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Binomial coefficients are one of the most common and useful family of real numbers which arise 

in many areas of mathematics, especially in combinatorics. A binomial coefficient has two indices, and 

the coefficient indexed by 𝑟, 𝑘 is denoted usually by (𝑟
𝑘
) read as ‘𝑟 choose 𝑘’ . There are many ways to 

introduce the binomial coefficients. The one which explains the naming is that, a binomial is an 

algebraic expression that contains two terms, for example, 𝑥 + 𝑦, where 𝑥 and 𝑦 are real numbers. 

Then the binomial coefficient  (𝑟
𝑘
) is the coefficient of 𝑥𝑘𝑦𝑟−𝑘 when we expand (𝑥 + 𝑦)𝑟 . Due to the 

simple and symmetric form of (𝑥 + 𝑦)𝑟 , it is not surprising to face with this expression in almost all 

areas of mathematics. There is a combinatorial property of binomial coefficients which dominates all 

other properties: when the indices are nonnegative integers and 𝑘 ≤ 𝑛, the binomial coefficient (𝑛
𝑘
) is 

equal to the number of 𝑘 element subsets of an 𝑛 element set. This is the reason why we read  (𝑟
𝑘
) as 

‘𝑟 choose 𝑘’ even when 𝑟 is not an integer and there is nothing to choose. Again for this reason, in 

many books this property is taken as definition of binomial coefficients. 

Some special cases of the binomial theorem were known from ancient times. For example, Euclid 

mentioned the binomial theorem for (𝑥 + 𝑦)2 . In 6th century, (𝑥 + 𝑦)3was considered in India. 

In fact, by the 6th century, the Hindu 

mathematicians probably knew how to 

compute binomial coeffficients, and a clear 

statement of this rule can be found in the 12th 

century text  by Bhaskara. The binomial 

theorem as such can be found in the work of 

11th-century Arabian mathematician Al-

Karaji, who described the triangular pattern of 

the binomial coefficients. He also provided 

a mathematical proof of both the binomial 

theorem and Pascal's triangle, using a 

primitive form of mathematical induction. The 

problem was also discussed by the Omar 

Khayyam, who was probably familiar with the 

formula to higher orders. The term “binomial 

coefficient”  was introduced in 1544 

by  Michael Stifeland and the notation (𝑛
𝑘
) was 

introduced by Andreas von Ettingshausen in 

1826. Some alternative notations 

are 𝐶(𝑛,  𝑘),  𝑛𝐶𝑘 ,   𝑛𝐶𝑘 ,  𝐶𝑘
𝑛,  𝐶𝑛

𝑘 , 𝐶𝑛,𝑘 .  

 

 

 

 

 

https://en.wikipedia.org/wiki/Euclid
https://en.wikipedia.org/wiki/Bh%C4%81skara_II
https://en.wikipedia.org/wiki/Islamic_mathematics
https://en.wikipedia.org/wiki/Al-Karaji
https://en.wikipedia.org/wiki/Al-Karaji
https://en.wikipedia.org/wiki/Mathematical_proof
https://en.wikipedia.org/wiki/Mathematical_induction
https://en.wikipedia.org/wiki/Michael_Stifel
https://en.wikipedia.org/wiki/Andreas_von_Ettingshausen
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For a nonzero 𝑟 ∈ ℝ and a positive integer 𝑘, the binomial coefficient (𝑟
𝑘
) is the coefficient of 

𝑥𝑘 in the power series representation of (1 + 𝑥)𝑟:  

(1 + 𝑥)𝑟 =∑(
𝑟

𝑘
) 𝑥𝑘

∞

𝑘=0

 

where |𝑥| < 1.  

Since the 𝑘-th derivative of (1 + 𝑥)𝑟 is 𝑟(𝑟 − 1)⋯ (𝑟 − 𝑘 + 1)(1 + 𝑥)𝑟−𝑘, we obtain (1 + 𝑥)𝑟 =

∑
𝑑(𝑘)

𝑑𝑥
(1 + 𝑥)𝑟∞

𝑘=0 |
𝑥=0
 
𝑥𝑘

𝑘!
= ∑ 𝑟(𝑟 − 1)⋯(𝑟 − 𝑘 + 1)

𝑥𝑘

𝑘!
∞
𝑘=0  and consequently 

(
𝑟

𝑘
) =

𝑟𝑘

𝑘!
=
𝑟(𝑟 − 1)⋯(𝑟 − 𝑘 + 1)

𝑘!
. 

 
 

By convention we take (𝑟
0
) = 1 for any 𝑟 ∈ ℝ and (0

𝑘
) = 0 for any positive integer 𝑘.  

 

 

Example 1. 

 

a) (𝑟
1
) = 𝑟, 

b) (𝑟
2
) =

𝑟(𝑟−1)

2
, 

c) (5
3
) =

5⋅4⋅3

6
= 10, 

d) (
1

2
𝑘
) =

1

𝑘!
(
1

2
) (−

1

2
)⋯ (−

2𝑘−3

2
) =

(−1)𝑘−1

2𝑘𝑘!
⋅

(2𝑘−2)!

2⋅4⋯(2𝑘−2)
=
(−1)𝑘−1

22𝑘−1𝑘!
⋅
(2𝑘−2)!

(𝑘−1)!
=
(−1)𝑘−1

22𝑘−1𝑘
⋅

(2𝑘−2
𝑘−1

), 

e) (−3
4
) =

(−3)(−4)(−5)(−6)

4!
= 15. 

 

 

B I N O M I A L  C O E F F I C I E N T S  A N D  N U M B E R  O F  S U B S E T S  

 

If 𝑛 is a positive integer and 𝑘 ≤ 𝑛, then the expression for (𝑛
𝑘
) can be written as 

(
𝑛

𝑘
) =

𝑛(𝑛 − 1)⋯ (𝑛 − 𝑘 + 1)

𝑘!
⋅
(𝑛 − 𝑘)!

(𝑛 − 𝑘)!
=

𝑛!

𝑘! (𝑛 − 𝑘)!
. 

It is seen that for 𝑛 ∈ ℤ+ and 𝑘 ≤ 𝑛, the binomial coefficient (𝑛
𝑘
) agrees with 𝐶(𝑛, 𝑘), the number 

of 𝑘-subsets of an 𝑛-set. For this reason, in some sources binomial coefficients are defined to be 

the number of 𝑘-subsets and the notation (𝑛
𝑘
) is used to mean 𝐶(𝑛, 𝑘). 
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(𝑛
𝑘
) and 𝐶(𝑛, 𝑘) are two functions which act with the same rule on different domains. In fact 

𝐶(𝑛, 𝑘) is a restriction of the function (𝑛
𝑘
) to a smaller set. It follows then, a property or identity 

proved to be true for (𝑛
𝑘
) is necessarily true for 𝐶(𝑛, 𝑘). But a proof given for some property of 

𝐶(𝑛, 𝑘) is required to be extended to (𝑛
𝑘
), by checking whether the property is valid for non-integer 

values of 𝑛.  

 

Combinatorial Proofs and Polynomial Argument

 

In dealing with counting issues, there are two common classes of proofs: algebraic proofs and 

combinatorial proofs. An algebraic proof of a property is achieved by transforming the expres-

sions with the aid of substitutions and arithmetic operations. A combinatorial proof (or bijective 

proof or double counting) is achieved by showing that both sides of the equality count the same 

thing. In general, a combinatorial proof considers integer arguments whereas an algebraic proof 

respects all possible points in the domain. 

A property of 𝐶(𝑛, 𝑘) which is proved to be true algebraically, holds for (𝑛
𝑘
) (𝑛 no more re-

stricted to integers) as well. If a property is proved combinatorically to be true for 𝐶(𝑛, 𝑘), in order 

to extend it to (𝑛
𝑘
), we commonly use an important propery which is known as the polynomial 

argument.  This argument goes like that: if two polynomials of degree at most 𝑑 agree at 𝑑 + 1 

distinct points, then they agree everywhere. It follows that if an equality, whose both sides are 

polynomials, is proved to be true by a combinatorial proof, then by polynomial argument it holds 

everywhere. 

For example, from the expressions 𝐶(𝑛, 𝑘) =
𝑛!

𝑘!(𝑛−𝑘)!
 and 𝐶(𝑛, 𝑛 − 𝑘) =

𝑛!

(𝑛−𝑘)!𝑘!
 it follows that 

𝐶(𝑛, 𝑘) = 𝐶(𝑛, 𝑛 − 𝑘). This is an algebraic proof which automatically covers the case (𝑛
𝑘
) = ( 𝑛

𝑛−𝑘
) 

as well. On the other hand, we can say that 𝐶(𝑛, 𝑘) counts all subsets with 𝑘 elements and 𝐶(𝑛, 𝑛 −

𝑘) counts complements of these subsets. Since  each subset has a unique complement, 𝐶(𝑛, 𝑘) =

𝐶(𝑛 − 𝑘). This is a combinatorial proof and it guarantees the equality only to hold only for integer 

values of 𝑛, thus it does not directly implies that (𝑛
𝑘
) = ( 𝑛

𝑛−𝑘
).  But, 𝐶(𝑛, 𝑘) are 𝐶(𝑛, 𝑛 − 𝑘) are both 

polynomial expressions which agree on integers, then by polynomial argument they agree every-

where, thus (𝑟
𝑘
) = ( 𝑟

𝑟−𝑘
) for any 𝑟 ∈ ℝ. 

For integers 𝑛 and 𝑘, if we set 𝐶(𝑛, 𝑘) = 0 for 𝑘 < 0 or 𝑘 > 𝑛, then the binomial theorem 

(𝑎 + 𝑏)𝑛 = ∑ (𝑛
𝑘
)𝑎𝑘𝑏𝑛−𝑘𝑛

𝑘=0  where 𝑎, 𝑏 ∈ ℝ can be written as  

(𝑎 + 𝑏)𝑛 =∑𝐶(𝑛, 𝑘) 𝑎𝑘𝑏𝑛−𝑘
∞

𝑘=0

. 
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LEMMA 1.1. For any real number 𝑟 and a nonnegative integer 𝑘, 

(
−𝑟

𝑘
) = (−1)𝑘 (

𝑟 + 𝑘 − 1

𝑘
). 

Proof. A straightforward computation yields 

(
−𝑟

𝑘
) =

1

𝑘!
⋅ (−𝑟)(−𝑟 − 1)⋯ (−𝑟 − 𝑘 + 1) 

= (−1)𝑘
1

𝑘!
(𝑟 + 𝑘 − 1)⋯ (𝑟 + 1)𝑟 

which gives the desired result.   ∎ 

The property  

 
(
𝑟

𝑘
) = (−1)𝑘 (

−𝑟 + 𝑘 − 1

𝑘
) 

 (1) 

 

is known as upper negation. 

 

We observe an interesting relation between the binomial ceofficients and the number of 𝑘-

subsets. For a set with 𝑛 elements, recall that (𝑛+𝑘−1
𝑘
) is the number of ways of choosing 𝑘 ele-

ments of 𝑋 if repetitions are allowed. Then we see that (−1)𝑘(−𝑛
𝑘
) and (𝑛

𝑘
) denote respectively, 

the number of ways of choosing 𝑘 elements if repetitions are allowed and not allowed, respec-

tively. 

Using the identity (−𝑟
𝑘
) = (−1)𝑘(𝑟+𝑘−1

𝑘
), for any 𝑟 ∈ ℝ, we obtain the power series represen-

tation of 
1

(1−𝑥)𝑟
 as 

1

(1 − 𝑥)𝑟
= (1 − 𝑥)−𝑟 

=∑ (
−𝑟

𝑘
) (−𝑥)𝑘

∞

𝑘=0
 

=∑ (
𝑟 + 𝑘 − 1

𝑘
)𝑥𝑘

∞

𝑘=0
. 
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It follows that 
𝑥𝑛

(1−𝑥)𝑛+1
= ∑ (𝑛+𝑘

𝑘
)𝑥𝑘+𝑛∞

𝑘=0 . Since (𝑛+𝑘
𝑘
) = (𝑛+𝑘

𝑛
) and (𝑚

𝑛
) = 0 for integers 

𝑚 < 𝑛, we can write the power series representation of 
𝑥𝑛

(1−𝑥)𝑛+1
 as 

𝑥𝑛

(1 − 𝑥)𝑛+1
=∑(

𝑘

𝑛
)𝑥𝑘.

∞

𝑘=0

 (2) 

 

B A S I C  P R O P E R T I E S  

Let 𝑋 be set with 𝑛 elements. It has only one subset which contains no elements, namely the 

empty set and it has only one subset which has 𝑛 elements, the set 𝑋 itself. This means that 

𝐶(𝑛, 1) = 𝐶(𝑛, 𝑛)=1 and by polynomial argument 

(
𝑟

0
) = (

𝑟

𝑟
) = 1,          𝑟 ∈ ℝ. 

For each element 𝑥, 𝑋  has a unique subset with one element (the subset which includes only 

𝑥) and a unique subset with 𝑛 − 1 (the subset which excludes only 𝑥). Then 𝐶(𝑛, 1) =

𝐶(𝑛, 𝑛 − 1) = 𝑛 and by polynomial argument 

(
𝑟

1
) = (

𝑟

𝑟 − 1
) = 𝑟,          𝑟 ∈ ℝ. 

𝐶(𝑛, 𝑘) and 𝐶(𝑛, 𝑛 − 𝑘) count respectively, the subset with 𝑘 elements and subset 𝑛 − 𝑘 ele-

ments. If we associate each subset with its complement, to each subset with 𝑘 elements there cor-

responds a unique subset with 𝑛 − 𝑘 elements. Then 𝐶(𝑛, 𝑘) = 𝐶(𝑛, 𝑛 − 𝑘) and by polynomial ar-

gument 

(
𝑟

𝑘
) = (

𝑟

𝑟 − 𝑘
) ,          𝑟 ∈ ℝ, 𝑘 ∈ ℕ0. 

From the definition it follows that if 𝑛 is a positive integer and 𝑘 > 𝑛, then (𝑛
𝑘
) = 0. That is 

(
𝑟

𝑘
) = 0,          𝑟, 𝑘 ∈ ℕ0,   𝑘 > 𝑟. 

By convention we may define the binomial coefficient (𝑟
𝑘
) for negative integer 𝑘 by setting 

(𝑟
𝑘
) = 0:  

(
𝑟

𝑘
) = 0,          𝑟 ∈ ℝ, 𝑘 ∈ ℕ−. 

The following theorem gathers the identities which are useful in computations which involve 

binomial coefficients. 
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THEOREM 1.2. Let 𝑟 be a real number, 𝑘 and 𝑚 are nonnegative integers. We have the following 

identities. 

