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The strength based mirror effect (SBME) refers to an increase in hit rates (HR) and a
decrease in false alarm rates (FAR) for the test lists that follow a strongly encoded study
list. Earlier investigation of accuracy and reaction time distributions by fitting the diffusion
model indicated a mirror effect in the drift rate parameter, which was interpreted as an
indication of more conservative responses due to a shift in the drift criterion. Additionally,
the starting point for the evidence accumulation was found to be more liberal for the
strong test lists. In order to further investigate this paradoxical effect of list strength on
these two kinds of bias estimated from the diffusion model, we employed the response-
deadline procedure which provided a direct assessment of response bias early in retrieval,
prior to evidence accumulation. Results from the retrieval functions indicated more liberal
response bias in the list strength paradigm with both pure- and mixed-strength study lists.
On the contrary, the SBME was observed at the asymptotic accuracy, suggesting that the
conservative response bias might be observed later in retrieval when memory evidence
has fully accumulated. In addition, comparison of the SBME across pure and mixed lists
revealed that the SBME was most prominent in the pure-list paradigm, suggesting that
both the differentiation and criterion shift accounts jointly explain the SBME in recognition
memory.

� 2014 Elsevier Inc. All rights reserved.
Introduction

Episodic memory is often tested in the laboratory by
presenting participants a list of items to study. In an item
recognition task, participants are asked to endorse the
items they have recently studied (targets) and reject the
new items (foils). In recognition memory, when a list of
items is strengthened via increasing the number of repeti-
tions or manipulations during encoding, the probability to
correctly endorse targets (hit rate) increase and the proba-
bility to incorrectly endorse foils (false alarm rate)
decrease, producing a strength based mirror effect (SBME,
Glanzer & Adams, 1985; Ratcliff, Clark, & Shiffrin, 1990;
Stretch & Wixted, 1998). This subjective memory strength
can be defined as a global match between the test item and
traces in memory or alternatively as familiarity, based on
the signal detection framework.

Previous research employed reaction time distributions
to study the SBME. For instance, Criss (2010) and Starns,
Ratcliff, and White (2012) applied the diffusion model
(Ratcliff, 1978), a dynamic version of the signal detection
framework, in a list-strength paradigm. In the diffusion
model, memory evidence is assumed to accumulate over
time and a response is given when enough evidence is accu-
mulated towards one of the two responses (‘‘yes’’ and ‘‘no’’)
in an item-recognition task. The two responses are repre-
sented as two boundaries and the separation between the
two boundaries can measure the speed-accuracy
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trade-off. The placement of the boundaries depends on the
participant and can be manipulated by experimental condi-
tions. For example, if the participants are instructed to give
accurate responses rather than fast responses, they place
their response boundaries far apart from each other and
thus, giving a response requires more time and evidence
is more likely to accumulate towards the correct response
(Ratcliff, 1985). The starting point parameter measures the
tendency towards one of the responses by indicating the
point at which the evidence begins to accumulate towards
one of the boundaries. For example, if the starting point is
closer to the ‘‘no’’ boundary, the frequency of the ‘‘no’’
responses will be higher and the mean reaction time of
the ‘‘no’’ responses will be shorter while the mean reaction
time of the ‘‘yes’’ responses will be longer. The parameter
that indicates the rate of evidence accumulation is the drift
rate parameter (t). At each time point, the sampled evi-
dence is compared to a criterion (drift criterion) and if the
sampled evidence exceeds the criterion, evidence accumu-
lates towards the ‘‘yes’’ boundary; if it fails to exceed the
criterion, evidence accumulates towards the ‘‘no’’ bound-
ary. In summary, there are three different types of criterion
that determines the decisions made in the diffusion model:
Boundary separation, starting point and the drift criterion.

Criss (2010) manipulated list-strength in item recogni-
tion and the parameters of the diffusion model showed
that when speed-accuracy trade-off (boundary separation
parameter) was taken into account, a mirror effect was
observed in the drift rate parameters for the items tested
in strong lists. The responses were more accurate and the
average reaction time of the correct responses was faster
for the foils tested along with strong targets (strong foils)
compared with the responses of the foils tested along with
weak targets (weak foils). Thus, faster and more accurate
correct responses (‘‘no’’) to the strong foils have produced
lower drift rate (higher in absolute value) and the decrease
in the drift rate has been interpreted as a decrease in the
overall memory strength for the strong foils. This explana-
tion depends on the differentiation mechanisms, which
causes the foils to become less similar to the targets when
items are strengthened during encoding. Accordingly, the
differentiation models propose that foils that are compared
to strong targets become less confusable at retrieval (Criss,
2006, 2009, 2010; Criss & McClelland, 2006; Criss et al.,
2013).

The decrease in the drift rate of the strong foils could be
alternatively interpreted as a shift in the drift criterion in
the diffusion model (see Starns, Ratcliff, et al., 2012). That
is because the drift rate is defined in relation to the drift
criterion, as the distance from the drift criterion deter-
mines the drift rate. The exact placement of the drift crite-
rion cannot be estimated in the diffusion model and it is
arbitrarily set to the zero point of the drift rate. Starns,
Ratcliff, et al. (2012) suggested that when items were
strengthened during encoding, participants required more
evidence to endorse the probe, thus the drift criterion
shifts hypothetically to some positive value. In the diffu-
sion model, this shift is manifested as faster accrual of evi-
dence towards the ‘‘no’’ boundary, as the sampled evidence
for the strong foils at each time step will more likely fail to
exceed the drift criterion. In addition to the mirror effect
observed in the drift rates, both studies reported that the
starting point parameter was more liberal, meaning that
participants were more biased towards the ‘‘yes’’ response
boundary when tested with the strong targets.

Critical evidence for a shift in the drift criterion comes
from the SBME observed when list strength is manipulated
only during test (Starns, Ratcliff, et al., 2012; Starns, White,
& Ratcliff, 2010; 2012). Different from previous studies in
which strength was manipulated in pure lists (i.e. strength
was manipulated across lists), Starns et al. presented par-
ticipants with mixed lists of items (i.e. strength was
manipulated within lists). However, in the subsequent test
lists, either weak or strong targets were tested along with
foils. The SBME observed in the drift rates after studying a
mixed-list could only be explained by a shift in the drift
criterion. That is because the memory evidence for foils
after a mixed study list would be comparable across test
strength conditions, and as a result, a decrease in the drift
rates for strong foils would not be expected due to a
differentiation mechanism. Similar to the findings from
the pure-list paradigm, the starting point for evidence
accumulation was closer to the ‘‘yes’’ boundary for strong
targets.

In the current study, we tested whether list-strength
has opposite effects on these two kinds of criterion, namely
starting point and drift criterion. To do so, we employed
the response-deadline speed-accuracy trade-off (SAT) pro-
cedure, which provides an in-depth investigation of differ-
ent types of response bias by controlling for the speed-
accuracy tradeoffs over the course of retrieval.
The response-deadline SAT procedure

The SAT procedure provides conjoint and unbiased
measures of retrieval speed and retrieval success
(Benjamin & Bjork, 2000; Hintzman & Curran, 1994;
McElree & Dosher, 1989; Öztekin, Gungor, & Badre, 2012;
Öztekin & McElree, 2007, 2010). In contrast to traditional
reaction time measures, which are subject to speed-accu-
racy trade-offs and hence cannot provide pure measures
of processing speed, by providing the full time-course of
retrieval, SAT procedure yields independent assessment
of accuracy and speed of processing (see McElree, 2006
for an overview). In SAT, participants are cued to respond
with a response signal (a tone) presented at one of several
time points, typically ranging from 60 to 3000 ms after the
probe onset. The lag between the probe onset and the
response signal is assigned randomly to test trials and
participants are trained to give a response within 300 ms
after the response cue. Although the diffusion model can
also quantitatively account for the speed-accuracy trade-
off by measuring the criterion to terminate the evidence
accumulation (boundary separation), experimental manip-
ulation of response deadline has the further advantage of
providing the full time course of retrieval for each experi-
mental condition, in addition to eliminating the bias
related to speed-accuracy trade-off.

SAT retrieval functions can describe changes in accu-
racy as a function of total processing time, the total time
that passes from probe onset to the response after the
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response deadline. The SAT functions typically start with a
period of chance performance where the information
retrieved is not adequate to discriminate between targets
and foils. Later, a rapid increase in accuracy follows and
shows the rate of information accrual over additional pro-
cessing time. Finally, an asymptote is observed, indicating
the overall accuracy, which does not further improve by
additional retrieval time (Fig. 1). The shape of this function
is usually well fit by an exponential approach to a limit.
Three parameters describe these functions: (a) an asymp-
tote, reflecting overall limitations of memory (total avail-
able memory strength), (b) an intercept, indicating the
point in time at which performance departs from chance,
and (c) a rate of rise from chance, reflecting retrieval speed.
The asymptote parameter indicates the retrieval success,
while the intercept and the rate parameters jointly
constitute retrieval speed measures.

