
Computation

Visualization

Programming

Getting Started with MATLAB
Version 6

MATLAB
®

The Language of Technical Computing

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

Getting Started with MATLAB
 COPYRIGHT 1984 - 2000 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 1999 First printing for MATLAB 5
September 2000 Second printing Revised for MATLAB 6 (Release 12)

i

Contents

1
Introduction

What Is MATLAB? . 1-2
The MATLAB System . 1-3

MATLAB Documentation . 1-4
MATLAB Online Help . 1-4

2
Development Environment

Introduction . 2-2

Starting and Quitting MATLAB . 2-3
Starting MATLAB . 2-3
Quitting MATLAB . 2-3

MATLAB Desktop . 2-4

Desktop Tools . 2-6
Command Window . 2-6
Launch Pad . 2-8
Help Browser . 2-8
Current Directory Browser . 2-11
Workspace Browser . 2-12
Editor/Debugger . 2-14

Other Development Environment Features 2-15

ii Contents

3
Manipulating Matrices

Matrices and Magic Squares . 3-2
Entering Matrices . 3-3
sum, transpose, and diag . 3-4
Subscripts . 3-6
The Colon Operator . 3-7
The magic Function . 3-8

Expressions . 3-10
Variables . 3-10
Numbers . 3-10
Operators . 3-11
Functions . 3-11
Examples of Expressions . 3-13

Working with Matrices . 3-14
Generating Matrices . 3-14
The load Command . 3-15
M-Files . 3-15
Concatenation . 3-16
Deleting Rows and Columns . 3-17

More About Matrices and Arrays . 3-18
Linear Algebra . 3-18
Arrays . 3-21
Multivariate Data . 3-24
Scalar Expansion . 3-25
Logical Subscripting . 3-26
The find Function . 3-27

Controlling Command Window Input and Output 3-28
The format Command . 3-28
Suppressing Output . 3-30
Entering Long Command Lines . 3-30
Command Line Editing . 3-30

iii

4
Graphics

Basic Plotting . 4-2
Creating a Plot . 4-2
Imaginary and Complex Data . 4-6
Adding Plots to an Existing Graph . 4-7
Figure Windows . 4-8
Multiple Plots in One Figure . 4-9
Controlling the Axes . 4-10
Axis Labels and Titles . 4-12
Saving a Figure . 4-13

Editing Plots . 4-14
Interactive Plot Editing . 4-14
Using Functions to Edit Graphs . 4-14
Using Plot Editing Mode . 4-15
Using the Property Editor . 4-16

Mesh and Surface Plots . 4-18
Visualizing Functions of Two Variables 4-18

Images . 4-22

Printing Graphics . 4-24

Handle Graphics . 4-26
Graphics Objects . 4-26
Setting Object Properties . 4-28
Finding the Handles of Existing Objects 4-31

Graphics User Interfaces . 4-33
Graphical User Interface Design Tools 4-33

Animations . 4-34
Erase Mode Method . 4-34
Creating Movies . 4-35

iv Contents

5
Programming with MATLAB

Flow Control . 5-2
if . 5-2
switch and case . 5-3
for . 5-4
while . 5-5
continue . 5-5
break . 5-6

Other Data Structures . 5-7
Multidimensional Arrays . 5-7
Cell Arrays . 5-9
Characters and Text . 5-11
Structures . 5-14

Scripts and Functions . 5-17
Scripts . 5-17
Functions . 5-18
Global Variables . 5-20
Passing String Arguments to Functions 5-21
The eval Function . 5-22
Vectorization . 5-23
Preallocation . 5-23
Function Handles . 5-24
Function Functions . 5-24

Demonstration Programs Included with MATLAB 5-27

1

Introduction

What Is MATLAB? 1-2
The MATLAB System 1-3

MATLAB Documentation 1-4
MATLAB Online Help 1-4

1 Introduction

1-2

What Is MATLAB?
MATLAB® is a high-performance language for technical computing. It
integrates computation, visualization, and programming in an easy-to-use
environment where problems and solutions are expressed in familiar
mathematical notation. Typical uses include:

• Math and computation

• Algorithm development

• Modeling, simulation, and prototyping

• Data analysis, exploration, and visualization

• Scientific and engineering graphics

• Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that
does not require dimensioning. This allows you to solve many technical
computing problems, especially those with matrix and vector formulations, in
a fraction of the time it would take to write a program in a scalar noninteractive
language such as C or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was originally
written to provide easy access to matrix software developed by the LINPACK
and EISPACK projects. Today, MATLAB uses software developed by the
LAPACK and ARPACK projects, which together represent the state-of-the-art
in software for matrix computation.

MATLAB has evolved over a period of years with input from many users. In
university environments, it is the standard instructional tool for introductory
and advanced courses in mathematics, engineering, and science. In industry,
MATLAB is the tool of choice for high-productivity research, development, and
analysis.

MATLAB features a family of application-specific solutions called toolboxes.
Very important to most users of MATLAB, toolboxes allow you to learn and
apply specialized technology. Toolboxes are comprehensive collections of
MATLAB functions (M-files) that extend the MATLAB environment to solve
particular classes of problems. Areas in which toolboxes are available include
signal processing, control systems, neural networks, fuzzy logic, wavelets,
simulation, and many others.

What Is MATLAB?

1-3

The MATLAB System
The MATLAB system consists of five main parts:

Development Environment. This is the set of tools and facilities that help you use
MATLAB functions and files. Many of these tools are graphical user interfaces.
It includes the MATLAB desktop and Command Window, a command history,
and browsers for viewing help, the workspace, files, and the search path.

The MATLAB Mathematical Function Library. This is a vast collection of
computational algorithms ranging from elementary functions like sum, sine,
cosine, and complex arithmetic, to more sophisticated functions like matrix
inverse, matrix eigenvalues, Bessel functions, and fast Fourier transforms.

The MATLAB Language. This is a high-level matrix/array language with control
flow statements, functions, data structures, input/output, and object-oriented
programming features. It allows both “programming in the small” to rapidly
create quick and dirty throw-away programs, and “programming in the large”
to create complete large and complex application programs.

Handle Graphics®. This is the MATLAB graphics system. It includes high-level
commands for two-dimensional and three-dimensional data visualization,
image processing, animation, and presentation graphics. It also includes
low-level commands that allow you to fully customize the appearance of
graphics as well as to build complete graphical user interfaces on your
MATLAB applications.

The MATLAB Application Program Interface (API). This is a library that allows you to
write C and Fortran programs that interact with MATLAB. It include facilities
for calling routines from MATLAB (dynamic linking), calling MATLAB as a
computational engine, and for reading and writing MAT-files.

1 Introduction

1-4

MATLAB Documentation
MATLAB provides extensive documentation, in both printed and online
format, to help you learn about and use all of its features. If you are a new user,
start with this book, Getting Started with MATLAB, which introduces you to
MATLAB. It covers all the primary MATLAB features at a high level, including
plenty of examples to help you to learn the material quickly.

• Chapter 2, “Development Environment” – introduces the MATLAB
development environment, including information about tools and the
MATLAB desktop.

• Chapter 3, “Manipulating Matrices” – introduces how to use MATLAB to
generate matrices and perform mathematical operations on matrices.

• Chapter 4, “Graphics” – introduces MATLAB graphic capabilities, including
information about plotting data, annotating graphs, and working with
images.

• Chapter 5, “Programming with MATLAB” – describes how to use the
MATLAB language to create scripts and functions, and manipulate data
structures, such as cell arrays and multidimensional arrays. This section
also provides an overview of the demo programs included with MATLAB.

To find more detailed information about any of these topics, use the MATLAB
online documentation. The online Help provides task-oriented and reference
information about MATLAB features. The MATLAB documentation is also
available in printed form and in PDF format.

MATLAB Online Help
To view the online documentation, select the Help option on the MATLAB
menu bar. (For more information about using the online documentation, see
“Help Browser” on page 2-8.)

Under “Using MATLAB,” the documentation is organized into these main
topics:

• “Development Environment” – provides complete information on the
MATLAB desktop.

• “Mathematics” – describes how to use MATLAB’s mathematical and
statistical capabilities.

MATLAB Documentation

1-5

• “Programming and Data Types” – describes how to create scripts and
functions using the MATLAB language.

• “Graphics” – describes how to plot your data using MATLAB’s graphics
capabilities.

• “3-D Visualization” – introduces how to use views, lighting, and
transparency to achieve more complex graphic effects than can be achieved
using the basic plotting functions.

• “External Interfaces/API” – describes MATLAB’s interfaces to C and Fortran
programs, Java classes and objects, data files, serial port I/O, ActiveX, and
DDE.

• “Creating Graphical User Interfaces” – describes how to use MATLAB’s
graphical user interface layout tools.

Under “Reference,” the online documentation is organized into these main
topics:

• “MATLAB Function Reference” – covers all of the core MATLAB functions,
providing information on function syntax, description, mathematical
algorithm (where appropriate), and related functions.

You can easily locate any function using either the “Function By Category”
or “Alphabetical List of Functions” options.

• “External Interfaces/API Reference” – covers those functions used by the
MATLAB external interfaces, providing information on syntax in the calling
language, description, arguments, return values, and examples.

The “Reference” also includes the “Graphics Object Property Browser,” which
enables you to easily access descriptions of graphics object properties. For more
information about MATLAB graphics, see “Handle Graphics” on page 4-26.

1 Introduction

1-6

2
Development
Environment

Introduction . 2-2

Starting and Quitting MATLAB 2-3

MATLAB Desktop 2-4

Desktop Tools 2-6

Other Development Environment Features 2-15

2 Development Environment

2-2

Introduction
This chapter provides a brief introduction to starting and quitting MATLAB,
and the tools and functions that help you to work with MATLAB variables and
files. For more information about the topics covered here, see the corresponding
topics under “Development Environment” in the MATLAB documentation,
which is available online as well as in print.

Starting and Quitting MATLAB

2-3

Starting and Quitting MATLAB

Starting MATLAB
On a Microsoft Windows platform, to start MATLAB, double-click the
MATLAB shortcut icon on your Windows desktop.

On a UNIX platform, to start MATLAB, type matlab at the operating system
prompt.

After starting MATLAB, the MATLAB desktop opens – see “MATLAB
Desktop” on page 2-4.

You can change the directory in which MATLAB starts, define startup options
including running a script upon startup, and reduce startup time in some
situations.

Quitting MATLAB
To end your MATLAB session, select Exit MATLAB from the File menu in the
desktop, or type quit in the Command Window. To execute specified functions
each time MATLAB quits, such as saving the workspace, you can create and
run a finish.m script.

2 Development Environment

2-4

MATLAB Desktop
When you start MATLAB, the MATLAB desktop appears, containing tools
(graphical user interfaces) for managing files, variables, and applications
associated with MATLAB.

The first time MATLAB starts, the desktop appears as shown in the following
illustration, although your Launch Pad may contain different entries.

View or change
current
directory.

View or use previously run functions.

Enter
MATLAB
functions.

Close window.

Drag the separator bar to resize windows.

Click to move window
outside of desktop.

Get help.Expand to view
documentation, demos, and
tools for your products.

Use tabs to go to Workspace browser
or Current Directory browser.

MATLAB Desktop

2-5

You can change the way your desktop looks by opening, closing, moving, and
resizing the tools in it. You can also move tools outside of the desktop or return
them back inside the desktop (docking). All the desktop tools provide common
features such as context menus and keyboard shortcuts.

You can specify certain characteristics for the desktop tools by selecting
Preferences from the File menu. For example, you can specify the font
characteristics for Command Window text. For more information, click the
Help button in the Preferences dialog box.

2 Development Environment

2-6

Desktop Tools
This section provides an introduction to MATLAB’s desktop tools. You can also
use MATLAB functions to perform most of the features found in the desktop
tools.

Command Window
Use the Command Window to enter variables and run functions and M-files.
For more information on controlling input and output, see “Controlling
Command Window Input and Output” on page 3-28.

Type functions and
variables at the
MATLAB prompt.

MATLAB displays the
results.

Desktop Tools

2-7

Command History
Lines you enter in the Command Window are logged in the Command History
window. In the Command History, you can view previously used functions, and
copy and execute selected lines.

To save the input and output from a MATLAB session to a file, use the diary
function.

Running External Programs
You can run external programs from the MATLAB Command Window. The
exclamation point character ! is a shell escape and indicates that the rest of the
input line is a command to the operating system. This is useful for invoking
utilities or running other programs without quitting MATLAB. On Linux, for
example,

!emacs magik.m

invokes an editor called emacs for a file named magik.m. When you quit the
external program, the operating system returns control to MATLAB.

Timestamp marks the
start of each session.

Select one or more lines
and right-click to copy,
evaluate, or create an
M-file from the selection.

2 Development Environment

2-8

Launch Pad
MATLAB’s Launch Pad provides easy access to tools, demos, and
documentation.

Help Browser
Use the Help browser to search and view documentation for all your
MathWorks products. The Help browser is a Web browser integrated into the
MATLAB desktop that displays HTML documents.

Click + to show the listing for a product.

Help - double-click to go directly to
documentation for the product.

Demos - double-click to display the demo
launcher for the product.

Tools - double-click to open the tool.

Sample of listings in Launch Pad – you’ll see listings
for all products installed on your system.

Desktop Tools

2-9

To open the Help browser, click the help button in the toolbar, or type
helpbrowser in the Command Window.

The Help browser consists of two panes, the Help Navigator, which you use to
find information, and the display pane, where you view the information.

Tabs in the Help Navigator pane provide different ways to find documentation.

Drag the separator bar to adjust the width of the panes.

View documentation in the display pane.

Use the close box to hide the pane.

2 Development Environment

2-10

Help Navigator
Use to Help Navigator to find information. It includes:

• Product filter – Set the filter to show documentation only for the products
you specify.

• Contents tab – View the titles and tables of contents of documentation for
your products.

• Index tab – Find specific index entries (selected keywords) in the
MathWorks documentation for your products.

• Search tab – Look for a specific phrase in the documentation. To get help for
a specific function, set the Search type to Function Name.