(
𝑟

𝑘
) =

𝑟

𝑟 − 𝑘
(
𝑟 − 1

𝑘
), (3) 

(
𝑟

𝑘
) =

𝑟

𝑘
(
𝑟 − 1

𝑘 − 1
), (4) 

(
𝑟

𝑘
) =

𝑟 − 𝑘 + 1

𝑘
(
𝑟

𝑘 − 1
), (5) 

(
𝑟 − 1

𝑘
) − (

𝑟 − 1

𝑘 − 1
) =

𝑟 − 2𝑘

𝑟
(
𝑟

𝑘
), (6) 

(
𝑟 − 1

𝑘
) + (

𝑟 − 1

𝑘 − 1
) = (

𝑟

𝑘
), (7) 

(
𝑟

𝑚
) (
𝑟 − 𝑚

𝑘
) = (

𝑟

𝑘
) (
𝑟 − 𝑘

𝑚
), (8) 

(
𝑟

𝑚
) (
𝑚

𝑘
) = (

𝑟

𝑘
) (
𝑟 − 𝑘

𝑚 − 𝑘
). (9) 

Proof. All the identities can be obtained by simple algebraic manipulations. Identities (3), (4) 

and (5) are obtained by quite similar steps: 

(
𝑟

𝑘
) =

𝑟!

𝑘! (𝑟 − 𝑘)!
=

𝑟

𝑟 − 𝑘
⋅

(𝑟 − 1)!

𝑘! (𝑟 − 𝑘 − 1)!
=

𝑟

𝑟 − 𝑘
(
𝑟 − 1

𝑘
) , 

(
𝑟

𝑘
) =

𝑟!

𝑘! (𝑟 − 𝑘)!
=
𝑟

𝑘
⋅

(𝑟 − 1)!

(𝑘 − 1)! (𝑟 − 𝑘)!
=
𝑟

𝑘
(
𝑟 − 1

𝑘 − 1
) , 

(
𝑟

𝑘
) =

𝑟!

𝑘! (𝑟 − 𝑘)!
=
𝑟 − 𝑘 + 1

𝑘
⋅

𝑟!

(𝑘 − 1)! (𝑟 − 𝑘 + 1)!
=
𝑟 − 𝑘 + 1

𝑘
(
𝑟

𝑘 − 1
). 

The difference and sum of (3) and (4) give the identities (6) and (7): 

(
𝑟 − 1

𝑘
) − (

𝑟 − 1

𝑘 − 1
) = (

𝑟 − 𝑘

𝑟
−
𝑘

𝑟
) (
𝑟

𝑘
) =

𝑟 − 2𝑘

𝑟
(
𝑟

𝑘
) 

(
𝑟 − 1

𝑘
) + (

𝑟 − 1

𝑘 − 1
) = (

𝑟

𝑘
). 

 (8)   is obtained as follows: 

(
𝑟

𝑚
) (
𝑟 −𝑚

𝑘
) =

𝑟!

𝑚! (𝑟 − 𝑚)!
⋅

(𝑟 − 𝑚)!

𝑘! (𝑟 − 𝑚 − 𝑘)!
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=
𝑟!

𝑘! (𝑟 − 𝑘)!
⋅

(𝑟 − 𝑘)!

𝑚! (𝑟 − 𝑘 −𝑚!)
 

= (
𝑟

𝑘
) (
𝑟 − 𝑘

𝑚
). 

(9) can be proved as  

(
𝑟

𝑚
) (
𝑚

𝑘
) =

𝑟!

𝑚! (𝑟 − 𝑚)!
⋅

𝑚!

𝑘! (𝑚 − 𝑘)!
 

=
𝑟!

𝑘! (𝑟 − 𝑘)!
⋅

(𝑟 − 𝑘)!

(𝑟 − 𝑚)! (𝑚 − 𝑘)!
 

= (
𝑟

𝑘
) (
𝑟 − 𝑘

𝑚 − 𝑘
). 

which is the desired result.   ∎ 

Identity (4) is known as absorption property. Now we provide a combinatorial proof for this 

identity. First express (4) as 

𝑘 (
𝑟

𝑘
) = 𝑟 (

𝑟 − 1

𝑘 − 1
).   

The left hand side counts the number of pairs (𝑥, 𝑆), where 𝑆 ⊂ {1,2,… , 𝑟} with 𝑘 elements and 

𝑥 ∈ 𝑆. There are (𝑟
𝑘
) choices for 𝑆, and for each of these there are 𝑘 choices for 𝑥. The right hand 

side counts the same thing in a different order. First choose 𝑥  (there are 𝑟 choices) and then 

choose the other 𝑘 − 1 elements among the remainig 𝑟 − 1 elements there are (𝑟−1
𝑘−1
) choices. 

A combinatorial proof of identity (9) is as follows. In a group of 𝑛 students, just 𝑚 students 

are wearing hats and exactly 𝑘 of these students have ribbons wrapped around their hats. Now 

consider the identitiy 

(
𝑟

𝑚
)(
𝑚

𝑘
) = (

𝑟

𝑘
) (
𝑟 − 𝑘

𝑚 − 𝑘
). 

The left hand side counts the ways of first choosing 𝑚 students to wear the hats and then 

choosing 𝑘 of these, to wrap ribbons around their hats. Right hand side counts the ways of first 

choosing 𝑘 students to wear hats with ribbons and then choose 𝑚 − 𝑘 students out of remaining 

𝑟 − 𝑘 students to wear hats without ribbons. 
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P A S C A L ’ S  I D E N T I T Y  A N D  P A S C A L ’ S  T R I A N G L E  

 

Identity (7)  is particularly important and is known as Pascal’s1 identity.  In this section we 

examine this identity in more details and we give a combinatorial proof for it. 

Pascal's Identity is a useful theorem of combinatorics which is often used to simplify compli-

cated expressions involving binomial coefficients. For a selection of 𝑘 ≥ 1 objects from the set 

{1,2,… , 𝑛} there are two choices. The selection contains 𝑛 or does not contain it. A selection not 

containing 𝑛 has to be composed of the remaining 𝑛 − 1 elements thus, it can be composed in 

𝐶(𝑛 − 1, 𝑘) different ways. If the selection contains 𝑛, then we have to choose the remaining 𝑘 − 1 

elements out of 𝑛 − 1 elements and for this choice we have 𝐶(𝑛 − 1, 𝑘 − 1) possibilities. Then we 

conclude 𝐶(𝑛, 𝑘) = 𝐶(𝑛 − 1, 𝑘) + 𝐶(𝑛 − 1, 𝑘 − 1), and by polynomial argument 

(
𝑛

𝑘
) = (

𝑛 − 1

𝑘 − 1
) + (

𝑛 − 1

𝑘
). 

Naturally, the identity makes sense for 1 ≤ 𝑘 < 𝑛. It is seen that Pascal’s identity is also the 

basic recursion for the binomial coefficients. Starting with the initial condition (0
0
) = 0, this iden-

tity enables us to compute all binomial coefficients recursively. Pascal’s triangle2 is a way of listing 

binomial coefficients as below: 

 

(
0

0
) 

(
1

0
)    (

1

1
) 

(
2

0
)    (

2

1
)     (

2

2
) 

(
3

0
)    (

3

1
)     (

3

2
)     (

3

3
) 

(
4

0
)    (

4

1
)     (

4

2
)     (

4

3
)    (

4

4
) 

(
5

0
)    (

5

1
)     (

5

2
)     (

5

3
)    (

5

4
)     (

5

5
) 

(
6

0
)    (

6

1
)     (

6

2
)     (

6

3
)    (

6

4
)     (

6

5
)     (

6

6
) 

(
7

0
)    (

7

1
)     (

7

2
)     (

7

3
)    (

7

4
)     (

7

5
)     (

7

6
)    (

7

7
) 

(
8

0
)    (

8

1
)     (

8

2
)     (

8

3
)    (

8

4
)     (

8

5
)     (

8

6
)    (

8

7
)     (

8

8
) 

                                                           
1 Blaise Pascal (1623-1662), French mathematician, physicist, writer and philosopher. 
2 Pascal’s identity and triangle were known long before Pascal by Chinese scholar Jia Xian, six hundred years before Pascal. Work of Jia Xian 

has passed us by Yang Hui (1238-1298). In Iran the triangle is known as the Hayyam triangle, named after Ömer Hayyam (1048-1131). 

http://www.artofproblemsolving.com/wiki/index.php?title=Combinatorics
http://www.artofproblemsolving.com/wiki/index.php?title=Expression
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Pascal’s identity implies that each term of the array (except the rightmost and leftmost terms 

at each row) is equal to the sum of two terms in the row above which lie above-left and above-

right. A simple construction of the triangle proceeds in the following manner. In row 0, the top-

most row, the entry is 1 (that is, (0
0
)). Then, to construct the elements of the following rows, the 

elemets at leftmost or rightmost columns are always 1 ((𝑛
0
) and (𝑛

0
)). For the remaining terms, add 

the number above-left with the number above-the right of the given position. First 8 rows of the 

Pascal’s triangle are shown below. 

1 

1   1 

1   2   1 

1   3   3   1 

1   4   6   4   1 

1   5  10  10   5   1 

1   6  15  20  15   6  1 

1   7  21  35  35  21   7  1 

1   8  28  56  70  56  28   8  1 

 

Sums of Row, Column and Diagonal Entries  

 

Row 𝑛 of Pascal’s triangle consists  of the terms (𝑛
𝑘
), 𝑘 = 0,… , 𝑛. Consequently, the sum of all 

terms in a row is the number of all subsets of a set with 𝑛 terms, that is ∑ 𝐶(𝑛, 𝑘) = 2𝑛𝑛
𝑘=0 . Since 

the right hand side is not a polynomial we can not directly write ∑ (𝑟
𝑘
) = 2𝑟𝑟

𝑘=0 . But, using the 

power series expansion (1 + 𝑥)𝑟 = ∑ (𝑟
𝑘
) 𝑥𝑘∞

𝑘=0  of (1 + 𝑥)𝑟 with  𝑥 = 1 we get 

∑(
𝑟

𝑘
) 

∞

𝑘=0

= 2𝑟. (10) 

In Pascal’s triangle we consider some particular sequences 

𝑘-th column:   (𝑘
𝑘
), (𝑘+1

𝑘
), (𝑘+2

𝑘
), …  

𝑘-th NW-SE diagonal:  (𝑘
0
), (𝑘+1

1
), (𝑘+2

2
), … 

𝑛-th NE-SW diagonal:  (𝑛
0
), … , (𝑛−𝑘

𝑘
),… , (𝑚

𝑡
)  (the last term is (𝑛/2

𝑛/2
) if 𝑛 is even; 

 ((𝑛+1)/2
(𝑛−1)/2

) otherwise). 
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Observe that the identity (𝑘
𝑖
) = ( 𝑘

𝑘−𝑖
) implies that the 𝑘-th column and 𝑘-th NW diagonal are 

composed of equal terms.  

When we arrange Pascal’s triangle in the following manner, it is more clear to understand why 

the sequence (𝑘
𝑘
), (𝑘+1

𝑘
), (𝑘+2

𝑘
),…  is called the 𝑘-th column. 

(
0

0
) 

(
1

0
)    (

1

1
) 

(
2

0
)    (

2

1
)     (

2

2
) 

(
3

0
)    (

3

1
)     (

3

2
)     (

𝟑

𝟑
) 

(
4

0
)    (

4

1
)     (

4

2
)     (

𝟒

𝟑
)    (

4

4
) 

(
5

0
)    (

5

1
)     (

5

2
)     (

𝟓

𝟑
)    (

5

4
)     (

5

5
) 

(
6

0
)    (

6

1
)     (

6

2
)     (

𝟔

𝟑
)    (

6

4
)     (

6

5
)     (

6

6
) 

(
7

0
)    (

7

1
)     (

7

2
)     (

𝟕

𝟑
)    (

7

4
)     (

7

5
)     (

7

6
)    (

7

7
) 

(
8

0
)    (

8

1
)     (

8

2
)     (

𝟖

𝟑
)    (

8

4
)     (

8

5
)     (

8

6
)    (

8

7
)     (

8

8
) 

(
0

0
) 

(
1

0
)    (

1

1
) 

(
2

0
)    (

2

1
)     (

2

2
) 

(
𝟑

𝟎
)    (

3

1
)     (

3

2
)     (

3

3
) 

(
4

0
)    (

𝟒

𝟏
)     (

4

2
)     (

4

3
)    (

4

4
) 

(
5

0
)    (

5

1
)     (

𝟓

𝟐
)     (

5

3
)    (

5

4
)     (

5

5
) 

(
6

0
)    (

6

1
)     (

6

2
)     (

𝟔

𝟑
)    (

6

4
)     (

6

5
)     (

6

6
) 

(
7

0
)    (

7

1
)     (

7

2
)     (

7

3
)    (

𝟕

𝟒
)     (

7

5
)     (

7

6
)    (

7

7
) 

(
8

0
)    (

8

1
)     (

8

2
)     (

8

3
)    (

8

4
)     (

𝟖

𝟓
)     (

8

6
)    (

8

7
)     (

8

8
) 

 (
0

0
) 

 (
1

0
)    (

1

1
) 

 (
2

0
)    (

2

1
)     (

2

2
) 

 (
3

0
)    (

3

1
)     (

3

2
)     (

3

3
) 

 (
4

0
)    (

4

1
)     (

4

2
)     (

4

3
)    (

𝟒

𝟒
) 

 (
5

0
)    (

5

1
)     (

5

2
)     (

𝟓

𝟑
)    (

5

4
)     (

5

5
) 

 (
6

0
)    (

6

1
)     (

𝟔

𝟐
)     (

6

3
)    (

6

4
)     (

6

5
)     (

6

6
) 

 (
7

0
)    (

𝟕

𝟏
)     (

7

2
)     (

7

3
)    (

7

4
)     (

7

5
)     (

7

6
)    (

7

7
) 

 (
𝟖

𝟎
)    (

8

1
)     (

8

2
)     (

8

3
)    (

8

4
)     (

8

5
)     (

8

6
)    (

8

7
)     (

8

8
) 

 

 

(
0

0
) 

(
1

0
)    (

1

1
) 

(
2

0
)    (

2

1
)     (

2

2
) 

(
3

0
)    (

3

1
)     (

3

2
)     (

𝟑

𝟑
) 

(
4

0
)    (

4

1
)     (

4

2
)     (

𝟒

𝟑
)    (

4

4
) 

(
5

0
)    (

5

1
)     (

5

2
)     (

𝟓

𝟑
)    (

5

4
)     (

5

5
) 

(
6

0
)    (

6

1
)     (

6

2
)     (

𝟔

𝟑
)    (

6

4
)     (

6

5
)     (

6

6
) 

(
7

0
)    (

7

1
)     (

7

2
)     (

𝟕

𝟑
)    (

7

4
)     (

7

5
)     (

7

6
)    (

7

7
) 

(
8

0
)    (

8

1
)     (

8

2
)     (

𝟖

𝟑
)    (

8

4
)     (

8

5
)     (

8

6
)    (

8

7
)     (

8

8
) 

(
0

0
) 

(
1

0
)    (

1

1
) 

(
2

0
)    (

2

1
)     (

2

2
) 

(
𝟑

𝟎
)    (

3

1
)     (

3

2
)     (

3

3
) 

(
4

0
)    (

𝟒

𝟏
)     (

4

2
)     (

4

3
)    (

4

4
) 

(
5

0
)    (

5

1
)     (

𝟓

𝟐
)     (

5

3
)    (

5

4
)     (

5

5
) 

(
6

0
)    (

6

1
)     (

6

2
)     (

𝟔

𝟑
)    (

6

4
)     (

6

5
)     (

6

6
) 

(
7

0
)    (

7

1
)     (

7

2
)     (

7

3
)    (

𝟕

𝟒
)     (

7

5
)     (

7

6
)    (

7

7
) 

(
8

0
)    (

8

1
)     (

8

2
)     (

8

3
)    (

8

4
)     (

𝟖

𝟓
)     (

8

6
)    (

8

7
)     (

8

8
) 

(
0

0
) 

(
1

0
)    (

1

1
) 

(
2

0
)    (

2

1
)     (

2

2
) 

(
3

0
)    (

3

1
)     (

3

2
)     (

3

3
) 

(
4

0
)    (

4

1
)     (

4

2
)     (

4

3
)    (

𝟒

𝟒
) 

(
5

0
)    (

5

1
)     (

5

2
)     (

𝟓

𝟑
)    (

5

4
)     (

5

5
) 

(
6

0
)    (

6

1
)     (

𝟔

𝟐
)     (

6

3
)    (

6

4
)     (

6

5
)     (

6

6
) 

(
7

0
)    (

𝟕

𝟏
)     (

7

2
)     (

7

3
)    (

7

4
)     (

7

5
)     (

7

6
)    (

7

7
) 

 (
𝟖

𝟎
)    (

8

1
)     (

8

2
)     (

8

3
)    (

8

4
)     (

8

5
)     (

8

6
)    (

8

7
)     (

8

8
) 

3rd column 3rd NW-SE diagonal 8th NE-SW diagonal 

 

The following theorem gives the sum of first 𝑘 terms of the 𝑛 −th column. 