Current study

In this study, we employed the response-deadline SAT
procedure in a list-strength paradigm to investigate how
strengthening items across (pure-list) and within (mixed-
list) lists increase accuracy by simultaneously increasing
hit rates and decreasing false alarm rates. Employing the
SAT procedure allowed us to further examine the response
bias early in retrieval. In the SAT procedure, the accuracy of
the responses that follow earlier lags (e.g., 60 ms, 100 ms)
tends to be at chance. This means that the hit rates and the
false alarm rates would be comparable and consequently,
the proportion of ‘‘yes’’ responses would potentially indi-
cate the starting point of the evidence accumulation in
terms of the diffusion model. We name this type of bias
as prior bias, referring to participants’ tendency towards
one of the responses even before they are presented with
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Fig. 1. Illustration of hypothetical SAT function which plots accuracy in d0

units as a function of total processing time. In SAT function there are three
phases, (a) a period when performance is at chance (d0 = 0), (b) a period of
information accrual (when performance departs from chance and
increases with a constant rate) and (c) a period of terminal accuracy
(when maximum level of accuracy is reached).
the test probe. That corresponds to a bias that is observed
when participants are given incentives to prefer one
response to the other or when the change in the base rate
of targets and foils result in a preference over one of the
responses. We refer to the bias that is moderated by the
drift criterion as evidentiary bias, which can be observed
once performance reaches asymptote. The evidentiary bias
can be explained as the willingness to accumulate evi-
dence towards one of the responses (e.g., in the strong con-
dition, participants were claimed to require more evidence
to endorse a test probe). One advantage of employing the
response-deadline procedure is to investigate whether
the strength manipulation has differential effects on the
prior and evidentiary bias. More liberal starting points
could be due to greater drift rates in the strong lists, as
these two parameters tend to be correlated in the diffusion
model fits of the simulated data (Ratcliff & Tuerlinckx,
2002), or alternatively, strengthening a list of items cause
opposite effects on the starting point of evidence accumu-
lation and the criterion to endorse a probe. Thus, the
current study provides an empirical investigation as to
whether more liberal starting points would be observed
as a more liberal prior bias in the retrieval function, and
consequently whether there was a real effect of strength
on the starting point parameter as opposed to a misestima-
tion of the diffusion model.

We manipulated strength via a levels-of-processing
task (Craik & Lockhart, 1972), which has been shown to
produce the SBME similar to strengthening via repetition
or study duration (Jacoby, Shimizu, Daniels, & Rhodes,
2005; Jacoby, Shimizu, Velanova, & Rhodes, 2005).
Participants were presented with a pure-list paradigm
(Experiment 1) where the SBME would be observed at
the asymptote but not in the speed parameters (e.g.,
Dosher, 1984). The rate parameter in the SAT function
should not be confused with the drift rate parameter of
the diffusion model. The strength effect observed in the
mean drift rate parameter changes the asymptote but not
the rate parameter of the SAT function. In the retrieval
function derived from the diffusion model, the rate of
information accumulation is defined as the ratio of
within-trial variance to across-trial variance of the drift
rate (Gronlund & Ratcliff, 1989; Ratcliff, 1978). In other
words, for a given mean drift rate, if the variance of
evidence accumulation in a single trial is less than the var-
iance across trials, then information reaches asymptote
faster. Otherwise, it will take longer to reach the asymp-
totic drift rate. This assumption indicates that the drift rate
is independent of the rate at which accuracy approaches to
its limits. This suggests that the strength effect will be
observed as an increase in the asymptote rather than an
increase in the speed of information accrual in the SAT
function.

In addition to the standard pure-list paradigm, we also
manipulated strength in a mixed-list paradigm in which
half of the items in a list were randomly strengthened dur-
ing study. In Experiment 2 participants were not informed
of the strength condition at test contrary to the mixed-list
paradigm employed in Starns, Ratcliff, et al. (2012) study,
and thus the SBME would not be predicted in the asymp-
totic FAR because of a null effect on the drift criterion.
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The aim of Experiment 2 was to test whether strength
would have an effect on prior bias while no effect was
expected on the evidentiary bias. In Experiment 3, we
sought to test the drift criterion shift account by presenting
participants the strength condition of the targets before
proceeding with the recognition task, so that participants
could shift their criterion accordingly. Finally, Experiment
4 investigated whether the size of the strength effect differ
significantly across pure- and mixed-list paradigms, which
aimed to investigate the contribution of criterion shifts and
the differentiation mechanism in the list-strength
paradigm.

Experiment 1

In order to investigate the retrieval dynamics of the
SBME, the SAT procedure was first applied to the tradi-
tional pure-study paradigm where the items were
strengthened across lists in Experiment 1. Increasing the
study time of items has been shown to increase the asymp-
totic accuracy but no significant effect on the retrieval
speed (Dosher, 1984). Application of the diffusion model
to the list-strength paradigm showed that evidence accu-
mulation starts from a point closer to the ‘‘yes’’ boundary,
suggesting an adoption of a more liberal prior bias in the
retrieval function of the strong items.

Method

Participants
Twelve undergraduate students from Koç University

took part in the experiment and received monetary com-
pensation for their participation. One participant who
dropped out of the experiment after the first session and
two participants who had low overall accuracy (d0 < 0.35)
were excluded from the subsequent analysis. Five of the
remaining 9 participants were female and 2 of them were
left-handed.

Materials
The word pool consisted of 902 words. Six hundred of

the words were from Turkish Word Norms (Tekcan &
Göz, 2005). The remaining 302 words were randomly
selected from the association sets of the Turkish Word
Norms1.

Procedure and design
Participants completed two 50-min sessions with an

additional 10-min practice session for the SAT procedure
at the beginning of the first session. Each session consisted
of four study-test blocks. In the study block, participants
were presented with 140 words2 and were administered a
levels-of-processing task as the strength manipulation
1 Association sets include the words that were generated from the words
in Turkish Word Norms by a free association task (see Tekcan & Göz, 2005
for the association sets).

2 In the following experiments, participants study strong and weak
targets in the same list but later tested on either strong or weak targets
only. In order to eliminate the length of the study list as confound, we
presented participants with targets (70) and filler items (70).
(Craik & Lockhart, 1972). For the strong condition, they were
required to make a semantic judgment (‘‘Does the word
have a pleasant meaning?’’) and for the weak condition, they
made an orthographic judgment (‘‘Does the word contain
the letter ‘e’?’’). The study block was self-paced, as the word
was displayed on the screen until the participant responded
with the ‘z’ (‘‘yes’’) or the ‘?/’ (‘‘no’’) keys, and a 100-ms ISI
followed each response. In each session, half of the study-
test blocks (2) were strong and the other half (2) were weak,
which were presented in random order. The test list consist-
ing of 70 targets and 70 foils immediately followed the study
list. Each test item was presented for the duration of the
response-deadline after a 500-ms presentation of a visual
mask consisting of non-word symbols (see Fig. 2). The visual
mask was presented right before the test item in order to
prepare the participant to the new test trial. The response-
deadline was cued with a 50-ms tone at the 60, 200, 300,
500, 800, 1500, 3000 ms after the stimulus onset. Partici-
pants were trained to respond within 300-ms of the tone
and received a feedback of their response time. If they fail
to respond within the allotted time or respond earlier then
the tone, they received a feedback (‘‘your response is too
slow’’ or ‘‘you responded before the tone’’, respectively).
Early responses and the responses that were longer than
600-ms, were excluded from the subsequent analysis.

The experiment was a 2 (Strength) � 7 (Response Lag)
within-subjects design. There were 40 responses for tar-
gets and 40 responses for foils at each strength and lag
condition. Lag condition was assigned randomly within
each strength and test item type condition over the
course of testing. After the removed trials, the number
of responses for each strength and item condition was
33.56 (SD = 5.29), 36.76 (SD = 3.07), 37.78 (SD = 2.86),
38.05 (SD = 2.13), 37.86 (SD = 2.07), 36.80 (SD = 2.73)
and 35.77 (SD = 3.90) on average, for 60, 200, 300, 500,
800, 1500 and 3000 ms response lag conditions
respectively.
Results and discussion

Accuracy
As the accuracy measure, d0s were obtained for each

strength and lag condition for each participant. The perfect
performances of hit rates (HR) and false alarm rates (FAR)
were adjusted as follows: HR greater than .99 were
adjusted to .98 and FR lower than .01 were adjusted to
.02, as an approximation to the Snodgrass & Corwin
(1988) adjustment which was previously used in previous
studies employing the response deadline SAT procedure
(e.g., Öztekin & McElree, 2007, 2010; Öztekin et al.,
2012). The full time-course of the strength effect on accu-
racy was examined by fitting data at the group and individ-
ual level as an exponential approach to a limit (Dosher,
1981; McElree & Dosher, 1993; Nobel & Shiffrin, 2001;
Wickelgren, 1977; Öztekin & McElree, 2007, 2010;
Öztekin et al., 2012):

d0ðtÞ ¼ kð1� e�bðt�dÞÞ; t < d; else 0 ð1Þ

where d0(t) is the predicted d0 at time t, k is the asymptotic
accuracy reflecting the overall performance of recognition



Fig. 2. Illustration of the test trials. The first test probe is a target and the second test probe is a foil in the above illustration. In the experiment, 140 test
probes were presented in each block, half of which were targets.
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in d0 units, d is the intercept reflecting the time at which
accuracy departs from chance and b is the rate of the infor-
mation accrual from chance to asymptote.

