is a translation of a Fortran program
by W. J. Cody, Argonne National Laboratory, NETLIB/SPECFUN, March 19,
1990. The main computation evaluates near-minimax rational approximations
from [1].

For the inverse of the error function, rational approximations accurate to
approximately six significant digits are used to generate an initial
approximation, which is then improved to full accuracy by two steps of
Newton’s method. The M-file is easily modified to eliminate the Newton
improvement. The resulting code is about three times faster in execution, but
is considerably less accurate.

References [1] Cody, W. J., “Rational Chebyshev Approximations for the Error Function,”
Math. Comp., pgs. 631-638, 1969
436

error
1errorPurpose Display error messages

Syntax error('error_message')

Description error('error_message') displays an error message and returns control to the
keyboard. The error message contains the input string error_message.

The error command has no effect if error_message is a null string.

Examples The error command provides an error return from M-files.

function foo(x,y)
if nargin ~= 2

error('Wrong number of input arguments')
end

The returned error message looks like:

» foo(pi)
??? Error using ==> foo
Wrong number of input arguments

See Also dbstop, disp, lasterr, warning, errordlg
437

errorbar
1errorbarPurpose Plot error bars along a curve

Syntax errorbar(Y,E)
errorbar(X,Y,E)
errorbar(X,Y,L,U)
errorbar(...,LineSpec)
h = errorbar(...)

Description Error bars show the confidence level of data or the deviation along a curve.

errorbar(Y,E) plots Y and draws an error bar at each element of Y. The error
bar is a distance of E(i) above and below the curve so that each bar is
symmetric and 2*E(i) long.

errorbar(X,Y,E) plots X versus Y with symmetric error bars 2*E(i) long. X, Y,
E must be the same size. When they are vectors, each error bar is a distance of
E(i) above and below the point defined by (X(i),Y(i)). When they are
matrices, each error bar is a distance of E(i,j) above and below the point
defined by (X(i,j),Y(i,j)).

errorbar(X,Y,L,U) plots X versus Y with error bars L(i)+U(i) long specifying
the lower and upper error bars. X, Y, L, and Umust be the same size. When they
are vectors, each error bar is a distance of L(i) below and U(i) above the point
defined by (X(i),Y(i)). When they are matrices, each error bar is a distance
of L(i,j) below and U(i,j) above the point defined by (X(i,j),Y(i,j)).

errorbar(...,LineSpec) draws the error bars using the line type, marker
symbol, and color specified by LineSpec.

h = errorbar(...) returns a vector of handles to line graphics objects.

Remarks When the arguments are all matrices, errorbar draws one line per matrix
column. If X and Y are vectors, they specify one curve.

Examples Draw symmetric error bars that are two standard deviation units in length.

X = 0:pi/10:pi;
Y = sin(X);
E = std(Y)*ones(size(X));
438

errorbar
errorbar(X,Y,E)

See Also LineSpec, plot, std

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
439

errordlg
1errordlgPurpose Create and display an error dialog box

Syntax errordlg
errordlg('errorstring')
errordlg('errorstring','dlgname')
errordlg('errorstring','dlgname','on')
h = errordlg(...)

Description errordlg creates an error dialog box, or if the named dialog exists, errordlg
pops the named dialog in front of other windows.

errordlg displays a dialog box named 'Error Dialog' that contains the string
'This is the default error string.'

errordlg('errorstring') displays a dialog box named 'Error Dialog' that
contains the string 'errorstring'.

errordlg('errorstring','dlgname') displays a dialog box named 'dlgname'
that contains the string 'errorstring'.

errordlg('errorstring','dlgname','on') specifies whether to replace an
existing dialog box having the same name. 'on' brings an existing error dialog
having the same name to the foreground. In this case, errordlg does not create
a new dialog.

h = errordlg(...) returns the handle of the dialog box.

Remarks MATLAB sizes the dialog box to fit the string 'errorstring'. The error dialog
box has an OK pushbutton and remains on the screen until you press the OK
button or the Return key. After pressing the button, the error dialog box
disappears.

The appearance of the dialog box depends on the windowing system you use.

Examples The function

errordlg('File not found','File Error');
440

errordlg
displays this dialog box on a UNIX system:

See Also dialog, helpdlg, msgbox, questdlg, warndlg
441

etime
1etimePurpose Elapsed time

Syntax e = etime(t2,t1)

Description e = etime(t2,t1) returns the time in seconds between vectors t1 and t2. The
two vectors must be six elements long, in the format returned by clock:

T = [Year Month Day Hour Minute Second]

Examples Calculate how long a 2048-point real FFT takes.

x = rand(2048,1);
t = clock; fft(x); etime(clock,t)
ans =

0.4167

Limitations As currently implemented, the etime function fails across month and year
boundaries. Since etime is an M-file, you can modify the code to work across
these boundaries if needed.

See Also clock, cputime, tic, toc
442

etree
1etreePurpose Elimination tree

Syntax p = etree(A)
p = etree(A,'col')
p = etree(A,'sym')
[p,q] = etree(...)

Description p = etree(A) returns an elimination tree for the square symmetric matrix
whose upper triangle is that of A. p(j) is the parent of column j in the tree, or
0 if j is a root.

p = etree(A,'col') returns the elimination tree of A'∗A.

p = etree(A,'sym') is the same as p = etree(A).

[p,q] = etree(...) also returns a postorder permutation q of the tree.

See Also treelayout, treeplot, etreeplot
443

etreeplot
1etreeplotPurpose Plot elimination tree

Syntax etreeplot(A)
etreeplot(A,nodeSpec,edgeSpec)

Description etreeplot(A) plots the elimination tree of A (or A+A', if non-symmetric).

etreeplot(A,nodeSpec,edgeSpec) allows optional parameters nodeSpec and
edgeSpec to set the node or edge color, marker, and linestyle. Use '' to omit
one or both.

See Also etree, treeplot, treelayout
444

eval
1evalPurpose Execute a string containing a MATLAB expression

Syntax eval(expression)
eval(expression,catch_expr)
[a1,a2,a3,...] = eval(function(b1,b2,b3,...))

Description eval(expression) executes expression, a string containing any valid
MATLAB expression. You can construct expression by concatenating
substrings and variables inside square brackets:

expression = [string1,int2str(var),string2,...]

eval(expression,catch_expr) executes expression and, if an error is
detected, executes the catch_expr string. If expression produces an error, the
error string can be obtained with the lasterr function. This syntax is useful
when expression is a string that must be constructed from substrings. If this
is not the case, use the try...catch control flow statement in your code.

[a1,a2,a3,...] = eval(function(b1,b2,b3,...)) executes function with
arguments b1,b2,b3,..., and returns the results in the specified output
variables.

Remarks Using the eval output argument list is recommended over including the output
arguments in the expression string. The first syntax below avoids strict
checking by the MATLAB parser and can produce untrapped errors and other
unexpected behavior.

eval('[a1,a2,a3,...] = function(var)') % not recommended

[a1,a2,a3,...] = eval('function(var)') % recommended syntax

Examples This for loop generates a sequence of 12 matrices named M1 through M12:

for n = 1:12

 magic_str = ['M',int2str(n),' = magic(n)'];
 eval(magic_str)

end
445

eval
This example uses a function showdemo that runs a MATLAB demo selected by
the user. If an error is encountered, a message is displayed that names the
demo that failed.

function showdemo(demos)
errstring = 'Error running demo: ';
n = input('Select a demo number: ');
eval(demos(n,:),'[errstring demos(n,:)]')
% ----- end of file showdemo.m -----

D = ['odedemo'; 'quademo'; 'fitdemo'];
showdemo(D)
Select a demo number: 2

ans =

Error running demo: quademo

The next example executes the size function on a 3-dimensional array,
returning the array dimensions in output variables d1, d2, and d3.

