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                      LINEAR VECTOR SPACES  
 
GENERAL DEFINITIONS AND CONSIDERATIONS 
We know that a vector u in E3  (3D Euclidean space) can be expressed as an ordered 
triplet of numbers : u=(u1 , u2 , u3 ) . E3 is a 3D vector space (R3 ) in which the inner 
(scalar) product is defined. We now generalize  the real vector space to n dimensions and 
designate it by Rn . An element u of Rn has the form u = (u1 , u2 , …, un ) with the 
following properties: 
 
i) If u and v are any two vectors in Rn , then u+v would be in Rn ; in other words, Rn 

is closed  under vector addition. Further, the vector addition obeys the rules : 
1) u+v = v+u for all u and v in Rn 
2) u+(v+w)=(u+v)+w for all u,v and w in Rn 
3) there exists a a unique zero vector “0” in Rn so that u+0=0+u=u  for all u 

in Rn 
4) for each u in Rn  there exists a unique vector “-u” so that  

                          u+(-u)=(-u)+u=0 
 
ii) If u is any vector in Rn  and c is any real number, then “cu” would be in Rn ;  in 

other words, Rn is closed under scalar  multiplication. Further, scalar 
multiplication obeys the rules : 

1) cu=uc for any u in Rn and any real number “c” 
2) c(u+v)=cu+cv for any u and v in Rn , and any real number “c” 
3) (c+d)u=cu+du for any u in Rn , and any real numbers “c” and “d” 
4) (cd)u=c(du) for any u in Rn, and any real numbers  “c” and “d” 
5) (1)u=u and (0)u=0 for any u in Rn 

 
A complex vector space is a collection of elements satisfying the conditions in (i) and (ii) 
stated  above; but, in this case, the multiplication by a complex number is allowed in (ii). 
 
Even though the properties in (i) and (ii) are given to define Rn  (n-dimensional real vector 
space), they also define an abstract vector space (V); in other words, any space with the 
elements satisfying the conditions in(i) and (ii) is called a vector space. 
 
Example : A space with the elements of the form (a,a2 ) is not a vector space because it is 
not closed under addition. In fact consider two elements , say A and B, of that space : 
                                   A = (a, a2 )  ; B =  (b, b2 ) 
 
whose addition gives : A + B = ( a+b, a2 + b2 ) which is not an element of the space  under 
consideration. 
 
Example :Consider the space P2 of second order polynomials: P2(x)=c0 + c1*x +c2 *x2 
(where ci are some constants). This space is a vector space since it satisfies all of the 
conditions in (i) and (ii) [you verify this as home exercise]. 
 

Example : The space of ( 2x2) matrices with the elements of the form :  







dc

ba
 

is a vector space because the elements of that space satisfy all of the conditions in (i) and 
(ii). 
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Subspace of a Vector Space : Let V be a vector space and W be a subset of V. Then, W 
would be a subspace of V if only if W is closed under vector addition and scalar 
multiplication.  
 
We note that not all subsets of a vector space are subspaces. For example, the subset of R3 
containing all the vectors of the form (u1 , u2 , 1 ) is not a subspace of R3 since it is not 
closed under vector addition, as well as, under multiplication by scalar. On the other hand, 
the subset with the elements of the form (u1 , u2 , 0 ) would be a subpspace of R3 [ verify 
this as home exercise].  
 
Linear Combination of Vectors : Let S={u1 , u2 , …, un } be a set of vectors in a vector 
space V. The vector 
                                 v=c1 u1 + c2 u2 + … cn un  with ci ‘s being real numbers 
is called a linear combinations of the vectors in S. 
 
Vectors Spanning a Vector Space : Let S={u1 , u2 , …, un } be a set of vectors in a 
vector space V. The set S spans V if every vector in V can be expressed as a linear 
combination of the vectors in S. We say that V is spanned by S, and S is the spanning set 
of V whenever S spans V. 
 
Example : Show that the set {(1,0,0) , (1,1,0) , (1,1,1)} spans R3 . 
Solution : We take an arbitrary vector in R3 , say u=(u1 , u2 , u3 ) and we show that it can 
be expressed as a linear combination of the vectors in S. To this end, we write 
 
                       c1 (1,0,0)+c2 (1,1,0)+c3 (1,1,1) = (u1 , u2 , u3) 
 
which leads to a system of linear equations :   c1 + c2 + c3 = u1 

                                                                                c1 + c2 = u2 

                                                                                       c3 = u3 

whose solution gives : c1 = u1 – u2  ;  c2 = u2 – u3   ;  c3 = u3  . This completes the 
verification. For example, we can use the above solution for : 
 
