LINEAR VECTOR SPACES

GENERAL DEFINITIONS AND CONSIDERATIONS

We know that a vector u in E3 (3D Euclidean space) can be expressed as an ordered
triplet of numbers : u=(uy , Uz , Uz ) . Es is a 3D vector space (R*) in which the inner
(scalar) product is defined. We now generalize the real vector space to n dimensions and
designate it by R" . An element u of R" has the form u = (u; , U, , ..., Uy ) with the
following properties:

i) If u and v are any two vectors in R", then u+v would be in R" ; in other words, R"
is closed under vector addition. Further, the vector addition obeys the rules :

1) u+v=v+uforalluandvinR"

2) u+(v+w)=(u+v)+w for all u,v and w in R"

3) there exists a a unique zero vector “0” in R" so that u+0=0+u=u for all u
inRR"

4) foreach uinR" there exists a unique vector “-u” so that
u+(-u)=(-u)+u=0

i) If u is any vector in R" and c is any real number, then “cu” would be in R" ; in
other words, R" is closed under scalar  multiplication. Further, scalar
multiplication obeys the rules :

1) cu=uc for any u in R" and any real number “c”

2) c(u+v)=cu+cv forany uand vin R", and any real number “c”

3) (c+d)u=cu+du for any u in R", and any real numbers “c” and “d”
4) (cd)u=c(du) for any u in R", and any real numbers “c” and “d”
5) (1)u=u and (0)u=0 for any u in R"

A complex vector space is a collection of elements satisfying the conditions in (i) and (ii)
stated above; but, in this case, the multiplication by a complex number is allowed in (ii).

Even though the properties in (i) and (ii) are given to define R" (n-dimensional real vector
space), they also define an abstract vector space (V); in other words, any space with the
elements satisfying the conditions in(i) and (ii) is called a vector space.

Example : A space with the elements of the form (a,a*) is not a vector space because it is
not closed under addition. In fact consider two elements , say A and B, of that space :
A=(a a’) ;B= (b, b?)

whose addition gives : A + B = (a+b, a® + b?) which is not an element of the space under
consideration.

Example :Consider the space P, of second order polynomials: Pa(X)=Co + C1*X +Cp *X?
(where c; are some constants). This space is a vector space since it satisfies all of the
conditions in (i) and (ii) [you verify this as home exercise].

a b
Example : The space of ( 2x2) matrices with the elements of the form : L d}

is a vector space because the elements of that space satisfy all of the conditions in (i) and

(ii).



Subspace of a Vector Space : Let V be a vector space and W be a subset of V. Then, W
would be a subspace of V if only if W is closed under vector addition and scalar
multiplication.

We note that not all subsets of a vector space are subspaces. For example, the subset of R
containing all the vectors of the form (u; , U, , 1) is not a subspace of R® since it is not
closed under vector addition, as well as, under multiplication by scalar. On the other hand,
the subset with the elements of the form (u; , u, , 0 ) would be a subpspace of R® [ verify
this as home exercise].

Linear Combination of Vectors : Let S={u;, Uz, ..., Un } be a set of vectors in a vector
space V. The vector

V=C; U1 + Co Uz + ... Cy Up With ¢ “s being real numbers
is called a linear combinations of the vectors in S.

Vectors Spanning a Vector Space : Let S={u; , u,, ..., Uy } be a set of vectors in a
vector space V. The set S spans V if every vector in V can be expressed as a linear
combination of the vectors in S. We say that V is spanned by S, and S is the spanning set
of V whenever S spans V.

Example : Show that the set {(1,0,0) , (1,1,0), (1,1,1)} spans R® .
Solution : We take an arbitrary vector in R®, say u=(u; , Uz , Uz ) and we show that it can
be expressed as a linear combination of the vectors in S. To this end, we write

1 (1,0,0)+c, (1,1,0)+c3 (1,1,1) = (U1, Uz, U3)

which leads to a system of linear equations: ¢y +cC;+C3=Uy

CLt+Cr=U2
C3 = U3
whose solution gives : ¢; =uU; — Uz ; C,=Uy— U3 ; C3=uUz . This completes the

verification. For example, we can use the above solution for :
(-2,5,7)=-7(1,0,0) -2(1,1,0)+7(1,1,1)