• Favorites tab – View a list of documents you previously designated as
favorites.

Display Pane
After finding documentation using the Help Navigator, view it in the display
pane. While viewing the documentation, you can:

• Browse to other pages – Use the arrows at the tops and bottoms of the pages,
or use the back and forward buttons in the toolbar.

• Bookmark pages – Click the Add to Favorites button in the toolbar.

• Print pages – Click the print button in the toolbar.

• Find a term in the page – Type a term in the Find in page field in the toolbar
and click Go.

Other features available in the display pane are: copying information,
evaluating a selection, and viewing Web pages.

For More Help
In addition to the Help browser, you can use help functions. To get help for a
specific function, use doc. For example, doc format displays help for the
format function in the Help browser. Other means for getting help include
contacting Technical Support (http://www.mathworks.com/support) and
participating in the newsgroup for MATLAB users, comp.soft-sys.matlab.

Desktop Tools

2-11

Current Directory Browser
MATLAB file operations use the current directory and the search path as
reference points. Any file you want to run must either be in the current
directory or on the search path.

A quick way to view or change the current directory is by using the Current
Directory field in the desktop toolbar as shown below.

To search for, view, open, and make changes to MATLAB-related directories
and files, use the MATLAB Current Directory browser. Alternatively, you can
use the functions dir, cd, and delete.

Use the pathname edit box to view
directories and their contents

Click the find button to search for content within M-files

Double-click a file
to open it in an
appropriate tool.

View the help
portion of the
selected M-file.

2 Development Environment

2-12

Search Path
To determine how to execute functions you call, MATLAB uses a search path to
find M-files and other MATLAB-related files, which are organized in
directories on your file system. Any file you want to run in MATLAB must
reside in the current directory or in a directory that is on the search path. By
default, the files supplied with MATLAB and MathWorks toolboxes are
included in the search path.

To see which directories are on the search path or to change the search path,
select Set Path from the File menu in the desktop, and use the Set Path dialog
box. Alternatively, you can use the path function to view the search path,
addpath to add directories to the path, and rmpath to remove directories from
the path.

Workspace Browser
The MATLAB workspace consists of the set of variables (named arrays) built
up during a MATLAB session and stored in memory. You add variables to the
workspace by using functions, running M-files, and loading saved workspaces.

To view the workspace and information about each variable, use the
Workspace browser, or use the functions who and whos.

Double-click
a variable to
see and
change its
contents in
the Array
Editor.

Desktop Tools

2-13

To delete variables from the workspace, select the variable and select Delete
from the Edit menu. Alternatively, use the clear function.

The workspace is not maintained after you end the MATLAB session. To save
the workspace to a file that can be read during a later MATLAB session, select
Save Workspace As from the File menu, or use the save function. This saves
the workspace to a binary file called a MAT-file, which has a .mat extension.
There are options for saving to different formats. To read in a MAT-file, select
Import Data from the File menu, or use the load function.

Array Editor
Double-click on a variable in the Workspace browser to see it in the Array
Editor. Use the Array Editor to view and edit a visual representation of one- or
two-dimensional numeric arrays, strings, and cell arrays of strings that are in
the workspace.

Change values of array elements. Change the display format.

Use the tabs to view the variables you have open in the Array Editor.

2 Development Environment

2-14

Editor/Debugger
Use the Editor/Debugger to create and debug M-files, which are programs you
write to run MATLAB functions. The Editor/Debugger provides a graphical
user interface for basic text editing, as well as for M-file debugging.

You can use any text editor to create M-files, such as Emacs, and can use
preferences (accessible from the desktop File menu) to specify that editor as
the default. If you use another editor, you can still use the MATLAB Editor/
Debugger for debugging, or you can use debugging functions, such as dbstop,
which sets a breakpoint.

If you just need to view the contents of an M-file, you can display it in the
Command Window by using the type function.

Set breakpoints
where you want
execution to pause
so you can examine
variables.

Find and replace strings.Comment selected lines and specify indenting style using the Text menu.

Hold the cursor over
a variable and its
current value
appears (known as
a datatip).

Other Development Environment Features

2-15

Other Development Environment Features
Additional development environment features are:

• Importing and Exporting Data – Techniques for bringing data created by
other applications into the MATLAB workspace, including the Import
Wizard, and packaging MATLAB workspace variables for use by other
applications.

• Improving M-File Performance – The Profiler is a tool that measures where
an M-file is spending its time. Use it to help you make speed improvements.

• Interfacing with Source Control Systems – Access your source control system
from within MATLAB, Simulink®, and Stateflow®.

• Using Notebook – Access MATLAB’s numeric computation and visualization
software from within a word processing environment (Microsoft Word).

2 Development Environment

2-16

3

Manipulating Matrices

Matrices and Magic Squares 3-2

Expressions . 3-10

Working with Matrices 3-14

More About Matrices and Arrays 3-18

Controlling Command Window Input and Output . . . 3-28

3 Manipulating Matrices

3-2

Matrices and Magic Squares
In MATLAB, a matrix is a rectangular array of numbers. Special meaning is
sometimes attached to 1-by-1 matrices, which are scalars, and to matrices with
only one row or column, which are vectors. MATLAB has other ways of storing
both numeric and nonnumeric data, but in the beginning, it is usually best to
think of everything as a matrix. The operations in MATLAB are designed to be
as natural as possible. Where other programming languages work with
numbers one at a time, MATLAB allows you to work with entire matrices
quickly and easily. A good example matrix, used throughout this book, appears
in the Renaissance engraving Melancholia I by the German artist and amateur
mathematician Albrecht Dürer.

Matrices and Magic Squares

3-3

This image is filled with
mathematical symbolism, and if
you look carefully, you will see a
matrix in the upper right
corner. This matrix is known as
a magic square and was
believed by many in Dürer’s
time to have genuinely magical
properties. It does turn out to
have some fascinating
characteristics worth exploring.

Entering Matrices
The best way for you to get started with MATLAB is to learn how to handle
matrices. Start MATLAB and follow along with each example.

You can enter matrices into MATLAB in several different ways:

• Enter an explicit list of elements.

• Load matrices from external data files.

• Generate matrices using built-in functions.

• Create matrices with your own functions in M-files.

Start by entering Dürer’s matrix as a list of its elements. You have only to
follow a few basic conventions:

• Separate the elements of a row with blanks or commas.

• Use a semicolon, ; , to indicate the end of each row.

• Surround the entire list of elements with square brackets, [].

To enter Dürer’s matrix, simply type in the Command Window

A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

3 Manipulating Matrices

3-4

MATLAB displays the matrix you just entered.

A =
 16 3 2 13
 5 10 11 8
 9 6 7 12
 4 15 14 1

This exactly matches the numbers in the engraving. Once you have entered the
matrix, it is automatically remembered in the MATLAB workspace. You can
refer to it simply as A. Now that you have A in the workspace, take a look at
what makes it so interesting. Why is it magic?

sum, transpose, and diag
You’re probably already aware that the special properties of a magic square
have to do with the various ways of summing its elements. If you take the sum
along any row or column, or along either of the two main diagonals, you will
always get the same number. Let’s verify that using MATLAB. The first
statement to try is

sum(A)

MATLAB replies with

ans =
 34 34 34 34

When you don’t specify an output variable, MATLAB uses the variable ans,
short for answer, to store the results of a calculation. You have computed a row
vector containing the sums of the columns of A. Sure enough, each of the
columns has the same sum, the magic sum, 34.

How about the row sums? MATLAB has a preference for working with the
columns of a matrix, so the easiest way to get the row sums is to transpose the
matrix, compute the column sums of the transpose, and then transpose the
result. The transpose operation is denoted by an apostrophe or single quote, '.
It flips a matrix about its main diagonal and it turns a row vector into a column
vector. So

A'
produces

Matrices and Magic Squares

3-5

ans =
 16 5 9 4
 3 10 6 15
 2 11 7 14
 13 8 12 1

And

sum(A')'

produces a column vector containing the row sums

ans =
 34
 34
 34
 34

The sum of the elements on the main diagonal is easily obtained with the help
of the diag function, which picks off that diagonal.

diag(A)

produces

ans =
 16
 10
 7
 1

and

sum(diag(A))

produces

ans =
 34

The other diagonal, the so-called antidiagonal, is not so important
mathematically, so MATLAB does not have a ready-made function for it. But a
function originally intended for use in graphics, fliplr, flips a matrix from left
to right.

3 Manipulating Matrices

3-6

sum(diag(fliplr(A)))

ans =
 34

You have verified that the matrix in Dürer’s engraving is indeed a magic
square and, in the process, have sampled a few MATLAB matrix operations.
The following sections continue to use this matrix to illustrate additional
MATLAB capabilities.

Subscripts
The element in row i and column j of A is denoted by A(i,j). For example,
A(4,2) is the number in the fourth row and second column. For our magic
square, A(4,2) is 15. So it is possible to compute the sum of the elements in the
fourth column of A by typing

A(1,4) + A(2,4) + A(3,4) + A(4,4)

This produces

ans =
 34

but is not the most elegant way of summing a single column.

It is also possible to refer to the elements of a matrix with a single subscript,
A(k). This is the usual way of referencing row and column vectors. But it can
also apply to a fully two-dimensional matrix, in which case the array is
regarded as one long column vector formed from the columns of the original
matrix. So, for our magic square, A(8) is another way of referring to the value
15 stored in A(4,2).

If you try to use the value of an element outside of the matrix, it is an error.

t = A(4,5)
Index exceeds matrix dimensions.

On the other hand, if you store a value in an element outside of the matrix, the
size increases to accommodate the newcomer.

X = A;
X(4,5) = 17

Matrices and Magic Squares

3-7

X =
 16 3 2 13 0
 5 10 11 8 0
 9 6 7 12 0
 4 15 14 1 17

The Colon Operator
The colon, :, is one of MATLAB’s most important operators. It occurs in several
different forms. The expression

1:10

is a row vector containing the integers from 1 to 10

1 2 3 4 5 6 7 8 9 10

To obtain nonunit spacing, specify an increment. For example,

100:-7:50

is

100 93 86 79 72 65 58 51

and

0:pi/4:pi

is

0 0.7854 1.5708 2.3562 3.1416

Subscript expressions involving colons refer to portions of a matrix.

A(1:k,j)

is the first k elements of the jth column of A. So

sum(A(1:4,4))

computes the sum of the fourth column. But there is a better way. The colon by
itself refers to all the elements in a row or column of a matrix and the keyword
end refers to the last row or column. So

sum(A(:,end))

3 Manipulating Matrices

3-8

computes the sum of the elements in the last column of A.

ans =
 34

Why is the magic sum for a 4-by-4 square equal to 34? If the integers from 1 to
16 are sorted into four groups with equal sums, that sum must be

sum(1:16)/4

which, of course, is

ans =
 34

The magic Function
MATLAB actually has a built-in function that creates magic squares of almost
any size. Not surprisingly, this function is named magic.

B = magic(4)

B =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

This matrix is almost the same as the one in the Dürer engraving and has all
the same “magic” properties; the only difference is that the two middle columns
are exchanged. To make this B into Dürer’s A, swap the two middle columns.

A = B(:,[1 3 2 4])

This says “for each of the rows of matrix B, reorder the elements in the order 1,
3, 2, 4.” It produces

A =
 16 3 2 13
 5 10 11 8
 9 6 7 12
 4 15 14 1

Matrices and Magic Squares

3-9

Why would Dürer go to the trouble of rearranging the columns when he could
have used MATLAB’s ordering? No doubt he wanted to include the date of the
engraving, 1514, at the bottom of his magic square.

3 Manipulating Matrices

3-10

Expressions
Like most other programming languages, MATLAB provides mathematical
expressions, but unlike most programming languages, these expressions
involve entire matrices. The building blocks of expressions are:

• Variables

• Numbers

• Operators

• Functions

Variables
MATLAB does not require any type declarations or dimension statements.
When MATLAB encounters a new variable name, it automatically creates the
variable and allocates the appropriate amount of storage. If the variable
already exists, MATLAB changes its contents and, if necessary, allocates new
storage. For example,

num_students = 25

creates a 1-by-1 matrix named num_students and stores the value 25 in its
single element.

Variable names consist of a letter, followed by any number of letters, digits, or
underscores. MATLAB uses only the first 31 characters of a variable name.
MATLAB is case sensitive; it distinguishes between uppercase and lowercase
letters. A and a are not the same variable. To view the matrix assigned to any
variable, simply enter the variable name.

Numbers
MATLAB uses conventional decimal notation, with an optional decimal point
and leading plus or minus sign, for numbers. Scientific notation uses the letter
e to specify a power-of-ten scale factor. Imaginary numbers use either i or j as
a suffix. Some examples of legal numbers are

3 -99 0.0001
9.6397238 1.60210e-20 6.02252e23
1i -3.14159j 3e5i

Expressions

3-11

All numbers are stored internally using the long format specified by the IEEE
floating-point standard. Floating-point numbers have a finite precision of
roughly 16 significant decimal digits and a finite range of roughly 10-308 to
10+308.

Operators
Expressions use familiar arithmetic operators and precedence rules.

Functions
MATLAB provides a large number of standard elementary mathematical
functions, including abs, sqrt, exp, and sin. Taking the square root or
logarithm of a negative number is not an error; the appropriate complex result
is produced automatically. MATLAB also provides many more advanced
mathematical functions, including Bessel and gamma functions. Most of these
functions accept complex arguments. For a list of the elementary mathematical
functions, type

help elfun

For a list of more advanced mathematical and matrix functions, type

help specfun
help elmat

+ Addition

- Subtraction

* Multiplication

/ Division

\ Left division (described in “Matrices and Linear
Algebra” in Using MATLAB)

^ Power

' Complex conjugate transpose

() Specify evaluation order

3 Manipulating Matrices

3-12

Some of the functions, like sqrt and sin, are built-in. They are part of the
MATLAB core so they are very efficient, but the computational details are not
readily accessible. Other functions, like gamma and sinh, are implemented in
M-files. You can see the code and even modify it if you want.

Several special functions provide values of useful constants.