The data were fit with the exponential function using
the optim function in R (R Core Team., 2012) to estimate
the three parameters with the maximum likelihood esti-
mation (MLE) method. In the MLE method, data is assumed
to be normally distributed and as a result, the variance of
d0s of each condition for each individual participant can
be estimated with the following function:

sdðd0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HRð1� HRÞ
nt/

2½zðHRÞ�
� FRð1� FRÞ

nF/
2½zðFRÞ�

s
; ð2Þ

where nT is the number of targets, nF is the number of foils,
/ is the normal density function and z is the inverse nor-
mal transformation (Gourevitch & Galanter, 1967; Liu &
Smith, 2009). For group fits, d0s were obtained by averaging
d0s at each strength and lag condition across participants
and the standard deviation that was fed into MLE method
was the standard error of the mean d0s in the group fits3.

In order to select the most parsimonious model, we fit
the data with nested models ranging from a 3-parameter
null model (a common asymptote [k], a common rate [b],
and a common intercept [d] parameter for both of the
strength conditions) to a 6-parameter full model (a unique
asymptote [k], a unique rate [b], and a unique intercept [d]
parameter for each strength condition). The best fitting
model was selected based on three criteria: (1) The value
of BIC, AICc and adjusted R2 statistics from the group data
fit; (2) the consistency of parameter estimates across par-
ticipants; (3) evaluation of whether the fit yielded system-
atic deviations that could be accounted for by additional
parameters (Öztekin et al., 2012; Öztekin & McElree,
2007, 2010). In order to achieve the latter two criteria,
statistical tests were conducted on the best fitting
parameter values across participants.
3 In addition to MLE estimates, models were also fit by minimizing the
squared errors (least squares estimation). The results that will be presented
below did not change based on the estimation method used.
The exponential function fit comparison values of the
group data are presented in Table 1. The list-strength effect
is best explained by the 2k–1b–1d model that allocates
separate parameters for asymptotic accuracy and common
parameters for retrieval speed of the weak and the strong
list conditions (Fig. 3A). In order to assess the parameter
consistency across participants, the full model (2k–2b–
2d) was fit to individual participants’ data. Parameter esti-
mates derived from the individual model fits indicate that
asymptotic accuracy (k) is significantly greater for the
strong condition (M=1.78, SD = 0.64) compared with the
weak condition (M = 0.75, SD = 0.38), t(8) = 5.53, p < .001,
supporting the conclusions derived from the model fit
comparisons of the averaged data. Consistent with the best
fitting model of the average data, the retrieval speed
parameters (b and d) did not differ significantly across
list-strength conditions (1/b, t = 0.52; d, t = �1.74).
Parameter values of the best fitting model to group data
and individual data are presented in Table 2.

These results suggest that strengthening a list of items
in an item recognition task might increase the availability
of information in memory; but crucially does not have a
measurable effect on the retrieval dynamics. However,
what is more critical for the SBME is that the increase in
accuracy is due to a simultaneous increase in HR and a
decrease in FAR. Thus, it is also important to investigate
the time-course of how HR and FAR individually contribute
to memory performance and identify the effect of
list-strength on the time-course of HR and FAR separately.
Hit and false alarm analysis
Fig. 4A plots the probability of endorsing a test item as a

function of total processing time for each strength condi-
tion and item type (target vs. foil). A 7 (lag) � 2 (strength)
repeated-measures ANOVA on HR showed a main effect of
strength, F(1,8) = 16.35, p < .01, with HR increasing as a
function of strength. A main effect of lag indicates that
HR increased as a function of total processing time,
F(6,48) = 11.34, p < .001. The interaction between list-
strength and lag was not significant, suggesting that the



Table 1
Exponential function fit statistics for the candidate models.

Model Experiment 1 Experiment 2 Experiment 3

Adj R2 BIC AICc Adj R2 BIC AICc Adj R2 BIC AICc

1k–1b–1d .464 29.440 29.922 .708 15.465 15.948 .632 19.827 20.31
2k–1b–1d .986 0.353 2.241 .951 6.314 8.202 .984 �1.931 �0.043
1k–2b–1d .886 3.850 5.738 .784 12.152 14.041 .905 3.682 5.57
1k–1b–2d .572 18.583 20.471 .747 13.279 15.168 .638 18.912 20.8
2k–2b–1d .889 5.285 9.833 .765 14.595 18.900 .859 7.027 11.332
2k–1b–2d .989 2.755 7.059 .949 8.896 13.201 .983 0.706 5.01
1k–2b–2d .984 2.934 7.238 .946 8.845 13.149 .986 0.49 4.795
2k–2b–2d .980 5.817 13.983 .949 10.829 18.995 .982 3.123 11.289

Note: According to the model selection criteria (lowest value of BIC and AICc, parameter consistency across participants and parsimony), 2k–1b–1d was
selected as the best fitting model in all three experiments.

Fig. 3. SAT functions of the strong and weak list conditions averaged over participants. Accuracy (in d0 units) plotted as a function of total processing time
(duration of the response deadline plus response latency in secs). Points represent the empirical data and lines represent the best fitting exponential
function (2k–1b–1d) derived from Eq. (1). Error bars indicate the standard error of the mean d0s at each lag and strength condition. Panel A: Encoding
strength is manipulated across lists (Experiment 1). All the words in a given study list is encoded either strongly or weakly and at test, those targets are
tested along with foils. Panel B: Encoding strength is manipulated within lists (Experiment 2). Half of the items were encoded strongly and the other half
was encoded weakly. Strength was manipulated across lists during test. Participants were tested either with strong targets or weak targets along with foils.
Participants were not informed of the strength of the list that they would be tested on. Panel C: Encoding strength is manipulated within lists (Experiment
3). Different from the second experiment, participants were informed of the test list condition by being told which judgment they had made during
encoding.

Table 2
Parameter values of the best fitting exponential function in Experiment 1.

Parameter Average Participants

1 2 3 4 5 6 7 8 9

kstrong 1.92 1.42 1.27 1.53 2.81 1.15 2.63 1.39 1.54 2.62
kweak 0.81 0.37 0.30 1.13 1.32 0.59 1.44 0.31 0.41 0.87
b 2.29 268.47 18.14 3.58 2.66 1.67 1.86 5.80 4.20 2.73
d 0.41 0.72 0.47 0.44 0.42 0.30 0.41 0.71 0.43 0.57
Adj R2 .986 .385 .660 .452 .818 .684 .91 .828 .787 .835

Note: Average parameter values are not the average of parameters obtained from participants’ data, they are rather obtained from the fits to the data
averaged across participants.
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HR of the strongly encoded items was greater than that of
the weakly encoded items even when the total processing
time was relatively short (e.g. 0.5 s). FAR analysis indicated
a different pattern: A 7 (lag) � 2 (strength) repeated-mea-
sures ANOVA on FAR did not reveal a main effect of list-
strength, but a significant strength by lag interaction,
F(6,48) = 5.45, p < .001. That is, FAR of the test lists com-
posed of strongly encoded items decrease significantly at
late retrieval; 1 s, t(8) = �2.78, p = 0.02; 1.7 s, t(8) = 2.90,
p = 0.02; 3.2 s, t(8), p = 0.02. Consistent with the HR data,
a main effect of lag was also significant, F(6,48) = 10.63,
p < .001, suggesting that the FAR decreased as a function
of total processing time.