                       (-2,5,7)= -7(1,0,0) –2(1,1,0)+7(1,1,1) 
 
Example : Show that the set {(1,0,0) , (1,1,1)} does not span R3 . 
Solution : We take an arbitrary vector in R3 , say u=(u1 , u2 , u3 ), and we show that it can 
not be expressed as a linear combination of the vectors in S. For that, we write 
 
                       c1 (1,0,0)+c2 (1,1,1) = (u1 , u2 , u3 ) 
 
which leads to a system of linear equations :   c1 + c2 = u1 

                                                                                c2 = u2 

                                                                                c2 = u3 

 
which has no solution since (u1 , u2 , u3 ) is a triplet of arbitrary numbers. This completes 
the verification. 
 
Linear Independence  of Vectors : Let S={u1 , u2 , … , un } be a set of vectors in a 
vector space V. The vectors in the set S are said to be linearly independent if the equation 
                        c1 u1 + c2 u2 + … cn un  = 0 
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is satisfied if only if ci = 0 (i= 1-n), where ci‘s are real numbers. On the other hand, if the 
above equation is satisfied by some nontrivial (nonzero) values of ci‘s , then the vectors in 
the set S would be linearly dependent. We note that for linearly independent case none of 
the vectors in S can be expressed as a linear combination of the others. An immediate 
consequence of the above definition is that : any set of vectors containing zero vector is 
linearly dependent. 
 
Basis  of a Vector Space : Let S be a set of vectors in V. Then, we say that the vectors in 
S form a basis for V if the vectors in S i) are linearly independent  ii) span V.  
 
Example : The set S={(1,0,0) , (1,1,0), (1,1,1)} spans R3 and linearly independent; hence 
it can be used as a basis for R3.  
 
Example : For a space M of 2x2  matrices (which is a vector space), the basis set may be 
chosen as 

                  







00

01
, 








00

10
, 








01

00
, 








10

00
 

 
which are independent and span V (you may show these as home exercise). 
 
Example : For a space P2 of second order polynomials (which is a vector space) the basis 
set may be chosen as 
 
                   S ={1 , x , x2 } 
 
which are independent and span P2 (you may show these as home exercise) 
 
The selection of the basis set for given vector space is not unique; but, the number of  the 
base vectors contained in the set is invariant. For example, for R3 the basis set may be 
chosen as S={(1,0,0) , (1,1,0), (1,1,1)} or S={(1,0,0) , (0,1,0), (0,0,1)}, etc., where we 
note that each basis set contains 3 base vectors. 
 
Dimension of a Vector Space :  The number of base vectors in the basis set of a given 
vector space V is called dimension of V and designated by “dim(V)”. For example, 
dim(Rn )=n since Rn has “n” base vectors which may be chosen as  
 
        e1 =(1,0,…,0) ; e2 =(0,1,0,..,0)  ;   ….   ;  en =(0,…,0,1) 
The space M2 of 2x2 matrices has the dimension of 4 since it has four base vectors. The 
dimension of P2 ( which is the space of second order polynomials) is 3 because it has 
three base vectors.   
 
INNER PRODUCT VECTOR SPACES 
In this space, the inner product (u,v) of two vectors in Rn is defined with the following 
properties 

1) (u,v)=(v,u)     (Symmetry). 
2) (cu,v)=c(u,v) , where c is a constant. 
3) (c1 u1 + c2 u2 , v)=c1 (u1 ,v) +c2 (u2 ,v) , where c1 and c2 are constants. 

(Linearity) 
4) (u,u) 0, where equality holds if only if u=0 . (Positive-definiteness) 
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Orthogonality Condition : Two vectors u and v are said to be orthogonal if (u,v)=0. A 
set of vectors in which each pair is orthogonal is called orthogonal set. An orthogonal set 
of nonzero vectors is always linearly independent. 
 
Definition of Inner Product in En: The inner product of the vectors u=(u1 , u2 ,.., un ) and 
v=(v1 , v2 , .. , vn ) in n-dimensional Euclidean space (En) is defined by 
 
                         (u,v) = u1 v1 + u2 v2 + … + un vn  
 
which implies 

                         (u,u)=u1
2 + u2

2  + … + un
2  =   

2
u  

or 

                           u  = (u,u) 2/1  =    2
n

2
1

2
1 u....uu   

 
which is the length of the vector u can be used as a norm in En. 
 
Norm of a Vector : The norm u  of a vector u is a nonzero scalar with the properties 

 
1) u    0   where the equality holds if only if  u=0 , 

2) uc  = c u  , where c is a constant, 

3) vu       u  + v  . 