Infinity is generated by dividing a nonzero value by zero, or by evaluating well
defined mathematical expressions that overflow, i.e., exceed realmax.
Not-a-number is generated by trying to evaluate expressions like 0/0 or
Inf-Inf that do not have well defined mathematical values.

The function names are not reserved. It is possible to overwrite any of them
with a new variable, such as

eps = 1.e-6

and then use that value in subsequent calculations. The original function can
be restored with

clear eps

pi 3.14159265…

i Imaginary unit, √-1

j Same as i

eps Floating-point relative precision, 2-52

realmin Smallest floating-point number, 2-1022

realmax Largest floating-point number, (2-ε)21023

Inf Infinity

NaN Not-a-number

Expressions

3-13

Examples of Expressions
You have already seen several examples of MATLAB expressions. Here are a
few more examples, and the resulting values.

rho = (1+sqrt(5))/2
rho =
 1.6180

a = abs(3+4i)
a =
 5

z = sqrt(besselk(4/3,rho-i))
z =
 0.3730+ 0.3214i

huge = exp(log(realmax))
huge =
 1.7977e+308

toobig = pi*huge
toobig =
 Inf

3 Manipulating Matrices

3-14

Working with Matrices
This section introduces you to other ways of creating matrices.

Generating Matrices
MATLAB provides four functions that generate basic matrices.

Here are some examples.

Z = zeros(2,4)
Z =
 0 0 0 0
 0 0 0 0

F = 5*ones(3,3)
F =
 5 5 5
 5 5 5
 5 5 5

N = fix(10*rand(1,10))
N =
 4 9 4 4 8 5 2 6 8 0

R = randn(4,4)
R =
 1.0668 0.2944 -0.6918 -1.4410
 0.0593 -1.3362 0.8580 0.5711
 -0.0956 0.7143 1.2540 -0.3999
 -0.8323 1.6236 -1.5937 0.6900

zeros All zeros

ones All ones

rand Uniformly distributed random elements

randn Normally distributed random elements

Working with Matrices

3-15

The load Command
The load command reads binary files containing matrices generated by earlier
MATLAB sessions, or reads text files containing numeric data. The text file
should be organized as a rectangular table of numbers, separated by blanks,
with one row per line, and an equal number of elements in each row. For
example, outside of MATLAB, create a text file containing these four lines.

 16.0 3.0 2.0 13.0
 5.0 10.0 11.0 8.0
 9.0 6.0 7.0 12.0
 4.0 15.0 14.0 1.0

Store the file under the name magik.dat. Then the command

load magik.dat

reads the file and creates a variable, magik, containing our example matrix.

An easy way to read data into MATLAB in many text or binary formats is to
use Import Wizard.

M-Files
You can create your own matrices using M-files, which are text files containing
MATLAB code. Use the MATLAB Editor or another text editor to create a file
containing the same statements you would type at the MATLAB command
line. Save the file under a name that ends in .m.

For example, create a file containing these five lines.

 A = [...
 16.0 3.0 2.0 13.0
 5.0 10.0 11.0 8.0
 9.0 6.0 7.0 12.0
 4.0 15.0 14.0 1.0];

Store the file under the name magik.m. Then the statement

magik

reads the file and creates a variable, A, containing our example matrix.

3 Manipulating Matrices

3-16

Concatenation
Concatenation is the process of joining small matrices to make bigger ones. In
fact, you made your first matrix by concatenating its individual elements. The
pair of square brackets, [], is the concatenation operator. For an example, start
with the 4-by-4 magic square, A, and form

B = [A A+32; A+48 A+16]

The result is an 8-by-8 matrix, obtained by joining the four submatrices.

B =

 16 3 2 13 48 35 34 45
 5 10 11 8 37 42 43 40
 9 6 7 12 41 38 39 44
 4 15 14 1 36 47 46 33
 64 51 50 61 32 19 18 29
 53 58 59 56 21 26 27 24
 57 54 55 60 25 22 23 28
 52 63 62 49 20 31 30 17

This matrix is half way to being another magic square. Its elements are a
rearrangement of the integers 1:64. Its column sums are the correct value for
an 8-by-8 magic square.

sum(B)

ans =
 260 260 260 260 260 260 260 260

But its row sums, sum(B')', are not all the same. Further manipulation is
necessary to make this a valid 8-by-8 magic square.

Working with Matrices

3-17

Deleting Rows and Columns
You can delete rows and columns from a matrix using just a pair of square
brackets. Start with

X = A;

Then, to delete the second column of X, use

X(:,2) = []

This changes X to

X =
 16 2 13
 5 11 8
 9 7 12
 4 14 1

If you delete a single element from a matrix, the result isn’t a matrix anymore.
So, expressions like

X(1,2) = []

result in an error. However, using a single subscript deletes a single element,
or sequence of elements, and reshapes the remaining elements into a row
vector. So

X(2:2:10) = []

results in

X =
 16 9 2 7 13 12 1

3 Manipulating Matrices

3-18

More About Matrices and Arrays
This sections shows you more about working with matrices and arrays,
focusing on:

• Linear algebra

• Arrays

• Multivariate data

Linear Algebra
Informally, the terms matrix and array are often used interchangeably. More
precisely, a matrix is a two-dimensional numeric array that represents a linear
transformation. The mathematical operations defined on matrices are the
subject of linear algebra.

Dürer’s magic square

A =
 16 3 2 13
 5 10 11 8
 9 6 7 12
 4 15 14 1

provides several examples that give a taste of MATLAB matrix operations.
You’ve already seen the matrix transpose, A'. Adding a matrix to its transpose
produces a symmetric matrix.

A + A'

ans =
 32 8 11 17
 8 20 17 23
 11 17 14 26
 17 23 26 2

The multiplication symbol, *, denotes the matrix multiplication involving inner
products between rows and columns. Multiplying the transpose of a matrix by
the original matrix also produces a symmetric matrix.

More About Matrices and Arrays

3-19

A'*A

ans =
 378 212 206 360
 212 370 368 206
 206 368 370 212
 360 206 212 378

The determinant of this particular matrix happens to be zero, indicating that
the matrix is singular.

d = det(A)

d =
 0

The reduced row echelon form of A is not the identity.

R = rref(A)

R =
 1 0 0 1
 0 1 0 -3
 0 0 1 3
 0 0 0 0

Since the matrix is singular, it does not have an inverse. If you try to compute
the inverse with

X = inv(A)

you will get a warning message

Warning: Matrix is close to singular or badly scaled.
 Results may be inaccurate. RCOND = 1.175530e-017.

Roundoff error has prevented the matrix inversion algorithm from detecting
exact singularity. But the value of rcond, which stands for reciprocal condition
estimate, is on the order of eps, the floating-point relative precision, so the
computed inverse is unlikely to be of much use.

3 Manipulating Matrices

3-20

The eigenvalues of the magic square are interesting.

e = eig(A)

e =
 34.0000
 8.0000
 0.0000
 -8.0000

One of the eigenvalues is zero, which is another consequence of singularity.
The largest eigenvalue is 34, the magic sum. That’s because the vector of all
ones is an eigenvector.

v = ones(4,1)

v =
 1
 1
 1
 1

A*v

ans =
 34
 34
 34
 34

When a magic square is scaled by its magic sum,

P = A/34

the result is a doubly stochastic matrix whose row and column sums are all one.

P =
 0.4706 0.0882 0.0588 0.3824
 0.1471 0.2941 0.3235 0.2353
 0.2647 0.1765 0.2059 0.3529
 0.1176 0.4412 0.4118 0.0294

More About Matrices and Arrays

3-21

Such matrices represent the transition probabilities in a Markov process.
Repeated powers of the matrix represent repeated steps of the process. For our
example, the fifth power

P^5

is

 0.2507 0.2495 0.2494 0.2504
 0.2497 0.2501 0.2502 0.2500
 0.2500 0.2498 0.2499 0.2503
 0.2496 0.2506 0.2505 0.2493

This shows that as k approaches infinity, all the elements in the kth power, Pk,
approach 1/4.

Finally, the coefficients in the characteristic polynomial

poly(A)

are

 1 -34 -64 2176 0

This indicates that the characteristic polynomial

det(A - λI)

is

λ4 - 34λ3 - 64λ2 + 2176λ

The constant term is zero, because the matrix is singular, and the coefficient of
the cubic term is -34, because the matrix is magic!

Arrays
When they are taken away from the world of linear algebra, matrices become
two dimensional numeric arrays. Arithmetic operations on arrays are done
element-by-element. This means that addition and subtraction are the same
for arrays and matrices, but that multiplicative operations are different.
MATLAB uses a dot, or decimal point, as part of the notation for multiplicative
array operations.

3 Manipulating Matrices

3-22

The list of operators includes:

If the Dürer magic square is multiplied by itself with array multiplication

A.*A

the result is an array containing the squares of the integers from 1 to 16, in an
unusual order.

ans =
 256 9 4 169
 25 100 121 64
 81 36 49 144
 16 225 196 1

Building Tables
Array operations are useful for building tables. Suppose n is the column vector

n = (0:9)';

Then

pows = [n n.^2 2.^n]

+ Addition

- Subtraction

.* Element-by-element multiplication

./ Element-by-element division

.\ Element-by-element left division

.^ Element-by-element power

.' Unconjugated array transpose

More About Matrices and Arrays

3-23

builds a table of squares and powers of two.

pows =
 0 0 1
 1 1 2
 2 4 4
 3 9 8
 4 16 16
 5 25 32
 6 36 64
 7 49 128
 8 64 256
 9 81 512

The elementary math functions operate on arrays element by element. So

format short g
x = (1:0.1:2)';
logs = [x log10(x)]

builds a table of logarithms.

 logs =
 1.0 0
 1.1 0.04139
 1.2 0.07918
 1.3 0.11394
 1.4 0.14613
 1.5 0.17609
 1.6 0.20412
 1.7 0.23045
 1.8 0.25527
 1.9 0.27875
 2.0 0.30103

3 Manipulating Matrices

3-24

Multivariate Data
MATLAB uses column-oriented analysis for multivariate statistical data. Each
column in a data set represents a variable and each row an observation. The
(i,j)th element is the ith observation of the jth variable.

As an example, consider a data set with three variables:

• Heart rate

• Weight

• Hours of exercise per week

For five observations, the resulting array might look like

D =
 72 134 3.2
 81 201 3.5
 69 156 7.1
 82 148 2.4
 75 170 1.2

The first row contains the heart rate, weight, and exercise hours for patient 1,
the second row contains the data for patient 2, and so on. Now you can apply
many of MATLAB’s data analysis functions to this data set. For example, to
obtain the mean and standard deviation of each column:

mu = mean(D), sigma = std(D)

mu =
75.8 161.8 3.48

sigma =
5.6303 25.499 2.2107

For a list of the data analysis functions available in MATLAB, type

help datafun

If you have access to the Statistics Toolbox, type

help stats

More About Matrices and Arrays

3-25

Scalar Expansion
Matrices and scalars can be combined in several different ways. For example,
a scalar is subtracted from a matrix by subtracting it from each element. The
average value of the elements in our magic square is 8.5, so

B = A - 8.5

forms a matrix whose column sums are zero.

B =
 7.5 -5.5 -6.5 4.5
 -3.5 1.5 2.5 -0.5
 0.5 -2.5 -1.5 3.5
 -4.5 6.5 5.5 -7.5

sum(B)

ans =
 0 0 0 0

With scalar expansion, MATLAB assigns a specified scalar to all indices in a
range. For example,

B(1:2,2:3) = 0

zeros out a portion of B

B =
 7.5 0 0 4.5
 -3.5 0 0 -0.5
 0.5 -2.5 -1.5 3.5
 -4.5 6.5 5.5 -7.5

3 Manipulating Matrices

3-26

Logical Subscripting
The logical vectors created from logical and relational operations can be used
to reference subarrays. Suppose X is an ordinary matrix and L is a matrix of the
same size that is the result of some logical operation. Then X(L) specifies the
elements of X where the elements of L are nonzero.

This kind of subscripting can be done in one step by specifying the logical
operation as the subscripting expression. Suppose you have the following set of
data.

x =
 2.1 1.7 1.6 1.5 NaN 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8

The NaN is a marker for a missing observation, such as a failure to respond to
an item on a questionnaire. To remove the missing data with logical indexing,
use finite(x), which is true for all finite numerical values and false for NaN
and Inf.

x = x(finite(x))
x =
 2.1 1.7 1.6 1.5 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8

Now there is one observation, 5.1, which seems to be very different from the
others. It is an outlier. The following statement removes outliers, in this case
those elements more than three standard deviations from the mean.

x = x(abs(x-mean(x)) <= 3*std(x))
x =
2.1 1.7 1.6 1.5 1.9 1.8 1.5 1.8 1.4 2.2 1.6 1.8

For another example, highlight the location of the prime numbers in Dürer’s
magic square by using logical indexing and scalar expansion to set the
nonprimes to 0.

A(~isprime(A)) = 0

A =
 0 3 2 13
 5 0 11 0
 0 0 7 0
 0 0 0 0

More About Matrices and Arrays

3-27

The find Function
The find function determines the indices of array elements that meet a given
logical condition. In its simplest form, find returns a column vector of indices.
Transpose that vector to obtain a row vector of indices. For example,

k = find(isprime(A))'

picks out the locations, using one-dimensional indexing, of the primes in the
magic square.

k =
 2 5 9 10 11 13

Display those primes, as a row vector in the order determined by k, with

A(k)

ans =
 5 3 2 11 7 13

When you use k as a left-hand-side index in an assignment statement, the
matrix structure is preserved.

A(k) = NaN

A =
 16 NaN NaN NaN
 NaN 10 NaN 8
 9 6 NaN 12
 4 15 14 1

3 Manipulating Matrices

3-28

Controlling Command Window Input and Output
So far, you have been using the MATLAB command line, typing commands and
expressions, and seeing the results printed in the Command Window. This
section describes how to:

• Control the appearance of the output values

• Suppress output from MATLAB commands

• Enter long commands at the command line

• Edit the command line

The format Command
The format command controls the numeric format of the values displayed by
MATLAB. The command affects only how numbers are displayed, not how
MATLAB computes or saves them. Here are the different formats, together
with the resulting output produced from a vector x with components of
different magnitudes.