THEOREM 1.3 (Upper Summation Formula). For any nonnegative integers 𝑛 and 𝑘, the sum 

of first 𝑛 terms of the 𝑘-th column is (𝑛+1
𝑘+1
): 

 
∑(

𝑖

𝑘
) = (

𝑛 + 1

𝑘 + 1
)

𝑛

𝑖=0

. (11) 

Proof. Since (0
𝑘
) + (1

𝑘
) + ⋯+ (𝑘−1

𝑘
) = 0, we have to compute the sum (𝑘

𝑘
) + (𝑘+1

𝑘
) + (𝑘+2

𝑘
) +

⋯+ (𝑛−1
𝑘
) + (𝑛

𝑘
). Replace (𝑘

𝑘
) with (𝑘+1

𝑘+1
). Then, by Pascal’s identity,  the sum of first two terms is 

(𝑘+2
𝑘+1
). Now the sum of first two terms of the resulting sequence is (𝑘+3

𝑘+1
). Continuing in this manner 

we reach the sum (𝑛+1
𝑘+1
).  
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An illustration of the proof is: 

(
𝑘 + 1

𝑘 + 1
) + (

𝑘 + 1

𝑘
)

⏟            

(𝑘+2𝑘+1)

+ (
𝑘 + 2

𝑘
)

⏟                  

(𝑘+3𝑘+1)

+ (
𝑘 + 3

𝑘
)

⏟                          

(𝑘+4𝑘+1)

+⋯

⏟                            
⋱

+ (
𝑘 + 𝑛 − 1

𝑘
)

⏟                                      
( 𝑛𝑘+1)

+ (
𝑘 + 𝑛

𝑘
)

⏟                                              
(𝑛+1𝑘+1)

. 

Eventually (𝑛+1
𝑘+1
) is obtained.    ∎ 

Combinatorial Proof. The number of ways of distributing 𝑚 candies to 𝑘 + 1 children is 

(𝑚+𝑘
𝑘
). Now consider the problem of distributing at most 𝑚 candies to 𝑘 + 1 children. This means 

that we distribute 0 or 1 or 2 … or  𝑚 candies. Then the number of ways of distributing candies is 

(𝑘
𝑘
) + (𝑘+1

𝑘
) + ⋯+ (𝑚+𝑘

𝑘
) = ∑ ( 𝑖

𝑘
)𝑚+𝑘

𝑖=𝑘 . On the other hand, when we distribute some of the candies, 

say 𝑡 ≤ 𝑚 candies, to 𝑘 + 1 children, there are 𝑚 − 𝑡 candies left. Then we can consider a ‘𝑘 + 2’nd 

child who is taking the remaining candies. So the number of ways of distributing some of 𝑚 candies 

to 𝑘 + 1 children is same with the number of distributing all of 𝑚 candies to 𝑘 + 2 children which 

is given by (𝒎+𝒌+𝟏
𝒌+𝟏

). Then we conclude 

∑ (
𝑖

𝑘
)

𝑚+𝑘

𝑖=𝑘

= (
𝑚 + 𝑘 + 1

𝑘 + 1
) 

which gives the equality (11) after the substitution 𝑛 = 𝑚 + 𝑘.   ∎ 

COROLLARY 1.4  (Parallel Summation Formula). For nonnegative integers 𝑛 and 𝑘, the sum of 

first 𝑛 terms of the  𝑘-th NW-SE diagonal is (𝑛+1
𝑘+1
): 

∑(
𝑘 + 𝑖

𝑖
) = (

𝑛 + 1

𝑘 + 1
)

𝑛

𝑖=0

. (12) 

Proof. Since(𝑘+𝑖
𝑖
) = (𝑘+𝑖

𝑘
), result follows directly from the previous theorem.  ∎ 

Denote the sum of 𝑛-th NE-SW diagonal entries by 𝑆𝑛 

For n=0 we have 𝑆0 = (
0
0
) = 1 

For 𝑛 = 1  𝑆1 = (
1
0
) = 1 
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For 𝑛 = 2  𝑆2 = (
2
0
) + (1

0
) = 2 

For 𝑛 = 3  𝑆3 = (
3
0
) + (2

1
) = 3 

For 𝑛 = 4  𝑆4 = (
4
0
) + (3

1
) + (2

2
) = 5 

First terms of the sequence {𝑆𝑛} are 1,1,2,3,5,…. This resembles the Fibonacci sequence {𝔣𝑛} =

0, 1, 1, 2, 3, 5, … each of whose terms, starting from the third, is the sum of preceding two terms.  

THEOREM 1.5. The sum of 𝑛-th NE-SW diagonal entries is the Fibonacci number 𝔣𝑛+1.  

Proof. From the computations above we have 𝑆0 = 𝔣1, 𝑆1 = 𝔣2. Now it is sufficient to show that 

the terms of the sequence {𝑆𝑛} satisfy the recursion 𝑆𝑛 = 𝑆𝑛−1 + 𝑆𝑛−2 for any integer 𝑛 ≥ 3. We 

have  

𝑆𝑛 = ∑ (
𝑛 − 𝑘

𝑘
)

⌊𝑛 2⁄ ⌋

𝑘=0

  

= 1 + ∑ (
𝑛 − 𝑘 − 1

𝑘
)

⌊𝑛 2⁄ ⌋

𝑘=1

+ ∑ (
𝑛 − 𝑘 − 1

𝑘 − 1
)

⌊𝑛 2⁄ ⌋

𝑘=1

 

= ∑ (
𝑛 − 𝑘 − 1

𝑘
)

⌊𝑛 2⁄ ⌋

𝑘=0

+ ∑ (
𝑛 − 𝑘 − 2

𝑘
)

⌊𝑛 2⁄ ⌋

𝑘=0

 

= 𝑆𝑛−1 + 𝑆𝑛−2 

which proves the assertion.  ∎ 

 

 

F I N I T E  S U M S  I N V O L V I N G  B I N O M I A L  C O E F F I C I E N T S  

In the previous section we have shown that the sum of the 𝑛 th row terms of Pascal’s triangle 

is 2𝑛, namely ∑ (𝑛
𝑘
)𝑛

𝑘=0 = 2𝑛. Unfortunately, we do not have any closed form to express the partial 

sum  

∑(
𝑛

𝑘
)

𝑚

𝑘=0

. 

Now consider the alternating partial sum ∑ (−1)𝑘(𝑛
𝑘
)𝑛

𝑘=0 . Let 𝑛 > 0, then by substituting 𝑥 =

1 in (1 − 𝑥)𝑛 = ∑ (−1)𝑘(𝑛
𝑘
)𝑛

𝑘=0 𝑥𝑘 , we immediately have 

 
∑(−1)𝑘 (

𝑛

𝑘
)

𝑛

𝑘=0

= 0. (13) 
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Since (−1)𝑘 = 1 for even 𝑘 and (−1)𝑘 = −1 for odd 𝑘, if 𝑛 > 0, then (13) can be written as 

∑ (𝑛
𝑘
)𝑛

𝑘 even − ∑ (𝑛
𝑘
)𝑛

𝑘 odd = 0.  

Then ∑ (𝑛
𝑘
)𝑛

𝑘 even = ∑ (𝑛
𝑘
)𝑛

𝑘 odd = 2𝑛−1 or 

∑(
𝑛

2𝑘
)

𝑛

𝑘=0

= 2𝑛−1 

and 

∑(
𝑛

2𝑘 + 1
)

𝑛

𝑘=0

= 2𝑛−1 

which means that, for any nonempty set, the number of subsets with an odd number of elements 

is equal to the number of subsets with an even number of elements. 

Moreover, for the partial sums we have: 

∑(−1)𝑘 (
𝑛

𝑘
)

𝑚

𝑘=0

= (−1)𝑚 (
𝑛 − 1

𝑚
). 

 

The equality for partial sums can be obtained as follows: 

∑(−1)𝑘 (
𝑛

𝑘
)

𝑚

𝑘=0

= 1 +∑(−1)𝑘 (
𝑛 − 1

𝑘
)

𝑚

𝑘=1

+∑(−1)𝑘 (
𝑛 − 1

𝑘 − 1
)

𝑚

𝑘=1

 

= ∑(−1)𝑘 (
𝑛 − 1

𝑘
)

𝑚−1

𝑘=0

+ (−1)𝑚 (
𝑛 − 1

𝑚
) − ∑(−1)𝑘 (

𝑛 − 1

𝑘
)

𝑚−1

𝑘=0

 

= (−1)𝑚 (
𝑛 − 1

𝑚
). 

The binomial formula (1 + 𝑥)𝑛 = ∑ (𝑛
𝑘
)𝑛

𝑘=0 𝑥𝑘 is very useful to obtain interesting identities. 

For example, differentiating both sides we have 𝑛(1 + 𝑥)𝑛−1 = ∑ 𝑘(𝑛
𝑘
)𝑛

𝑘=0 𝑥𝑘−1. By substituting 

𝑥 = 1 we get 

 
∑𝑘(

𝑛

𝑘
)

𝑛

𝑘=0

= 𝑛2𝑛−1. (14) 

Now we provide a combinatorial proof of (14). In a class with 𝑛 students we wish to choose a 

committee and a chairperson for that committee. Right hand side counts the number of ways of 

choosing the chairman (𝑛 ways)  and then among the remaining 𝑛 − 1 students, choosing other 

members of the committee consisting of any number of members, probably empty (2𝑛−1 ways). 
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Left hand side counts the number of ways of first choosing some committee of 𝑘 members ((𝑛
𝑘
) 

ways) then among choosing a chairperson among them (𝑘 ways). As 𝑘 may take any value, 𝑘 =

0,… , 𝑛, by summation we obtain the equality.   

It should be noted that, a set with 𝑛 elements has (𝑛
𝑘
) subsets ech of which contains 𝑘 elements. 

Then the total number of elements in these subsets is 𝑘(𝑛
𝑘
). This observation leads us to an inter-

pretation of (14). The sum on the left hand side is the total number of all elements in all subsets 

of the set. On the other hand, each particular element of the set appears in exactly 2𝑛−1 subsets. It 

follows that the total number of all elements in all subsets is 𝑛2𝑛−1 which is the right hand side. 

Since the set has 2𝑛 subsets, the average number of elements of a subset is 
𝑛

2
.  

Differentiating both sides of the binomial formula once more we get 

𝑛(𝑛 − 1)(1 + 𝑥)𝑛−2 =∑𝑘(𝑘 − 1) (
𝑛

𝑘
)

𝑛

𝑘=0

𝑥𝑘−2 

which gives the identity ∑ (𝑘2 − 𝑘)(𝑛
𝑘
)𝑛

𝑘=0 = 𝑛(𝑛 − 1)2𝑛−2  for 𝑥 = 1  . Then we have 

 
∑𝑘2 (

𝑛

𝑘
)

𝑛

𝑘=0

= 𝑛(𝑛 + 1)2𝑛−2. (15) 

Now for arbitrary 𝑟, 𝑠 ∈ ℝ we write  

 ∑ (
𝑟

𝑚
)

∞

𝑚=0

𝑥𝑚 = (1 + 𝑥)𝑟 

= (1 + 𝑥)𝑠(1 + 𝑥)𝑟−𝑠 

= (∑(
𝑠

𝑛
)

∞

𝑛=0

𝑥𝑛)(∑(
𝑟 − 𝑠

𝑗
)

∞

𝑗=0

𝑥𝑗) 

= ∑∑(
𝑠

𝑛
) (
𝑟 − 𝑠

𝑗
)

∞

𝑗=0

𝑥𝑛+𝑗
∞

𝑛=0

 

= ∑ (∑(
𝑠

𝑘
) (
𝑟 − 𝑠

𝑚 − 𝑘
)

𝑚

𝑘=0

) 𝑥𝑚.

∞

𝑚=0

 

Comparing the coefficients of 𝑥𝑚 we obtain the identity which is called Vandermonde’s con-

volution: 

 
∑(

𝑠

𝑘
)(
𝑟 − 𝑠

𝑚 − 𝑘
)

𝑚

𝑘=0

= (
𝑟

𝑚
). (16) 
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For a combinatorial proof of this equality, notice that the right hand side counts the number of 

ways to choose a group  of 𝑚 students from a class of 𝑟 students. Assume that there are 𝑠 ≥ 𝑚 

girls and 𝑟 − 𝑠 boys at the class. The left hand side counts the same thing according to cases de-

pending on the number  of girls 𝑖 on the committee, which can range from 0 to 𝑚. Since in such a 

case, there are (𝑠
𝑘
) ways to select the girls and ( 𝑟−𝑠

𝑚−𝑘
) ways to select the boys, the number of such 

committees is (𝑠
𝑘
)( 𝑟−𝑠
𝑚−𝑘

).  Now the result follows. 