Fig. 4A plots the time course of HR and FAR, showing a
pattern similar to the accuracy results. Early in retrieval,
HR and FAR are comparable to each other, indicating a per-
formance at chance level. This early period in retrieval cor-
responds to the period in which d0 is equal to zero in the



Fig. 4. Probability of endorsing the test item as a function of total processing time (duration of the response deadline plus response latency in secs). Time
course of hit rates (HR) false alarm rates (FAR) are averaged over participants for each response lag and list-strength condition. Points represent the
empirical data and lines represent the best fitting descriptive function derived from Eq. (3). Error bars are the standard error of the mean P(‘‘yes’’). Panel A:
Encoding strength is manipulated across lists (Experiment 1). Panel B: Encoding strength is manipulated within lists (Experiment 2). Panel C: Encoding
strength is manipulated within lists and participants were informed of the test list-strength (Experiment 3).
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SAT function, and also provides an estimate for the prior
bias observed at the beginning of retrieval. For example,
the probability to endorse a probe that is greater than
0.5, implies a bias towards the ‘‘yes’’ response. If the
probability to endorse a probe is lower than 0.5, then the
bias is towards the ‘‘no’’ response. After a point in time that
is similar to the intercept in the SAT function, HRs increase
and FARs decrease, indicating an increase in the accuracy
level. The important pattern observed here is the mirror
effect for HRs and FARs, which becomes more prominent
as the total processing time increases and later reaches
an asymptote. This increase in the mirror effect can be
further estimated with an exponential function, which pro-
vides independent and unbiased estimates of asymptotic
strength and processing speed for HR and FAR. The follow-
ing exponential function can be employed for further
investigation of the prior bias observed early in retrieval:

Pð\yes"Þ ¼ k1 þ ðk2 � k1Þðe�bðt�dÞÞ; t > d; else k2; ð3Þ

where P(‘‘yes’’) is the predicted probability to endorse a
test item (HR or FAR at time t), k1 is the asymptotic prob-
ability to endorse a test item, k2 is the probability to
endorse a test item before information begins to accumu-
late (i.e. the prior bias when performance is at chance early
in retrieval), b is the growth rate (HR) or the decay rate
(FAR) and d is the time point when the information begins
to accumulate (i.e. performance departs from chance). HR
and FAR data, averaged over participants were fit with
the function separately for each strength condition.

In a nested model fitting routine, five models were fit to
the group HR and FAR data with the MLE method, ranging
from a 12-parameter full model (4k1–2k2–4b–2d) to a 7-
parameter asymptote-only model (4k1–k2–b–d). In the full
model, separate k1 parameters for asymptotic HR and FAR
were allocated for each list-strength condition (4-k1). The
asymptote during early retrieval when performance is at
chance is assumed to be equal for HR and FAR (observed
as d0 = 0 in SAT functions), and thus k2 represents the prior
bias. However, the prior bias at the beginning of retrieval
was allowed to differ for each list-strength condition
(2-k2). Then, four different rate parameters were allocated
for each list-strength and item-type condition (4-b).
Finally, the time point parameter was fixed for item type
due to fixed prior bias, but allowed to vary across list-
strength conditions (2-d).

The model fit statistics suggest that the model could be
reduced by fixing the growth rate parameter across list-
strength and item-type conditions (4k1–2k2–b–2d), and fur-
ther by fixing the intercept parameter across list-strength
conditions (4k1–2k2–b–d). This shows that processing
speed measures, both the rate parameters and the inter-
cepts, do not differ significantly across strength conditions,
consistent with the results from the SAT functions. This was
also supported by a null effect of strength on d observed
from the fits to the individuals’ HR and FAR data. The results
of the best fitting model showed that separate asymptotes
for the overall strength (k1) of HR and FAR was required to
describe the SBME. Consistent with the mirror effect, the
mean FAR of the strong foils (M = .20, SD = .1) was lower
than the mean FAR of the weak foils (M = .33, SD = .21),
and this difference approached significance, t(8) = �1.75,
p = 0.06. On the other hand, mean HR for the strong targets
(M = .79, SD = .14) was significantly greater than the mean
HR for the weak targets (M = .66, SD = .21), t(8) = 2.29,
p = .025. These results further support the necessity to allo-
cate four separate k1 parameters for each strength and item
type condition. In summary, the asymptotic memory avail-
ability is significantly different for both HR and FAR across
strength conditions.

In order to further test whether list-strength has a sig-
nificant effect on prior bias, HR and FAR data were fit with
an asymptote-only model in which a common parameter
for the prior bias (asymptote at early retrieval) was allo-
cated along with four separate asymptote parameters
(4k1–k2–b–d). An increase in BIC, AICc and a decrease in
Adjusted-R2 values show that separate prior bias parame-
ters are required to explain the group data, suggesting that
participants have different tendencies towards the ‘‘no’’
response when tested on lists with different strength. A
pair-wise comparison on the prior bias parameter (k2)
observed from individuals’ full model fit revealed a



Table 3
Parameter values of the best fitting exponential function of hit rates and the false alarm rates (Experiment 1).

Parameters Average Participants

1 2 3 4 5 6 7 8 9

k1 Strong HR .79 .57 .89 .72 .89 .71 .90 .64 .79 .97
Weak HR .61 .28 .90 .56 .64 .50 .71 .58 .44 .73
Strong FAR .19 .14 .41 .09 .08 .30 .11 .19 .27 .21
Weak FAR .35 .22 .78 .23 .17 .30 .24 .42 .31 .40

k2 Strong .53 .13 1.00 .42 .40 .62 .47 .44 .60 .70
Weak .43 .15 .87 .59 .07 .23 .57 .33 .48 .70

b 3.04 6.40 3.22 2.57 3.62 4.70 3.05 4.40 10.00 3.21
d 0.44 0.53 0.44 0.44 0.43 0.45 0.48 0.52 0.46 0.60
Adj R2 .972 .691 .813 .822 .914 .893 .794 .771 .715 .847

Note: Average parameter values are not the average of parameters obtained from participants’ data, they are rather obtained from the fits to the data
averaged across participants. k1 is the asymptotic probability to endorse a test item for a given item type (target or foil) and strength (strong or weak). k2 is
the probability to endorse a test item when performance is at chance and indicates the prior bias at early retrieval. b is the rate of evidence accumulation
towards asymptotic values and d is the time point at which the performance departs from chance.

Table 4
Parameter values of the best fitting exponential function in Experiment 2.

Parameter Average Participants

1 2 3 4 5 6 7 8

kstrong 2.18 1.51 2.27 1.58 2.48 1.76 2.96 2.31 2.34
kweak 1.34 0.81 0.86 1.05 2.34 1.05 1.31 1.07 1.35
b 3.58 1.03 0.36 1.95 3.04 5.31 4.92 4.77 1.38
d 0.45 0.29 0.55 0.35 0.46 0.42 0.47 0.47 0.24
Adj R2 .951 .588 .812 .856 .920 .690 .821 .808 .552

Note: Average parameter values are not the average of parameters obtained from participants’ data, they are rather obtained from the fits to the data
averaged across participants.
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strength effect such that participants were more likely to
endorse a strong test item (M = .54, SD = .24) compared
with a weak test (M = .42, SD = .28) item when perfor-
mance is at chance, t(8) = 2.05, p = .04. As Fig. 4 shows,
when participants were tested on weakly encoded lists,
they were more likely to respond ‘‘no’’ compared with
being tested on the strongly encoded lists.

The parameters of the best model (4k1–2k2–b–d) are
presented in Table 3. The best fitting parameter values
show the SBME in asymptotic HR and FAR, as k1 of strong
HR was greater than k1 of weak HR and k1 of strong FAR
was lower than the k1 of weak FAR. These findings suggest
that the total available memory strength that is used to
endorse a target and to reject a foil increases simulta-
neously as a function of encoding strength. The difference
in the parameter estimate of k2 indicates a difference in
prior bias across the strength conditions. For example, if
participants were not biased towards any of the responses,
the asymptote at early retrieval when performance is at
chance, k2 would be .5. That is because participants would
equally respond ‘‘yes’’ and ‘‘no’’ when memory evidence is
not adequate to discriminate between targets and foils.
However, k2 was .43 in the weak condition of the group
data fit, indicating a tendency towards ‘‘no’’ response, as
57% of the responses were ‘‘no’’. In the strong condition
of the group data fit, k2 was .53, showing that 53% of the
responses were ‘‘yes’’ (see Table 3).

In summary, strengthening a list of items increases the
total availability of information in memory but does not
have a significant effect on the rate of information accrual.
In addition to the SBME observed in asymptotic HR and
FAR, the results showed that participants had a tendency
to endorse probes in the strong lists, consistent with the
more liberal starting point for the strong lists observed in
the diffusion model applications (Criss, 2010; Starns,
Ratcliff, et al., 2012). If the SBME observed in strong lists
is due to more conservative evidentiary bias as stated by
the criterion shift account, then these findings suggest con-
tradictory effects of strengthening on the prior and the evi-
dentiary bias. On the other hand, the differentiation
account would not require such contradictory effects
because in the differentiation models, the SBME is caused
by lower memory strength of strong foils rather than
meta-cognitive processes. In the following experiment,
strength was manipulated in a mixed-list paradigm in
which the differentiation account does not predict the
SBME. Different from Starns, Ratcliff (2012) study, partici-
pants were not informed of the strength condition of the
test list-strength. Thus, participants were not expected to
adopt a more conservative drift criterion prior to testing.
The goal of Experiment 2 was to test whether tes strength
would have an effect on prior bias while null effect was
expected on the evidentiary bias. Another goal was to
investigate whether deep encoding would have similar
strengthening effects as item repetition, which does not
predict the SBME when participants were not informed.
Experiment 2

In Experiment 2, strength was manipulated in a mixed-
list paradigm in which only half of the study items were
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strengthened via deep encoding. In half of the study-test
cycles, only the strong targets were tested along with foils,
and in the other half, only the weak targets were tested
along with foils. Different from the Starns, Ratcliff, et al.
(2012) study, participants were not informed of the
strength condition at the beginning of the recognition task.
In other words, participants were not given an explicit
opportunity to change their strategy based on the strength
condition of the test list before beginning the test phase.
Thus, the drift criterion would not be expected to be differ-
ent across strength conditions, as participants would not
adopt different drift criterion. As mentioned earlier, differ-
entiation of the foils in the strong condition would be sim-
ilar to that of in the weak test lists, thus the SBME would
not be predicted if deep encoding strengthens memory
similar to item repetition. One other important goal of this
experiment was to investigate whether prior bias would be
affected even when the evidentiary bias was not expected
to be different across strength conditions.