Note To ensure proper spacing, use a fixed-width font, such as Fixedsys or
Courier.

x = [4/3 1.2345e-6]

format short

1.3333 0.0000

format short e

1.3333e+000 1.2345e-006

format short g

1.3333 1.2345e-006

Controlling Command Window Input and Output

3-29

format long

1.33333333333333 0.00000123450000

format long e

1.333333333333333e+000 1.234500000000000e-006

format long g

1.33333333333333 1.2345e-006

format bank

1.33 0.00

format rat

4/3 1/810045

format hex

3ff5555555555555 3eb4b6231abfd271

If the largest element of a matrix is larger than 103 or smaller than 10-3,
MATLAB applies a common scale factor for the short and long formats.

In addition to the format commands shown above

format compact

suppresses many of the blank lines that appear in the output. This lets you
view more information on a screen or window. If you want more control over
the output format, use the sprintf and fprintf functions.

3 Manipulating Matrices

3-30

Suppressing Output
If you simply type a statement and press Return or Enter, MATLAB
automatically displays the results on screen. However, if you end the line with
a semicolon, MATLAB performs the computation but does not display any
output. This is particularly useful when you generate large matrices. For
example,

A = magic(100);

Entering Long Command Lines
If a statement does not fit on one line, use three periods, ..., followed by
Return or Enter to indicate that the statement continues on the next line. For
example,

s = 1 -1/2 + 1/3 -1/4 + 1/5 - 1/6 + 1/7 ...
 - 1/8 + 1/9 - 1/10 + 1/11 - 1/12;

Blank spaces around the =, +, and - signs are optional, but they improve
readability.

Command Line Editing
Various arrow and control keys on your keyboard allow you to recall, edit, and
reuse commands you have typed earlier. For example, suppose you mistakenly
enter

rho = (1 + sqt(5))/2

You have misspelled sqrt. MATLAB responds with

Undefined function or variable 'sqt'.

Instead of retyping the entire line, simply press the ↑ key. The misspelled
command is redisplayed. Use the ← key to move the cursor over and insert the
missing r. Repeated use of the ↑ key recalls earlier lines. Typing a few
characters and then the ↑ key finds a previous line that begins with those
characters. You can also copy previously executed commands from the
Command History. For more information, see “Command History” on page 2-7.

Controlling Command Window Input and Output

3-31

The list of available command line editing keys is different on different
computers. Experiment to see which of the following keys is available on your
machine. (Many of these keys will be familiar to users of the Emacs editor.)

↑ Ctrl+p Recall previous line

↓ Ctrl+n Recall next line

← Ctrl+b Move back one character

→ Ctrl+f Move forward one character

Ctrl+→ Ctrl+r Move right one word

Ctrl+← Ctrl+l Move left one word

Home Ctrl+a Move to beginning of line

End Ctrl+e Move to end of line

Esc Ctrl+u Clear line

Del Ctrl+d Delete character at cursor

Backspace Ctrl+h Delete character before cursor

Ctrl+k Delete to end of line

3 Manipulating Matrices

3-32

4

Graphics

Basic Plotting 4-2

Editing Plots 4-14

Mesh and Surface Plots 4-18

Images . 4-22

Printing Graphics 4-24

Handle Graphics 4-26

Graphics User Interfaces 4-33

Animations . 4-34

4 Graphics

4-2

Basic Plotting
MATLAB has extensive facilities for displaying vectors and matrices as
graphs, as well as annotating and printing these graphs. This section describes
a few of the most important graphics functions and provides examples of some
typical applications.

Creating a Plot
The plot function has different forms, depending on the input arguments. If y
is a vector, plot(y) produces a piecewise linear graph of the elements of y
versus the index of the elements of y. If you specify two vectors as arguments,
plot(x,y) produces a graph of y versus x.

For example, these statements use the colon operator to create a vector of x
values ranging from zero to 2π, compute the sine of these values, and plot the
result.

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

Now label the axes and add a title. The characters \pi create the symbol π.

xlabel('x = 0:2\pi')
ylabel('Sine of x')
title('Plot of the Sine Function','FontSize',12)

Basic Plotting

4-3

Multiple Data Sets in One Graph
Multiple x-y pair arguments create multiple graphs with a single call to plot.
MATLAB automatically cycles through a predefined (but user settable) list of
colors to allow discrimination between each set of data. For example, these
statements plot three related functions of x, each curve in a separate
distinguishing color.

y2 = sin(x-.25);
y3 = sin(x-.5);
plot(x,y,x,y2,x,y3)

The legend command provides an easy way to identify the individual plots.

legend('sin(x)','sin(x-.25)','sin(x-.5)')

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x = 0:2π

S
in

e
of

 x

Plot of the Sine Function

4 Graphics

4-4

Specifying Line Styles and Colors
It is possible to specify color, line styles, and markers (such as plus signs or
circles) when you plot your data using the plot command.

plot(x,y,'color_style_marker')

color_style_marker is a string containing from one to four characters
(enclosed in single quotation marks) constructed from a color, a line style, and
a marker type:

• Color strings are 'c', 'm', 'y', 'r', 'g', 'b', 'w', and 'k'. These correspond
to cyan, magenta, yellow, red, green, blue, white, and black.

• Linestyle strings are '-' for solid, '--' for dashed, ':' for dotted, '-.' for
dash-dot, and 'none' for no line.

• The marker types are '+', 'o', '*', and 'x' and the filled marker types 's'
for square, 'd' for diamond, '^' for up triangle, 'v' for down triangle, '>'

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
sin(x)
sin(x−.25)
sin(x−.5)

Basic Plotting

4-5

for right triangle, '<' for left triangle, 'p' for pentagram, 'h' for hexagram,
and none for no marker.

You can also edit color, line style, and markers interactively. See “Editing
Plots” on page 4-14 for more information.

Plotting Lines and Markers
If you specify a marker type but not a linestyle, MATLAB draws only the
marker. For example,

plot(x,y,'ks')

plots black squares at each data point, but does not connect the markers with
a line.

The statement

plot(x,y,'r:+')

plots a red dotted line and places plus sign markers at each data point. You
may want to use fewer data points to plot the markers than you use to plot the
lines. This example plots the data twice using a different number of points for
the dotted line and marker plots.

x1 = 0:pi/100:2*pi;
x2 = 0:pi/10:2*pi;
plot(x1,sin(x1),'r:',x2,sin(x2),'r+')

4 Graphics

4-6

Imaginary and Complex Data
When the arguments to plot are complex, the imaginary part is ignored except
when plot is given a single complex argument. For this special case, the
command is a shortcut for a plot of the real part versus the imaginary part.
Therefore,

plot(Z)

where Z is a complex vector or matrix, is equivalent to

plot(real(Z),imag(Z))

For example,

t = 0:pi/10:2*pi;
plot(exp(i*t),'-o')
axis equal

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Basic Plotting

4-7

draws a 20-sided polygon with little circles at the vertices. The command,
axis equal, makes the individual tick mark increments on the x- and y-axes
the same length, which makes this plot more circular in appearance.

Adding Plots to an Existing Graph
The hold command enables you to add plots to an existing graph. When you
type

hold on

MATLAB does not replace the existing graph when you issue another plotting
command; it adds the new data to the current graph, rescaling the axes if
necessary.

For example, these statements first create a contour plot of the peaks function,
then superimpose a pseudocolor plot of the same function.

[x,y,z] = peaks;
contour(x,y,z,20,'k')
hold on

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

4 Graphics

4-8

pcolor(x,y,z)
shading interp
hold off

The hold on command causes the pcolor plot to be combined with the contour
plot in one figure.

Figure Windows
Graphing functions automatically open a new figure window if there are no
figure windows already on the screen. If a figure window exists, MATLAB uses
that window for graphics output. If there are multiple figure windows open,
MATLAB targets the one that is designated the “current figure” (the last figure
used or clicked in).

To make an existing figure window the current figure, you can click the mouse
while the pointer is in that window or you can type

figure(n)

Basic Plotting

4-9

where n is the number in the figure title bar. The results of subsequent
graphics commands are displayed in this window.

To open a new figure window and make it the current figure, type

figure

Multiple Plots in One Figure
The subplot command enables you to display multiple plots in the same
window or print them on the same piece of paper. Typing

subplot(m,n,p)

partitions the figure window into an m-by-nmatrix of small subplots and selects
the pth subplot for the current plot. The plots are numbered along first the top
row of the figure window, then the second row, and so on. For example, these
statements plot data in four different subregions of the figure window.

t = 0:pi/10:2*pi;
[X,Y,Z] = cylinder(4*cos(t));
subplot(2,2,1); mesh(X)
subplot(2,2,2); mesh(Y)
subplot(2,2,3); mesh(Z)
subplot(2,2,4); mesh(X,Y,Z)

4 Graphics

4-10

Controlling the Axes
The axis command supports a number of options for setting the scaling,
orientation, and aspect ratio of plots. You can also set these options
interactively. See “Editing Plots” on page 4-14 for more information.

Setting Axis Limits
By default, MATLAB finds the maxima and minima of the data to choose the
axis limits to span this range. The axis command enables you to specify your
own limits

axis([xmin xmax ymin ymax])

0
20

40

0

20

40
−5

0

5

0
20

40

0

20

40
−5

0

5

0
20

40

0

20

40
0

0.5

1

−5
0

5

−5

0

5
0

0.5

1

Basic Plotting

4-11

or for three-dimensional graphs,

axis([xmin xmax ymin ymax zmin zmax])

Use the command

axis auto

to re-enable MATLAB’s automatic limit selection.

Setting Axis Aspect Ratio
axis also enables you to specify a number of predefined modes. For example,

axis square

makes the x-axes and y-axes the same length.

axis equal

makes the individual tick mark increments on the x- and y-axes the same
length. This means

plot(exp(i*[0:pi/10:2*pi]))

followed by either axis square or axis equal turns the oval into a proper
circle.

axis auto normal

returns the axis scaling to its default, automatic mode.

Setting Axis Visibility
You can use the axis command to make the axis visible or invisible.

axis on

makes the axis visible. This is the default.

axis off

makes the axis invisible.

4 Graphics

4-12

Setting Grid Lines
The grid command toggles grid lines on and off. The statement

grid on

turns the grid lines on and

grid off

turns them back off again.

Axis Labels and Titles
The xlabel, ylabel, and zlabel commands add x-, y-, and z-axis labels. The
title command adds a title at the top of the figure and the text function
inserts text anywhere in the figure. A subset of TeX notation produces Greek
letters. You can also set these options interactively. See “Editing Plots” on page
4-14 for more information.

t = -pi:pi/100:pi;
y = sin(t);
plot(t,y)
axis([-pi pi -1 1])
xlabel('-\pi \leq {\itt} \leq \pi')
ylabel('sin(t)')
title('Graph of the sine function')
text(1,-1/3,'{\itNote the odd symmetry.}')

Basic Plotting

4-13

Saving a Figure
To save a figure, select Save from the File menu. To save it using a graphics
format, such as TIFF, for use with other applications, select Export from the
File menu. You can also save from the command line – use the saveas
command, including any options to save the figure in a different format.

−3 −2 −1 0 1 2 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−π ≤ t ≤ π

si
n(

t)

Graph of the sine function

Note the odd symmetry.

4 Graphics

4-14

Editing Plots
MATLAB formats a graph to provide readability, setting the scale of axes,
including tick marks on the axes, and using color and line style to distinguish
the plots in the graph. However, if you are creating presentation graphics, you
may want to change this default formatting or add descriptive labels, titles,
legends and other annotations to help explain your data.

MATLAB supports two ways to edit the plots you create.

• Using the mouse to select and edit objects interactively

• Using MATLAB functions at the command-line or in an M-file

Interactive Plot Editing
If you enable plot editing mode in the MATLAB figure window, you can perform
point-and-click editing of the objects in your graph. In this mode, you select the
object or objects you want to edit by double-clicking on it. This starts the
Property Editor which provides access to properties of the object that control
its appearance and behavior.

For more information about interactive editing, see “Using Plot Editing Mode”
on page 4-15. For information about editing object properties in plot editing
mode, see “Using the Property Editor” on page 4-16.

Using Functions to Edit Graphs
If you prefer to work from the MATLAB command line or if you are creating an
M-file, you can use MATLAB commands to edit the graphs you create. Taking
advantage of MATLAB’s Handle Graphics system, you can use the set and get
commands to change the properties of the objects in a graph. For more
information about using command line, see “Handle Graphics” on page 4-26.

Note Plot editing mode provides an alternative way to access the properties
of MATLAB graphic objects. However, you can only access a subset of object
properties through this mechanism. You may need to use a combination of
interactive editing and command line editing to achieve the effect you desire.

Editing Plots

4-15

Using Plot Editing Mode
After creating a plot, you can make changes to it and annotate it with the Plot
Editor, which is an easy-to-use graphical interface. The following illustration
shows a figure window with plot editing mode enabled and labels the main plot
editing mode features.

Use the Edit,
Insert, and Tools
menus to access
plot editing
features

Click this button to start plot
edit mode

Use these buttons to add text,
arrow, and line annotations

Double-click
on an object to
select it.

Use these buttons to zoom and
rotate the plot

Right-click on
an object to
view its context
menu.

4 Graphics

4-16

Using the Property Editor
In plot editing mode, you can use a graphical user interface, called the Property
Editor, to edit the properties of objects in the graph. The Property Editor
provides access to many properties of the root, figure, axes, line, light, patch,
image, surfaces rectangle, and text objects. For example, using the Property
Editor, you can change the thickness of a line, add titles and axes labels, add
lights, and perform many other plot editing tasks.

This figure shows the components of the Property Editor interface.

Starting the Property Editor
You start the Property Editor by double-clicking on an object in a graph, such
as a line, or by right-clicking on an object and selecting the Properties option
from the object’s context menu.

Use these buttons to move back and forth among the graphics objects you have edited.