A = magic(4);
A(:,:,2) = A';

[d1,d2,d3] = eval('size(A)')

d1 =
 4

d2 =
 4

d3 =
 2

See Also assignin, catch, evalin, feval, lasterr, try
446

evalc
1evalcPurpose Evaluate MATLAB expression with capture

Syntax T = evalc(S)
T = evalc(s1,s2)
[T,X,Y,Z,...] = evalc(S)

Description T = evalc(S) is the same as eval(S) except that anything that would normally
be written to the command window is captured and returned in the character
array T (lines in T are separated by \n characters).

T = evalc(s1,s2) is the same as eval(s1,s2) except that any output is
captured into T.

[T,X,Y,Z,...] = evalc(S) is the same as [X,Y,Z,...] = eval(S) except
that any output is captured into T.

Remark When you are using evalc, diary, more, and input are disabled.

See Also diary, eval, evalin, input, more
447

evalin
1evalinPurpose Execute a string containing a MATLAB expression in a workspace

Syntax evalin(ws,expression)
[a1,a2,a3,...] = evalin(ws,expression)
evalin(ws,expression,catch_expr)

Description evalin(ws,expression) executes expression, a string containing any valid
MATLAB expression, in the context of the workspace ws. ws can have a value
of 'base' or 'caller' to denote the MATLAB base workspace or the workspace
of the caller function. You can construct expression by concatenating
substrings and variables inside square brackets:

expression = [string1,int2str(var),string2,...]

[a1,a2,a3,...] = evalin(ws,expression) executes expression and
returns the results in the specified output variables. Using the evalin output
argument list is recommended over including the output arguments in the
expression string:

evalin(ws,'[a1,a2,a3,...] = function(var)')

The above syntax avoids strict checking by the MATLAB parser and can
produce untrapped errors and other unexpected behavior.

evalin(ws,expression,catch_expr) executes expression and, if an error is
detected, executes the catch_expr string. If expression produces an error, the
error string can be obtained with the lasterr function. This syntax is useful
when expression is a string that must be constructed from substrings. If this
is not the case, use the try...catch control flow statement in your code.

Remarks The MATLAB base workspace is the workspace that is seen from the MATLAB
command line (when not in the debugger). The caller workspace is the
workspace of the function that called the M-file. Note, the base and caller
workspaces are equivalent in the context of an M-file that is invoked from the
MATLAB command line.

Examples This example extracts the value of the variable var in the MATLAB base
workspace and captures the value in the local variable v:

v = evalin(‘base’,’var’);
448

evalin
Limitation evalin cannot be used recursively to evaluate an expression. For example, a
sequence of the form evalin('caller','evalin(''caller'',''x'')')
doesn't work.

See Also assignin, catch, eval, feval, lasterr, try
449

exist
1existPurpose Check if a variable or file exists

Graphical
Interface

As an alternative to the exist function, use the Workspace browser. To open
it, select Workspace from the View menu in the MATLAB desktop.

Syntax exist item
exist item kind
a = exist('item',...)

Description exist item returns the status of the variable or file, item:

If item specifies a filename, that filename may include an extension to
preclude conflicting with other similar filenames. For example,
exist('file.ext').

MEX, MDL, and P-files must be on the MATLAB search path for exist to
return the values shown above. If item is found, but is not on the MATLAB
search path, exist('item') returns 2, because it considers item to be an
unknown file type.

Any other file type or directory specified by item is not required to be on the
MATLAB search path to be recognized by exist. If the file or directory is not
on the search path, then item must specify either a full pathname, a partial
pathname relative to MATLABPATH, or a partial pathname relative to your
current directory.

0 If item does not exist.

1 If the variable item exists in the workspace.

2 If item is an M-file or a file of unknown type.

3 If item is a MEX-file on your MATLAB search path.

4 If item is an MDL-file on your MATLAB search path.

5 If item is a built-in MATLAB function.

6 If item is a P-file on your MATLAB search path.

7 If item is a directory.

8 If item is a Java class.
450

exist
If item is a Java class, then exist('item') returns an 8. However, if item is a
Java class file, then exist('item') returns a 2.

exist item kind returns logical true (1), if an item of the specified kind is
found; otherwise, it returns 0. The kind argument may be one of the following:

a = exist('item',...) returns the status of the variable or file in variable, a.

Examples This example uses exist to check whether a MATLAB function is a built-in or
a file:

type = exist('plot')
type =

5
plot is a built-in function.

In the example below, exist returns 8 on the Java class, Welcome, and returns
2 on the Java class file, Welcome.class.

exist Welcome
ans =
 8

exist javaclasses/Welcome.class
ans =
 2

See Also dir, help, lookfor, partialpath, what, which, who

var Checks only for variables.

builtin Checks only for built-in functions.

file Checks only for files or directories.

dir Checks only for directories.

class Checks only for Java classes.
451

exit
1exit

Purpose Terminate MATLAB

Graphical
Interface

As an alternative to the exit function, select Exit MATLAB from the File
menu or click the close box in the MATLAB desktop.

Syntax exit

Description exit ends the current MATLAB session. It is the same as quit.

See Also quit
452

exp
1expPurpose Exponential

Syntax Y = exp(X)

Description The exp function is an elementary function that operates element-wise on
arrays. Its domain includes complex numbers.

Y = exp(X) returns the exponential for each element of X. For complex
z = x + i∗y, it returns the complex exponential:

Remark Use expm for matrix exponentials.

See Also expm, log, log10, expint

ez ex y()cos i y()sin+()=
453

expint
1expintPurpose Exponential integral

Syntax Y = expint(X)

Definitions The exponential integral is defined as:

Another common definition of the exponential integral function is the Cauchy
principal value integral:

which, for real positive x, is related to expint as follows:

expint(-x+i∗0) = -Ei(x) - i∗pi
Ei(x) = real(-expint(-x))

Description Y = expint(X) evaluates the exponential integral for each element of X.

Algorithm For elements of X in the domain , expint uses a series expansion
representation (equation 5.1.11 in [1]):

For all other elements of X, expint uses a continued fraction representation
(equation 5.1.22 in [1]):

References [1] Abramowitz, M. and I. A. Stegun. Handbook of Mathematical Functions.
Chapter 5, New York: Dover Publications, 1965.

e t–

t

x

∞
∫ dt

Ei x() e t– td
∞–

x

∫=

38 2,–[]

Ei x() γ– x 1–()nxn

n n!

n 1=

∞

∑–ln–=

En z() e z– 1
z+
------ n

1+
------- 1

z+
------ n 1+

1+
------------- 2

z+
------ … 

  angle z() π<,=
454

expm
1expmPurpose Matrix exponential

Syntax Y = expm(X)

Description Y = expm(X) raises the constant e to the matrix power X. Complex results are
produced if X has nonpositive eigenvalues.

Use exp for the element-by-element exponential.

Algorithm The expm function is built-in, but it uses the Padé approximation with scaling
and squaring algorithm expressed in the file expm1.m.

A second method of calculating the matrix exponential uses a Taylor series
approximation. This method is demonstrated in the file expm2.m. The Taylor
series approximation is not recommended as a general-purpose method. It is
often slow and inaccurate.