Method

Participants
Thirteen undergraduate students from Koç University

took part in experiment in exchange for monetary
compensation. Three participants dropped out of the
experiment after the first session and two participants
did not comply with the instructions, thus their data were
not included in the subsequent analysis. Seven of the
remaining 8 participants were female and only one of them
was left-handed.

Materials, procedure and design
The materials and the procedure of this experiment were

identical to those of Experiment 1. The only difference was
that list-strength was manipulated only during test. During
study, participants completed a pleasantness task for half of
the items (70 words) as the strong condition and an ortho-
graphic judgment task for the other half (70 words) as the
weak condition. Later, in two of the study-test cycles, only
the strong targets were tested along with foils (strong foils)
and in the remaining two cycles, only the weak targets were
tested along with foils (weak foils). As in Experiment 1,
participants completed two sessions.

The experiment was a 2 (Strength) � 7 (Response Lag)
within-subjects design. There were 40 responses for tar-
gets and 40 responses for foils at each strength and lag
condition. Lag condition was assigned randomly within
each strength and test item type condition over the course
of testing. After the removed trials, the number of
responses for each strength and item condition was
35.93 (SD = 4.81), 38.00 (SD = 2.39), 38.90 (SD = 1.40),
38.94 (SD = 1.58), 38.75 (SD = 1.07), 38.25 (SD = 1.13) and
3753 (SD = 2.05) on average, for 60, 200, 300, 500, 800,
1500 and 3000 ms response lag conditions respectively.

Results and discussion

Accuracy
The exponential function fit comparison values of the

group data are presented in Table 1. The list-strength effect
is best explained by the 2k–1b–1d model that allocates
separate parameters for asymptotic accuracy and common
parameters for retrieval speed of the weak and the strong
list conditions (Fig. 3B). In order to assess the parameter
consistency across participants, the full model (2k–2b–
2d) was fit to individual participants’ data. Parameter esti-
mates derived from the individual model fits indicate that
asymptotic accuracy (k) is significantly greater for the
strong condition (M = 2.23, SD = 0.48) compared with the
weak condition (M = 1.26, SD = 0.69), t(7) = 3.89, p < .01,
supporting the conclusions derived from the model fit
comparisons of the averaged data. Consistent with the best
fitting model of the average data, the retrieval speed
parameters (b and d) did not differ significantly across
list-strength conditions (1/b, t = 1.40; d, t = �1.22).
Parameter values of the best fitting model to group data
and individual data are presented in Table 4.

Hit and false alarm analysis
Fig. 4B plots probability of endorsing a test item as a

function of total processing time for each strength condi-
tion and item type (target vs. foil). A 7 (lag) � 2 (strength)
repeated-measures ANOVA on HR showed a main effect of
strength, F(1,7) = 25.25, p < .01, with HR increasing as a
function of strength. A main effect of lag indicates that
HR increased as a function of total processing time,
F(6,42) = 14.04, p < .001. The interaction between list-
strength and lag was not significant, suggesting that the
HR of the strongly encoded items was greater than that
of the weakly encoded items even when the total process-
ing time was relatively short (e.g. 0.5 s). FAR analysis
indicated a different pattern: A 7 (lag) � 2 (strength)
repeated-measures ANOVA on FAR did not reveal a main
effect of list-strength or a strength by lag interaction, but
a significant main effect of lag, F(6,42) = 11.93, p < .001.
That is, the FAR decreased as a function of total processing
time but the SBME was not observed, as the asymptotic FAR
was comparable over the course of retrieval (see Table 5).

To further investigate the retrieval dynamics of HR and
FAR, the exponential function defined in Eq. (3) was fitted
in a nested-models routine with models ranging from
12-parameter full model (4k1–2k2–4b–2d) model to 6
parameter null model (3k1–k2–b–d). The model fit statistics
suggested that a 7-parameter asymptote-only model
(3k1–2k2–b–d) explained the strength effect in a mixed-list
paradigm. Similar to the results from Experiment 1, sepa-
rate k1 parameters were required for asymptotic HR across
the two strength conditions. Statistical comparisons of the
individual parameter estimates supported the asymptotic
HR in the strong condition (M = .86, SD = 0.13) was signifi-
cantly greater than the asymptotic HR in the weak condi-
tion (M = .58, SD = 0.15), t(7) = 5.52, p < .001. However,
the strength effect on the asymptotic FAR failed to reach
statistical significance, t(7) = 0.90.

The model fit statistics favored the model that allocates
separate asymptotes early in retrieval (k2), which indicates
a strength effect on the prior bias similar to the pattern
observed in Experiment 1. The comparison of parameter
estimates from the fits of individuals’ data also showed
that the asymptotic P(‘‘yes’’) at early retrieval was signifi-
cantly greater for the strong condition (M = .53, SD = 0.19)



Table 5
Parameter values of the best fitting exponential function of hit rates and the false alarm rates (Experiment 2).

Parameters Average Participants

1 2 3 4 5 6 7 8

k1 Strong HR .84 .74 .78 .79 .86 .89 .96 .96 .80
Weak HR .59 .60 .26 .55 .70 .68 .52 .76 .67
FAR .17 .30 .03 .18 .07 .29 .07 .28 .12

k2 Strong .53 .73 .27 .50 .55 .75 .73 .49 .21
Weak .36 .48 .10 .49 .46 .59 .15 .46 .14

b 4.41 3.79 5.45 2.02 4.15 5.62 5.44 5.00 2.62
d 0.46 0.48 0.52 0.36 0.47 0.43 0.47 0.45 0.40
Adj R2 .974 .808 .939 .669 .809 .912 .935 .887 .831

Note: Average parameter values are not the average of parameters obtained from participants’ data, they are rather obtained from the fits to the data
averaged across participants. k1 is the asymptotic probability to endorse a test item for a given item type (target or foil) and strength (strong or weak). k2 is
the probability to endorse a test item when performance is at chance and indicates the prior bias at early retrieval. b is the rate of evidence accumulation
towards asymptotic values and d is the time point at which the performance departs from chance.

Table 6
Parameter values of the best fitting exponential function in Experiment 3.

Parameter Average Participants

1 2 3 4 5 6 7 8 9 10

kstrong 1.95 2.00 1.39 2.54 1.00 1.60 2.54 2.58 1.72 2.66 1.72
kweak 0.92 0.61 0.40 1.18 0.86 0.81 0.82 2.03 0.47 1.53 1.01
b 2.29 3.02 39.04 1.95 2.67 3.34 1.95 3.41 2.07 0.55 1.72
d 0.41 0.49 0.58 0.27 0.25 0.53 0.38 0.47 0.43 0.63 0.31
Adj R2 .984 .808 .696 .829 .591 .725 .858 .938 .708 .882 .752

Note: Average parameter values are not the average of parameters obtained from participants’ data, they are rather obtained from the fits to the data
averaged across participants..

Table 7
Parameter values of the best fitting exponential function of hit rates and the false alarm rates (Experiment 3).

Parameters Average Participants

1 2 3 4 5 6 7 8 9 10

k1 Strong HR .73 .60 .48 .93 .56 .64 .93 .84 .81 .87 .57
Weak HR .47 .29 .13 .69 .28 .29 .56 .60 .51 .77 .54
Strong FAR .13 .02 .05 .11 .16 .14 .10 .07 .22 .24 .12
Weak FAR .19 .12 .06 .27 .09 .10 .25 .05 .35 .37 .24

k2 Strong .41 .18 .06 .47 .33 .27 .68 .58 .60 .72 .21
Weak .25 .02 .02 .40 .01 .07 .26 .27 .50 .65 .25

b 2.54 3.11 10.00 2.09 3.78 3.24 2.47 4.37 2.91 1.30 4.15
d 0.42 0.52 0.56 0.24 0.39 0.52 0.42 0.45 0.41 0.70 0.39
Adj R2 .984 .691 .813 .822 .914 .893 .794 .771 .715 .847

Note: Average parameter values are not the average of parameters obtained from participants’ data, they are rather obtained from the fits to the data
averaged across participants. k1 is the asymptotic probability to endorse a test item for a given item type (target or foil) and strength (strong or weak). k2 is
the probability to endorse a test item when performance is at chance and indicates the prior bias at early retrieval. b is the rate of evidence accumulation
towards asymptotic values and d is the time point at which the performance departs from chance.