Use menus to specify
values.

Tabbed panels provide
access to groups of
properties.

Check this box to see the
effect of your changes as you
make them.

Apply your changes.

Navigation bar shows object
being edited and provides
for navigation between
objects.

Editing Plots

4-17

You can also start the Property Editor by selecting either the Figure
Properties, Axes Properties, or Current Object Properties from the figure
window Edit menu. These options automatically enable plot editing mode, if it
is not already enabled.

Once you start the Property Editor, keep it open throughout an editing session.
It provides access to all the objects in the graph. If you click on another object
in the graph, the Property Editor displays the set of panels associated with that
object type. You can also use the Property Editor’s navigation bar to select an
object in the graph to edit.

4 Graphics

4-18

Mesh and Surface Plots
MATLAB defines a surface by the z-coordinates of points above a grid in the x-y
plane, using straight lines to connect adjacent points. The mesh and surf
plotting functions display surfaces in three dimensions. mesh produces
wireframe surfaces that color only the lines connecting the defining points.
surf displays both the connecting lines and the faces of the surface in color.

Visualizing Functions of Two Variables
To display a function of two variables, z = f (x,y):

• Generate X and Y matrices consisting of repeated rows and columns,
respectively, over the domain of the function.

• Use X and Y to evaluate and graph the function.

The meshgrid function transforms the domain specified by a single vector or
two vectors x and y into matrices X and Y for use in evaluating functions of two
variables. The rows of X are copies of the vector x and the columns of Y are
copies of the vector y.

Example – Graphing the sinc Function
This example evaluates and graphs the two-dimensional sinc function, sin(r)/r,
between the x and y directions. R is the distance from origin, which is at the
center of the matrix. Adding eps (a MATLAB command that returns the
smallest floating-point number on your system) avoids the indeterminate 0/0
at the origin.

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
mesh(X,Y,Z,'EdgeColor','black')

Mesh and Surface Plots

4-19

By default, MATLAB colors the mesh using the current colormap. However,
this example uses a single-colored mesh by specifying the EdgeColor surface
property. See the surface reference page for a list of all surface properties.

You can create a transparent mesh by disabling hidden line removal.

hidden off

See the hidden reference page for more information on this option.

Example – Colored Surface Plots
A surface plot is similar to a mesh plot except the rectangular faces of the
surface are colored. The color of the faces is determined by the values of Z and
the colormap (a colormap is an ordered list of colors). These statements graph
the sinc function as a surface plot, select a colormap, and add a color bar to
show the mapping of data to color.

surf(X,Y,Z)
colormap hsv
colorbar

−10
−5

0
5

10

−10

−5

0

5

10
−0.5

0

0.5

1

4 Graphics

4-20

See the colormap reference page for information on colormaps.

Surface Plots with Lighting
Lighting is the technique of illuminating an object with a directional light
source. In certain cases, this technique can make subtle differences in surface
shape easier to see. Lighting can also be used to add realism to
three-dimensional graphs.

This example uses the same surface as the previous examples, but colors it red
and removes the mesh lines. A light object is then added to the left of the
“camera” (that is the location in space from where you are viewing the surface).

−0.2

0

0.2

0.4

0.6

0.8

1

−10
−5

0
5

10

−10

−5

0

5

10
−0.5

0

0.5

1

Mesh and Surface Plots

4-21

After adding the light and setting the lighting method to phong, use the view
command to change the view point so you are looking at the surface from a
different point in space (an azimuth of -15 and an elevation of 65 degrees).
Finally, zoom in on the surface using the toolbar zoom mode.

surf(X,Y,Z,'FaceColor','red','EdgeColor','none');
camlight left; lighting phong
view(-15,65)

4 Graphics

4-22

Images
Two-dimensional arrays can be displayed as images, where the array elements
determine brightness or color of the images. For example, the statements

load durer
whos
Name Size Bytes Class

 X 648x509 2638656 double array
 caption 2x28 112 char array
 map 128x3 3072 double array

load the file durer.mat, adding three variables to the workspace. The matrix X
is a 648-by-509 matrix and map is a 128-by-3 matrix that is the colormap for this
image.

Note MAT-files, such as durer.mat, are binary files that can be created on one
platform and later read by MATLAB on a different platform.

The elements of X are integers between 1 and 128, which serve as indices into
the colormap, map. Then

image(X)
colormap(map)
axis image

reproduces Dürer’s etching shown at the beginning of this book. A high
resolution scan of the magic square in the upper right corner is available in
another file. Type

load detail

and then use the uparrow key on your keyboard to reexecute the image,
colormap, and axis commands. The statement

colormap(hot)

adds some twentieth century colorization to the sixteenth century etching. The
function hot generates a colormap containing shades of reds, oranges, and

Images

4-23

yellows. Typically a given image matrix has a specific colormap associated with
it. See the colormap reference page for a list of other predefined colormaps.

4 Graphics

4-24

Printing Graphics
You can print a MATLAB figure directly on a printer connected to your
computer or you can export the figure to one of the standard graphic file
formats supported by MATLAB. There are two ways to print and export
figures:

• Using the Print option under the File menu

• Using the print command

Printing from the Menu
There are four menu options under the File menu that pertain to printing:

• The Page Setup option displays a dialog box that enables you to adjust
characteristics of the figure on the printed page.

• The Print Setup option displays a dialog box that sets printing defaults, but
does not actually print the figure.

• The Print Preview option enables you to view the figure the way it will look
on the printed page.

• The Print option displays a dialog box that lets you select standard printing
options and print the figure.

Generally, use Print Preview to determine whether the printed output is what
you want. If not, use the Page Setup dialog box to change the output settings.
Select the Page Setup dialog box Help button to display information on how to
set up the page.

Exporting Figure to Graphics Files
The Export option under the File menu enables you to export the figure to a
variety of standard graphics file formats.

Using the Print Command
The print command provides more flexibility in the type of output sent to the
printer and allows you to control printing from M-files. The result can be sent
directly to your default printer or stored in a specified file. A wide variety of
output formats, including TIFF, JPEG, and PostScript, is available.

For example, this statement saves the contents of the current figure window as
color Encapsulated Level 2 PostScript in the file called magicsquare.eps. It

Printing Graphics

4-25

also includes a TIFF preview, which enables most word processors to display
the picture

print -depsc2 -tiff magicsquare.eps

To save the same figure as a TIFF file with a resolution of 200 dpi, use the
command

print -dtiff -r200 magicsquare.tiff

If you type print on the command line,

print

MATLAB prints the current figure on your default printer.

4 Graphics

4-26

Handle Graphics
When you use a plotting command, MATLAB creates the graph using various
graphics objects, such as lines, text, and surfaces (see “Graphics Objects” on
page 4-26 for a complete list). All graphics objects have properties that control
the appearance and behavior of the object. MATLAB enables you to query the
value of each property and set the value of most properties.

Whenever MATLAB creates a graphics object, it assigns an identifier (called a
handle) to the object. You can use this handle to access the object’s properties.
Handle Graphics is useful if you want to:

• Modify the appearance of graphs.

• Create custom plotting commands by writing M-files that create and
manipulate objects directly.

Graphics Objects
Graphics objects are the basic elements used to display graphics and user
interface elements. This table lists the graphics objects.

Object Description

Root Top of the hierarchy corresponding to the computer
screen

Figure Window used to display graphics and user interfaces

Axes Axes for displaying graphs in a figure

Uicontrol User interface control that executes a function in
response to user interaction

Uimenu User-defined figure window menu

Uicontextmenu Pop-up menu invoked by right clicking on a graphics
object

Image Two-dimensional pixel-based picture

Light Light sources that affect the coloring of patch and
surface objects

Handle Graphics

4-27

Object Hierarchy
The objects are organized in a tree structured hierarchy reflecting their
interdependence. For example, line objects require axes objects as a frame of
reference. In turn, axes objects exist only within figure objects. This diagram
illustrates the tree structure.

Creating Objects
Each object has an associated function that creates the object. These functions
have the same name as the objects they create. For example, the text function
creates text objects, the figure function creates figure objects, and so on.
MATLAB’s high-level graphics functions (like plot and surf) call the

Line Line used by functions such as plot, plot3, semilogx

Patch Filled polygon with edges

Rectangle Two-dimensional shape varying from rectangles to
ovals

Surface Three-dimensional representation of matrix data
created by plotting the value of the data as heights
above the x-y plane

Text Character string

Object Description

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

4 Graphics

4-28

appropriate low-level function to draw their respective graphics. For more
information about an object and a desciption of its properties, see the reference
page for the object’s creation function. Object creation functions have the same
name as the object. For example, the object creation function for axes objects is
called axes.

Commands for Working with Objects
This table lists commands commonly used when working with objects.

Setting Object Properties
All object properties have default values. However, you may find it useful to
change the settings of some properties to customize your graph. There are two
ways to set object properties:

• Specify values for properties when you create the object.

• Set the property value on an object that already exists.

You can specify object property values as arguments to object creation
functions as well as with plotting function, such as plot, mesh, and surf. You
can use the set command to modify the property values of existing objects.

Function Purpose

copyobj Copy graphics object

delete Delete an object

findobj Find the handle of objects having specified property values

gca Return the handle of the current axes

gcf Return the handle of the current figure

gco Return the handle of the current object

get Query the value of an objects properties

set Set the value of an objects properties

Handle Graphics

4-29

Setting Properties from Plotting Commands
Plotting commands that create lines or surfaces enable you to specify property
name/property value pairs as arguments. For example, the command

plot(x,y,'LineWidth',1.5)

plots the data in the variables x and y using lines having a LineWidth property
set to 1.5 points (one point = 1/72 inch). You can set any line object property
this way.

Setting Properties of Existing Objects
Many plotting commands can also return the handles of the objects created so
you can modify the objects using the set command. For example, these
statements plot a five-by-five matrix (creating five lines, one per column) and
then set the Marker to a square and the MarkerFaceColor to green.

h = plot(magic(5));
set(h,'Marker','s',MarkerFaceColor','g')

In this case, h is a vector containing five handles, one for each of the five lines
in the plot. The set statement sets the Marker and MarkerFaceColor properties
of all lines to the same values.

Setting Multiple Property Values
If you want to set the properties of each line to a different value, you can use
cell arrays to store all the data and pass it to the set command. For example,
create a plot and save the line handles.

h = plot(magic(5));

Suppose you want to add different markers to each line and color the marker’s
face color to the same color as the line. You need to define two cell arrays – one
containing the property names and the other containing the desired values of
the properties.

The prop_name cell array contains two elements.

prop_name(1) = {'Marker'};
prop_name(2) = {'MarkerFaceColor'};

The prop_values cell array contains 10 values – five values for the Marker
property and five values for the MarkerFaceColor property. Notice that

4 Graphics

4-30

prop_values is a two-dimensional cell array. The first dimension indicates
which handle in h the values apply to and the second dimension indicates
which property the value is assigned to.

prop_values(1,1) = {'s'};
prop_values(1,2) = {get(h(1),'Color')};
prop_values(2,1) = {'d'};
prop_values(2,2) = {get(h(2),'Color')};
prop_values(3,1) = {'o'};
prop_values(3,2) = {get(h(3),'Color')};
prop_values(4,1) = {'p'};
prop_values(4,2) = {get(h(4),'Color')};
prop_values(5,1) = {'h'};
prop_values(5,2) = {get(h(5),'Color')};

The MarkerFaceColor is always assigned the value of the corresponding line’s
color (obtained by getting the line’s Color property with the get command).

After defining the cell arrays, call set to specify the new property values.

set(h,prop_name,prop_values)

Handle Graphics

4-31

Finding the Handles of Existing Objects
The findobj command enables you to obtain the handles of graphics objects by
searching for objects with particular property values. With findobj you can
specify the value of any combination of properties, which makes it easy to pick
one object out of many. For example, you may want to find the blue line with
square marker having blue face color.

You can also specify which figures or axes to search, if there is more than one.
The following sections provide examples illustrating how to use findobj.

Finding All Objects of a Certain Type
Since all objects have a Type property that identifies the type of object, you can
find the handles of all occurrences of a particular type of object. For example,

h = findobj('Type','line');

finds the handles of all line objects.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

4 Graphics

4-32

Finding Objects with a Particular Property
You can specify multiple properties to narrow the search. For example,

h = findobj('Type','line','Color','r','LineStyle',':');

finds the handles of all red, dotted lines.

Limiting the Scope of the Search
You can specify the starting point in the object hierarchy by passing the handle
of the starting figure or axes as the first argument. For example,

h = findobj(gca,'Type','text','String','\pi/2');

finds the string π/2 only within the current axes.

Using findobj as an Argument
Since findobj returns the handles it finds, you can use it in place of the handle
argument. For example,

set(findobj('Type','line','Color','red'),'LineStyle',':')

finds all red lines and sets their line style to dotted.

Graphics User Interfaces

4-33

Graphics User Interfaces
Here is a simple example illustrating how to use Handle Graphics to build user
interfaces. The statement

b = uicontrol('Style','pushbutton', ...
 'Units','normalized', ...
 'Position',[.5 .5 .2 .1], ...
 'String','click here');

creates a pushbutton in the center of a figure window and returns a handle to
the new object. But, so far, clicking on the button does nothing. The statement

s = 'set(b,''Position'',[.8*rand .9*rand .2 .1])';

creates a string containing a command that alters the pushbutton’s position.
Repeated execution of

eval(s)

moves the button to random positions. Finally,

set(b,'Callback',s)

installs s as the button’s callback action, so every time you click on the button,
it moves to a new position.

Graphical User Interface Design Tools
MATLAB provides GUI Design Environment (GUIDE) tools that simplify the
creation of graphical user interfaces. To display the GUIDE Layout Editor,
issue the guide command.

4 Graphics

4-34

Animations
MATLAB provides two ways of generating moving, animated graphics:

• Continually erase and then redraw the objects on the screen, making
incremental changes with each redraw.

• Save a number of different pictures and then play them back as a movie.