Example : Show that the set {(1,0,0) , (1,1,1)} does not span R®.
Solution : We take an arbitrary vector in R®, say u=(us , Uz , uz ), and we show that it can
not be expressed as a linear combination of the vectors in S. For that, we write

C1 (1,0,0)+C2 (1,1,1) = (U;L , U, U3)

which leads to a system of linear equations : ¢1+ ¢, = Uy
Co=UWU
C2 = U3

which has no solution since (u; , Uz, Ug ) is a triplet of arbitrary numbers. This completes
the verification.

Linear Independence of Vectors : Let S={u; , uz, ..., u, } be a set of vectors in a
vector space V. The vectors in the set S are said to be linearly independent if the equation
CiUp+CyUzx+...ChUn =0



is satisfied if only if ¢c; = 0 (i= 1-n), where c;‘s are real numbers. On the other hand, if the
above equation is satisfied by some nontrivial (nonzero) values of ¢;‘s , then the vectors in
the set S would be linearly dependent. We note that for linearly independent case none of
the vectors in S can be expressed as a linear combination of the others. An immediate
consequence of the above definition is that : any set of vectors containing zero vector is
linearly dependent.

Basis of a Vector Space : Let S be a set of vectors in V. Then, we say that the vectors in
S form a basis for V if the vectors in S i) are linearly independent ii) span V.

Example : The set S={(1,0,0) , (1,1,0), (1,1,1)} spans R* and linearly independent; hence
it can be used as a basis for R>.

Example : For a space M of 2x2 matrices (which is a vector space), the basis set may be
chosen as

1 0{ |0 1| (0 0] |0 O
0 0/]'|0 O|'|1 0]"|0 1
which are independent and span V (you may show these as home exercise).

Example : For a space P, of second order polynomials (which is a vector space) the basis
set may be chosen as

S={1,x,x*}
which are independent and span P, (you may show these as home exercise)

The selection of the basis set for given vector space is not unique; but, the number of the
base vectors contained in the set is invariant. For example, for R® the basis set may be
chosen as S={(1,0,0) , (1,1,0), (1,1,1)} or S={(1,0,0) , (0,1,0), (0,0,1)}, etc., where we
note that each basis set contains 3 base vectors.

Dimension of a Vector Space : The number of base vectors in the basis set of a given
vector space V is called dimension of V and designated by “dim(V)”. For example,
dim(R" )=n since R" has “n” base vectors which may be chosen as

e; =(1,0,...,0) ;e2=(0,1,0,..,0) ; .... ; en=(0,...,0,1)
The space M, of 2x2 matrices has the dimension of 4 since it has four base vectors. The
dimension of P, ( which is the space of second order polynomials) is 3 because it has
three base vectors.

INNER PRODUCT VECTOR SPACES
In this space, the inner product (u,v) of two vectors in R" is defined with the following
properties

1) (uv)=(v,u) (Symmetry).

2) (cu,v)=c(u,v), where c is a constant.

3) (c1 Uy + ¢y Uz, v)=c (U ,v) +c2 (U2 ,v) , where ¢; and ¢, are constants.

(Linearity)
4) (u,u)>0, where equality holds if only if u=0 . (Positive-definiteness)



Orthogonality Condition : Two vectors u and v are said to be orthogonal if (u,v)=0. A
set of vectors in which each pair is orthogonal is called orthogonal set. An orthogonal set
of nonzero vectors is always linearly independent.

Definition of Inner Product in E,: The inner product of the vectors u=(u; , u ,.., u, ) and
v=(V1, V2, .., Vn ) in n-dimensional Euclidean space (E;) is defined by

(UV)=upvi+ U Vo + ... + Uy Vp

which implies
(U=t +u’ + .. +u’ = Ul

or

2
n

ul = uu*? = JuZ+uZ 44U

which is the length of the vector u can be used as a norm in E,.