A. Kılıç, I. Öztekin / Journal of Memory and Language 76 (2014) 158–173 167
compared with the weak condition (M = .37, SD = 0.19),
t(7) = 2.83, p = 0.01 (see Table 5).

In summary, strengthening items within lists
increased the asymptotic accuracy and, similar to the
results in Experiment 1, did not have a measurable effect
on the speed of retrieval. Further, the FAR analysis
showed a null effect of strength at the asymptote, sug-
gesting that the total available memory evidence of the
foils did not differ significantly across strength condition.
Since the participants were not informed of the strength
of the test list, they would not adopt a more stringent
drift criterion when tested with strong lists. Similarly,
the differentiation account would not predict lower FAR
for the strong lists because the memory evidence of the
foils would be comparable across test list-strength condi-
tions. One interesting finding of this experiment was that
participants had different prior bias across strength con-
ditions even though they were not informed of which
test condition they would receive. When participants
were tested with strong targets, they had a tendency
towards the ‘‘yes’’ response compared with the weak test
condition. These strength effects on the prior bias will be
further discussed later. In the following experiment, the
effect of changing the strategy before test was further
investigated by informing participants of the strength of
the test list.
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Experiment 3

The aim of Experiment 3 was to test the effect of
informing participants about the strength of the targets
on the SBME in a mixed-list paradigm. If changing the
response strategy causes the SBME, then informing partic-
ipants would result in a decrease in the asymptotic FAR
contrary to the findings in Experiment 2.

Method

Participants
Fourteen undergraduate students from Koç University

took part in experiment in exchange for monetary com-
pensation. Two participants dropped out of the experiment
after the first session and two participants did not comply
with the instructions, thus their data were not included in
the subsequent analysis. Six of the remaining 10
participants were male and all of the participants were
right-handed.

Materials, procedure and design
The materials and the procedure of this experiment

were identical to those of Experiment 2. The only differ-
ence was that participants were informed of the strength
of the targets that they would be tested on before proceed-
ing with the test list. For the weak test lists, participants
were instructed that they would only be tested on words
for which they had decided whether they contain the letter
‘e’. For the strong test list, they were instructed that they
would be tested only on the words for which they had
made a pleasantness judgment.

The experiment was a 2 (Strength) � 7 (Response Lag)
within-subjects design. There were 40 responses for tar-
gets and 40 responses for foils at each strength and lag
condition. Lag condition was assigned randomly within
each strength and test item type condition over the course
of testing. After the removed trials, the number of
responses for each strength and item condition was
37.55 (SD = 2.05), 38.80 (SD = 1.04), 39.32 (SD = 0.99),
39.05 (SD = 1.17), 38.75 (SD = 1.67), 37.75 (SD = 2.00) and
36.17 (SD = 2.66), on average, for 60, 200, 300, 500, 800,
1500 and 3000 ms response lag conditions respectively.

Results and discussion

Accuracy
Goodness of fit measures of the group data are pre-

sented in Table 1. The list-strength effect is best explained
by the 2k–1b–1d model that allocates separate parameters
for asymptotic accuracy and common parameters for
retrieval speed of the weak and the strong list conditions
(Fig. 3C). In order to assess the parameter consistency
across participants, the full model (2k–2b–2d) was fit to
individual participants’ data. Parameter estimates derived
from the individual model fits indicate that asymptotic
accuracy (k) is significantly greater for the strong condition
(M = 1.84, SD = 0.50) compared with the weak condition
(M = 0.96, SD = 0.42), t(9) = 4.34, p < .01, consistent with
the model fit comparisons of the average data. Retrieval
speed parameters (b and d) also did not differ significantly
across list-strength conditions (1/b, t = �0.04; d, t = �1.23).
Parameter values of the best fitting model to group data
and individual data are presented in Table 6.

Hit and false alarm analysis
Fig. 4C plots the probability of endorsing a test item as a

function of total processing time for each strength condi-
tion and item type (target vs. foil). A 7 (lag) � 2 (strength)
repeated-measures ANOVA on HR showed a main effect of
strength, F(1,9) = 46.87, p < .001, with HR increasing as a
function of strength. A main effect of lag indicates that
HR increased as a function of total processing time,
F(6,54) = 22.47, p < .001. The list-strength by lag interac-
tion was also significant, F(6,54) = 2.61, p = 0.03, indicating
an increase in the strength effect later at retrieval. A 7
(lag) � 2 (strength) repeated-measures ANOVA on FAR
revealed a main effect of lag F(6,54) = 7.72, p < .001, along
with a strength by lag interaction, F(6,54) = 10.67, p < .001,
but no main effect of list-strength. These results suggest
that FAR was lower for the weak condition early in retrie-
val (e.g., until 600 ms), but later, this effect reversed such
that the FAR became lower for the strong foils. However,
this mirror effect was less effective (Lag 5, t = �0.42; Lag
6, t = �1.95; Lag 7, t = �1.18). This strength by lag interac-
tion on FAR might suggest that strengthening targets have
opposite effects over the course of retrieval. More specifi-
cally, when participants were tested on strong targets, they
tended to be more liberal prior to retrieval and later they
adopt a more stringent criterion when accumulating
evidence.

To further investigate the retrieval dynamics of HR and
FAR, the exponential function defined in Eq. (3) was fitted
in a nested-models routine with models ranging from
12-parameter full model (4k1–2k2–4b–2d) model to 6
parameter null model (3k1–k2–b–d). The model fit statistics
suggested that an 8-parameter asymptote-only model
(4k1–2k2–b–d) explained the strength effect best in a
mixed-list paradigm where the participants were informed
of the test list-strength. Similar to the results from previ-
ous experiments, separate k1 parameters were required
for asymptotic HR across the two strength conditions. Sta-
tistical comparisons of the individual parameter estimates
supported that the asymptotic HR in the strong condition
(M = .75, SD = 0.18) was significantly greater than the
asymptotic HR in the weak condition (M = .49, SD = 0.26),
t(9) = 4.19, p < .01. Crucially, in contrast to results of Exper-
iment 2, separate k1 parameters were also required for
strong and weak asymptotic FAR. The comparisons of k1

from the fits of the individuals’ data further supported
the strength effect on the asymptotic FAR. The FAR of weak
foils (M = .19, SD = 0.13) was significantly greater than the
FAR of strong foils (M = .12, SD = 0.07), t(9) = �2.22, p = .03.
This finding indicates a SBME at asymptotic FAR in contrast
to the null strength effect observed from the analysis on
the FAR. The k1 parameters of the FAR might represent a
trend towards a SBME (see Table 7).

In order to investigate the prior bias, we next examined
how strengthening affect asymptote at early retrieval (k2)
that is the probability of endorsing the test item when
performance is at chance. The model fit statistics favored
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the model that allocates separate k2, which indicates a
strength effect on the prior bias similar to the pattern
observed in the previous experiments. The comparison of
parameter estimates from the fits of individuals’ data also
showed that the asymptotic p(‘‘yes’’) at early retrieval was
significantly greater for the strong condition (M = .42,
SD = 0.23) compared with the weak condition (M = .26,
SD = 0.23), t(9) = 3.63, p < 0.01. Similar to the findings of
the previous experiments, participants were less likely to
respond with ‘‘yes’’ at a given accuracy level.

In summary, different from Experiment 2, the results of
Experiment 3 showed that information regarding the
strength condition of the test list created an opportunity
for the participants to adopt a different strategy to endorse
test probes. Considering the criterion shift account, these
results suggest that strength has reverse effects on prior
and evidentiary bias. When tested with strong targets, par-
ticipants had a tendency towards the ‘‘yes’’ response early
in retrieval. However, later in retrieval, this tendency
becomes more conservative, meaning that participants
require more evidence to endorse a test item. Differentia-
tion models do not predict the SBME when items are
strengthened in a mixed-list paradigm in contrast to the cri-
terion shift models. Thus, a trend for the SBME observed in a
mixed-list paradigm might suggest that the differentiation
account is not necessary to explain the SBME observed in
a pure-list paradigm. However, a comparison between the
size of the SBME might suggest that a combination of the
differentiation and the criterion shift account explains the
greater SBME in the pure-list paradigm. In the following
experiment, we tested this hypothesis by manipulating
strength and study list condition in a single experiment
and compared the SBME across the study list conditions.
Experiment 4

The goal of this experiment was to investigate the con-
tribution of criterion shift and differentiation mechanisms
in the list-strength effect observed in pure lists. In order to
examine the size of the SBME caused by these two mecha-
nisms, a standard ‘‘yes/no’’ item recognition task was
administered in a pure- and mixed-list paradigm. Partici-
pants were randomly assigned to one of the list condition,
but list strength was manipulated within participants. The
SBME observed after studying a mixed-list can only be
attributed to the criterion shift account, as the differentia-
tion account does not predict a SBME when the study list is
composed of mixed strength items. On the other hand,
both accounts predict a SBME when participants are tested
on the pure-study paradigm. Accordingly, if the SBME in
the pure-list paradigm is due to both criterion shift and dif-
ferentiation accounts, the size of the effect should be
greater than the SBME observed in the mixed-list paradigm
in which only the criterion shift predicts the SBME.
Method

Participants
Fifty-six undergraduate students from Koç University

participated in the experiment in exchange for monetary
compensation. Participants were randomly assigned to
each of the study conditions in which targets were
strengthened in either pure or mixed lists. Twenty-nine
participants were tested in the pure-list condition and 27
participants were tested in the mixed-list condition.