A third way of calculating the matrix exponential, found in the file expm3.m, is
to diagonalize the matrix, apply the function to the individual eigenvalues, and
then transform back. This method fails if the input matrix does not have a full
set of linearly independent eigenvectors.

References [1] and [2] describe and compare many algorithms for computing
expm(X). The built-in method, expm1, is essentially method 3 of [2].

Examples Suppose A is the 3-by-3 matrix

1 1 0
0 0 2
0 0 -1

then expm(A) is

2.7183 1.7183 1.0862
0 1.0000 1.2642
0 0 0.3679

while exp(A) is

2.7183 2.7183 1.0000
1.0000 1.0000 7.3891
1.0000 1.0000 0.3679
455

expm
Notice that the diagonal elements of the two results are equal; this would be
true for any triangular matrix. But the off-diagonal elements, including those
below the diagonal, are different.

See Also exp, funm, logm, sqrtm

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computation, p. 384, Johns
Hopkins University Press, 1983.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix,” SIAM Review 20, 1979, pp. 801-836.
456

eye
1eyePurpose Identity matrix

Syntax Y = eye(n)
Y = eye(m,n)
Y = eye(size(A))

Description Y = eye(n) returns the n-by-n identity matrix.

Y = eye(m,n) or eye([m n]) returns an m-by-n matrix with 1’s on the
diagonal and 0’s elsewhere.

Y = eye(size(A)) returns an identity matrix the same size as A.

Limitations The identity matrix is not defined for higher-dimensional arrays. The
assignment y = eye([2,3,4]) results in an error.

See Also ones, rand, randn, zeros
457

ezcontour
1ezcontourPurpose Easy to use contour plotter

Syntax ezcontour(f)
ezcontour(f,domain)
ezcontour(...,n)

Description ezcontour(f) plots the contour lines of f(x,y), where f is a string that
represents a mathematical function of two variables, such as x and y.

The function f is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

ezcontour(f,domain) plots f(x,y) over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max]
(where min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezcontour('u^2 - v^3',[0,1],[3,6]) plots the contour lines for u2 - v3 over
0 < u < 1, 3 < v < 6.

ezcontour(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezcontour automatically adds a title and axis labels.

Remarks Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezcontour. For example, the MATLAB syntax for a
contour plot of the expression,

sqrt(x.^2 + y.^2)

is written as:

ezcontour('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezcontour.

Examples The following mathematical expression defines a function of two variables, x
and y.
458

ezcontour
ezcontour requires a string argument that expresses this function using
MATLAB syntax to represent exponents, natural logs, etc. This function is
represented by the string:

f = ['3*(1−x)^2*exp(−(x^2)−(y+1)^2)',...
'− 10*(x/5 − x^3 − y^5)*exp(-x^2−y^2)',...
'- 1/3*exp(−(x+1)^2 − y^2)'];

For convenience, this string is written on three lines and concatenated into one
string using square brackets.

Pass the string variable f to ezcontour along with a domain ranging from −3
to 3 and specify a computational grid of 49-by-49:

ezcontour(f,[-3,3],49)

In this particular case, the title is too long to fit at the top of the graph so
MATLAB abbreviates the string.

f x y,() 3 1 x–()2e x2– y 1+()2– 10 x
5
--- x3– y5– 

  e x2– y2––
1
3
---e x 1+()2– y2––=

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

3 (1−x)2 exp(−(x2) − (y+1)2)− ~~~ x2−y2)− 1/3 exp(−(x+1)2 − y2)
459

ezcontour
See Also contour, ezcontourf, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf,
ezsurfc
460

ezcontourf
1ezcontourfPurpose Easy to use filled contour plotter

Syntax ezcontourf(f)
ezcontourf(f,domain)
ezcontourf(...,n)

Description ezcontourf(f) plots the contour lines of f(x,y), where f is a string that
represents a mathematical function of two variables, such as x and y.

The function f is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

ezcontourf(f,domain) plots f(x,y) over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max]
(where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezcontourf('u^2 - v^3',[0,1],[3,6]) plots the contour lines for u2 - v3 over
0 < u < 1, 3 < v < 6.

ezcontourf(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezcontourf automatically adds a title and axis labels.

Remarks Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezcontourf. For example, the MATLAB syntax for a
filled contour plot of the expression,

sqrt(x.^2 + y.^2);

is written as:

ezcontourf('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezcontourf.

Examples The following mathematical expression defines a function of two variables, x
and y.
461

ezcontourf
ezcontourf requires a string argument that expresses this function using
MATLAB syntax to represent exponents, natural logs, etc. This function is
represented by the string:

f = ['3*(1−x)^2*exp(−(x^2)−(y+1)^2)',...
'− 10*(x/5 − x^3 − y^5)*exp(-x^2−y^2)',...
'- 1/3*exp(−(x+1)^2 − y^2)'];

For convenience, this string is written on three lines and concatenated into one
string using square brackets.

Pass the string variable f to ezcontourf along with a domain ranging from −3
to 3 and specify a grid of 49-by-49:

ezcontourf(f,[-3,3],49)

In this particular case, the title is too long to fit at the top of the graph so
MATLAB abbreviates the string.

f x y,() 3 1 x–()2e x2– y 1+()2– 10 x
5
--- x3– y5– 

  e x2– y2––
1
3
---e x 1+()2– y2––=

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

3 (1−x)2 exp(−(x2) − (y+1)2)− ~~~ x2−y2)− 1/3 exp(−(x+1)2 − y2)
462

ezcontourf
See Also contourf, ezcontour, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf,
ezsurfc
463

ezmesh
1ezmeshPurpose Easy to use 3-D mesh plotter

Syntax ezmesh(f)
ezmesh(f,domain)
ezmesh(x,y,z)
ezmesh(x,y,z,[smin,smax,tmin,tmax]) or ezmesh(x,y,z,[min,max])
ezmesh(...,n)
ezmesh(...,'circ')

Description ezmesh(f) creates a graph of f(x,y), where f is a string that represents a
mathematical function of two variables, such as x and y.

The function f is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

ezmesh(f,domain) plots f over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where,
min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezmesh('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezmesh(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t)
over the square: -2π < s < 2π, -2π < t < 2π.

ezmesh(x,y,z,[smin,smax,tmin,tmax]) or ezmesh(x,y,z,[min,max]) plots
the parametric surface using the specified domain.

ezmesh(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezmesh(...,'circ') plots f over a disk centered on the domain.

Remarks rotate3d is always on. To rotate the graph, click and drag with the mouse.

Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezmesh. For example, the MATLAB syntax for a mesh
plot of the expression,
464

ezmesh
sqrt(x.^2 + y.^2);

is written as:

ezmesh('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezmesh.

Examples This example visualizes the function,

with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a uniform
blue color by setting the colormap to a single color:

ezmesh('x*exp(-x^2-y^2)',40)
colormap [0 0 1]

See Also ezcontour, ezcontourf, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf, ezsurfc,
mesh

f x y,() xe x– 2 y2–
=

−2
0

2

−2
−1

0
1

2

−0.5

0

0.5

x

x exp(−x2 − y2)

y

465

ezmeshc
1ezmeshcPurpose Easy to use combination mesh/contour plotter

Syntax ezmeshc(f)
ezmeshc(f,domain)
ezmeshc(x,y,z)
ezmeshc(x,y,z,[smin,smax,tmin,tmax]) or ezmeshc(x,y,z,[min,max])
ezmeshc(...,n)
ezmeshc(...,'circ')

Description ezmeshc(f) creates a graph of f(x,y), where f is a string that represents a
mathematical function of two variables, such as x and y.