When 𝑠 = 1  Vandermonde’s convolution gives Pascal’s identity in the form  

(
𝑟

𝑘
) = (

𝑟 − 1

𝑘
) + (

𝑟 − 1

𝑘 − 1
). 

For 𝑠 = 2 we obtain the identity 

(
𝑟

𝑘
) = (

𝑟 − 2

𝑘
) + 2(

𝑟 − 2

𝑘 − 1
) + (

𝑟 − 2

𝑘 − 2
). 

In Vandernomnde’s convolution, by taking 𝑟 = 2𝑛 and 𝑠 = 𝑚 = 𝑛, for a positive integer 𝑛 we 

obtain  

 ∑(
𝑛

𝑘
)
2

𝑛

𝑘=0

= (
2𝑛

𝑛
). (17) 

Now let 𝑛, 𝑘 be positive integers. Using (2) we write 

∑(
𝑖

𝑘 + 1
) 𝑥𝑖

∞

𝑖=0

=
𝑥𝑘+1

(1 − 𝑥)𝑘+2
 

= 𝑥 (
𝑥𝑗

(1 − 𝑥)𝑗+1
)(

𝑥𝑘−𝑗

(1 − 𝑥)𝑘−𝑗+1
) 

= 𝑥 (∑(
𝑎

𝑗
) 𝑥𝑎

∞

𝑎=0

)(∑(
𝑏

𝑘 − 𝑗
) 𝑥𝑏

∞

𝑏=0

) 

= ∑∑(
𝑎

𝑗
) (

𝑏

𝑘 − 𝑗
) 𝑥𝑎+𝑏+1

∞

𝑏=0

∞

𝑎=0

 

=∑(∑ (
𝑚

𝑗
) (
𝑖 − 𝑚

𝑘 − 𝑗
)

𝑛

𝑚=0

) 𝑥𝑖+1 

∞

𝑖=0

. 

By comparing the coefficients of 𝑥𝑛+1 we obtain 

 
∑ (

𝑚

𝑗
) (
𝑛 −𝑚

𝑘 − 𝑗
)

𝑛

𝑚=0

= (
𝑛 + 1

𝑘 + 1
). (18) 

Note that, taking 𝑗 = 𝑘 in (18) gives (11) in the form ∑ (𝑚
𝑘
)𝑛

𝑚=0 = (𝑛+1
𝑘+1
). 
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To obtain a generalization of (14), we apply the binomial formula to (2 + 𝑥)𝑛 in two different 

ways: 

(2 + 𝑥)𝑛 = (1 + (1 + 𝑥))
𝑛

 

=∑(
𝑛

𝑘
) (1 + 𝑥)𝑘

𝑛

𝑘=0

 

=∑(
𝑛

𝑘
)∑(

𝑘

𝑖
) 𝑥𝑖

𝑘

𝑖=0

𝑛

𝑘=0

 

=∑∑(
𝑛

𝑘
)(
𝑘

𝑖
) 𝑥𝑖

𝑘

𝑖=0

𝑛

𝑘=0

 

=∑∑(
𝑛

𝑘
) (
𝑘

𝑖
) 𝑥𝑖

𝑛

𝑘=𝑖

𝑛

𝑖=0

 

and  

(2 + 𝑥)𝑛 =∑(
𝑛

𝑖
) 2𝑛−𝑖𝑥𝑖

𝑛

𝑖=0

. 

 

By comparing the coefficients of 𝑥𝑖 in these expressions, we have 

 
∑(

𝑛

𝑘
)(
𝑘

𝑖
)

𝑛

𝑘=𝑖

= (
𝑛

𝑖
)2𝑛−𝑖 (19) 

for any nonnegative integers 𝑛 and 𝑖. By substitutions 𝑖 = 𝑛 −𝑚, and 𝑘 = 𝑛 − 𝑖 the identity 

(19) gives ∑ (𝑛
𝑖
)( 𝑛−𝑖
𝑛−𝑚

)𝑛
𝑖=0 = (𝑛

𝑚
)2𝑚 which can be rearranged to write 

 
∑(

𝑛

𝑘
)(
𝑛 − 𝑘

𝑚 − 𝑘
)

𝑛

𝑘=0

= (
𝑛

𝑚
)2𝑚. (19’) 

To have a combinatorial proof of this equality, we generalize the idea which is followed for the 

identity (14). Now our model is to choose a committee and 𝑖 distinguished members of this com-

mittee. Rest of the proof is similar to that of (14). 
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B I N O M I A L  I N V E R S I O N  F O R M U L A  

In this section we develop a technique, known as binomial inversion which has many 

interesting applications . 

LEMMA 1.6. If  𝑛 and 𝑚 ≤ 𝑛 are positive integers,  then 

∑(−1)𝑘 (
𝑛

𝑘
) (
𝑘

𝑚
) =

𝑛

𝑘=0

(−1)𝑚𝛿𝑚
𝑛 . 

Proof.  

𝑥𝑛 = (1 + (𝑥 − 1))
𝑛

 

=∑(
𝑛

𝑘
)

𝑛

𝑘=0

(𝑥 − 1)𝑘 

=∑(
𝑛

𝑘
)

𝑛

𝑘=0

∑ (
𝑘

𝑚
)

𝑘

𝑚=0

(−1)𝑘−𝑚𝑥𝑚 

=∑∑(−1)𝑘−𝑚 (
𝑛

𝑘
) (
𝑘

𝑚
)

𝑘

𝑚=0

𝑥𝑚
𝑛

𝑘=0

 

= ∑ (∑(−1)𝑘−𝑚 (
𝑛

𝑘
) (
𝑘

𝑚
)

𝑛

𝑘=𝑚

)𝑥𝑚
𝑛

𝑚=0

. 

Comparing the coefficients of 𝑥𝑚 claim follows.  ∎ 

The transform of a given a sequence {𝑓𝑛}, under binomial inversion is the sequence {𝑔𝑛} 

with 

𝑔𝑛 =∑(−1)𝑘 (
𝑛

𝑘
)𝑓𝑘

𝑛

𝑘=0

. 

THEOREM 1.7 (Binomial Inversion Formula). The transform under binomial inversion is an 

involution.That is, if  {𝑓𝑛} and {𝑔𝑛} are sequences such that 

𝑔𝑛 =∑(−1)𝑘 (
𝑛

𝑘
)𝑓𝑘

𝑛

𝑘=0

, 

then 

𝑓𝑛 =∑(−1)𝑘 (
𝑛

𝑘
)𝑔𝑘

𝑛

𝑘=0

. 
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Proof. We simply compute the transform of {𝑔𝑛}: 

∑(−1)𝑘 (
𝑛

𝑘
)

𝑛

𝑘=0

𝑔𝑘 =∑(−1)𝑘 (
𝑛

𝑘
)

𝑛

𝑘=0

∑(−1)𝑖  (
𝑘

𝑖
)

𝑘

𝑖=0

𝑓𝑖  

=∑(−1)𝑘∑(−1)𝑖 (
𝑛

𝑘
) (
𝑘

𝑖
) 𝑓𝑖

𝑘

𝑖=0

𝑛

𝑘=0

 

=∑(−1)𝑖𝑓𝑖∑(−1)𝑘 (
𝑛

𝑘
) (
𝑘

𝑖
)

𝑛

𝑘=𝑖

𝑛

𝑖=0

 

=∑𝑓𝑖𝛿𝑖
𝑛

𝑛

𝑖=0

 

The last term we have obtained is 𝑓𝑛.   ∎ 

If {𝑔𝑛} is the transform of {𝑓𝑛}, we call these sequences a binomial inversion pair. An 

alternative version of the theorem is as follows. 

THEOREM 1.8. If {𝑓𝑛} and {𝑔𝑛} are sequences such that 

𝑔𝑛 =∑(
𝑛

𝑘
)𝑓𝑘

𝑛

𝑘=0

, 

then 

𝑓𝑛 =∑(−1)𝑛−𝑘 (
𝑛

𝑘
)𝑔𝑘

𝑛

𝑘=0

.    ∎ 

 

Example 2. If we let {𝑓𝑛} to be the constant sequence 𝑓𝑛 = 1 for 𝑛 = 0,1, …, then  

∑(
𝑛

𝑘
) 𝑓𝑘

𝑛

𝑘=0

=∑(
𝑛

𝑘
)

𝑛

𝑘=0

= 2𝑛 = 𝑔𝑛 . 

By binomial inversion we have 

∑(−1)𝑛−𝑘2𝑘 (
𝑛

𝑘
)

𝑛

𝑘=0

=∑(−1)𝑛−𝑘 (
𝑛

𝑘
) 𝑔𝑘

𝑛

𝑘=0

= 𝑓𝑛 

which gives 

∑(−2)𝑘 (
𝑛

𝑘
)

𝑛

𝑘=0

= (−1)𝑛. 
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Example 3. Let 𝑛 and 𝑖 ≤ 𝑛 be positive integers. If  𝑓𝑛 = (
𝑛
𝑖
), then ∑ (𝑛

𝑘
)𝑓𝑘

𝑛
𝑘=0 = ∑ (𝑛

𝑘
)(𝑘
𝑖
)𝑛

𝑘=0 =

(𝑛
𝑖
)2𝑛−𝑖 = 𝑔𝑛 and by binomial inversion  

(
𝑛

𝑖
) = 𝑓𝑛 

=∑(−1)𝑛−𝑘 (
𝑛

𝑘
) (
𝑘

𝑖
) 2𝑘−𝑖

𝑛

𝑘=0

 

=∑(−1)𝑛−𝑘 (
𝑛

𝑘
) (
𝑘

𝑖
) 2𝑘−𝑖

𝑛

𝑘=0

 

= (−1)𝑛2−𝑖∑(−2)𝑘 (
𝑛

𝑘
) (
𝑘

𝑖
)

𝑛

𝑘=0

. 

So we obtain 

∑(−2)𝑘 (
𝑛

𝑘
) (
𝑘

𝑖
)

𝑛

𝑘=0

= (−1)𝑛2𝑛−𝑖 (
𝑛

𝑖
). 

 

G E N E R A T I N G  F U N C T I O N S  

 

THEOREM 1.9. For a fixed real number 𝑟, generating function of the sequence {(𝑟
𝑘
)} is  

∑(
𝑟

𝑘
)𝑥𝑘

∞

𝑘=0

= (1 + 𝑥)𝑟. 

Proof. Assertion is just rephrasing the definition of binomial coefficients.   ∎ 

THEOREM 1.10. For a fixed nonnegative 𝑘, generating function of the sequence {(𝑛
𝑘
)} is  

∑(
𝑛

𝑘
)𝑥𝑛

∞

𝑛=0

=
𝑥𝑘

(1 − 𝑥)𝑘+1
. 

Proof. Assertion follows from equation (2).  ∎ 

THEOREM 1.11. A bivariate generating function of the binomial coefficients is  

∑∑(
𝑛

𝑘
)𝑥𝑘𝑦𝑛

∞

𝑘=0

∞

𝑛=0

=
1

1 − 𝑦 − 𝑥𝑦
. 
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Proof. Write the power series representation of 
1

1−𝑦−𝑥𝑦
: 

1

1 − 𝑦(1 + 𝑥)
= ∑𝑦𝑛(1 + 𝑥)𝑛

∞

𝑛=0

 

=∑𝑦𝑛∑(
𝑛

𝑘
) 𝑥𝑘

∞

𝑘=0

∞

𝑛=0

. 

Then, claim follows.   ∎ 

THEOREM 1.12. A bivariate generating function of the binomial coefficients is  

∑∑(
𝑛 + 𝑘

𝑘
)𝑥𝑘𝑦𝑛

∞

𝑘=0

∞

𝑛=0

=
1

1 − 𝑥 − 𝑦
. 

Proof. Just write the power series representation of 
1

1−𝑥−𝑦
: 

1

1 − (𝑥 + 𝑦)
= ∑(𝑥 + 𝑦)𝑛

∞

𝑛=0

 

=∑∑(
𝑛

𝑘
)

∞

𝑘=0

𝑥𝑘 𝑦𝑛−𝑘
∞

𝑛=0

 

=∑∑(
𝑛 + 𝑘

𝑘
)

∞

𝑘=0

𝑥𝑘 𝑦𝑛
∞

𝑛=0

. 

This completes the proof. ∎ 

THEOREM 1.13. The exponential bivariate generating function of the binomial coefficients is  

∑∑
1

(𝑛 + 𝑘)!
 (
𝑛 + 𝑘

𝑘
)𝑥𝑘𝑦𝑛

∞

𝑘=0

∞

𝑛=0

= 𝑒𝑥+𝑦. 

Proof. Writing the power series representation of 𝑒𝑥+𝑦 leads the proof directly.   ∎ 

 

 

M U L T I N O M I A L  C O E F F I C I E N T S  
 

Binomial coefficients are generalized to multinomial coefficients as follows. For a non-nega-

tive integer 𝑛 and non-negative integers 𝑘1, 𝑘2, … , 𝑘𝑟 such that 𝑘1 + 𝑘2 +⋯+ 𝑘𝑟 = 𝑛, multinomial 

coefficient ( 𝑛
𝑘1,𝑘2,…,𝑘𝑟

) is 

(
𝑛

𝑘1, 𝑘2, … , 𝑘𝑟
) =

𝑛!

𝑘1!⋯𝑘𝑟!
 . 
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Note that the multinomial coefficient ( 𝑛
𝑘1, 𝑘2

)  is the binomial coefficient ( 𝑛
𝑘1
). It is also easy to 

verify that 

(
𝑛

𝑘1, 𝑘2, … , 𝑘𝑟
) = (

𝑛

𝑘1
) (
𝑛 − 𝑘1
𝑘2

) (
𝑛 − 𝑘1 − 𝑘2

𝑘3
)⋯(

𝑛 − 𝑘1 −⋯− 𝑘𝑟−2
𝑘𝑟−1

). 

 

Multinomial coefficient ( 𝑛
𝑘1,𝑘2,…,𝑘𝑟

) is coefficient of 𝑥1
𝑘1𝑥2

𝑘2⋯𝑥𝑟
𝑘𝑟 in (𝑥1 +⋯+ 𝑥𝑟)

𝑛   in 

(𝑥1 + 𝑥2 +⋯+ 𝑥𝑟)
𝑛 = ∑ (

𝑛

𝑘1, 𝑘2, … , 𝑘𝑟
) 𝑥1

𝑘1𝑥2
𝑘2⋯𝑥𝑟

𝑘𝑟  

∞

𝑘1,𝑘2,…,𝑘𝑟=0
𝑘1+⋯+𝑘𝑟=𝑛

. 

 

S O M E  O T H E R  P R O P E R T I E S  
 

- Binomial coefficient (𝑛
𝑘
), where 0 < 𝑘 < 𝑛, is divisible by a prime 𝑝 if and only if 𝑛 is a power 

of 𝑝. 