Erase Mode Method
Using the EraseMode property is appropriate for long sequences of simple plots
where the change from frame to frame is minimal. Here is an example showing
simulated Brownian motion. Specify a number of points, such as

n = 20

and a temperature or velocity, such as

s = .02

The best values for these two parameters depend upon the speed of your
particular computer. Generate n random points with (x,y) coordinates between
-1/2 and +1/2.

x = rand(n,1)-0.5;
y = rand(n,1)-0.5;

Plot the points in a square with sides at -1 and +1. Save the handle for the
vector of points and set its EraseMode to xor. This tells the MATLAB graphics
system not to redraw the entire plot when the coordinates of one point are
changed, but to restore the background color in the vicinity of the point using
an “exclusive or” operation.

h = plot(x,y,'.');
axis([-1 1 -1 1])
axis square
grid off
set(h,'EraseMode','xor','MarkerSize',18)

Now begin the animation. Here is an infinite while loop, which you can
eventually exit by typing Ctrl+c. Each time through the loop, add a small
amount of normally distributed random noise to the coordinates of the points.

Animations

4-35

Then, instead of creating an entirely new plot, simply change the XData and
YData properties of the original plot.

while 1
 drawnow
 x = x + s*randn(n,1);
 y = y + s*randn(n,1);
 set(h,'XData',x,'YData',y)
end

How long does it take for one of the points to get outside of the square? How
long before all of the points are outside the square?

Creating Movies
If you increase the number of points in the Brownian motion example to
something like n = 300 and s = .02, the motion is no longer very fluid; it takes
too much time to draw each time step. It becomes more effective to save a
predetermined number of frames as bitmaps and to play them back as a movie.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

4 Graphics

4-36

First, decide on the number of frames, say

nframes = 50;

Next, set up the first plot as before, except using the default EraseMode
(normal).

x = rand(n,1)-0.5;
y = rand(n,1)-0.5;
h = plot(x,y,'.');
set(h,'MarkerSize',18);
axis([-1 1 -1 1])
axis square
grid off

Generate the movie and use getframe to capture each frame.

for k = 1:nframes
 x = x + s*randn(n,1);
 y = y + s*randn(n,1);
 set(h,'XData',x,'YData',y)
 M(k) = getframe;
end

Finally, play the movie 30 times.

movie(M,30)

5
Programming with
MATLAB

Flow Control . 5-2

Other Data Structures 5-7

Scripts and Functions 5-17

Demonstration Programs Included with MATLAB . . . 5-27

5 Programming with MATLAB

5-2

Flow Control
MATLAB has several flow control constructs:

• if statements

• switch statements

• for loops

• while loops

• continue statements

• break statements

if
The if statement evaluates a logical expression and executes a group of
statements when the expression is true. The optional elseif and else
keywords provide for the execution of alternate groups of statements. An end
keyword, which matches the if, terminates the last group of statements. The
groups of statements are delineated by the four keywords – no braces or
brackets are involved.

MATLAB’s algorithm for generating a magic square of order n involves three
different cases: when n is odd, when n is even but not divisible by 4, or when n
is divisible by 4. This is described by

if rem(n,2) ~= 0
 M = odd_magic(n)
elseif rem(n,4) ~= 0
 M = single_even_magic(n)
else
 M = double_even_magic(n)
end

In this example, the three cases are mutually exclusive, but if they weren’t, the
first true condition would be executed.

It is important to understand how relational operators and if statements work
with matrices. When you want to check for equality between two variables, you
might use

if A == B, ...

Flow Control

5-3

This is legal MATLAB code, and does what you expect when A and B are scalars.
But when A and B are matrices, A == B does not test if they are equal, it tests
where they are equal; the result is another matrix of 0’s and 1’s showing
element-by-element equality. In fact, if A and B are not the same size, then
A == B is an error.

The proper way to check for equality between two variables is to use the
isequal function,

if isequal(A,B), ...

Here is another example to emphasize this point. If A and B are scalars, the
following program will never reach the unexpected situation. But for most
pairs of matrices, including our magic squares with interchanged columns,
none of the matrix conditions A > B, A < B or A == B is true for all elements
and so the else clause is executed.

if A > B
 'greater'
elseif A < B
 'less'
elseif A == B
 'equal'
else
 error('Unexpected situation')
end

Several functions are helpful for reducing the results of matrix comparisons to
scalar conditions for use with if, including

isequal
isempty
all
any

switch and case
The switch statement executes groups of statements based on the value of a
variable or expression. The keywords case and otherwise delineate the
groups. Only the first matching case is executed. There must always be an end
to match the switch.

5 Programming with MATLAB

5-4

The logic of the magic squares algorithm can also be described by

 switch (rem(n,4)==0) + (rem(n,2)==0)
 case 0
 M = odd_magic(n)
 case 1
 M = single_even_magic(n)
 case 2
 M = double_even_magic(n)
 otherwise
 error('This is impossible')
 end

Note Unlike the C language switch statement, MATLAB’s switch does not
fall through. If the first case statement is true, the other case statements do
not execute. So, break statements are not required.

for
The for loop repeats a group of statements a fixed, predetermined number of
times. A matching end delineates the statements.

for n = 3:32
 r(n) = rank(magic(n));
end
r

The semicolon terminating the inner statement suppresses repeated printing,
and the r after the loop displays the final result.

It is a good idea to indent the loops for readability, especially when they are
nested.

for i = 1:m
 for j = 1:n
 H(i,j) = 1/(i+j);
 end
end

Flow Control

5-5

while
The while loop repeats a group of statements an indefinite number of times
under control of a logical condition. A matching end delineates the statements.

Here is a complete program, illustrating while, if, else, and end, that uses
interval bisection to find a zero of a polynomial.

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b
 x = (a+b)/2;
 fx = x^3-2*x-5;
 if sign(fx) == sign(fa)
 a = x; fa = fx;
 else
 b = x; fb = fx;
 end
end
x

The result is a root of the polynomial x3 - 2x - 5, namely

x =
 2.09455148154233

The cautions involving matrix comparisons that are discussed in the section on
the if statement also apply to the while statement.

continue
The continue statement passes control to the next iteration of the for or while
loop in which it appears, skipping any remaining statements in the body of the
loop. In nested loops, continue passes control to the next iteration of the for
or while loop enclosing it.

The example below shows a continue loop that counts the lines of code in the
file, magic.m, skipping all blank lines and comments. A continue statement is
used to advance to the next line in magic.m without incrementing the count
whenever a blank line or comment line is encountered.

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)

5 Programming with MATLAB

5-6

 line = fgetl(fid);
 if isempty(line) | strncmp(line,'%',1)
 continue
 end
 count = count + 1;
end
disp(sprintf('%d lines',count));

break
The break statement lets you exit early from a for or while loop. In nested
loops, break exits from the innermost loop only.

Here is an improvement on the example from the previous section. Why is this
use of break a good idea?

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b
 x = (a+b)/2;
 fx = x^3-2*x-5;
 if fx == 0
 break
 elseif sign(fx) == sign(fa)
 a = x; fa = fx;
 else
 b = x; fb = fx;
 end
end
x

Other Data Structures

5-7

Other Data Structures
This section introduces you to some other data structures in MATLAB,
including:

• Multidimensional arrays

• Cell arrays

• Characters and text

• Structures

Multidimensional Arrays
Multidimensional arrays in MATLAB are arrays with more than two
subscripts. They can be created by calling zeros, ones, rand, or randn with
more than two arguments. For example,

R = randn(3,4,5);

creates a 3-by-4-by-5 array with a total of 3x4x5 = 60 normally distributed
random elements.

A three-dimensional array might represent three-dimensional physical data,
say the temperature in a room, sampled on a rectangular grid. Or, it might
represent a sequence of matrices, A(k), or samples of a time-dependent matrix,
A(t). In these latter cases, the (i, j)th element of the kth matrix, or the tkth
matrix, is denoted by A(i,j,k).

MATLAB’s and Dürer’s versions of the magic square of order 4 differ by an
interchange of two columns. Many different magic squares can be generated by
interchanging columns. The statement

p = perms(1:4);

generates the 4! = 24 permutations of 1:4. The kth permutation is the row
vector, p(k,:). Then

A = magic(4);
M = zeros(4,4,24);
for k = 1:24
 M(:,:,k) = A(:,p(k,:));
end

5 Programming with MATLAB

5-8

stores the sequence of 24 magic squares in a three-dimensional array, M. The
size of M is

size(M)

ans =
 4 4 24

It turns out that the third matrix in the sequence is Dürer’s.

M(:,:,3)

ans =
 16 3 2 13
 5 10 11 8
 9 6 7 12
 4 15 14 1

The statement

sum(M,d)

computes sums by varying the dth subscript. So

sum(M,1)

is a 1-by-4-by-24 array containing 24 copies of the row vector

34 34 34 34

16 3 2 13

 8 11 10 8

12 7 6 12

 1 14 15 1

16 2 13 3

10 8 11 10

 6 12 7 6

15 1 14 15

13 16 2 3

 8 5 11 10

12 9 7 6

 1 4 14 15

16 2 3 13

 5 11 10 8

 9 7 6 12

 4 14 15 1

...

Other Data Structures

5-9

and

sum(M,2)

is a 4-by-1-by-24 array containing 24 copies of the column vector

34
34
34
34

Finally,

S = sum(M,3)

adds the 24 matrices in the sequence. The result has size 4-by-4-by-1, so it looks
like a 4-by-4 array.

S =
 204 204 204 204
 204 204 204 204
 204 204 204 204
 204 204 204 204

Cell Arrays
Cell arrays in MATLAB are multidimensional arrays whose elements are
copies of other arrays. A cell array of empty matrices can be created with the
cell function. But, more often, cell arrays are created by enclosing a
miscellaneous collection of things in curly braces, {}. The curly braces are also
used with subscripts to access the contents of various cells. For example,

C = {A sum(A) prod(prod(A))}

produces a 1-by-3 cell array. The three cells contain the magic square, the row
vector of column sums, and the product of all its elements. When C is displayed,
you see

C =
 [4x4 double] [1x4 double] [20922789888000]

This is because the first two cells are too large to print in this limited space, but
the third cell contains only a single number, 16!, so there is room to print it.

5 Programming with MATLAB

5-10

Here are two important points to remember. First, to retrieve the contents of
one of the cells, use subscripts in curly braces. For example, C{1} retrieves the
magic square and C{3} is 16!. Second, cell arrays contain copies of other arrays,
not pointers to those arrays. If you subsequently change A, nothing happens to
C.

Three-dimensional arrays can be used to store a sequence of matrices of the
same size. Cell arrays can be used to store a sequence of matrices of different
sizes. For example,

M = cell(8,1);
for n = 1:8
 M{n} = magic(n);
end
M

produces a sequence of magic squares of different order.

M =
 [1]
 [2x2 double]
 [3x3 double]
 [4x4 double]
 [5x5 double]
 [6x6 double]
 [7x7 double]
 [8x8 double]

Other Data Structures

5-11

You can retrieve our old friend with

M{4}

Characters and Text
Enter text into MATLAB using single quotes. For example,

s = 'Hello'

The result is not the same kind of numeric matrix or array we have been
dealing with up to now. It is a 1-by-5 character array.

16 2 3 13

 5 11 10 8

 9 7 6 12

 4 14 15 1

..
.

64 2 3 61 60 6 7 57

 9 55 54 12 13 51 50 16

17 47 46 20 21 43 42 24

40 26 27 37 36 30 31 33

32 34 35 29 28 38 39 25

41 23 22 44 45 19 18 48

49 15 14 52 53 11 10 56

 8 58 59 5 4 62 63 1

1 3

4 2

8 1 6

3 5 7

4 9 2

1

5 Programming with MATLAB

5-12

Internally, the characters are stored as numbers, but not in floating-point
format. The statement

a = double(s)

converts the character array to a numeric matrix containing floating-point
representations of the ASCII codes for each character. The result is

a =
 72 101 108 108 111

The statement

s = char(a)

reverses the conversion.

Converting numbers to characters makes it possible to investigate the various
fonts available on your computer. The printable characters in the basic ASCII
character set are represented by the integers 32:127. (The integers less than
32 represent nonprintable control characters.) These integers are arranged in
an appropriate 6-by-16 array with

F = reshape(32:127,16,6)';

The printable characters in the extended ASCII character set are represented
by F+128. When these integers are interpreted as characters, the result
depends on the font currently being used. Type the statements

char(F)
char(F+128)

and then vary the font being used for the MATLAB Command Window. Select
Preferences from the File menu. Be sure to try the Symbol and Wingdings
fonts, if you have them on your computer. Here is one example of the kind of
output you might obtain.

!"#$%&'()*+,-./
0123456789:;<=>?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^_
`abcdefghijklmno
pqrstuvwxyz{|}~-

†°¢£§•¶ß®©™´¨¦ÆØ

Other Data Structures

5-13

×±ðŠ¥µ¹²³¼½ªº¾æø
¿¡¬ÐƒÝý«»…þÀÃÕŒœ
-—“”‘’÷ÞÿŸ⁄¤‹›??
‡·‚„‰ÂÊÁËÈÍÎÏÌÓÔ
šÒÚÛÙ ˆ˜¯•Ž°¸″žÿ

Concatenation with square brackets joins text variables together into larger
strings. The statement

h = [s, ' world']

joins the strings horizontally and produces

h =
 Hello world

The statement

v = [s; 'world']

joins the strings vertically and produces

v =
 Hello
 world

Note that a blank has to be inserted before the 'w' in h and that both words in
v have to have the same length. The resulting arrays are both character arrays;
h is 1-by-11 and v is 2-by-5.

To manipulate a body of text containing lines of different lengths, you have two
choices – a padded character array or a cell array of strings. The char function
accepts any number of lines, adds blanks to each line to make them all the
same length, and forms a character array with each line in a separate row. For
example,

S = char('A','rolling','stone','gathers','momentum.')

produces a 5-by-9 character array.

S =
A
rolling
stone
gathers
momentum.

5 Programming with MATLAB

5-14

There are enough blanks in each of the first four rows of S to make all the rows
the same length. Alternatively, you can store the text in a cell array. For
example,

C = {'A';'rolling';'stone';'gathers';'momentum.'}

is a 5-by-1 cell array.