 
We can define various types of norms. Among them, the most popular one is p-norm 
which is defined by 

u p   = ( 
p

1u  + 
p

2u  + … + 
p

nu  )1/p=
p/1n

1i

p

iu 









 

 
where “p” is a fixed number. In practice, we usually take p=1 or 2, or we use (as third 
norm) 


u  (called maximum norm, defined below), that is,  

 

1
u  = ( 1u  + 2u  + … + nu  )=



n

1i
iu                   (l1-norm), 

2
u  = ( 

2

1u  + 
2

2u  + … + 
2

nu  )1/2=
2/1n

1i

2

iu 









(Euclidean or l2-norm), 


u = j

j
umax                     (maximum or 

l - norm). 

 
Example : Compute l1 - , l2 - and  l   - norms of the vector  u=(2,-3,0,1,-4). 
 
Answer :  

1
u  = 2+3+0+1+4 = 10   ;   

2
u  =(4+9+0+1+16)1/2 = (30)1/2 ;   


u  = 4 
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INFINITE DIMENSIONAL EUCLIDEAN (FUNCTION) SPACE 
Consider a function f(x) given in discrete form . 
                                 x       x1     x2  ….  xn 

                                                                             
                                 f        f1      f2  ….   fn     
 
This discrete valued function defines an n-dimensional Euclidean space (En) with the 
elements f=(f1 , f2 , …, fn ) at the data points x (i=1-n), where the inner product of two 
discrete functions f and g are defined by 
 

                                  (f,g)=f1 g1  +  f2 g2  + … + fn gn = 


n

1i
iigf . 

 
Now suppose we squeeze the data points xi ; thus, n goes to infinity and “f “becomes 
continuously defined for all x values. Then, “f” may be considered as defined in infinite 
dimensional Euclidean space (E  ) , where the inner product of two continuous functions 
f(x) and g(x)  is given by 
 

                                  (f,g) = (f,g) = 
b

a

dxgf    

 
Here, we assume that f and and g are defined in the interval  a   x   b. We note that the 
summation symbol appearing in the definition of inner product in En is replaced by 
integral in infinite dimensional Euclidean space (E  ).  
 
The inner product in E   obeys the usual rules : 
 

1)(f,g)=(g,f)    (Symmetry) 
2) (cf,g)=c(f,g) , where c is a constant 
3) (c1 f1+ c2 f2 , g)=c1 (f1 ,g) +c2 (f2 ,g) , where c1  and c2  are constants. (Linearity) 

4) (f,f) =  0dxf
b

a

2     , where equality holds if only if f=0. (Positive-definiteness) 

 
The functions f and g would be orthogonal if 

                    (f,g) = 0dxgf
b

a

    

 
Example :  Consider the space P2 of second order polynomials  of the form 
 
                              P2 (x) = c0 + c1 x  + c2 x

2 

 
Choose the basis set  as :  S={1, x , x2  }. We can express all the second order polynomials 
as a linear combination of these base functions. The base  functions S={1, x , x2 } are 
defined in E   ; but, the space spanned by S={1, x , x2 }, P2 , is a subspace of E   . Note 
that the subspace P2 containing the second order polynomials has the dimension of 3 since 
the basis set S contains three base functions. 
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Linear Independence of  Functions : Let S={ v1  ,  v2   , … ,  vn  } be a set of functions 
in E   defined in the interval  a   x   b . The functions in the set S are said to be linearly 
independent if the equation 
 
                        c1  v1  + c2  v2  + … + cn vn  = 0 
 
is satisfied if only if ci = 0 (i= 1-n), where ci‘s are real numbers. On the other hand, if the 
above equation is satisfied by some nontrivial (nonzero) values of ci‘s , then the functions 
in the set S would be linearly dependent. We note that for linearly independent case none 
of the functions in S can be expressed as a linear combination of the others. An immediate 
consequence of the above definition is that : any set of functions containing zero function 
is linearly dependent. 
 
A Test for Linear Independence of Functions : The set of functions S={v1 , v2 , .., vn } 
defined in the interval a   x   b would be linearly independent if the Wronskian 
determinant W defined by 
 
 

              W = 



















 )1n(
n

)1n(
2

)1n(
1

'
n

'
2

'
1

n21

v..vv

.....

v..vv

v..vv

  where '( ) =d/dx  ; k) (  = dk /dxk 

 
is not identically equal to zero at all points of the interval a   x   b . 
 
Example :Consider the base functions of a second order polynomial : {1 ,x , x2 } .We 
wish to determine whether these base functions are independent or not. For that, we form 
the Wronskian determinant : 
 

                W = 02

200

x210

xx1 2


















 for all x values. 

 
This implies that the functions {1 , x , x2 } are linearly independent. 