The function f is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

ezmeshc(f,domain) plots f over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where,
min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezmeshc('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezmeshc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t)
over the square: -2π < s < 2π, -2π < t < 2π.

ezmeshc(x,y,z,[smin,smax,tmin,tmax]) or ezmeshc(x,y,z,[min,max])
plots the parametric surface using the specified domain.

ezmeshc(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezmeshc(...,'circ') plots f over a disk centered on the domain.

Remarks rotate3d is always on. To rotate the graph, click and drag with the mouse.

Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezmeshc. For example, the MATLAB syntax for a mesh/
contour plot of the expression,
466

ezmeshc
sqrt(x.^2 + y.^2);

is written as:

ezmeshc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezmeshc.

Examples Create a mesh/contour graph of the expression,

over the domain -5 < x < 5, -2*pi < y < 2*pi:

ezmeshc('y/(1 + x^2 + y^2)',[−5,5,−2*pi,2*pi])

Use the mouse to rotate the axes to better observe the contour lines (this
picture uses a view of azimuth = -65.5 and elevation = 26).

See Also ezcontour, ezcontourf, ezmesh, ezplot, ezplot3, ezpolar, ezsurf, ezsurfc,
meshc

f x y,() y

1 x2 y2
+ +

----------------------------=

−5

0

5

−5
0

5
−0.5

0

0.5

x

y/(1 + x2 + y2)

y

467

ezplot
1ezplotPurpose Easy to use function plotter

Syntax ezplot(f)
ezplot(f,[min,max])
ezplot(f,[xmin,xmax,ymin,ymax])
ezplot(x,y)
ezplot(x,y,[tmin,tmax])
ezplot(...,figure)

Description ezplot(f) plots the expression f = f(x) over the default domain: -2π < x < 2π.

ezplot(f,[min,max]) plots f = f(x) over the domain: min < x < max.

For implicitly defined functions, f = f(x,y):

ezplot(f) plots f(x,y) = 0 over the default domain -2π < x < 2π, -2π < y < 2π.

ezplot(f,[xmin,xmax,ymin,ymax]) plots f(x,y) = 0 over xmin < x < xmax and
ymin < y < ymax.

ezplot(f,[min,max])plots f(x,y) = 0 over min < x < max and min < y < max.

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezplot('u^2 - v^2 - 1',[-3,2,-2,3]) plots u2 - v2 - 1 = 0 over -3 < u < 2, -2
< v < 3.

ezplot(x,y) plots the parametrically defined planar curve x = x(t) and y = y(t)
over the default domain 0 < t < 2π.

ezplot(x,y,[tmin,tmax]) plots x = x(t) and y = y(t) over tmin < t < tmax.

ezplot(...,figure) plots the given function over the specified domain in the
figure window identified by the handle figure.

Remarks Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezplot. For example, the MATLAB syntax for a plot of
the expression,

x.^2 - y.^2

which represents an implicitly defined function, is written as:

ezplot('x^2 - y^2')
468

ezplot
That is, x^2 is interpreted as x.^2 in the string you pass to ezplot.

Examples This example plots the implicitly defined function,

x2 - y4 = 0

over the domain [-2π, 2π]:

ezplot('x^2-y^4')

See Also ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot3, ezpolar, ezsurf, ezsurfc,
plot

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

x

y

x2−y4 = 0
469

ezplot3
1ezplot3Purpose Easy to use 3-D parametric curve plotter

Syntax ezplot3(x,y,z)
ezplot3(x,y,z,[tmin,tmax])
ezplot3(...,'animate')

Description ezplot3(x,y,z) plots the spatial curve x = x(t), y = y(t), and z = z(t) over the
default domain 0 < t < 2π.

ezplot3(x,y,z,[tmin,tmax]) plots the curve x = x(t), y = y(t), and z = z(t) over
the domain tmin < t < tmax.

ezplot3(...,'animate') produces an animated trace of the spatial curve.

Remarks Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezplot3. For example, the MATLAB syntax for a plot of
the expression,

x = s./2, y = 2.*s, z = s.^2;

which represents a parametric function, is written as:

ezplot3('s/2','2*s','s^2')

That is, s/2 is interpreted as s./2 in the string you pass to ezplot3.

Examples This example plots the parametric curve,

over the domain [0,6π]:

ezplot3('sin(t)','cos(t)','t',[0,6*pi])

x t y t z t=,cos=,sin=
470

ezplot3
See Also ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot, ezpolar, ezsurf, ezsurfc,
plot3

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

5

10

15

20

x

x = sin(t), y = cos(t), z = t

y

z

471

ezpolar
1ezpolarPurpose Easy to use polar coordinate plotter

Syntax ezpolar(f)
ezpolar(f,[a,b])

Description ezpolar(f) plots the polar curve rho = f(theta) over the default domain 0 <
theta < 2π.

ezpolar(f,[a,b]) plots f for a < theta < b.

Examples This example creates a polar plot of the function,

1 + cos(t)

over the domain [0, 2π]:

ezpolar('1+cos(t)')

See Also ezplot, ezplot3, ezsurf, plot, plot3, polar

 0.5

 1

 1.5

 2

30

210

60

240

90

270

120

300

150

330

180 0

r = 1+cos(t)
472

ezsurf
1ezsurfPurpose Easy to use 3-D colored surface plotter

Syntax ezsurf(f)
ezsurf(f,domain)
ezsurf(x,y,z)
ezsurf(x,y,z,[smin,smax,tmin,tmax]) or ezsurf(x,y,z,[min,max])
ezsurf(...,n)
ezsurf(...,'circ')

Description ezsurf(f) creates a graph of f(x,y), where f is a string that represents a
mathematical function of two variables, such as x and y.

The function f is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

ezsurf(f,domain) plots f over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where,
min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezsurf('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezsurf(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t)
over the square: -2π < s < 2π, -2π < t < 2π.

ezsurf(x,y,z,[smin,smax,tmin,tmax]) or ezsurf(x,y,z,[min,max]) plots
the parametric surface using the specified domain.

ezsurf(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezsurf(...,'circ') plots f over a disk centered on the domain.

Remarks rotate3d is always on. To rotate the graph, click and drag with the mouse.

Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezsurf. For example, the MATLAB syntax for a surface
plot of the expression,
473

ezsurf
sqrt(x.^2 + y.^2);

is written as:

ezsurf('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezsurf.

Examples ezsurf does not graph points where the mathematical function is not defined
(these data points are set to NaNs, which MATLAB does not plot). This example
illustrates this filtering of singularities/discontinuous points by graphing the
function,

over the default domain -2π < x < 2π, -2π < y < 2π:

ezsurf('real(atan(x+i*y))')

Using surf to plot the same data produces a graph without filtering of
discontinuities (as well as requiring more steps):

[x,y] = meshgrid(linspace(-2*pi,2*pi,60));
z = real(atan(x+i.*y));

f x y,() x iy+()atan()real=

−5

0

5

−5

0

5

−2

−1

0

1

2

x

real(atan(x+i y))

y

474

ezsurf
surf(x,y,z)

Note also that ezsurf creates graphs that have axis labels, a title, and extend
to the axis limits.