- Let 𝑘,𝑚 > 1 and 𝑛 be nonnegative integers. At least one of (𝑛
𝑘
), (𝑛+1

𝑘
), (𝑛+2

𝑘
), … , (𝑛+𝑘

𝑘
) is not 

divisible by 𝑚. 

- Let 𝑘 and 𝑛 be positive integers and 𝑝 be a prime. If ( 𝑛
𝑘−1
) ∤ 𝑝 and (𝑛

𝑘
) ∤ 𝑝, then (𝑛+1

𝑘
) ∤ 𝑝, 

except the case, when 𝑛 + 1 is divisible by 𝑝. 

- Lucas Theorem. Write the positive integers 𝑛 and 𝑘 in a prime base 𝑝: 

𝑛 = 𝑛𝑑𝑝
𝑑 + 𝑛𝑑−1𝑝

𝑑−1 +⋯+ 𝑛1𝑝 + 𝑛0, 

𝑘 = 𝑘𝑑𝑝
𝑑 + 𝑘𝑑−1𝑝

𝑑−1 +⋯+ 𝑘1𝑝 + 𝑘0.  

Then 

(
𝑛

𝑘
) ≡ (

𝑛𝑑
𝑘𝑑
)(
𝑛𝑑−1
𝑘𝑑−1

)⋯(
𝑛1
𝑘1
) (
𝑛0
𝑘0
)   (mod 𝑝). 

- If 𝑛 is a positive integer and 𝑝 is a prime such that (𝑝 − 1)|𝑛, then 

(
𝑛

𝑝 − 1
) + (

𝑛

2(𝑝 − 1)
) + (

𝑛

3(𝑝 − 1)
)⋯+ (

𝑛

𝑛
) ≡ 1   (mod 𝑝) 

 

- If 𝑝 ≥ 5 is a prime, then  

(
2𝑝

𝑝
) ≡ 2   (mod 𝑝3), 

(
𝑝2

𝑝
) ≡ 𝑝   (mod 𝑝5), 

(
𝑝3

𝑝2
) ≡ (

𝑝2

𝑝
)   (mod 𝑝8). 
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T A B L E  O F  B I N O M I A L  C O E F F I C I E N T S   
 

n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

0 1                  

1 1 1                 

2 1 2 1                

3 1 3 3 1               

4 1 4 6 4 1              

5 1 5 10 10 5 1             

6 1 6 15 20 15 6 1            

7 1 7 21 35 35 21 7 1           

8 1 8 28 56 70 56 28 8 1          

9 1 9 36 84 126 126 84 36 9 1         

10 1 10 45 120 210 252 210 120 45 10 1        

11 1 11 55 165 330 462 462 330 165 55 11 1       

12 1 12 66 220 495 792 924 792 495 220 66 12 1      

13 1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1     

14 1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1    

15 1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1   

16 1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1  

17 1 17 136 680 2380 6188 12376 19448 24310 24310 19448 12376 6188 2380 680 136 17 1 

Table of binomial coefficients (𝑛
𝑘
) for 0 ≤ 𝑛 ≤ 17. 

 

E X E R C I S E S  
 

1. Let 𝑛,𝑚 be positive integers. Prove the following. 

a)  (
𝑛

𝑚
) <

𝑛𝑛

𝑚𝑚(𝑛 − 𝑚)𝑛−𝑚
, 

b)  ∑(−1)𝑘+𝑛 (
𝑛

𝑘
) 𝑘𝑛

𝑛

𝑘=0

= 𝑛!, 

c)  ∑(−1)𝑛+1
1

𝑘
(
𝑛

𝑘
)

𝑛

𝑘=1

= 𝐻𝑘, 

d)  ∑𝑘(
𝑛

𝑘
)
2

=

𝑛

𝑘=0

𝑛

2
 (
2𝑛

𝑛
), 

e)  ∑𝑘2 (
𝑛

𝑘
)
2

=

𝑛

𝑘=0

𝑛2  (
2𝑛 − 2

𝑛 − 1
), 

f)    ∑ (
2𝑘

𝑘
) (
2(𝑛 − 𝑘)

𝑛 − 𝑘
) = 4𝑛,

𝑛

 𝑘=0

  

g)   ∑ (
𝑛 − 1

𝑘
)
(𝑘 + 1)!

𝑛𝑘
= 𝑛!

𝑛−1

 𝑘=0

 

 

2. Let 𝑛,𝑚 be positive integers. Provide combinatorial proofs for the following identities. 

a)  (
2𝑛

2
) = 2 (

𝑛

2
) + 𝑛2, 

b)  (
𝑚 + 𝑛

2
) = (

𝑚

2
) + (

𝑛

2
) +𝑚𝑛, 

 

c)  ∑𝑘3 (
𝑛

𝑘
)

𝑛

𝑘=1

= 𝑛2(𝑛 + 3)2𝑛−3, 

d)  ∑2𝑘 (
𝑛

𝑘
)

𝑛

𝑘=0

= 3𝑛. 
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3. Evaluate  

a)  ∑ (−1)𝑘𝑘𝑛(2𝑛
𝑘
)

2𝑛

𝑘=0
,  

b)  ∑ (−1)𝑘 (
𝑛

𝑘
)

𝑛

𝑘=0
(1 −

𝑘

𝑛
), 

c)  ∑ (−1)𝑘(𝑛
𝑘
)
3𝑛

𝑘=0
,  

d)  ∑ (
𝑛

𝑘
)

𝑛

𝑘=0
2𝑘−𝑛, 

e)   ∑ (
2𝑘

𝑘
)

𝑛

𝑘=0
4−𝑘 , 

4. Let 𝐴 be a set with 𝑛 elements. Show that 

∑ |𝑋 ∪ 𝑌|

𝑋,𝑌⊂𝐴

=
3𝑛

4
, 

∑ |𝑋 ∩ 𝑌|

𝑋,𝑌⊂𝐴

=
𝑛

4
. 

5. Let 𝐴 be a set with 𝑛 elements and 𝑋, 𝑌 are two arbitrary subsets with |𝐴| = |𝐵| = 𝑘 elements. 

Compute the expected values of |𝑋 ∩ 𝑌| and |𝑋 ∪ 𝑌|. 

6. Show that for any nonnegative integer 𝑛, the equation (𝑎
1
) + (𝑏

2
) + (𝑐

3
) = 𝑛 has a unique solution. 

7. Show that if 8|𝑛, then the number of subsets of {1, … , 𝑛} whose number of elements is divisible by 

4 is 2𝑛−2 + 2𝑛 2⁄ −1. Discuss the case when 8 ∤ 𝑛.  

8. Let 𝑝 be a prime and  𝑛, 𝑘 nonnegative integers. Show that 

a) (
𝑝 − 1
𝑘
) ≡ (−1)𝑘  (mod 𝑝)  

b)  (
𝑝
𝑘
) ≡ 0 (mod 𝑝) 𝑘 = 1, 2, … , 𝑝 − 1. 

c)  (
2𝑛
𝑛
) ≡ (−4)𝑛 (

(𝑝 − 1) 2⁄
𝑛

)  (mod 𝑝)     where 𝑛 ≤
𝑝 − 1

2
. 

9. Show that the coefficient of 𝑥𝑘 in (1 + 𝑥 + 𝑥2 + 𝑥3)𝑛 is ∑ (𝑛
𝑖
)( 𝑛
𝑘−2𝑖

)
𝑘

𝑖=0
. 

10. In this question we focus on parities of binomial coefficients in Pascal’s triangle. 

a) Prove that the number of odd binomial coefficients in 𝑛-th row of Pascal triangle is equal to 

2𝑟 , where 𝑟 is the number of 1’s in the binary expansion of 𝑛. 

b) Prove that if 𝑛 = 2𝑘 − 1 for some 𝑘, then (𝑛
𝑚
) is odd for all 𝑚 = 0,1, … , 𝑛. 

c) Let 𝑛 be odd. Show that the set {(𝑛
1
), (𝑛

2
), … , (𝑛

𝑚
)} , where 𝑚 = (𝑛 − 1)/2,  contains an odd 

number of odd integers. 

d) Prove that in the first 106 rows of Pascal’s triangle, the percentage of odd coefficients is less 

than 1%. 

11. Let 𝑘 be a fixed positive integer. Show that 
𝑑

𝑑𝑥
(𝑥
𝑘
) = (𝑥

𝑘
)∑

1

𝑥−𝑖

𝑘−1
𝑖=0 . 

12. Let 𝑘 be a fixed positive integer. Find the local maximum value of the function 𝑓(𝑥) = (𝑥
𝑘
). 
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L I S T  O F  B A S I C  I D E N T I T I E S  I N V O L V I N G  B I N O M I A L  C O E F F I C I E N T S  
 

In the following, 𝑛,𝑚 and ℎ are nonnegative integers, 𝑟 and 𝑠 are real numbers. 

Basic Definition 

(
𝑟

𝑚
) =

𝑟(𝑟 − 1)⋯ (𝑟 − 𝑘 + 1)

𝑘!
     

(
𝑛

𝑚
) =

𝑛!

𝑚! (𝑛 − 𝑚)!
 

Factorial  
Expansion 

Special Values 

(
0

𝑚
) = 0  

(
𝑟

0
) = (

𝑛

𝑟
) = 1  

(
𝑟

1
) = (

𝑟

𝑟 − 1
) = 𝑟  

(
𝑟

2
) = (

𝑟

𝑟 − 2
) =

𝑟(𝑟 − 1)

2
  

Symmetry 

(
𝑟

𝑚
) = (

𝑟

𝑛 − 𝑚
) 

 

Factoring 

(
𝑟

𝑚
) =

𝑟

𝑟 − 𝑚
(
𝑟 − 1

𝑚
) 

 

(
𝑟

𝑚
) =

𝑟

𝑚
(
𝑟 − 1

𝑚 − 1
) Absorption  

𝑚≠0 

(
𝑟

𝑚
) =

𝑟 −𝑚 + 1

𝑚
(
𝑟

𝑚 − 1
) 𝑚≠0 

Basic Identities 

(
𝑟

𝑚
) = (−1)𝑚 (

𝑚 − 𝑟 − 1

𝑚
) Upper  

Negation 

(
𝑟 − 1

𝑚
) − (

𝑟 − 1

𝑚 − 1
) =

𝑟 − 2𝑚

𝑟
(
𝑟

𝑚
) 𝑟 ≠ 0 

(
𝑟 − 1

𝑚
) + (

𝑟 − 1

𝑚 − 1
) = (

𝑟

𝑚
) Basic Recursion  

Pascal’s Identity 

(
𝑟

𝑚
) (
𝑟 − 𝑚

ℎ
) = (

𝑟

ℎ
) (
𝑟 − ℎ

𝑚
) 

 

(
𝑟

𝑚
) (
𝑚

ℎ
) = (

𝑟

ℎ
) (
𝑟 − ℎ

𝑚 − ℎ
) 

Trinomial Revision 

Generating Functions 

∑(
𝑟

𝑘
)𝑥𝑘

∞

𝑘=0

= (1 + 𝑥)𝑟  

∑(
𝑛

𝑘
)𝑥𝑛

∞

𝑛=0

=
𝑥𝑘

(1 − 𝑥)𝑘+1
  

∑ (
𝑛

𝑘
) 𝑥𝑘𝑦𝑛

∞

𝑛,𝑘=0

=
1

1 − 𝑦 − 𝑥𝑦
  

∑ (
𝑛 + 𝑘

𝑘
) 𝑥𝑘𝑦𝑛

∞

𝑛,𝑘=0

=
1

1 − 𝑥 − 𝑦
  

∑
1

(𝑛 + 𝑘)!
 (
𝑛 + 𝑘

𝑘
) 𝑥𝑘𝑦𝑛

∞

𝑛,𝑘=0

= 𝑒𝑥+𝑦 

∑ (−1)𝑘 (
−𝑛

𝑘
) 𝑥𝑘

∞

𝑘=0
=

1

(1 − 𝑥)𝑟
 

 

Row-Column-Diagonal Sums 

∑(
𝑛

𝑘
)

𝑛

𝑘=0

= 2𝑛 
Lower  
Summation 

∑(−1)𝑘 (
𝑛

𝑘
)

𝑚

𝑘=0

= (−1)𝑚 (
𝑛 − 1

𝑚
) 

Alternating 
Lower  
Summation 

∑(
𝑖

𝑘
) = (

𝑛 + 1

𝑘 + 1
)

𝑛

𝑖=0

 Upper  
Summation 

∑(
𝑘 + 𝑖

𝑖
) = (

𝑛 + 1

𝑘 + 1
)

𝑛

𝑖=0

 Parallel  
Summation 

∑ (
𝑛 − 𝑘

𝑘
)

⌊𝑛 2⁄ ⌋

𝑘=0

= 𝔣𝑛+1 Column Sums 

Finite Sums 

∑(
𝑛

2𝑘
)

𝑛

𝑘=0

= 2𝑛−1 Number of  
Even Subsets 

∑(
𝑛

2𝑘 + 1
)

𝑛

𝑘=0

= 2𝑛−1 Number of   
Odd Subsets 

∑𝑘(
𝑛

𝑘
)

𝑛

𝑘=0

= 𝑛2𝑛−1 Sum of Subset 
Cardinalities 

∑𝑘2 (
𝑛

𝑘
)

𝑛

𝑘=0

= 𝑛(𝑛 + 1)2𝑛−2  

Sums of Products 

∑(
𝑠

𝑘
)(
𝑟 − 𝑠

𝑚 − 𝑘
)

𝑚

𝑘=0

= (
𝑟

𝑚
) Vandermonde 

 Convolution 

∑(
𝑛

𝑖
)
2

𝑛

𝑖=0

= (
2𝑛

𝑛
) Square  

Summation 

∑ (
𝑚

𝑗
) (
𝑛 −𝑚

𝑘 − 𝑗
)

𝑛

𝑚=0

= (
𝑛 + 1

𝑘 + 1
)  

∑(
𝑛

𝑘
) (
𝑛 − 𝑘

𝑚 − 𝑘
)

𝑛

𝑘=0

= (
𝑛

𝑚
)2𝑚  

∑(
𝑛

𝑘
)(
𝑘

𝑚
)

𝑛

𝑘=𝑖

= (
𝑛

𝑖
) 2𝑛−𝑚 

Subset Subset 
Sum 

Binomial Inversion 

𝑔𝑛 =∑(−1)𝑘 (
𝑛

𝑘
) 𝑓𝑘

𝑛

𝑘=0

⇔ 𝑓𝑛 =∑(−1)𝑘 (
𝑛

𝑘
)𝑔𝑘

𝑛

𝑘=0

 

or 

𝑔𝑛 =∑(
𝑛

𝑘
) 𝑓𝑘

𝑛

𝑘=0

⇔ 𝑓𝑛 =∑(−1)𝑛−𝑘 (
𝑛

𝑘
)𝑔𝑘

𝑛

𝑘=0

 

 

MONIC NUMBERS 
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The sum of reciprocals of first 𝑛 positive integers is 𝑛-th harmonic number. Harmonic numbers 

are important in many brances of mathematics, especially in number theory. Harmonic numbers are 

called harmonic series as well. They are closely related to the Riemann zeta function, and appear in 

the expressions of various special functions. 