Materials, procedure and design
The materials used in this experiment were identical to

the materials used in the previous experiments. The only
difference from Experiment 1 and 3 was that reaction time
was measured rather than employing the response dead-
line procedure. The design was a 2 (study condition) � 2
(strength) mixed factorial, with study condition manipu-
lated between subjects and item strength manipulated
within subjects. In the pure-list condition, participants
were presented with 140 words, 70 of which were targets
and the other 70 were fillers presented randomly. In 2 of 4
study-test cycles, participants made a semantic judgment
to strongly encode the words and in the remaining 2
cycles, participants made an orthographic judgment for
shallow encoding. At test, participants were presented
with targets along with 70 lures, and they were required
to discriminate the targets from the lures. In the mixed-list
condition, participants were asked to make a semantic
judgment for 70 targets (strong) and an orthographic judg-
ment for the remaining 70 words (weak). In 2 of 4 study-
test cycles, only the strong targets were tested along with
70 lures, and in the remaining 2 cycles, only the weak tar-
gets were tested along with 70 lures. As in Experiment 3,
participants were informed of the strength of the targets
that they would be tested prior to the test in the mixed-list
condition.

Results and discussion

A 2 (study condition: pure and mixed) � 2 (strength:
strong and weak) mixed factor repeated measures ANOVA
was conducted on d0, hit rates, and false alarm rates. Dis-
criminability was significantly better for strong items
(M = 2.19, SD = 0.79) compared to weak items (M = 0.94,
SD = 0.39), F(1,54) = 196.72, p < .001, gp

2 = .785. Consistent
with the null list-strength effect in recognition memory
(Ratcliff et al., 1990), the main effect of study condition
and the interaction between study condition and list-
strength were unreliable. This confirms the finding that
discriminability did not depend on whether the targets
were strengthened within or across study lists.

The effect of strengthening targets produced a mirror
effect in the pure condition but not when the target words
were strengthened within study lists. Results from ANOVA
conducted on hit rates revealed a significant main effect of
strength, F(1,54) = 262.68, p < .001, gp

2 = .829, showing that
the hit rates were greater for the strong items (M = .82,
SD = 0.24) when compared to the weak items (M = .51,
SD = 0.14). No other effects on hit rates were reliable. We
observed that the false alarm rate for the strong foils
(M = .15, SD = 0.12) were significantly lower than those of
weak foils (M = .21, SD = 0.12), F(1,54) = 16.92, p < .001,
gp

2 = .239. Central to our main question, the interaction
between test list strength and study condition was signifi-
cant, F(1,54) = 7.12, p = .01, gp

2 = .117. This suggested that
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the strength effect was more prominent in the pure list
condition (M = �.09, SD = 0.08), t(28) = �5.63, p < .001,
whereas the false alarm rate did not differ significantly
across foil strength when participants studied strong and
weak targets in the same list (M = �.02, SD = 0.11),
t(26) = �0.89. Fig. 5 presents the mean hit rate and the
mean false alarm rate as a function of strength and study
condition.

These results indicate that the SBME observed after
studying a pure list is greater than the SBME observed in
a mixed-list paradigm. We propose that both differentia-
tion and criterion shift accounts contributed to the SBME
in the pure-list paradigm, while in the mixed-list para-
digm, the SBME was observed only due to a more conser-
vative criterion. Thus, the results from this experiment
support the contribution of the differentiation mechanism
in the pure-list paradigm.

General discussion

The current study examined the full time-course of how
SBME unfolds during retrieval for both pure and mixed-list
paradigm, and provided the first investigation of how
strengthening produces paradoxical effects on the two
kinds of bias. To do so, a response-deadline speed-accuracy
trade-off (SAT) procedure was employed in a list-strength
paradigm. The items were strengthened via a levels-of-
processing approach both in pure- and mixed-study list
paradigm. Overall, our data implicated that strengthening
a list of items increased the maximum level of accuracy,
with no measurable impact on retrieval speed measures,
either the rate of information accrual or when information
first starts to accrue during retrieval. Additional analyses of
the retrieval functions of targets and foils revealed that this
enhancement in the maximum level of accuracy resulted
from an increase in HR and a decrease in FAR in the
pure-study list paradigm when performance saturates. In
the mixed-list paradigm, the retrieval functions of foils
produced different results depending on whether partici-
pants received information regarding the strength of the
targets in the subsequent test list. Specifically, when
participants were informed of the test list-strength, the
Fig. 5. Hit rates and false alarm rates as a function of study condition.
Pure condition refers the pure-list paradigm in which items are strength-
ened across lists and mixed condition refers to the mixed-list paradigm in
which items are strengthened within lists.
retrieval function of the foils preferred different asymptote
parameters for strong and weak FARs, whereas the actual
FAR of the responses following the longer response dead-
lines (e.g., 0.8–3 s) did not show a SBME. The asymptotic
effect in the retrieval functions could potentially character-
ize a trend towards the SBME that was originally observed
in Starns, Ratcliff, et al. (2012) data. However, an investiga-
tion of the size of the SBME across study-list conditions
shows that the SBME in the pure-list paradigm is greater
than the SBME in the mixed-list paradigm (cf. Starns,
Ratcliff, et al., 2012). In line with the predictions of both
the differentiation and the criterion shift account, when
participants were not informed in the mixed-list paradigm,
the asymptotic FAR was comparable across strength condi-
tions. In addition to the implications regarding the theoret-
ical explanation for the SBME, the results from the retrieval
functions of HR and FAR indicate that strengthening a list
of items produced reverse effects on the prior and the evi-
dentiary bias. More specifically, participants were more
liberal prior to evidence accumulation but they set a more
conservative criterion to accumulate evidence in the strong
test lists. Below we discuss the theoretical implications of
these findings.
Prior and evidentiary bias

In addition to providing unbiased measures of speed
and accuracy, response-deadline procedure has facilitated
an empirical distinction between the two kinds of bias in
item recognition, that is prior bias and evidentiary bias.
Prior bias can be measured by the probability to endorse
a probe earlier in retrieval when accuracy is at chance,
while evidentiary bias is inferred from the mirror effect
observed in HR and FAR when accuracy reaches an asymp-
tote. Data from the response-deadline experiments in the
current study reveal that testing only the strong targets
caused participants to become more liberal in their
responses when performance is at chance. This indicates
that participants have a tendency to endorse a test item
even before evidence starts to accumulate. This tendency
towards the ‘‘yes’’ response has also been observed in the
results from the diffusion model applications, as the start-
ing point of the evidence accumulation was found to be
closer to the ‘‘yes’’ boundary in strong test lists (e.g.,
Criss, 2010; Starns, Ratcliff, et al., 2012). The important
finding from the response-deadline experiments is that
this strength effect on the starting point is also observed
with an experimental manipulation.

One interesting finding of the current study is that the
prior bias is also evident in Experiment 2, which was the
mixed-list paradigm when participants were not informed
of the strength condition of the test lists. There could be
two possible explanations regarding this tendency towards
the ‘‘yes’’ response in strong lists, namely the sequential
dependencies that are observed in recognition memory,
and perceived strength of the test list. Malmberg and
Annis (2012) showed that hits were more likely to be fol-
lowed by hits than misses, and false alarms were more
likely to be followed by false alarms than correct rejec-
tions. Regarding the current study, the increase in the fre-
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quency of ‘‘yes’’ responses in the strong lists might have
caused a momentum for the ‘‘yes’’ response when accuracy
was at chance early in retrieval. In other words, before
information started to accumulate, participants might have
repeated their previous response, which was more likely to
be ‘‘yes’’ because the overall probability of a ‘‘yes’’ response
was greater in the strong test lists. Alternatively, this ten-
dency for the ‘‘yes’’ response could have been due to the
perceived strength of the test list. In other words, partici-
pants might have recognized the strength of the test list
even without being explicitly informed and consequently
adopted a more conservative criterion. However, this does
not explain why only the prior bias but not the evidentiary
bias was affected from this perceived strength in Experi-
ment 2.