See Also ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot, ezpolar, ezsurfc, surf

−10
−5

0
5

10

−10
−5

0
5

10
−2

−1

0

1

2

475

ezsurfc
1ezsurfcPurpose Easy to use combination surface/contour plotter

Syntax ezsurfc(f)
ezsurfc(f,domain)
ezsurfc(x,y,z)
ezsurfc(x,y,z,[smin,smax,tmin,tmax]) or ezsurfc(x,y,z,[min,max])
ezsurfc(...,n)
ezsurfc(...,'circ')

Description ezsurfc(f) creates a graph of f(x,y), where f is a string that represents a
mathematical function of two variables, such as x and y.

The function f is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

ezsurfc(f,domain) plots f over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where,
min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezsurfc('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezsurfc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t)
over the square: -2π < s < 2π, -2π < t < 2π.

ezsurfc(x,y,z,[smin,smax,tmin,tmax]) or ezsurfc(x,y,z,[min,max])
plots the parametric surface using the specified domain.

ezsurfc(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezsurfc(...,'circ') plots f over a disk centered on the domain.

Remarks rotate3d is always on. To rotate the graph, click and drag with the mouse.

Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezsurfc. For example, the MATLAB syntax for a
surface/contour plot of the experssion,
476

ezsurfc
sqrt(x.^2 + y.^2);

is written as:

ezsurfc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezsurfc.

Examples Create a surface/contour plot of the expression,

over the domain -5 < x < 5, -2*pi < y < 2*pi, with a computational grid of size
35-by-35:

ezsurfc('y/(1 + x^2 + y^2)',[−5,5,−2*pi,2*pi],35)

Use the mouse to rotate the axes to better observe the contour lines (this
picture uses a view of azimuth = -65.5 and elevation = 26)

f x y,() y

1 x2 y2
+ +

----------------------------=

−5

0

5

−5
0

5
−0.5

0

0.5

x

y/(1 + x2 + y2)

y

477

ezsurfc
See Also ezcontour, ezcontourf, ezmesh, ezmeshc, ezplot, ezpolar, ezsurf, surfc
478

Index
Symbols
 227
- 28
' 28
* 28
+ 28
.avi 43
/ 28
: 248
\ 28
^ 28

A
accuracy

of linear equation solution 267
of matrix inversion 267
relative floating-point 434

acos 4
acosh 4
acot 5
acoth 5
acsc 6
acsch 6
addframe

AVI files 8
addition (arithmetic operator) 28
addpath 10
addressing selected array elements 248
adjacency graph 399
airy 12
ALim, Axes property 61
all 15
AmbientLightColor, Axes property 61
AND, logical

bit-wise 125
angle 22
ans 23
any 24
arccosecant 6
arccosine 4
arccotangent 5
arcsecant 35
arcsine 36
arctangent 39

(four-quadrant) 40
area 26
arithmetic operations, matrix and array

distinguished 28
arithmetic operators

reference 28
array

addressing selected elements of 248
displaying 393
left division (arithmetic operator) 29
multiplication (arithmetic operator) 28
power (arithmetic operator) 29
right division (arithmetic operator) 29
transpose (arithmetic operator) 29

arrays
maximum size of 266

arrowhead matrix 259
ASCII

delimited files
writing 398

ASCII data
printable characters (list of) 200
reading 397

asech 35
asin 36
asinh 36
aspect ratio of axes 319
assignin 37
I-1

Index
atan2 40
.au files

reading 41
writing 42

audio
saving in AVI format 43

auwrite 42
avifile 43
aviinfo 46
aviread 48
Axes

creating 49
defining default properties 53
fixed-width font 70
property descriptions 61

axes
setting and querying data aspect ratio 319

axes 49
axis 82

B
balance 88
bar 91
bar3 95
bar3h 95
barh 91
base to decimal conversion 99
base two operations

conversion from decimal to binary 362
base2dec 99
beep 100
Bessel functions 101, 106

first kind 103
modified 103
second kind 104
third kind 107

Bessel’s equation
(defined) 101, 106
modified (defined) 103

besselh 101
besseli 103
besselj 106
besselk 103
bessely 106
beta 109
beta function

(defined) 109
incomplete (defined) 109
natural logarithm of 109

betainc 109
betaln 109
bicg 111
bicgstab 119
bin2dec 124
binary to decimal conversion 124
bitand 125
bitcmp 126
bitget 127
bitmax 128
bitor 129
bitset 130
bitshift 131
bit-wise operations

AND 125
get 127
OR 129
set bit 130
shift 131
XOR 132

bitxor 132
blanks

removing trailing 360
blanks 133
I-2

Index
blkdiag 134
box 135
Box, Axes property 62
break 136
breakpoints

listing 341
removing 333
resuming execution from 334
setting in M-files 343

brighten 137
builtin 138
BusyAction

Axes property 62
ButtonDownFcn

Axes property 62
bvp4c 139
bvpget 146
bvpinit 147
bvpset 149
bvpval 151

C
calendar 152
camdolly 153
camera

dollying position 153
moving camera and target postions 153
placing a light at 155
positioning to view objects 157
rotating around camera target 159, 161
rotating around viewing axis 165
setting and querying position 162
setting and querying projection type 164
setting and querying target 166
setting and querying up vector 168
setting and querying view angle 170

CameraPosition, Axes property 63
CameraPositionMode, Axes property 63
CameraTarget, Axes property 63
CameraTargetMode, Axes property 63
CameraUpVector, Axes property 63
CameraUpVectorMode, Axes property 63
CameraViewAngle, Axes property 64
CameraViewAngleMode, Axes property 64
camlight 155
camlookat 157
camorbit 159
campan 161
campos 162
camproj 164
camroll 165
camtarget 166
camup 168
camva 170
camzoom 172
capture 173
cart2pol 174
cart2sph 176
Cartesian coordinates 174, 176
case 177
cat 178
catch 179
caxis 180
cd 184
cdf2rdf 185
ceil 187
cell array

creating 188
structure of, displaying 194

cell2struct 190
celldisp 191
cellfun 192
cellplot 194
I-3

Index
cgs 196
char 200
checkin 202

examples 203
options 202

checkout 204
examples 205
options 204

Children

Axes property 65
chol 207
Cholesky factorization 207

(as algorithm for solving linear equations) 32
preordering for 259

cholinc 209
cholinc 209
cholupdate 217
cla 220
clabel 221
class 223
clc 225, 231
clear 226
clear

serial port I/O 230
clearing

Command Window 225
items from workspace 226
Java import list 227

clf 231
CLim, Axes property 65
CLimMode, Axes property 65
clipboard 232
Clipping

Axes property 65
clock 233
close 234

AVI files 47, 236

closest point search 409
cmopts 238

modifying for PVCS 238
colamd 240
colmmd 242
Color

Axes property 66
colorbar 250
colormap 253
ColorOrder, Axes property 66
ColorSpec 257
colperm 259
comet 260
comet3 261
Command Window

clearing 225
compan 262
companion matrix 262
compass 263
complementary error function

(defined) 435
scaled (defined) 435

complete elliptic integral
(defined) 426
modulus of 424, 426

complex
exponential (defined) 453
phase angle 22

complex 265
complex conjugate 275

sorting pairs of 304
complex data

creating 265
computer 266
computer MATLAB is running on 266
concatenating arrays 178
cond 267
I-4