C =
 'A'
 'rolling'
 'stone'
 'gathers'
 'momentum.'

You can convert a padded character array to a cell array of strings with

C = cellstr(S)

and reverse the process with

S = char(C)

Structures
Structures are multidimensional MATLAB arrays with elements accessed by
textual field designators. For example,

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'

creates a scalar structure with three fields.

S =
 name: 'Ed Plum'
 score: 83
 grade: 'B+'

Like everything else in MATLAB, structures are arrays, so you can insert
additional elements. In this case, each element of the array is a structure with
several fields. The fields can be added one at a time,

Other Data Structures

5-15

S(2).name = 'Toni Miller';
S(2).score = 91;
S(2).grade = 'A-';

or, an entire element can be added with a single statement.

S(3) = struct('name','Jerry Garcia',...
 'score',70,'grade','C')

Now the structure is large enough that only a summary is printed.

S =
1x3 struct array with fields:
 name
 score
 grade

There are several ways to reassemble the various fields into other MATLAB
arrays. They are all based on the notation of a comma separated list. If you type

S.score

it is the same as typing

S(1).score, S(2).score, S(3).score

This is a comma separated list. Without any other punctuation, it is not very
useful. It assigns the three scores, one at a time, to the default variable ans and
dutifully prints out the result of each assignment. But when you enclose the
expression in square brackets,

[S.score]

it is the same as

[S(1).score, S(2).score, S(3).score]

which produces a numeric row vector containing all of the scores.

ans =
 83 91 70

Similarly, typing

S.name

5 Programming with MATLAB

5-16

just assigns the names, one at time, to ans. But enclosing the expression in
curly braces,

{S.name}

creates a 1-by-3 cell array containing the three names.

ans =
 'Ed Plum' 'Toni Miller' 'Jerry Garcia'

And

char(S.name)

calls the char function with three arguments to create a character array from
the name fields,

ans =
Ed Plum
Toni Miller
Jerry Garcia

Scripts and Functions

5-17

Scripts and Functions
MATLAB is a powerful programming language as well as an interactive
computational environment. Files that contain code in the MATLAB language
are called M-files. You create M-files using a text editor, then use them as you
would any other MATLAB function or command.

There are two kinds of M-files:

• Scripts, which do not accept input arguments or return output arguments.
They operate on data in the workspace.

• Functions, which can accept input arguments and return output arguments.
Internal variables are local to the function.

If you’re a new MATLAB programmer, just create the M-files that you want to
try out in the current directory. As you develop more of your own M-files, you
will want to organize them into other directories and personal toolboxes that
you can add to MATLAB’s search path.

If you duplicate function names, MATLAB executes the one that occurs first in
the search path.

To view the contents of an M-file, for example, myfunction.m, use

type myfunction

Scripts
When you invoke a script, MATLAB simply executes the commands found in
the file. Scripts can operate on existing data in the workspace, or they can
create new data on which to operate. Although scripts do not return output
arguments, any variables that they create remain in the workspace, to be used
in subsequent computations. In addition, scripts can produce graphical output
using functions like plot.

For example, create a file called magicrank.m that contains these MATLAB
commands.

% Investigate the rank of magic squares
r = zeros(1,32);
for n = 3:32
 r(n) = rank(magic(n));
end

5 Programming with MATLAB

5-18

r
bar(r)

Typing the statement

magicrank

causes MATLAB to execute the commands, compute the rank of the first 30
magic squares, and plot a bar graph of the result. After execution of the file is
complete, the variables n and r remain in the workspace.

Functions
Functions are M-files that can accept input arguments and return output
arguments. The name of the M-file and of the function should be the same.
Functions operate on variables within their own workspace, separate from the
workspace you access at the MATLAB command prompt.

A good example is provided by rank. The M-file rank.m is available in the
directory

toolbox/matlab/matfun

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Scripts and Functions

5-19

You can see the file with

type rank

Here is the file.

function r = rank(A,tol)
% RANK Matrix rank.
% RANK(A) provides an estimate of the number of linearly
% independent rows or columns of a matrix A.
% RANK(A,tol) is the number of singular values of A
% that are larger than tol.
% RANK(A) uses the default tol = max(size(A)) * norm(A) * eps.

s = svd(A);
if nargin==1
 tol = max(size(A)') * max(s) * eps;
end
r = sum(s > tol);

The first line of a function M-file starts with the keyword function. It gives the
function name and order of arguments. In this case, there are up to two input
arguments and one output argument.

The next several lines, up to the first blank or executable line, are comment
lines that provide the help text. These lines are printed when you type

help rank

The first line of the help text is the H1 line, which MATLAB displays when you
use the lookfor command or request help on a directory.

The rest of the file is the executable MATLAB code defining the function. The
variable s introduced in the body of the function, as well as the variables on the
first line, r, A and tol, are all local to the function; they are separate from any
variables in the MATLAB workspace.

This example illustrates one aspect of MATLAB functions that is not ordinarily
found in other programming languages – a variable number of arguments. The
rank function can be used in several different ways.

rank(A)
r = rank(A)
r = rank(A,1.e-6)

5 Programming with MATLAB

5-20

Many M-files work this way. If no output argument is supplied, the result is
stored in ans. If the second input argument is not supplied, the function
computes a default value. Within the body of the function, two quantities
named nargin and nargout are available which tell you the number of input
and output arguments involved in each particular use of the function. The rank
function uses nargin, but does not need to use nargout.

Global Variables
If you want more than one function to share a single copy of a variable, simply
declare the variable as global in all the functions. Do the same thing at the
command line if you want the base workspace to access the variable. The global
declaration must occur before the variable is actually used in a function.
Although it is not required, using capital letters for the names of global
variables helps distinguish them from other variables. For example, create an
M-file called falling.m.

function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t.^2;

Then interactively enter the statements

global GRAVITY
GRAVITY = 32;
y = falling((0:.1:5)');

The two global statements make the value assigned to GRAVITY at the
command prompt available inside the function. You can then modify GRAVITY
interactively and obtain new solutions without editing any files.

Passing String Arguments to Functions
You can write MATLAB functions that accept string arguments without the
parentheses and quotes. That is, MATLAB interprets

foo a b c

as

foo('a','b','c')

Scripts and Functions

5-21

However, when using the unquoted form, MATLAB cannot return output
arguments. For example,

legend apples oranges

creates a legend on a plot using the strings apples and oranges as labels. If you
want the legend command to return its output arguments, then you must use
the quoted form.

[legh,objh] = legend('apples','oranges');

In addition, you cannot use the unquoted form if any of the arguments are not
strings.

Constructing String Arguments in Code
The quoted form enables you to construct string arguments within the code.
The following example processes multiple data files, August1.dat,
August2.dat, and so on. It uses the function int2str, which converts an
integer to a character, to build the filename.

for d = 1:31
 s = ['August' int2str(d) '.dat'];
 load(s)
 % Code to process the contents of the d-th file
end

A Cautionary Note
While the unquoted syntax is convenient, it can be used incorrectly without
causing MATLAB to generate an error. For example, given a matrix A,

A =
 0 -6 -1
 6 2 -16

-5 20 -10

The eig command returns the eigenvalues of A.

eig(A)
ans =

-3.0710
-2.4645+17.6008i
-2.4645-17.6008i

5 Programming with MATLAB

5-22

The following statement is not allowed because A is not a string, however
MATLAB does not generate an error.

eig A
ans =

65

MATLAB actually takes the eigenvalues of ASCII numeric equivalent of the
letter A (which is the number 65).

The eval Function
The eval function works with text variables to implement a powerful text
macro facility. The expression or statement

eval(s)

uses the MATLAB interpreter to evaluate the expression or execute the
statement contained in the text string s.

The example of the previous section could also be done with the following code,
although this would be somewhat less efficient because it involves the full
interpreter, not just a function call.

for d = 1:31
 s = ['load August' int2str(d) '.dat'];
 eval(s)
 % Process the contents of the d-th file
end

Vectorization
To obtain the most speed out of MATLAB, it’s important to vectorize the
algorithms in your M-files. Where other programming languages might use for
or DO loops, MATLAB can use vector or matrix operations. A simple example
involves creating a table of logarithms.

x = .01;
for k = 1:1001
 y(k) = log10(x);
 x = x + .01;
end

A vectorized version of the same code is

Scripts and Functions

5-23

x = .01:.01:10;
y = log10(x);

For more complicated code, vectorization options are not always so obvious.
When speed is important, however, you should always look for ways to
vectorize your algorithms.

Preallocation
If you can’t vectorize a piece of code, you can make your for loops go faster by
preallocating any vectors or arrays in which output results are stored. For
example, this code uses the function zeros to preallocate the vector created in
the for loop. This makes the for loop execute significantly faster.

r = zeros(32,1);
for n = 1:32
 r(n) = rank(magic(n));
end

Without the preallocation in the previous example, the MATLAB interpreter
enlarges the r vector by one element each time through the loop. Vector
preallocation eliminates this step and results in faster execution.

Function Handles
You can create a handle to any MATLAB function and then use that handle as
a means of referencing the function. A function handle is typically passed in an
argument list to other functions, which can then execute, or evaluate, the
function using the handle.

Construct a function handle in MATLAB using the at sign, @, before the
function name. The following example creates a function handle for the sin
function and assigns it to the variable fhandle.

fhandle = @sin;

Evaluate a function handle using the MATLAB feval function. The function
plot_fhandle, shown below, receives a function handle and data, and then
performs an evaluation of the function handle on that data using feval.

function x = plot_fhandle(fhandle, data)
plot(data, feval(fhandle, data))

5 Programming with MATLAB

5-24

When you call plot_fhandle with a handle to the sin function and the
argument shown below, the resulting evaluation produces a sine wave plot.

plot_fhandle(@sin, -pi:0.01:pi)

Function Functions
A class of functions, called “function functions,” works with nonlinear functions
of a scalar variable. That is, one function works on another function. The
function functions include:

• Zero finding

• Optimization

• Quadrature

• Ordinary differential equations

MATLAB represents the nonlinear function by a function M-file. For example,
here is a simplified version of the function humps from the matlab/demos
directory.

function y = humps(x)
y = 1./((x-.3).^2 + .01) + 1./((x-.9).^2 + .04) - 6;

Evaluate this function at a set of points in the interval 0 ≤ x ≤ 1 with

x = 0:.002:1;
y = humps(x);

Then plot the function with

plot(x,y)

Scripts and Functions

5-25

The graph shows that the function has a local minimum near x = 0.6. The
function fminsearch finds the minimizer, the value of x where the function
takes on this minimum. The first argument to fminsearch is a function handle
to the function being minimized and the second argument is a rough guess at
the location of the minimum.

p = fminsearch(@humps,.5)
p =
 0.6370

To evaluate the function at the minimizer,

humps(p)

ans =
 11.2528

Numerical analysts use the terms quadrature and integration to distinguish
between numerical approximation of definite integrals and numerical

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

5 Programming with MATLAB

5-26

integration of ordinary differential equations. MATLAB’s quadrature routines
are quad and quadl. The statement

Q = quadl(@humps,0,1)

computes the area under the curve in the graph and produces

Q =
 29.8583

Finally, the graph shows that the function is never zero on this interval. So, if
you search for a zero with

z = fzero(@humps,.5)

you will find one outside of the interval

z =
 -0.1316

Demonstration Programs Included with MATLAB

5-27

Demonstration Programs Included with MATLAB
MATLAB includes many demonstration programs that highlight various
features and functions. For a complete list of the demos, at the command
prompt type

help demos

To view a specific file, for example, airfoil, type

edit airfoil

To run a demonstration, type the filename at the command prompt. For
example, to run the airfoil demonstration, type

airfoil

Note Many of the demonstrations use multiple windows and require you to
press a key in the MATLAB Command Window to continue through the
demonstration.

The following tables list some of the current demonstration programs that are
available, organized into these categories:

• Matrix demos

• Numeric demos

• Visualization demos

• Language demos

• ODE suite demos

• Gallery demos

• Game demos

• Miscellaneous demos

• Helper function demos

5 Programming with MATLAB

5-28

.

MATLAB Matrix Demonstration Programs

airfoil Graphical demonstration of sparse matrix from NASA
airfoil.

buckydem Connectivity graph of the Buckminster Fuller geodesic
dome.

delsqdemo Finite difference Laplacian on various domains.

eigmovie Symmetric eigenvalue movie.

eigshow Graphical demonstration of matrix eigenvalues.

intro Introduction to basic matrix operations in MATLAB.

inverter Demonstration of the inversion of a large matrix.

matmanip Introduction to matrix manipulation.

rrefmovie Computation of reduced row echelon form.

sepdemo Separators for a finite element mesh.

sparsity Demonstration of the effect of sparsity orderings.

svdshow Graphical demonstration of matrix singular values.

MATLAB Numeric Demonstration Programs

bench MATLAB benchmark.

census Prediction of the U.S. population in the year 2000.

e2pi Two-dimensional, visual solution to the problem
“Which is greater, e

π
or π

e
?”

fftdemo Use of the FFT function for spectral analysis.

fitdemo Nonlinear curve fit with simplex algorithm.

fplotdemo Demonstration of plotting a function.

Demonstration Programs Included with MATLAB

5-29

funfuns Demonstration of functions operating on other
functions.

lotkademo Example of ordinary differential equation solution.

quaddemo Adaptive quadrature.

quake Loma Prieta earthquake.

spline2d Demonstration of ginput and spline in two
dimensions.

sunspots Demonstration of the fast Fourier transform (FFT)
function in MATLAB used to analyze the variations in
sunspot activity.

zerodemo Zero finding with fzero.

MATLAB Visualization Demonstration Programs

colormenu Demonstration of adding a colormap to the current
figure.

cplxdemo Maps of functions of a complex variable.

earthmap Graphical demonstrations of earth’s topography.

graf2d Two-dimensional XY plots in MATLAB.

graf2d2 Three-dimensional XYZ plots in MATLAB.

grafcplx Demonstration of complex function plots in MATLAB.

imagedemo Demonstration of MATLAB’s image capability.

imageext Demonstration of changing and rotating image
colormaps.

lorenz Graphical demonstration of the orbit around the
Lorenz chaotic attractor.