 

 

For each positive integer 𝑛, the 𝑛 th harmonic number 𝑯𝒏 is defined as 

𝐻𝑛 = 1 +
1

2
+
1

3
+ ⋯+

1

𝑛
 

and by convention 𝐻0 = 0. 

 

H A R M O N I C  N U M B E R S  A N D  L O G A R I T H M I C  F U N C T I O N  
 

As 𝐻𝑛 = ∑
1

𝑘
𝑛
𝑘=1  and the logarithmic function computes ln(𝑛) = ∫

1

𝑥

𝑛

1
𝑑𝑥 harmonic numbers can 

be visualized as the discrete version of the logarithmic function. In fact, the similarity is quite be-

yond just being visual. For example, we may compare the derivative 
𝑑

𝑑𝑥
ln 𝑥 =

1

𝑥
 of the logarithmic 

function and the finite difference Δ𝐻𝑘 =
1

𝑘+1
 of the harmonic number.  

  

https://en.wikipedia.org/wiki/Number_theory
https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
https://en.wikipedia.org/wiki/Riemann_zeta_function
https://en.wikipedia.org/wiki/Special_function
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It is easy to observe that for 𝑛 > 1, 

ln 𝑛 < 𝐻𝑛 < 1 + ln𝑛. 

 

 

 

 

 

Following figure illustrates the graphs of 𝑦 = ln 𝑥, 𝑦 = 1 + ln 𝑥 and 𝑦 = 𝐻𝑥. 

 

 

It follows that a rough approximation for 𝐻𝑛 is  

𝐻𝑛 ≈ ln 𝑛. 

The observation 𝐻𝑛 > ln𝑛 implies divergence of the sequence {𝐻𝑛}. Below theorem proves 

this fact with a different approach.  

THEOREM 2.1. The sequence {𝐻𝑛} is divergent. 

Proof. Write 

𝐻2𝑘 = 1 +
1

2
+

1

3
+
1

4⏟  
2 terms

smallest 1/4

+
1

5
+
1

6
+
1

7
+
1

8⏟        
4 terms

smallest 1/8

+⋯+
1

2𝑘−1 + 1
+⋯+

1

2𝑘⏟            
2𝑘−1 terms
smallest 1 2𝑘⁄

⏞                                  
𝑘−1 groups,   sum of each >1/2

. 

It follows that for 𝑘 > 1, 

𝐻2𝑘 > 1 +
𝑘

2
 

which implies that {𝐻𝑛} is divergent. ∎ 
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THEOREM 2.2. For any integer 𝑛 > 1, 

1 +
𝑛

2
< 𝐻2𝑛 < 𝑛. 

Proof. First inequality is already obtained in the proof of previous theorem. For any positive 

integer 𝑛, we have 𝐻𝑛 ≤ 1 + ln𝑛. In particular for any 𝑘 > 1,  𝐻2𝑘 < 1 + 𝑘 ln 2 < 𝑘.  ∎ 

 

THEOREM 2.3. 𝐻𝑛 is an integer only when 𝑛 = 1. 

Proof. Let 𝑛 > 1 and 𝑏 be the least common multiple of the integers 1,… , 𝑛. We can write 𝑏 =

2𝑘𝑚 for some odd integer 𝑚 and 𝑘 > 1 such that 2𝑘 ≤ 𝑛. Then 𝑏𝐻𝑛 =
𝑏

1
+
𝑏

2
+⋯+

𝑏

2𝑘
+⋯+

𝑏

𝑛
 and 

exactly one term on the right hand side is odd. Therefore, the sum on right hand side is odd. Since 

𝑏 is even, 𝐻𝑛 cannot be an integer.   ∎ 

 

 

G E N E R A T I N G  F U N C T I O N  O F  {𝑯𝒏}  
 

THEOREM 2.4. Generating function of {𝐻𝑛} is  

−
ln(1 − 𝑥)

1 − 𝑥
=∑𝐻𝑛𝑥

𝑛

∞

𝑘=1

. 

Proof. By integrating both sides of  
1

1−𝑥
= ∑ 𝑥𝑘∞

𝑘=0 , we see that − ln(1 − 𝑥) = ∑
𝑥𝑘

𝑘
∞
𝑘=1   is the 

generating function of the sequence 1,
1

2
,
1

3
, … of reciprocals of natural numbers. Consequently, 

− ln(1 − 𝑥) ⋅
1

1−𝑥
 is the generating function of the partial sums of reciprocals of natural numbers, 

namely the harmonic numbers.  ∎ 

 

 

GENERALIZED HARMONIC NUMBERS - A BETTER APPROXIMATION FOR 𝑯𝒏 

 

For any integer 𝑟 > 1, the generalized harmonic number 𝐻𝑛
(𝑟) is defined as follows 

𝐻𝑛
(𝑟) =∑

1

𝑘𝑟

𝑛

𝑘=1
. 
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Since the series ∑ 1 𝑘𝑟⁄∞
𝑘=0  is convergent when 𝑟 > 1, we can define 

 

휁(𝑟) = lim
𝑛→∞

∑
1

𝑘𝑟

𝑛

𝑘=𝑟

= 𝐻∞
(𝑟). 

 

The function 𝑧 ↦ 휁(𝑧) is called Riemann3 zeta function. Euler has proven that if 𝑛 is a positive 

integer, then 

휁(2𝑛) =
𝑝

𝑞
𝜋2𝑛 

for some positive integers 𝑝 and 𝑞. No such representation in terms of 𝜋 is known for the values 

ζ(2n+1).  

 

 Some values of 휁 function are 

휁(2) =
𝜋2

6
  

 

휁(3) = 1.20205⋯ 

휁(4) =
𝜋4

90
  휁(5) = 1.03692⋯ 

휁(6) =
𝜋6

945
  휁(7) = 1.00834⋯ 

Derivative of the function 𝐹(𝑥) = ∑
𝑥−𝑖

𝑖
∞
𝑖=1 = ∑

1

𝑖
(
1

𝑥
)
𝑖

∞
𝑖=1  is 

𝐹′(𝑥) =∑−
1

𝑥2
(
1

𝑥
)
𝑖−1∞

𝑖=1

= −
1

𝑥2
∑(

1

𝑥
)
𝑖∞

𝑖=0

 

= −
1

𝑥2
(

1

1 −
1
𝑥

) 

= −
1

𝑥(𝑥 − 1)
 

=
1

𝑥
−

1

(𝑥 − 1)
. 

                                                           
3 Georg Friedrich Bernhard Riemann (1826-1866), German mathematician. 
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It follows that ln 𝑥 − ln(𝑥 − 1) = ∫(
1

𝑥
−

1

(𝑥−1)
)𝑑𝑡 = ∫𝐹′(𝑥)𝑑𝑥 = 𝐹(𝑥) = ∑

1

𝑖
(
1

𝑥
)
𝑖

∞
𝑖=0 . Then we 

have ln
𝑘

𝑘−1
=
1

𝑘
+

1

2𝑘2
+

1

3𝑘3
+⋯ which is convergent for 𝑘 > 1. Write the equations for 𝑘 =

2,3,⋯ , 𝑛 ∶ 

𝑘 = 2  ln 2 − ln 1 =
1

2
+

1

2⋅22
+⋯ 

𝑘 = 3   ln 3 − ln 2 =
1

3
+

1

2⋅32
+⋯ 

       ⋮   ⋮   

𝑘 = 𝑛  ln 𝑛 − ln(𝑛 − 1) =
1

𝑛
+

1

2⋅𝑛2
+⋯ 

Term by term summation gives 

ln 𝑛 − ln 1 = 𝐻𝑛 − 1 +
1

2
(𝐻𝑛

(2)
− 1) +

1

3
(𝐻𝑛

(3)
− 1) +⋯ 

= 𝐻𝑛 − 1 +∑
1

𝑘
(𝐻𝑛

(𝑘) − 1)

∞

𝑘=2

 

or  

𝐻𝑛 − ln 𝑛 = 1 −∑
1

𝑘
(𝐻𝑛

(𝑘)
− 1)

∞

𝑘=2

. 

The limit   lim
𝑛→∞

[1 − ∑
1

𝑘
(𝐻𝑛

(𝑘)
− 1)∞

𝑘=2 ] =1 − ∑
1

𝑘
(휁(𝑘) − 1)∞

𝑘=2  exists and its value 𝛾 is known as 

Euler4 Mascheroni5 constant6, that is 

1 −∑
1

𝑘
(휁(𝑘) − 1)

∞

𝑘=2

= 𝛾. 

Now we have 

lim
𝑛→∞

(𝐻𝑛 − ln𝑛) = 1 −
1

2
(휁(2) − 1) −

1

3
(휁(3) − 1) −⋯ = 𝛾. 

As a precise approximation for 𝐻𝑛 we can write 

𝐻𝑛 ≈ ln𝑛 + 𝛾. 

                                                           
4 Leonhard Euler (1707-1703), Swiss mathematician. One of the greatest three mathematicians of all times. 
5 Lorenzo Mascheroni (1750-1800), Italian mathematician. 
6   𝛾 = 0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992⋯ 
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In fact 

𝐻𝑛 = ln𝑛 + 𝛾 +
1

2𝑛
−

1

12𝑛2
+

휀𝑛
120𝑛4

            0 < 휀𝑛 < 1. 

Two useful bounds for 𝐻𝑛 are given by the following inequalities: 

1

2(𝑛 + 1)
<   𝐻𝑛 − ln 𝑛 − 𝛾 <

1

2𝑛
 , 

1

24(𝑛 + 1)2
< 𝐻𝑛 − ln (𝑛 +

1

2
) − 𝛾 <

1

24𝑛2
 .   

 

 

F I N I T E  S U M S  I N V O L V I N G  H A R M O N I C  N U M B E R S  
 

In this section we compute the first nine of the following finite sums:  

∑𝐻𝑘

𝑛

𝑘=1

= (𝑛 + 1)𝐻𝑛 − 𝑛 

∑𝐻𝑘
(𝑟)

𝑛

𝑘=1

= (𝑛 + 1)𝐻𝑛
(𝑟) −𝐻𝑛

(𝑟−1) 

∑𝑘𝐻𝑘

𝑛

𝑘=1

=
𝑛(𝑛 + 1)

2
(𝐻𝑛+1 −

1

2
 ) 

∑∑𝐻𝑖

𝑘

𝑘=𝑖

𝑛

𝑘=1

= (
𝑛 + 2

2
) (𝐻𝑛+2 − 𝐻2) 

∑
𝐻𝑘
𝑘

𝑛

𝑘=1

=
1

2
((𝐻𝑛)

2 +𝐻𝑛
(2)) 

∑(−1)𝑘−1
1

𝑘
(
𝑛 − 1

𝑘 − 1
) 

𝑛

𝑘=1

=
1

𝑛
 

∑(−1)𝑘−1
𝑛

𝑘=1

(
𝑛

𝑘
)
1

𝑘
= 𝐻𝑛  

∑(−1)𝑘−1
𝑛

𝑘=1

(
𝑛

𝑘
)𝐻𝑘 =

1

𝑛
 

∑ (
𝑘

𝑚
)𝐻𝑘

𝑛

𝑘=𝑚

= (
𝑛 + 1

𝑚 + 1
) (𝐻𝑛+1 −

1

𝑚 + 1
) 

∑(
𝑛

𝑘
)𝐻𝑘

𝑛

𝑘=0

= 2𝑛 (𝐻𝑛 −∑
1

𝑘2𝑘

𝑛

𝑘=1

) 

∑(
𝑛

𝑘
)
2

𝐻𝑘

𝑛

𝑘=1

= (
2𝑛

𝑛
) (2𝐻𝑛 − 𝐻2𝑛) 
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PROPOSITION 2.5. Partial sums of harmonic numbers and generalized harmonic numbers are 

as follows: 

∑𝐻𝑘

𝑛

𝑘=1

= (𝑛 + 1)𝐻𝑛 − 𝑛, 

∑𝐻𝑘
(𝑟)

𝑛

𝑘=1

= (𝑛 + 1)𝐻𝑛
(𝑟)
−𝐻𝑛

(𝑟−1)
. 

 

Proof. For the partial sums of harmonic numbers 

∑𝐻𝑘 =

𝑛

𝑘=1

∑∑
1

𝑖

𝑘

𝑖=1

𝑛

𝑘=1

=∑∑
1

𝑖

𝑛

𝑘=𝑖

𝑛

𝑖=1

 

= ∑
𝑛 − 𝑖 + 1

𝑖

𝑛

𝑘=1

  

= (𝑛 + 1)∑
1

𝑖

𝑛

𝑘=1

− 𝑛 

= (𝑛 + 1)𝐻𝑛 − 𝑛. 

For the partial sums of generalized harmonic numbers we have 

∑𝐻𝑘
(𝑟)

𝑛

𝑘=1

= ∑∑
1

𝑖𝑟

𝑘

𝑖=1

𝑛

𝑘=1

 

=∑
1

𝑖𝑟
(𝑛 + 1 − 𝑖)

𝑛

𝑖=1

 

= (𝑛 + 1)𝐻𝑛
(𝑟)
−𝐻𝑛

(𝑟−1)
. 

This completes the proof. ∎ 

We could obtain the first equality of the above proposition using the generating functions. Let 

{𝑆𝑛} be the sequence of partial sums of harmonic numbers, namely {𝑆𝑛}  = 𝐻1 +⋯+𝐻𝑛. Since 

generating function of {𝐻𝑛} is −
ln(1−𝑥)

1−𝑥
, generating function of 𝑆𝑛 is −

ln(1−𝑥)

1−𝑥
⋅
1

1−𝑥
. That is 

−
ln(1 − 𝑥)

(1 − 𝑥)2
=∑𝑆𝑛𝑥

𝑛

∞

𝑛=1

=∑(∑𝐻𝑘

𝑛

𝑘=1

) 𝑥𝑛
∞

𝑛=1

. 

On the other hand − ln(1 − 𝑥) =∑
𝑥𝑖

𝑖
∞
𝑖=1  and  

1

(1−𝑥)2
= ∑ 𝑗∞

𝑗=1 𝑥
𝑗−1  so we get 
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−
ln(1 − 𝑥)

(1 − 𝑥)2
=∑

𝑥𝑖

𝑖

∞

𝑖=1

⋅∑𝑗

∞

𝑗=1

𝑥𝑗−1  = ∑∑
𝑗

𝑖
𝑥𝑖+𝑗−1

∞

𝑗=1

∞

𝑖=1

 

=∑(∑(
𝑛 + 1 − 𝑘

𝑘
)

𝑛

𝑘=1

)

∞

𝑛=1

𝑥𝑛 

=∑((𝑛 + 1)𝐻𝑛 − 𝑛))

∞

𝑛=1

𝑥𝑛. 