Index
condeig 268
condest 269
condition number of matrix 88, 267
coneplot 270
conj 275
conjugate, complex 275

sorting pairs of 304
continue 276
contour

and mesh plot 466
filled plot 461
functions 458
of mathematical expression 458
with surface plot 476

contour 277
contour3 281
contourc 283
contourf 285
contours

in slice planes 287
contourslice 287
contrast 290
conv 291
conv2 292
conversion

base to decimal 99
binary to decimal 124
Cartesian to cylindrical 174
Cartesian to polar 174
complex diagonal to real block diagonal 185
decimal number to base 358, 361
decimal to binary 362
decimal to hexadecimal 363
string matrix to cell array 195
vector to character string 200

convhull 294
convhulln 295

convn 296
convolution 291

inverse See deconvolution
two-dimensional 292

coordinates
Cartesian 174, 176
cylindrical 174, 176
polar 174, 176
See also conversion

copyfile 297
copyobj 298
corrcoef 300
cos 301
cosecant 307

hyperbolic 307
inverse 6
inverse hyperbolic 6

cosh 301
cosine 301

hyperbolic 301
inverse 4
inverse hyperbolic 4

cot 302
cotangent 302

hyperbolic 302
inverse 5
inverse hyperbolic 5

coth 302
cov 303
cplxpair 304
cputime 305
CreateFcn

Axes property 66
cross 306
cross product 306
csc 307
csch 307
I-5

Index
ctranspose (M-file function equivalent for ') 30
cumprod 308
cumsum 309
cumtrapz 310
cumulative

product 308
sum 309

curl 312
current directory

changing 184
CurrentPoint

Axes property 66
customverctrl 315
cylinder 316
cylindrical coordinates 174, 176

D
daspect 319
data aspect ratio of axes 319
data types

complex 265
DataAspectRatio, Axes property 67
DataAspectRatioMode, Axes property 69
date 322
date and time functions 433
date string

format of 325
date vector 331
datenum 323
datestr 325
datevec 331
dbclear 333
dbcont 334
dbdown 335
dbmex 338
dbquit 339

dbstack 340
dbstatus 341
dbstep 342
dbstop 343
dbtype 346
dbup 347
ddeadv 348
ddeexec 350
ddeinit 351
ddepoke 352
ddereq 354
ddeterm 356
ddeunadv 357
deal 358
deblank 360
debugging

changing workspace context 335
changing workspace to calling M-file 347
displaying function call stack 340
MEX-files on UNIX 338
quitting debug mode 339
removing breakpoints 333
resuming execution from breakpoint 342
setting breakpoints in 343
stepping through lines 342

dec2base 358, 361
dec2bin 362
dec2hex 363
decimal number to base conversion 358, 361
decimal point (.)

to distinguish matrix and array operations 28
decomposition

Dulmage-Mendelsohn 399
deconv 364
deconvolution 364
default tolerance 434
default4 365
I-6

Index
del operator 366
del2 366
delaunay 369
delaunay3 372
delaunayn 374
delete 376
delete

serial port I/O 377
DeleteFcn

Axes property 69
deleting

files 376
items from workspace 226

delimiters in ASCII files 397, 398
depdir 378
depfun 379
derivative

approximate 389
det 383
determinant of a matrix 383
detrend 384
diag 386
diagonal 386

main 386
dialog 387
dialog box

error 440
diary 388
diff 389
differences

between adjacent array elements 389
differential equation solvers

ODE boundary value problems 139
adjusting parameters of 149
extracting properties of 146, 443, 444
forming an initial guess 147

dir 391

directories
adding to search path 10
checking existence of 450
listing contents of 391
See also directory, search path

directory
See also directories

directory, changing 184
discontinuities, plotting functions with 474
disp 393
disp

serial port I/O 394
distribution

Gaussian 435
division

array, left (arithmetic operator) 29
array, right (arithmetic operator) 29
matrix, left (arithmetic operator) 29
matrix, right (arithmetic operator) 28
of polynomials 364

dlmread 397
dlmwrite 398
dmperm 399
doc 400
docopt 401
documentation

location of files for UNIX 401
dolly camera 153
dot 404
dot product 306, 404
double 405
dragrect 406
DrawMode, Axes property 69
drawnow 407
dsearch 408
dsearchn 409
Dulmage-Mendelsohn decomposition 399
I-7

Index
E
echo 410
edge finding, Sobel technique 292
editing

M-files 411
eig 412
eigensystem

transforming 185
eigenvalue

accuracy of 88, 412
complex 185
of companion matrix 262
poorly conditioned 88
problem 413
problem, generalized 413
repeated 413

eigenvector
left 413
right 413

eigs 416
ellipj 424
ellipke 426
elliptic functions, Jacobian

(defined) 424
elliptic integral

complete (defined) 426
modulus of 424, 426

else 428
elseif 429
end 431
eomday 433
eps 434
equations, linear

accuracy of solution 267
erf 435
erfc 435
erfcx 435

error 437
error function

(defined) 435
complementary 435
scaled complementary 435

error message
displaying 437

errorbar 438
errordlg 440
etime 442
etree 443
etreeplot 444
eval 445
evalc 447
evalin 448
examples

contouring mathematical expressions 458
mesh plot of mathematical function 465
mesh/contour plot 467
plotting filled contours 461
plotting function of two variables 469
plotting parametric curves 470
polar plot of function 472
surface plot of mathematical function 474
surface/contour plot 477

execution
resuming from breakpoint 334

exist 450
exit 452
exp 453
expint 454
expm 455
exponential 453

complex (defined) 453
integral 454
matrix 455

exponentiation
I-8

Index
array (arithmetic operator) 29
matrix (arithmetic operator) 29

eye 457
ezcontour 458
ezcontourf 461
ezmesh 464
ezmeshc 466
ezplot 468
ezplot3 470
ezpolar 472
ezsurf 473
ezsurfc 476

F
factorization, Cholesky 207

(as algorithm for solving linear equations) 32
preordering for 259

Figures
updating from M-file 407

files
ASCII delimited

reading 397
writing 398

checking existence of 450
copying 297
deleting 376
listing

names in a directory 391
sound

reading 41
writing 42, 43

Xdefaults 449
filter

two-dimensional 292
fixed-width font

axes 70

flint See floating-point, integer
floating-point

integer 126, 130
integer, maximum 128
numbers, interval between 434

flow control
break 136
case 177
else 428
elseif 429
end 431
error 437

font
fixed-width, axes 70

FontAngle

Axes property 69
FontName

Axes property 70
FontSize

Axes property 70
FontUnits

Axes property 70
FontWeight

Axes property 71
Fourier transform

convolution theorem and 291
functions

call stack for 340
checking existence of 450
clearing from workspace 226

G
Gaussian distribution function 435
Gaussian elimination

(as algorithm for solving linear equations) 33
generalized eigenvalue problem 413
I-9

Index
generating a sequence of matrix names (M1
through M12) 445

global variables, clearing from workspace 226
graph

adjacency 399
graphics objects

Axes 49
graphics objects, deleting 376
GridLineStyle, Axes property 71

H
HandleVisibility

Axes property 71
Hankel functions, relationship to Bessel of 107
help

files, location for UNIX 401
Help browser

accessing from doc 400
HitTest

Axes property 72
Householder reflections (as algorithm for solving

linear equations) 33
hyperbolic

cosecant 307
cosecant, inverse 6
cosine 301
cosine, inverse 4
cotangent 302
cotangent, inverse 5
secant 35
secant, inverse 35
sine 36
sine, inverse 36
tangent 39
tangent, inverse 39