Norm of a Vector : The norm |u| of a vector u is a nonzero scalar with the properties

1) lu] = 0 where the equality holds if only if u=0,
2) leul| = |c] |u] . where c is a constant,

3 furv < ul+ M-

We can define various types of norms. Among them, the most popular one is p-norm
which is defined by

n 1/p
lulp = Cluf +Ju,P + .o+ Ju, >”"=[Z|ui|")

i=1

where “p” is a fixed number. In practice, we usually take p=1 or 2, or we use (as third
norm) |uf_ (called maximum norm, defined below), that i,

n
Jul, = Clug| # Ju,| + o+ Ju, )= | (I;-norm),
i=1
1/2
Jul, = Cluyf” + Ju,l + o+ Ju, )1’2=(Zn:|ui|2j (Euclidean or l-norm),
i=1
lul_ = max‘uj‘ (maximum or | _- norm).
J
Example : Compute I, -, I, -and | - norms of the vector u=(2,-3,0,1,-4).

Answer : u, =2+3+0+1+4=10 ; |u], =(4+9+0+1+16)"* = (30)*; |u| =4



INFINITE DIMENSIONAL EUCLIDEAN (FUNCTION) SPACE
Consider a function f(x) given in discrete form .
X | X]_ X2 Xn

fFl i 6o f

This discrete valued function defines an n-dimensional Euclidean space (E,) with the
elements f=(f, , f,, ..., f, ) at the data points x (i=1-n), where the inner product of two
discrete functions f and g are defined by

(fg)=f101 + f202 +...+fhgn = Z:figi _
i=1l

Now suppose we squeeze the data points x; ; thus, n goes to infinity and “f “becomes
continuously defined for all x values. Then, “f” may be considered as defined in infinite
dimensional Euclidean space (E_ ) , where the inner product of two continuous functions

f(x) and g(x) is given by
(f.g) = (fg) = [fgdx

Here, we assume that f and and g are defined in the interval a < x < b. We note that the
summation symbol appearing in the definition of inner product in E, is replaced by
integral in infinite dimensional Euclidean space (E ).

The inner product in E  obeys the usual rules :

D(f.9)=(0.f) (Symmetry)
2) (cf,g)=c(f,g) , where c is a constant
3) (c1 f1+ co f2, g)=c1 (f1,0) +c2 (f2,9) , where ¢; and ¢, are constants. (Linearity)

b
4) (ff) = If 2dx >0 , where equality holds if only if f=0. (Positive-definiteness)

The functions f and g would be orthogonal if

b
(fg)= [fgdx=0

Example : Consider the space P, of second order polynomials of the form
P, (X):C0+C1X +C2X2

Choose the basis set as: S={1, x, x* }. We can express all the second order polynomials
as a linear combination of these base functions. The base functions S={1, x , x* } are
defined in E__ ; but, the space spanned by S={1, x , xX* }, P , is a subspace of E__ . Note
that the subspace P, containing the second order polynomials has the dimension of 3 since
the basis set S contains three base functions.



Linear Independence of Functions : Let S={vy , Vo , ..., V, } be a set of functions
in E_ defined in the interval a < x < b. The functions in the set S are said to be linearly

independent if the equation
Ci Vi +C Vo +...+ChVvy =0

is satisfied if only if ¢; = 0 (i= 1-n), where c;*s are real numbers. On the other hand, if the
above equation is satisfied by some nontrivial (nonzero) values of c;‘s , then the functions
in the set S would be linearly dependent. We note that for linearly independent case none
of the functions in S can be expressed as a linear combination of the others. An immediate
consequence of the above definition is that : any set of functions containing zero function
is linearly dependent.

A Test for Linear Independence of Functions : The set of functions S={vi, vo, .., vn }
defined in the interval a < x < b would be linearly independent if the Wronskian
determinant W defined by

Vl V2 n
\ \ .o V .
w=| ! 2 " | where () =d/dx ; ()¢ =d*/dx*
Vin—l) V(Zn—l) Vsln—l)

is not identically equal to zero at all points of the intervala < x < b..

Example :Consider the base functions of a second order polynomial : {1 x , x* } .We
wish to determine whether these base functions are independent or not. For that, we form
the Wronskian determinant :

2

1 x X
W=|0 1 2x|=2=0 forall x values.
0 0 2

This implies that the functions {1, x , x* } are linearly independent.