It follows that 𝑆𝑛 = (𝑛 + 1)𝐻𝑛 − 𝑛, in other words 

∑𝐻𝑘

𝑛

𝑘=0

= (𝑛 + 1)𝐻𝑛 − 𝑛. 

Now define {𝜉𝑛} to be the sequence of partial sums of {𝑆𝑛}, that is 𝜉𝑛 = 𝑆1 + 𝑆2 +⋯+ 𝑆𝑛. Gen-

erating function of {𝑆𝑛} is −
ln(1−𝑥)

(1−𝑥)2 
, so generating function of {𝜉𝑛} is −

ln(1−𝑥)

(1−𝑥)3
:  

−
ln(1 − 𝑥)

(1 − 𝑥)3
= ∑𝜉𝑛

∞

𝑛=1

𝑥𝑛  =  ∑(∑𝑆𝑖

𝑛

𝑖=1

)

∞

𝑛=1

𝑥𝑛  

= ∑(∑((𝑘 + 1)𝐻𝑘 − 𝑘)

𝑛

𝑘=1

)

∞

𝑛=1

𝑥𝑛 

= ∑((𝑛 + 1)𝐻𝑛 −
𝑛(𝑛 + 3)

2
+∑𝑘𝐻𝑘

𝑛

𝑘=1

)

∞

𝑛=1

𝑥𝑛 . 

which implies that 

𝜉𝑛 = (𝑛 + 1)𝐻𝑛 −
𝑛(𝑛 + 3)

2
+∑𝑘𝐻𝑘.

𝑛

𝑘=1

 

On the other hand 

−
ln(1 − 𝑥)

(1 − 𝑥)3
=∑

𝑥𝑖

𝑖

∞

𝑖=1

⋅∑(
𝑗 + 2

2
)

∞

𝑗=0

𝑥𝑗  

= ∑
𝑥𝑖

𝑖

∞

𝑖=1

⋅∑(
𝑗 + 1

2
)

∞

𝑗=1

𝑥𝑗−1 

=
1

2
∑
𝑥𝑖

𝑖

∞

𝑖=1

⋅∑𝑗(𝑗 + 1)

∞

𝑗=1

𝑥𝑗−1  

= 
1

2
∑∑

𝑗(𝑗 + 1)

𝑖
𝑥𝑖+𝑗−1

∞

𝑗=1

∞

𝑖=1
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=
1

2
∑(∑(

(𝑛 + 1 − 𝑘)(𝑛 + 2 − 𝑘)

𝑘
)

𝑛

𝑘=1

)

∞

𝑛=1

𝑥𝑛 

=
1

2
∑((𝑛 + 1)(𝑛 + 2)𝐻𝑛 − 𝑛(2𝑛 + 3) +

𝑛(𝑛 + 1)

2
)

∞

𝑛=1

𝑥𝑛 

=
1

2
∑((𝑛 + 1)(𝑛 + 2)𝐻𝑛 −

3𝑛2 + 5𝑛

2
)

∞

𝑛=1

𝑥𝑛 

so that 

𝜉𝑛 =
1

2
((𝑛 + 1)(𝑛 + 2)𝐻𝑛 −

3𝑛2 + 5𝑛

2
). 

Now we have 

(𝑛 + 1)𝐻𝑛 −
𝑛(𝑛 + 3)

2
+∑𝑘𝐻𝑘

𝑛

𝑖=1

=
1

2
((𝑛 + 1)(𝑛 + 2)𝐻𝑛 −

3𝑛2 + 5𝑛

2
) 

which can be rearranged to write 

∑𝑘𝐻𝑘

𝑛

𝑘=1

=
1

2
(((𝑛 + 1)(𝑛 + 2) − 2(𝑛 + 1))𝐻𝑛 + 𝑛(𝑛 + 3) −

3𝑛2 + 5𝑛

2
) 

=
1

2
(𝑛(𝑛 + 1)𝐻𝑛 −

𝑛2

2
+
𝑛

2
)  =  

1

2
(𝑛(𝑛 + 1)𝐻𝑛+1 −

𝑛2

2
−
𝑛

2
) 

which simplifies into 

∑𝑘𝐻𝑘

𝑛

𝑘=1

=
𝑛(𝑛 + 1)

2
(𝐻𝑛+1 −

1

2
). 

 

PROPOSITION 2.6. For any positive integer 𝑛,  

∑𝑘𝐻𝑘

𝑛

𝑘=1

=
𝑛(𝑛 + 1)

2
(𝐻𝑛+1 −

1

2
 ) , 

∑∑𝐻𝑖

𝑘

𝑘=𝑖

𝑛

𝑘=1

= (
𝑛 + 2

2
) (𝐻𝑛+2 −𝐻2). 
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Proof. In the paragraph preceding the statement of the proposition, the first equality has been 

obtained already. The second equality follows easily from the first one: 

∑∑𝐻𝑖

𝑘

𝑘=𝑖

𝑛

𝑘=1

=∑((𝑘 + 1)𝐻𝑘 − 𝑘)

𝑛

𝑘=1

  

= ∑(𝑘𝐻𝑘 + 𝐻𝑘 − 1))

𝑛

𝑘=1

 

=
𝑛(𝑛 + 1)

2
(𝐻𝑛+1 −

1

2
) + (𝑛 + 1)𝐻𝑛 − 𝑛 −

𝑛(𝑛 + 1)

2
 

=
(𝑛 + 1)(𝑛 + 2)

2
(𝐻𝑛+2 −

3

2
). 

By writing 
(𝑛+1)(𝑛+2)

2
= (𝑛+2

2
) and 

3

2
= 𝐻2 we obtain the desired equality.  ∎ 

PROPOSITION 2.7. For any positive integer 𝑛,  

∑
𝐻𝑘
𝑘

𝑛

𝑘=1

=
1

2
((𝐻𝑛)

2 +𝐻𝑛
(2)
). 

Proof.  We write 

∑
𝐻𝑘
𝑘

𝑛

𝑘=1

=∑∑
1

𝑘

𝑘

𝑖=1

⋅
1

𝑖

𝑛

𝑘=1

 = ∑
1

𝑖
∑
1

𝑘

𝑛

𝑘=𝑖

𝑛

𝑖=1

=∑
1

𝑖
(𝐻𝑛 − 𝐻𝑖−1)

𝑛

𝑖=1

 

= (𝐻𝑛)
2 −∑

1

𝑖
𝐻𝑖−1

𝑛

𝑖=1

 =  (𝐻𝑛)
2 −∑

1

𝑖
(𝐻𝑖 −

1

𝑖
)

𝑛

𝑖=1

 

= (𝐻𝑛)
2 −∑

1

𝑖
𝐻𝑖   

𝑛

𝑖=1

+∑
1

𝑖2

𝑛

𝑖=1

  

which results in 2∑
𝐻𝑘

𝑘
𝑛
𝑘=1 = (𝐻𝑛)

2 +𝐻𝑛
(2).  ∎ 

PROPOSITION 2.8. For any positive integer 𝑛, 

∑(−1)𝑘−1
1

𝑘
(
𝑛 − 1

𝑘 − 1
) 

𝑛

𝑘=1

=
1

𝑛
 , 

∑(−1)𝑘−1
1

𝑘

𝑛

𝑘=1

(
𝑛

𝑘
) = 𝐻𝑛 , 

∑(−1)𝑘−1
𝑛

𝑘=1

(
𝑛

𝑘
)𝐻𝑘 =

1

𝑛
 . 
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Proof. We compute the sum on the right hand side of the first equality: 

∑(−1)𝑘−1
1

𝑘
(
𝑛 − 1

𝑘 − 1
) 

𝑛

𝑘=1

=
1

𝑛
∑(−1)𝑘−1 (

𝑛

𝑘
)

𝑛

𝑘=1

 

= 
1

𝑛
(1 −∑(−1)𝑘 (

𝑛

𝑘
) 

𝑛

𝑘=0

) 

=
1

𝑛
(1 − (1 − 1)𝑛) 

= 
1

𝑛
. 

Similarly, for the second one we have: 

∑(−1)𝑘−1
1

𝑘

𝑛

𝑘=1

(
𝑛

𝑘
) = ∑(−1)𝑘

1

𝑘 + 1

𝑛−1

𝑘=0

(
𝑛

𝑘 + 1
) 

= ∑(−1)𝑘
1

𝑘 + 1

𝑛−1

𝑘=0

∑(
𝑖

𝑘
)

𝑛−1

𝑖=𝑘

 

= ∑∑(−1)𝑘
1

𝑘 + 1
(
𝑖

𝑘
) 

𝑖

𝑘=0

𝑛−1

𝑖=0

 

= ∑∑(−1)𝑘−1
1

𝑘
(
𝑖

𝑘 − 1
) 

𝑖+1

𝑘=1

𝑛−1

𝑖=0

 

= ∑
1

1 + 𝑖
 

𝑛−1

𝑖=0

 

= 𝐻𝑛. 

Since ∑ (−1)𝑘(𝑛
𝑘
)𝑛

𝑘=0 = 0, we can write −∑ (−1)𝑘(𝑛
𝑘
)𝑛

𝑘=𝑖 = ∑ (−1)𝑘(𝑛
𝑘
)𝑖−1

𝑘=0 . We use this equal-

ity to prove the last inequality: 

∑(−1)𝑘−1
𝑛

𝑘=1

(
𝑛

𝑘
)𝐻𝑘 =∑∑(−1)𝑘−1 (

𝑛

𝑘
)
1

𝑖

𝑘

𝑖=1

𝑛

𝑘=1

 

=∑
1

𝑖
∑(−1)𝑘−1 (

𝑛

𝑘
)

𝑛

𝑘=𝑖

𝑛

𝑖=1
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=∑
1

𝑖
∑(−1)𝑘 (

𝑛

𝑘
)

𝑖−1

𝑘=0

𝑛

𝑖=1

 

=∑
1

𝑖
(−1)𝑖−1 (

𝑛 − 1

𝑖 − 1
)

𝑛

𝑖=1

 

=
1

𝑛
∑(−1)𝑖−1 (

𝑛

𝑖
)

𝑛

𝑖=1

 

=
1

𝑛
.    ∎ 

Note that, the equality ∑ (−1)𝑖(𝑛
𝑖
)𝑡

𝑖=0 = (−1)𝑖(𝑛−1
𝑖
), which holds for all integers 0 < 𝑛 and 𝑡 <

𝑛,  is used in the proof.     

A one line proof of the last equality is obtained once we notice that, from the second equality,  

{𝐻𝑛} is transform of {
1

𝑛
} under binomial inversion. Thus the third equality follows immediately. 

PROPOSITION 2.9. For any positive integers 𝑛 and 𝑚 

∑ (
𝑘

𝑚
)𝐻𝑘

𝑛

𝑘=𝑚

= (
𝑛 + 1

𝑚 + 1
) (𝐻𝑛+1 −

1

𝑚 + 1
). 

Proof. 

∑ (
𝑘

𝑚
)𝐻𝑘

𝑛

𝑘=𝑚

= ∑∑
1

𝑘
(
𝑘

𝑚
)

𝑘

𝑖=1

𝑛

𝑘=𝑚

 

= ∑∑
1

𝑖
(
𝑘

𝑚
)

𝑘

𝑖=1

𝑛

𝑘=𝑚

 

= ∑∑
1

𝑖
(
𝑘

𝑚
)

𝑚

𝑖=1

𝑛

𝑘=𝑚

+ ∑ ∑
1

𝑖
(
𝑘

𝑚
)

𝑘

𝑖=𝑚+1

𝑛

𝑘=𝑚+1

 

= (∑ (
𝑘

𝑚
)

𝑛

𝑘=𝑚

)(∑
1

𝑖

𝑚

𝑖=1

) + ∑
1

𝑖
∑(

𝑘

𝑚
)

𝑛

𝑘=𝑖

𝑛

𝑖=𝑚+1

 

= (
𝑛 + 1

𝑚 + 1
)𝐻𝑚 + ∑

1

𝑖

𝑛

𝑖=𝑚+1

((
𝑛 + 1

𝑚 + 1
) − (

𝑖

𝑚 + 1
)) 

= (
𝑛 + 1

𝑚 + 1
)𝐻𝑚 + (

𝑛 + 1

𝑚 + 1
) (𝐻𝑛 −𝐻𝑚) − ∑

1

𝑖

𝑛

𝑖=𝑚+1

(
𝑖

𝑚 + 1
) 
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= (
𝑛 + 1

𝑚 + 1
)𝐻𝑛 −

1

𝑚 + 1
∑ (

𝑖 − 1

𝑚
)

𝑛

𝑖=𝑚+1

 

= (
𝑛 + 1

𝑚 + 1
)𝐻𝑛 −

1

𝑚 + 1
(
𝑛

𝑚 + 1
) 

= (
𝑛 + 1

𝑚 + 1
)𝐻𝑛+1 −

1

𝑛 + 1
(
𝑛 + 1

𝑚 + 1
) −

1

𝑚 + 1
(
𝑛

𝑚 + 1
) 

= (
𝑛 + 1

𝑚 + 1
)𝐻𝑛+1 −

1

𝑚 + 1
(
𝑛

𝑚
) −

1

𝑚 + 1
(
𝑛

𝑚 + 1
) 

= (
𝑛 + 1

𝑚 + 1
)𝐻𝑛+1 −

1

𝑚 + 1
((
𝑛

𝑚
) + (

𝑛

𝑚 + 1
)). 

Now, using the identity (𝑛
𝑚
) + ( 𝑛

𝑚+1
) = (𝑛+1

𝑚+1
) we obtain the desired equality.  ∎ 

 

AN INTEGRAL REPRESENTATION AND EXTENSION TO REAL NUMBERS  

A direct consequence of the identity 
1−𝑥𝑛

1−𝑥
= 1 + 𝑥 +⋯+ 𝑥𝑛−1 is  

𝐻𝑛 = ∫
1 − 𝑥𝑛

1 − 𝑥
𝑑𝑥

1

0

. 

With the transform 𝑢 = 1 − 𝑥 in the above integral we get 

𝐻𝑛 = ∫
1 − (1 − 𝑢)𝑛

𝑢
𝑑𝑢

1

0

 

= ∫ [∑(−1)𝑘−1 (
𝑛

𝑘
)𝑢𝑘−1

𝑛

𝑘=1

 ] 
1

0

𝑑𝑢 

=∑(−1)𝑘−1 (
𝑛

𝑘
)∫ 𝑢𝑘−1𝑑𝑢

1

0

𝑛

𝑘=1

 

=∑(−1)𝑘−1 
1

𝑘
 

𝑛

𝑘=1

(
𝑛

𝑘
). 
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Then 

𝐻𝑛 =∑(−1)𝑘−1 
1

𝑘
 

𝑛

𝑘=1

(
𝑛

𝑘
). 