I
identity matrix 457
incomplete

beta function (defined) 109
inheritance, of objects 223, 224
integer

floating-point 126, 130
floating-point, maximum 128

Interruptible

Axes property 72
inverse

cosecant 6
cosine 4
cotangent 5
four-quadrant tangent 40
hyperbolic cosecant 6
hyperbolic cosine 4
hyperbolic cotangent 5
hyperbolic secant 35
hyperbolic sine 36
hyperbolic tangent 39
secant 35
sine 36
tangent 39

inversion, matrix
accuracy of 267

J
Jacobian elliptic functions

(defined) 424
Java import list

clearing 227
joining arrays See concatenating arrays
I-10

Index
L
labeling

matrix columns 393
Laplacian 366
Layer, Axes property 72
ldivide (M-file function equivalent for .\) 30
Light

positioning in camera coordinates 155
line numbers in M-files 346
linear equation systems

accuracy of solution 267
linear equation systems, methods for solving

Cholesky factorization 32
Gaussian elimination 33
Householder reflections 33

LineStyleOrder

Axes property 73
LineWidth

Axes property 73
Lobatto IIIa ODE solver 145
log

saving session to file 388
logarithm

of beta function (natural) 109
logical operations

AND, bit-wise 125
OR, bit-wise 129
XOR, bit-wise 132

logical tests
all 15
any 24

M
matrix

addressing selected rows and columns of 248
arrowhead 259

companion 262
condition number of 88, 267
converting to vector 248
defective (defined) 414
determinant of 383
diagonal of 386
Dulmage-Mendelsohn decomposition of 399
exponential 455
identity 457
inversion, accuracy of 267
left division (arithmetic operator) 29
maximum size of 266
modal 412
multiplication (defined) 28
power (arithmetic operator) 29
reading files into 397
right division (arithmetic operator) 28
singularity, test for 383
trace of 386
transpose (arithmetic operator) 29
writing to ASCII delimited file 398
See also array

matrix names, (M1 through M12) generating a
sequence of 445

matrix power See matrix, exponential
MDL-files

checking existence of 450
memory

clearing 226
methods

inheritance of 223, 224
MEX-files

clearing from workspace 226
debugging on UNIX 338

M-file
displaying during execution 410
function file, echoing 410
I-11

Index
script file, echoing 410
M-files

checking existence of 450
clearing from workspace 226
deleting 376
editing 411
line numbers, listing 346
setting breakpoints 343

minus (M-file function equivalent for -) 30
mldivide (M-file function equivalent for \) 30
modal matrix 412
movies

exporting in AVI format 43
mpower (M-file function equivalent for ^) 30
mrdivide (M-file function equivalent for /) 30
mtimes (M-file function equivalent for *) 30
multidimensional arrays

concatenating 178
multiplication

array (arithmetic operator) 28
matrix (defined) 28
of polynomials 291

N
NextPlot

Axes property 73
numbers

complex 22

O
object

inheritance 223, 224
object classes, list of predefined 223
online help

location of files for UNIX 401

operators
arithmetic 28

logical OR
bit-wise 129

orthographic projection, setting and querying
164

P
Padé approximation (of matrix exponential) 455
parametric curve, plotting 470
Parent

Axes property 74
path

adding directories to 10
pauses, removing 333
period (.), to distinguish matrix and array

operations 28
perspective projection, setting and querying 164
P-files

checking existence of 450
phase, complex 22
platform MATLAB is running on 266
PlotBoxAspectRatio, Axes property 74
PlotBoxAspectRatioMode, Axes property 74
plotting

contours (a 458
contours (ez function) 458
errorbars 438
ez-function mesh plot 464
filled contours 461
functions with discontinuities 474
in polar coordinates 472
mathematical function 468
mesh contour plot 466
parametric curve 470
surfaces 473
I-12

Index
velocity vectors 270
plus (M-file function equivalent for +) 30
polar coordinates 174, 176

plotting in 472
polynomial

division 364
multiplication 291

poorly conditioned
eigenvalues 88

Position

Axes property 74
position of camera

dollying 153
position of camera, setting and querying 162
power

matrix See matrix exponential
power (M-file function equivalent for .^) 30
product

cumulative 308
of vectors (cross) 306
scalar (dot) 306

projection type, setting and querying 164
ProjectionType, Axes property 75

R
rdivide (M-file function equivalent for ./) 30
rearranging arrays

converting to vector 248
rearranging matrices

converting to vector 248
reference page

accessing from doc 400
regularly spaced vectors, creating 248
relative accuracy

floating-point 434
rolling camera 165

rotating camera 159
rotating camera target 161
round

towards infinity 187
roundoff error

convolution theorem and 291
effect on eigenvalues 88

S
saving

session to a file 388
scalar product (of vectors) 306
scaled complementary error function (defined)

435
search path

adding directories to 10
secant, inverse 35
secant, inverse hyperbolic 35
Selected

Axes property 75
SelectionHighlight

Axes property 75
sequence of matrix names (M1 through M12)

generating 445
session

saving 388
sine, inverse 36
sine, inverse hyperbolic 36
slice planes, contouring 287
sorting

complex conjugate pairs 304
sound

files
reading 41
writing 42

source control systems
I-13

Index
checking in files 202
checking out files 204
viewing current system 238

sparse matrix
minimum degree ordering of 242
permuting columns of 259

spreadsheets
reading into a matrix 397
writing matrices into 398

stack, displaying 340
str2cell 195
stretch-to-fill 50
string

converting from vector to 200
string matrix to cell array conversion 195
subtraction (arithmetic operator) 28
sum

cumulative 309
Surface

and contour plotter 476
plotting mathematical functions 473

T
Tag

Axes property 75
tangent (four-quadrant), inverse 40
tangent, inverse 39
tangent, inverse hyperbolic 39
target, of camera 166
Taylor series (matrix exponential approximation)

455
test, logical See logical tests and detecting
TickDir, Axes property 76
TickDirMode, Axes property 76
TickLength, Axes property 76
time

CPU 305
required to execute commands 442

time and date functions 433
times (M-file function equivalent for .*) 30
Title, Axes property 76
tolerance, default 434
trace of a matrix 386
trailing blanks

removing 360
transformation

See also conversion
transpose

array (arithmetic operator) 29
matrix (arithmetic operator) 29

transpose (M-file function equivalent for .') 30
Type

Axes property 77

U
UIContextMenu

Axes property 77
uminus (M-file function equivalent for unary –)

30
Units

Axes property 77
up vector, of camera 168
updating figure during M-file execution 407
uplus (M-file function equivalent for unary +) 30
UserData

Axes property 77

V
variables

checking existence of 450
clearing from workspace 226
I-14

Index
vector
dot product 404
product (cross) 306

vector field, plotting 270
vectors, creating

regularly spaced 248
velocity vectors, plotting 270
video

saving in AVI format 43
view 157
view angle, of camera 170
View, Axes property (obsolete) 77
viewing

a group of object 157
a specific object in a scene 157

Visible

Axes property 78
visualizing

cell array structure 194
volumes

contouring slice planes 287

W
workspace

changing context while debugging 335, 347
clearing items from 226

X
XAxisLocation, Axes property 78
XColor, Axes property 78
Xdefaults file 449
XDir, Axes property 78
XGrid, Axes property 79
XLabel, Axes property 79
XLim, Axes property 79

XLimMode, Axes property 79
logical XOR

bit-wise 132
XScale, Axes property 80
XTick, Axes property 80
XTickLabel, Axes property 80
XTickLabelMode, Axes property 81
XTickMode, Axes property 80