Evidence for the evidentiary bias arises from the SBME
observed in the mixed-list paradigm. More specifically,
when accuracy reached asymptote in the mixed-list para-
digm the hit rate increased and the false alarm rates
decreased, especially when participants were informed of
the strength condition. Although this finding does not
directly measure the evidentiary bias, as it is the criterion
that is set to moderate the amount of evidence that would
be required to endorse the probe, the fact that a mirror
effect is observed in a mixed-list paradigm suggests that
evidentiary bias contributes to the SBME. In other words,
in line with the criterion shift account, a more conservative
evidentiary bias can explain the SBME observed when dif-
ferentiation was controlled and participants were
informed of the strength conditions.
The differentiation models

One potential mechanism that has been proposed to
explain the SBME is the differentiation models (Criss &
McClelland, 2006; McClelland & Chappell, 1998; Shiffrin
& Steyvers, 1997). According to these models, when items
are strengthened during encoding, the foils become less
similar to the targets and thus, they become less confus-
able at retrieval. That is achieved by updating the traces
of targets in memory when items are strongly encoded.
Thus, strong targets will have more complete memory
traces and they will be more distinct from the foils at test.
It has been suggested that the differentiation mechanism is
in effect in other discrimination tasks (see Gibson &
Gibson, 1955 for perceptual discrimination; see
Wagenmakers et al., 2004 for lexical decision) and not par-
ticular to item recognition.

In the Retrieving Effectively from Memory model (REM,
Shiffrin & Steyvers, 1997), items are represented as vectors
of feature values that are drawn from the geometric distri-
bution. The memory traces of the studied items are stored
as vectors during encoding and these memory traces are
noisy such that some of the feature values are encoded
incorrectly or not encoded at all. When a probe is pre-
sented, it is compared to all of the traces in memory and
a subjective likelihood is calculated for each comparison
which is later averaged across all of the traces in memory.
If this average likelihood (odds value) exceeds a criterion
as in the signal detection framework, the probe is
endorsed. Otherwise, it is rejected. When a list of items is
strengthened during encoding, the memory traces of those
items will be more complete as more feature values are
encoded. Then, during test, foils will be less likely to match
with the traces in memory and accordingly will produce
lower odds value, which will be manifested as a decrease
in the FAR. Targets, on the other hand, will match better
with the more complete traces in memory and the odds
value will be more likely to exceed the criterion, which will
result in an increase in the HR (e.g., Criss, 2006).

Although REM was originally developed for accuracy
measures, recent versions were adapted to account for
reaction time data as well as full time-course retrieval
functions derived from the response-deadline procedures
(see Malmberg, 2008; Nobel & Shiffrin, 2001; see also
Wagenmakers et al., 2004 for an adaptation to lexical deci-
sion). For example, Wagenmakers et al. (2004) interpreted
the activation of a probe feature to develop as an exponen-
tial function of the total processing time, which would
increase monotonically with a rate and reach an asymptote
when full activation is achieved. It is also possible that the
features of the memory traces rather than the features of
the probe are activated over time (e.g., Malmberg, 2008).
In either case, the memory performance increases over
time by increasing the similarity between the memory
traces and targets, and by decreasing the similarity
between the memory traces and foils in an item recogni-
tion task. Thus, the differentiation mechanism accounts
for the SBME by assuming more complete memory traces
for strongly encoded items, and this would predict the
strength effect only at asymptote not on the speed of
retrieval.

The mirror effect observed with deep processing has
been recently explained due to differences in retrieval
strategy led by the differences in encoding mechanisms
(Gallo et al., 2008; Scimeca et al., 2011). To be more spe-
cific, when participants were instructed to be tested on
only deeply encoded items, they might have restricted
their search set to those items and thus, a mirror effect
could have been observed even in the mixed-list paradigm
(cf. McDonough & Gallo, 2012). Such an explanation
requires encoding of context features along with item fea-
tures (e.g., REM.4 in Shiffrin & Steyvers, 1997). In REM.4,
the set of items that were encoded within a similar context
(e.g. deep encoding) are first activated, later the global
match is determined between the probe and the activated
set of memory traces. Thus, this explanation can account
for the SBME even in a mixed list paradigm where items
are strengthened via a levels-of-processing task similar to
the studies reported by Gallo et al. (2008).

Alternatively, the mirror effect observed in a mixed-list
paradigm after deep encoding could be explained by qual-
itative factors, which enhance memory by encoding of dis-
tinctive features (e.g., Gallo et al., 2008). Different from
strengthening via repetition, encoding of qualitative fac-
tors could be modeled by traces composed of distinctive
features rather than more complete memory traces. This
mechanism has been used to explain the word frequency
mirror effects, which refers to greater HR and lower FAR
for low frequency items (Criss, 2010; Shiffrin & Steyvers,
1997). Thus, in a mixed-list paradigm, one could assume
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more distinctive traces for deeply encoded items and sim-
ilarly this would cause a mirror effect only when items are
studied in pure lists. In REM, distinctive features do not
predict a mirror effect in the mixed-list paradigm consis-
tent with the results from Experiment 2. It is also impor-
tant to note that the distinctiveness of the features has
been assumed to be a property of the stimuli whereas
the strength effect has been assumed to be a property of
encoding in REM (Criss, 2010; Shiffrin & Steyvers, 1997;
Criss, Aue, & Kılıç, 2014).

The retrieval dynamics of the SBME can also depend on
the methods that are used to strengthen the items. The
results of the current study indicated that the retrieval
speed was comparable for the items that were deeply
encoded and the items that were encoded in the shallow
condition. However, an earlier study by Dosher (1984)
showed that different methods of strengthening produced
different rates of evidence accumulation in an associative
recognition task. Strengthening pairs by repetition resulted
in faster retrieval compared to the pairs that were
strengthened by study time in addition to increasing the
asymptotic accuracy. Thus, it could be possible that
strengthening by repetition or study time might have dif-
ferent effects on the retrieval dynamics of the SBME as
was the case for the retrieval functions of associative rec-
ognition task. Thus, future research is required to explore
the mechanisms that would account for the effects of
strength on retrieval dynamics in general.
The criterion shift account

An alternative account, namely the criterion shift
account, proposes that the SBME could be explained by
more conservative responses for the strong lists
(Benjamin & Bawa, 2004; Hirshman, 1995; Starns,
Ratcliff, et al., 2012; Starns, White, et al., 2010, 2012;
Stretch & Wixted, 1998; Verde & Rotello, 2007). When a list
of items is encoded strongly, participants become aware of
the increase in memory accuracy, and as a result, they
require more evidence to endorse a test item. This meta-
cognitive process is assumed to be a result of evidentiary
bias, which refers to the bias on evidence accumulation.
Starns, Ratcliff, et al., (2012) applied the diffusion model
in a pure and a mixed-list strength paradigm where the
results showed a mirror effect for the drift rate values of
the strong targets and foils in line with the pattern
observed for hit rates and false alarm rates. They suggested
that this pattern could also observed due to a shift in the
drift criterion, which is a result of a change in the eviden-
tiary bias. The SBME observed in the pure-list paradigm
cannot discriminate between the two accounts. However,
the SBME observed in the mixed-list paradigm can only
be explained by the criterion shift account (e.g., Starns,
Ratcliff, et al., 2012). Consistent with this account, the
results from the current study show the SBME in the
pure-list paradigm and also a trend for the SBME in the
mixed-list paradigm, when accuracy reaches an asymp-
tote. These results indicate that when participants were
explicitly informed of the strength condition of the test list,
they tended to adopt a more stringent criterion so that
they required more evidence to endorse the test item, once
the total evidence has accumulated. A comparison of the
size of the SBME observed in pure- and mixed-list para-
digm suggests that the SBME is more prominent in the
pure-list paradigm compared to that in the mixed-list par-
adigm. Accordingly, we suggest that both differentiation
and the criterion shift account contribute to the SBME in
the pure-list paradigm and only the criterion shift account
causes the mirror effect in the mixed-list paradigm. Thus, a
combination of the two mechanisms produce the greater
effect observed in the pure-list paradigm.

Conclusions

In this study we evaluated the differential influence of
strengthening memory on overall accuracy and processing
speed measures. Our results implicate that the strength
effect impacts only the total availability of information in
memory, with no measurable influence on the processing
speed estimates. As for the bias, strengthening items
resulted in more liberal responses early in retrieval prior
to accrual of evidence, and once evidence reaches its max-
imum, bias to endorse a strong probe becomes more con-
servative. Across the four experiments, the SBME was
more prominent in the pure-list paradigm when compared
with the informed condition of the mixed-list paradigm as
predicted by the differentiation account. Taken together,
these findings suggest that both the criterion shift and dif-
ferentiation accounts jointly explain the SBME in recogni-
tion memory in the pure-list paradigm.
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