MATLAB Numeric Demonstration Programs (Continued)

5 Programming with MATLAB

5-30

penny Several views of the penny data.

vibes Vibrating L-shaped membrane movie.

xfourier Graphical demonstration of Fourier series expansion.

xpklein Klein bottle demo.

xpsound Demonstration of MATLAB’s sound capability.

MATLAB Language Demonstration Programs

graf3d Demonstration of Handle Graphics for surface plots.

hndlaxis Demonstration of Handle Graphics for axes.

hndlgraf Demonstration of Handle Graphics for line plots.

xplang Introduction to the MATLAB language.

MATLAB ODE Suite Demonstration Programs

a2ode Stiff problem, linear with real eigenvalues.

a3ode Stiff problem, linear with real eigenvalues.

b5ode Stiff problem, linear with complex eigenvalues.

ballode Equations of motion for a bouncing ball used by
BALLDEMO.

besslode Bessel’s equation of order 0 used by BESSLDEMO.

brussode Stiff problem, modelling a chemical reaction
(Brusselator).

buiode Stiff problem, analytical solution due to Bui.

chm6ode Stiff problem CHM6 from Enright and Hull.

MATLAB Visualization Demonstration Programs (Continued)

Demonstration Programs Included with MATLAB

5-31

chm7ode Stiff problem CHM7 from Enright and Hull.

chm9ode Stiff problem CHM9 from Enright and Hull.

d1ode Stiff problem, nonlinear with real eigenvalues.

fem1ode Stiff problem with a time-dependent mass matrix.

fem2ode Stiff problem with a time-independent mass matrix.

gearode Stiff problem due to Gear as quoted by van der
Houwen.

hb1ode Stiff problem 1 of Hindmarsh and Byrne.

hb2ode Stiff problem 2 of Hindmarsh and Byrne.

hb3ode Stiff problem 3 of Hindmarsh and Byrne.

odedemo Demonstration of the ODE suite integrators.

orbitode Restricted 3 body problem used by ORBITDEMO.

orbt2ode Nonstiff problem D5 of Hull et al.

rigidode Euler equations of a rigid body without external forces.

sticode Spring-driven mass stuck to surface, used by STICDEMO.

vdpode Parameterizable van der Pol equation (stiff for large µ).

MATLAB Gallery Demonstration Programs

cruller Graphical demonstration of a cruller.

klein1 Graphical demonstration of a Klein bottle.

knot Tube surrounding a three-dimensional knot.

logo Graphical demonstration of the MATLAB L-shaped
membrane logo.

MATLAB ODE Suite Demonstration Programs (Continued)

5 Programming with MATLAB

5-32

modes Graphical demonstration of 12 modes of the L-shaped
membrane.

quivdemo Graphical demonstration of the quiver function.

spharm2 Graphical demonstration of spherical surface
harmonic.

tori4 Graphical demonstration of four-linked, unknotted tori.

finddemo Command that finds available demos for individual
toolboxes.

helpfun Utility function for displaying help text conveniently.

membrane The MathWorks logo.

peaks Sample function of two variables.

pltmat Command that displays a matrix in a figure window.

MATLAB Game Demonstration Programs

bblwrap Bubblewrap.

life Conway’s Game of Life.

soma Soma cube.

xpbombs Minesweeper game.

MATLAB Miscellaneous Demonstration Programs

codec Alphabet transposition coder/decoder.

crulspin Spinning cruller movie.

logospin Movie of the MathWorks logo spinning.

MATLAB Gallery Demonstration Programs (Continued)

Demonstration Programs Included with MATLAB

5-33

makevase Demonstration of a surface of revolution.

quatdemo Quaternion rotation.

spinner Colorful lines spinning through space.

travel Traveling salesman problem.

truss Animation of a bending bridge truss.

wrldtrv Great circle flight routes around the globe.

xphide Visual perception of objects in motion.

xpquad Superquadrics plotting demonstration.

MATLAB Helper Functions Demonstration Programs

bucky Graph of the Buckminster Fuller geodesic dome.

cmdlnbgn Set up for command line demos.

cmdlnend Clean up after command line demos.

cmdlnwin Demo gateway routine for running command line
demos.

finddemo Command that finds available demos for individual
toolboxes.

helpfun Utility function for displaying help text conveniently.

membrane The MathWorks logo.

peaks Sample function of two variables.

pltmat Command that displays a matrix in a figure window.

MATLAB Miscellaneous Demonstration Programs (Continued)

5 Programming with MATLAB

5-34

Getting More Information
The MathWorks Web site (www.mathworks.com) contains numerous M-files
that have been written by users and MathWorks staff. These are accessible by
selecting Downloads. Also, Technical Notes, which is accessible from our
Technical Support Web site (www.mathworks.com/support), contains
numerous examples on graphics, mathematics, API, Simulink, and others.

I-1

Index

Symbols
: operator 3-7

A
algorithms

vectorizing 5-23
animation 4-34
annotating plots 4-14, 4-15
ans 3-4
Application Program Interface (API) 1-3
Array Editor 2-13
array operators 3-22
arrays 3-18, 3-21

cell 5-9
character 5-11
columnwise organization 3-24
concatenating 3-16
creating in M-files 3-15
deleting rows and columns 3-17
deleting rows or columns 3-17
elements 3-10
generating with functions and operators 3-14
listing contents 3-10
loading from external data files 3-15
multidimensional 5-7
notation for elements 3-10
preallocating 5-23
structure 5-14
variable names 3-10

aspect ratio of axes 4-11
axes 4-10
axis

labels 4-12
titles 4-12

axis 4-10

B
bookmarking documentation 2-10
break 5-6

C
case 5-3
cell arrays 5-9
char 5-13
character arrays 5-11
characteristic polynomial 3-21
colon operator 3-7
colormap 4-20
colors

lines for plotting 4-4
Command History 2-7
command line editing 3-30
Command Window 2-6
complex numbers, plotting 4-6
concatenating

arrays 3-16
strings 5-13

concatenation 3-16
configuring the desktop 2-5
constants

special 3-12
contents in Help browser 2-10
continue 5-5
continuing statements on multiple lines 3-30
current directory 2-11
Current Directory browser 2-11

D
debugging M-files 2-14
deleting array elements 3-17

Index

I-2

demonstration programs 5-27
demos 5-27
demos, running from the Launch Pad 2-8
desktop for MATLAB 2-4
desktop tools 2-6
determinant of matrix 3-19
development environment 2-2
diag 3-5
display pane in Help browser 2-10
documentation 2-8

E
editing command lines 3-30
Editor/Debugger 2-14
eigenvalue 3-20
eigenvector 3-20
elements of arrays 3-10
entering matrices 3-3
environment 2-2
erase mode 4-34
eval 5-22
executing MATLAB 2-3
exiting MATLAB 2-3
exporting data 2-15
expressions 3-10, 3-13

evaluating 5-22
external programs, running from MATLAB 2-7

F
favorites in Help browser 2-10
figure 4-8
figure windows 4-8

with multiple plots 4-9
find 3-27
finding in a page 2-10

finding object handles 4-31
fliplr 3-5
floating-point numbers 3-11
flow control 5-2
for 5-4
format

of output display 3-28
format 3-28
function 5-19
function functions 5-24
function handles

defined 5-24
using 5-25

function M-file 5-17, 5-18
function of two variables 4-18
functions 3-11, 5-18

built-in 3-12
variable number of arguments 5-20

G
global variables 5-20
graphical user interface 4-33
graphics

2-D 4-2
annotations 4-15
files 4-24
handle graphics 4-26
objects 4-26
printing 4-24

grids 4-12

H
Handle Graphics 1-3, 4-26

finding handles 4-31
Help browser 2-8

Index

I-3

help functions 2-10
Help Navigator 2-10
hierarchy of graphics objects 4-27
hold 4-7

I
if 5-2
images 4-22
imaginary number 3-10
Import Wizard 2-15
importing data 2-15
index in Help browser 2-10

L
Launch Pad 2-8
legend 4-3
legend, adding to plot 4-3
library

mathematical function 1-3
lighting 4-20
limits, axes 4-10
line continuation 3-30
line styles of plots 4-4
load 3-15
loading arrays 3-15
local variables 5-19
log of functions used 2-7
logical vectors 3-26

M
magic 3-8
magic square 3-4
markers 4-5
MAT-file 4-22

mathematical function library 1-3
mathematical functions

listing advanced 3-11
listing elementary 3-11
listing matrix 3-11

MATLAB
Application Program Interface 1-3
history 1-2
language 1-3
mathematical function library 1-3
overview 1-2

matrices 3-18
creating 3-14
entering 3-3

matrix 3-2
antidiagonal 3-5
determinant 3-19
main diagonal 3-5
singular 3-19
swapping columns 3-8
symmetric 3-18
transpose 3-4

matrix multiplication 3-18
mesh plot 4-18
M-file 1-2, 3-15, 5-17

creating 5-17
for creating arrays 3-15
function 5-17, 5-18
script 5-17

M-file performance 2-15
M-files 2-14
Microsoft Word and access to MATLAB 2-15
movies 4-35
multidimensional arrays 5-7
multiple data sets, plotting 4-3
multiple plots per figure 4-9
multivariate data, organizing 3-24

Index

I-4

N
newsgroup for MATLAB users 2-10
Notebook 2-15
numbers 3-10

floating-point 3-11

O
object properties 4-28
objects

finding handles 4-31
graphics 4-26

online help, viewing 2-8
operator 3-11

colon 3-7
output

controlling format 3-28
suppressing 3-30

overlaying plots 4-7

P
path 2-12
performance of M-files 2-15
plot 4-2
plots

annotations in 4-15
editing 4-14

plotting
adding legend 4-3
adding plots 4-7
annotating 4-14
basic 4-2
complex data 4-6
complex numbers 4-6
contours 4-7
line colors 4-4

line styles 4-4
lines and markers 4-5
mesh and surface 4-18
multiple data sets 4-3
multiple plots 4-9

PostScript 4-24
preallocation 5-23
preferences 2-5
print 4-24
printing

graphics 4-24
profiler 2-15
Property Editor

interface 4-16

Q
quitting MATLAB 2-3

R
revision control systems, interfacing to MATLAB

2-15
running functions 2-6
running MATLAB 2-3

S
scalar expansion 3-25
scientific notation 3-10
script M-file 5-17
scripts 5-17
search path 2-12
searching documentation 2-10
semicolon to suppress output 3-30
shutting down MATLAB 2-3
singular matrix 3-19

Index

I-5

source control systems, interfacing to MATLAB
2-15

special constants 3-12
infinity 3-12
not-a-number 3-12

starting MATLAB 2-3
statements

continuing on multiple lines 3-30
executing 5-22

strings
concatenating 5-13

structures 5-14
subplot 4-9
subscripting

with logical vectors 3-26
subscripts 3-6
sum 3-4
suppressing output 3-30
surface plot 4-18
switch 5-3
symmetric matrix 3-18

T
text 5-11
TIFF 4-25
title

figure 4-12
toolbox 1-2
tools in the desktop 2-6
transpose 3-4

U
user interface 4-33

building 4-33

V
variables 3-10

global 5-20
local 5-19

vector 3-2
logical 3-26
preallocating 5-23

vectorization 5-23
version control systems, interfacing to MATLAB

2-15
viewing documentation 2-10
visibility of axes 4-11

W
while 5-5
windows for plotting 4-8
windows in MATLAB 2-4
wireframe 4-18

surface 4-18
Word and access to MATLAB 2-15
word processing access to MATLAB 2-15
workspace 2-12
Workspace browser 2-12

X
xor erase mode 4-34

Index

I-6

	Introduction
	What Is MATLAB?
	The MATLAB System

	MATLAB Documentation
	MATLAB Online Help

	Development Environment
	Introduction
	Starting and Quitting MATLAB
	Starting MATLAB
	Quitting MATLAB

	MATLAB Desktop
	Desktop Tools
	Command Window
	Launch Pad
	Help Browser
	Current Directory Browser
	Workspace Browser
	Editor/Debugger

	Other Development Environment Features

	Manipulating Matrices
	Matrices and Magic Squares
	Entering Matrices
	sum, transpose, and diag
	Subscripts
	The Colon Operator
	The magic Function

	Expressions
	Variables
	Numbers
	Operators
	Functions
	Examples of Expressions

	Working with Matrices
	Generating Matrices
	The load Command
	M-Files
	Concatenation
	Deleting Rows and Columns

	More About Matrices and Arrays
	Linear Algebra
	Arrays
	Multivariate Data
	Scalar Expansion
	Logical Subscripting
	The find Function

	Controlling Command Window Input and Output
	The format Command
	Suppressing Output
	Entering Long Command Lines
	Command Line Editing

	Graphics
	Basic Plotting
	Creating a Plot
	Imaginary and Complex Data
	Adding Plots to an Existing Graph
	Figure Windows
	Multiple Plots in One Figure
	Controlling the Axes
	Axis Labels and Titles
	Saving a Figure

	Editing Plots
	Interactive Plot Editing
	Using Functions to Edit Graphs
	Using Plot Editing Mode
	Using the Property Editor

	Mesh and Surface Plots
	Visualizing Functions of Two Variables

	Images
	Printing Graphics
	Handle Graphics
	Graphics Objects
	Setting Object Properties
	Finding the Handles of Existing Objects

	Graphics User Interfaces
	Graphical User Interface Design Tools

	Animations
	Erase Mode Method
	Creating Movies

	Programming with MATLAB
	Flow Control
	if
	switch and case
	for
	while
	continue
	break

	Other Data Structures
	Multidimensional Arrays
	Cell Arrays
	Characters and Text
	Structures

	Scripts and Functions
	Scripts
	Functions
	Global Variables
	Passing String Arguments to Functions
	The eval Function
	Vectorization
	Preallocation
	Function Handles
	Function Functions

	Demonstration Programs Included with MATLAB

	Index