Y
YAxisLocation, Axes property 78
YColor, Axes property 78
YDir, Axes property 78
YGrid, Axes property 79
YLabel, Axes property 79
YLim, Axes property 79
YLimMode, Axes property 79
YScale, Axes property 80
YTick, Axes property 80
YTickLabel, Axes property 80
YTickLabelMode, Axes property 81
YTickMode, Axes property 80

Z
ZColor, Axes property 78
ZDir, Axes property 78
ZGrid, Axes property 79
ZLim, Axes property 79
ZLimMode, Axes property 79
ZScale, Axes property 80
ZTick, Axes property 80
ZTickLabel, Axes property 80
ZTickLabelMode, Axes property 81
ZTickMode, Axes property 80
I-15

Index
I-16

Index
I-17

Index
I-18

Index
I-19

Index
I-20

Index
I-21

Index
I-22

Index
I-23

Index
I-24

Index
I-25

Index
I-26

Index
I-27

Index
I-28

	Functions by Category
	General Purpose Commands
	Managing Commands and Functions
	Managing Variables and the Workspace
	Controlling the Command Window
	Working with Files and the Operating Environment
	Starting and Quitting MATLAB

	Operators and Special Characters
	Logical Functions
	Language Constructs and Debugging
	MATLAB as a Programming Language
	Control Flow
	Interactive Input
	Object-Oriented Programming
	Debugging
	Function Handles

	Elementary Matrices and Matrix Manipulation
	Elementary Matrices and Arrays
	Special Variables and Constants
	Time and Dates
	Matrix Manipulation
	Vector Functions

	Specialized Matrices
	Elementary Math Functions
	Specialized Math Functions
	Coordinate System Conversion
	Matrix Functions - Numerical Linear Algebra
	Matrix Analysis
	Linear Equations
	Eigenvalues and Singular Values
	Matrix Functions
	Low Level Functions

	Data Analysis and Fourier Transform Functions
	Basic Operations
	Finite Differences
	Correlation
	Filtering and Convolution
	Fourier Transforms

	Polynomial and Interpolation Functions
	Polynomials
	Data Interpolation

	Function Functions – Nonlinear Numerical Methods
	Sparse Matrix Functions
	Elementary Sparse Matrices
	Full to Sparse Conversion
	Working with Nonzero Entries of Sparse Matrices
	Visualizing Sparse Matrices
	Reordering Algorithms
	Norm, Condition Number, and Rank
	Sparse Systems of Linear Equations
	Sparse Eigenvalues and Singular Values
	Miscellaneous

	Sound Processing Functions
	General Sound Functions
	SPARCstation-Specific Sound Functions
	.WAV Sound Functions

	Character String Functions
	General
	String to Function Handle Conversion
	String Manipulation
	String to Number Conversion
	Radix Conversion

	File I/O Functions
	File Opening and Closing
	Unformatted I/O
	Formatted I/O
	File Positioning
	String Conversion
	Specialized File I/O

	Bitwise Functions
	Structure Functions
	MATLAB Object Functions
	MATLAB Interface to Java
	Cell Array Functions
	Multidimensional Array Functions
	Plotting and Data Visualization
	Basic Plots and Graphs
	Three-Dimensional Plotting
	Plot Annotation and Grids
	Surface, Mesh, and Contour Plots
	Volume Visualization
	Domain Generation
	Specialized Plotting
	View Control
	Lighting
	Transparency
	Color Operations
	Colormaps
	Printing
	Handle Graphics, General
	Working with Application Data
	Handle Graphics, Object Creation
	Handle Graphics, Figure Windows
	Handle Graphics, Axes
	Object Manipulation
	Interactive User Input
	Region of Interest

	Graphical User Interfaces
	Dialog Boxes
	User Interface Deployment
	User Interface Development
	User Interface Objects
	Other Functions

	Serial Port I/O
	Creating a Serial Port Object
	Writing and Reading Data
	Configuring and Returning Properties
	State Change
	General Purpose

	Volume 1 Reference
	abs
	acos, acosh
	acot, acoth
	acsc, acsch
	addframe
	addpath
	airy
	alim
	all
	allchild
	alpha
	alphamap
	angle
	ans
	any
	area
	Arithmetic Operators + - * / \ ^ '
	asec, asech
	asin, asinh
	assignin
	atan, atanh
	atan2
	auread
	auwrite
	avifile
	aviinfo
	aviread
	axes
	Axes Properties
	axis
	balance
	bar, barh
	bar3, bar3h
	base2dec
	beep
	besselh
	besseli, besselk
	besselj, bessely
	beta, betainc, betaln
	bicg
	bicgstab
	bin2dec
	bitand
	bitcmp
	bitget
	bitmax
	bitor
	bitset
	bitshift
	bitxor
	blanks
	blkdiag
	box
	break
	brighten
	builtin
	bvp4c
	bvpget
	bvpinit
	bvpset
	bvpval
	calendar
	camdolly
	camlight
	camlookat
	camorbit
	campan
	campos
	camproj
	camroll
	camtarget
	camup
	camva
	camzoom
	capture
	cart2pol
	cart2sph
	case
	cat
	catch
	caxis
	cd
	cdf2rdf
	ceil
	cell
	cell2struct
	celldisp
	cellfun
	cellplot
	cellstr
	cgs
	char
	checkin
	checkout
	chol
	cholinc
	cholupdate
	cla
	clabel
	class
	clc
	clear
	clear (serial)
	clf
	clipboard
	clock
	close
	close (AVI)
	closereq
	cmopts
	colamd
	colmmd
	Colon :
	colorbar
	colordef
	colormap
	ColorSpec
	colperm
	comet
	comet3
	compan
	compass
	complex
	computer
	cond
	condeig
	condest
	coneplot
	conj
	continue
	contour
	contour3
	contourc
	contourf
	contourslice
	contrast
	conv
	conv2
	convhull
	convhulln
	convn
	copyfile
	copyobj
	corrcoef
	cos, cosh
	cot, coth
	cov
	cplxpair
	cputime
	cross
	csc, csch
	cumprod
	cumsum
	cumtrapz
	curl
	customverctrl
	cylinder
	daspect
	date
	datenum
	datestr
	datetick
	datevec
	dbclear
	dbcont
	dbdown
	dblquad
	dbmex
	dbquit
	dbstack
	1 dbstatus
	dbstep
	dbstop
	dbtype
	dbup
	ddeadv
	ddeexec
	ddeinit
	ddepoke
	ddereq
	ddeterm
	ddeunadv
	deal
	deblank
	dec2base
	dec2bin
	dec2hex
	deconv
	default4
	del2
	delaunay
	delaunay3
	delaunayn
	delete
	delete (serial)
	depdir
	depfun
	det
	detrend
	diag
	dialog
	diary
	diff
	dir
	disp
	disp (serial)
	divergence
	dlmread
	dlmwrite
	dmperm
	doc
	1 docopt
	1 dos
	dot
	double
	dragrect
	drawnow
	dsearch
	dsearchn
	echo
	edit
	eig
	eigs
	ellipj
	ellipke
	else
	elseif
	end
	eomday
	eps
	erf, erfc, erfcx, erfinv
	error
	errorbar
	errordlg
	etime
	etree
	etreeplot
	eval
	evalc
	evalin
	exist
	1 exit
	exp
	expint
	expm
	eye
	ezcontour
	ezcontourf
	ezmesh
	ezmeshc
	ezplot
	ezplot3
	ezpolar
	ezsurf
	ezsurfc

	Index