 

For any real number 0 < 𝑥 < 1 we define 𝐻𝑥 by setting 

𝐻𝑥 = ∫
1 − 𝑡𝑥

1 − 𝑡

1

0

𝑑𝑡. 

Values of 𝐻𝑥 for 𝑥 > 1 or 𝑥 < 0 can be computed from the recurence 

𝐻𝑥 = 𝐻𝑥−1 +
1

𝑥
. 

Some examples are  

𝐻1
2
= 2 − 2 ln 2, 

𝐻1
3
= 3 −

𝜋

2√3
−
3

2
ln 3, 

𝐻3
4
=
4

3
− 3 ln 2 +

𝜋

2
. 

I D E N T I T I E S  I N V O L V I N G  𝑯𝒙 
 

  

𝐻𝑥 = 𝑥∑
1

𝑘(𝑥 + 𝑘)

∞

𝑘=1

, 

𝐻2𝑥 =
1

2
(𝐻𝑥 + 𝐻𝑥−1

2
) + ln 2, 

∫ 𝐻𝑥𝑑𝑥 = 𝛾,
1

0

 

∫ 𝐻𝑥𝑑𝑥 = 𝑛𝛾 + ln(𝑛!),
𝑛

0

 

∫ 𝐻𝑥
(2)𝑑𝑥 = 𝑎

𝜋2

6
− 𝐻𝑎,

𝑎

0

 

∫ 𝐻𝑥
(3)
𝑑𝑥 = 𝑎휁(3) −

1

2
𝐻𝑎
(2).

𝑎

0
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S O M E  I N F I N I T E  S U M S  I N V O L V I N G  H A R M O N I C  N U M B E R S  
 

∑
1

𝑘(𝑘 + 𝑥)

∞

𝑘=1

= 𝑥 ⋅ 𝐻𝑥  , 

∑
(−1)𝑘−1

𝑘

∞

𝑘=1

(
𝑛

𝑘
)𝐻𝑘 = 𝐻𝑛

(2), 

∑
𝐻𝑘
𝑘2

∞

𝑘=1

= 2휁(3), 

∑
𝐻𝑘
𝑘2𝑘

∞

𝑘=1

=
1

2
휁(2) =

1

12
𝜋2, 

∑
𝐻𝑘
2

𝑘2

∞

𝑘=1

=
17

4
휁(4) =

17

360
𝜋4, 

∑
𝐻𝑘
2

(𝑘 + 1)2

∞

𝑘=1

=
11

4
휁(4) =

11

360
𝜋4, 

∑
𝐻𝑘
𝑘3

∞

𝑘=1

=
5

4
휁(4) =

1

72
𝜋4. 

 

T A B L E  O F  H A R M O N I C  N U M B E R S  
 

𝑛 𝐻𝑛  𝑛 𝐻𝑛  𝑛 𝐻𝑛  𝑛 𝐻𝑛  𝑛 𝐻𝑛  𝑛 𝐻𝑛 

1 1  21 3,64536  41 4,30293  61 4,69626  81 4,97782  100 5,18738 

2 1,50000  22 3,69081  42 4,32674  62 4,71239  82 4,99002  200 5,87803 

3 1,83333  23 3,73429  43 4,35000  63 4,72827  83 5,00207  300 6,28266 

4 2,08333  24 3,77596  44 4,37273  64 4,74389  84 5,01397  400 6,56993 

5 2,28333  25 3,81596  45 4,39495  65 4,75928  85 5,02574  500 6,79282 

6 2,45000  26 3,85442  46 4,41669  66 4,77443  86 5,03737  600 6,97497 

7 2,59286  27 3,89146  47 4,43796  67 4,78935  87 5,04886  700 7,12901 

8 2,71786  28 3,92717  48 4,45880  68 4,80406  88 5,06022  800 7,26245 

9 2,82897  29 3,96165  49 4,47921  69 4,81855  89 5,07146  900 7,38016 

10 2,92897  30 3,99499  50 4,49921  70 4,83284  90 5,08257  1000 7,48547 

11 3,01988  31 4,02725  51 4,51881  71 4,84692  91 5,09356  2000 8,17836 

12 3,10321  32 4,05850  52 4,53804  72 4,86081  92 5,10443  3000 8,58375 

13 3,18013  33 4,08880  53 4,55691  73 4,87451  93 5,11518  4000 8,87139 

14 3,25156  34 4,11821  54 4,57543  74 4,88802  94 5,12582  5000 9,09450 

15 3,31823  35 4,14678  55 4,59361  75 4,90136  95 5,13635  6000 9,27681 

16 3,38073  36 4,17456  56 4,61147  76 4,91451  96 5,14676  7000 9,43095 

17 3,43955  37 4,20159  57 4,62901  77 4,92750  97 5,15707  8000 9,56447 

18 3,49511  38 4,22790  58 4,64625  78 4,94032  98 5,16728  9000 9,68225 

19 3,54774  39 4,25354  59 4,66320  79 4,95298  99 5,17738  10000 9,78760 

20 3,59774  40 4,27854  60 4,67987  80 4,96548  100 5,18738  100000 12,09015 
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P R O B L E M S  I N V O L V I N G  H A R M O N I C  N U M B E R S  
 

There are many interesting problems whose solutions involve harmonic numbers. Here we 

give several examples of such questions. Exercises 9-10, at the end of this section are also exam-

ples of such problems. 

 

Problem 1. Remove those terms in 1 +
1

2
+
1

3
+
1

4
+⋯  such that its denominator in decimal ex-

pansion contains the digit 9, then prove that the sequence is bounded.  

The integers without the digit 9 in the interval [10𝑚−1, 10𝑚 − 1] are 𝑚-digit num-

bers. The first digit from the left cannot be the digits 0 and 9, (8 choices), the other 

digits cannot contain 9, hence nine choices for each. Altogether there are 8 · 9𝑚−1 

such integers. The sum of their reciprocals is less than 8 (
9

10
)
𝑚−1

. The sum of all such 

numbers is therefore less then 

∑ 8(
9

10
)
𝑚−1∞

𝑚=1

= 8 ⋅
1

1 −
9
10

= 80. 

 

Problem 2. Assume that we start keeping snowfall records this year. We wish to find the ex-

pected number of records that will occur in the next 20 years.  

The first year is necessarily a record. The second year will be a record if the snowfall 

in the second year is greater than that in the first year. By symmetry, this probability 

is 1 2⁄ . In general let 𝑃𝑘  be 1 if the 𝑘-th year is a record and 0 otherwise. To find 

𝐸(𝑃𝑘  ), we need only find the probability that the 𝑘-th year is a record. But the record 

snowfall for the first 𝑘 years is equally likely to fall in any one of these years, so 

𝐸(𝑃𝑘  )  =  1/𝑘. Therefore, if 𝑆𝑛 is the total number of records observed in the first 𝑛 

years, (𝑆𝑛) =  1 +
1

2
 +

1

3
 + ⋯+

1

𝑛
= 𝐻𝑛 . Therefore, in ten years the expected 

number of records is 𝐻20 ≈ ln 20 + 𝛾 = 3.98⋯ . 

 

Problem 3. A folk dance performance group of 𝑛 dancers is to be splitted into two circular for-

mations. In how many different ways can this be done? 

Distinguish one of the dancers, say 𝐴 and form the circles groups in two steps: 

- First pick 𝑘 dancers to join 𝐴 and form a circle ((𝑛−1
𝑘
)𝑘! =

(𝑛−1)!

(𝑛−𝑘−1)!
  ways), 

- Next form the second circle with the remaining dancers ((𝑛 − 𝑘 − 2)! ways). 
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Since for each 𝑘 = 0,… , 𝑛 − 2, there are 
(𝑛−1)!

(𝑛−𝑘−1)
 ways, number of total ways is 

(𝑛 − 1)! [
1

𝑛 − 1
+

1

𝑛 − 2
+⋯+

1

2
+ 1] = (𝑛 − 1)! 𝐻𝑛−1. 

The problem actually asks to compute [𝑛
2
]. Thus, we have obtained the relation  

[
𝑛

2
] = (𝑛 − 1)! 𝐻𝑛−1. 

between harmonic numbers and Stirling numbers (See Section 5 of this chapter). 

 

 

Problem 4. We have  𝑛 identical books of unit length. What is the maximum overhang that can 

be achieved when the books are stacked as a pile (of one book at each level) at the 

edge of a table? 

Let 𝑑𝑛  be the maximum offset dis-

tance of a stack of 𝑛 books. When the 

largest offset is obtained, the center of 

mass of the 𝑛 books must lie right 

above the table’s edge and the center of 

mass of the 𝑛 −  1 top books must lie 

right above the edge of the book at the 

bottom. By computing the total mo-

ment of 𝑛 books with respect to the right edge we obtain 

𝑛𝑑𝑛 = (𝑑𝑛−1  +
1

2
 )  + (𝑛 −  1)𝑑𝑛−1.  

This relation can be solved for 𝑑𝑛 to obtain the recurrence relation 𝑑𝑛 = 𝑑𝑛−1 +
1

2𝑛
 . 

By iteration we get 

𝑑2 = 𝑑1 +
1

4
 

𝑑3 = 𝑑2 +
1

6
= 𝑑1 +

1

4
+
1

6
 

𝑑4 = 𝑑3 +
1

8
= 𝑑1 +

1

4
+
1

6
+
1

8
. 

It is easy to see that 

𝑑𝑛 =
1

2
(2𝑑1 +

1

2
+
1

3
+ ⋯+

1

𝑛
) . 
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For only one book obviously 𝑑1 =
1

2
. Then we conclude 𝑑𝑛 =

1

2
𝐻𝑛 . Since the sequence 

{𝐻𝑛} is divergent, the maximum amount of overhang will become arbitrarily large as 

the number of books grows. 

 

Problem 5. One end of an infinitely stretchable rubber band, initially 1-meter-long, is nailed to a 

wall.  A bug is on the rubber band at the end attached to wall. At each second, the ant 

crawls 1 centimeter toward the other end and when the ant stops, the band is 

stretched by 1 meter. In the first second ant crawls 1 cm and after the band is 

stretched, it is 2 centimeters apart from the wall. Two seconds later it is 4.5 centime-

ters apart, so on. Will the bug ever reach the other end? If so, when? 

Let 𝐿𝑛   be the length of the band after 𝑛 seconds, then  𝐿𝑛 = 𝐿0 + 𝑛𝐿0 = (1 + 𝑛)𝐿0 

where 𝐿0 = 100 𝑐𝑚 is the length of the band at the beginning. Let 𝑆𝑛 be the distance 

(in terms of centimeters) of ant from the wall after 𝑛 seconds.  

At the beginning of 𝑛 th second, length of band is 𝐿𝑛−1 = 𝑛𝐿0 centimeters and the ant 

is 𝑆𝑛−1 centimeters apart from the wall. Now, ant crawls to the point 𝑆𝑛−1 + 1 and the 

band is stretched to length 𝐿𝑛 = (1 + 𝑛)𝐿0. As a result, ant is now 

𝑆𝑛 =
1 + 𝑛

𝑛
(𝑆𝑛−1 + 1) 

centimeters apart from the wall. We write first few terms of the sequence {𝑆𝑡} 

𝑆1 =
2

1
⋅ 1 

S2 =
3

2
(
2

1
+ 1) = 3 (1 +

1

2
) 

𝑆3 =
4

3
⋅ (
3

3
+
3

2
+ 1) = 4 (1 +

1

2
+
1

3
) 

𝑆4 =
5

4
(
4

4
+
4

2
+
4

3
+ 1) = 5 (1 +

1

2
+
1

3
+
1

4
) 

Inductively it can be shown that 𝑆𝑛 = (𝑛 + 1)𝐻𝑛 . The ant reaches the other end of the 

band after 𝑛0 seconds if 𝑆𝑛0 ≥ 𝐿𝑛0 or (𝑛0 + 1)𝐻𝑛0 ≥ (1 + 𝑛0)𝐿0 that is , 𝐻𝑛0 ≥ 𝐿0. 

The sequence {𝐻𝑛} is divergent so, no matter how large 𝐿0 is, for some 𝑛0, eventually 

we will have 𝐻𝑛0 ≥ 𝐿0. Using the rough approximation 𝐻𝑛 ≈ ln𝑛, we can write 𝑛0 ≈

𝑒𝐿0 . When 𝐿0 is 100, it requires 𝑒100 seconds (more than 8 × 1035 years) for the ant 

to reach the other end. 
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Problem 6. The secretary problem is an optimal stopping problem that has been studied exten-

sively in the fields of applied probability, statistics, and decision theory. It is also 

known as the marriage problem, the sultan’s dowry problem, the fussy suitor prob-

lem, and the best choice problem. The problem can be stated as follows: 

– There is a single position to fill, 

– There are 𝑛 applicants for the position, 

– The applicants can be ranked from best to worst with no ties, 

– The applicants are interviewed sequentially in a random order,  

– After each interview, the applicant is accepted or rejected, 

– The decision to accept or reject an applicant can be based only on the relative -

ranks of the applicants interviewed so far, 

– Rejected applicants cannot be recalled. 

The object is to select the best applicant. The payoff is 1 for the best applicant and 

zero otherwise. We can go through some of the applicants and use that information 

in order to choose the best applicant out of the rest we have not seen so far. For ex-

ample, we if look at 𝑘 applicants and see who is the best applicant out of them, then 

we look through the 𝑛 − 𝑘 applicants and choose the first one who is better than the 

best of the first 𝑘. Find the value of 𝑘 for which choosing the best applicant is maxi-

mum. 

If the best applicant is among the first 𝑘, probability to win is clearly 0. If the best 

applicant is at 𝑡 th place (𝑡 > 𝑘), he could chosen only if the best of the first 𝑡 − 1 ap-

plicants is among the first 𝑘. Probability of this event is   

𝑝 =
𝑘

𝑡 − 1
 

 for 𝑡 = 𝑘 + 1, 𝑘 + 2,… , 𝑛. Since the applicant can be at any position with probability 

1

𝑛
 overall probability to win is 

𝑃𝑘 =
𝑘

𝑛
(
1

𝑘
+

1

𝑘 + 1
+ ⋯+

1

𝑛 − 1
) =

𝑘

𝑛
(𝐻𝑛−1 − 𝐻𝑘−1). 

For the maximum value of 𝑃𝑘  we must have 𝑃𝑘 ≥ 𝑃𝑘−1     𝑎𝑛𝑑     𝑃𝑘 ≥ 𝑃𝑘+1. 

First inequality gives 

𝑘

𝑛
(𝐻𝑛−1 − 𝐻𝑘−1) ≥  

𝑘 − 1

𝑛
(𝐻𝑛−1 − 𝐻𝑘−2) 

𝑘𝐻𝑛−1 − 𝑘𝐻𝑘−1 ≥ 𝑘𝐻𝑛−1 − 𝐻𝑛−1 − 𝑘𝐻𝑘−2 + 𝐻𝑘−2 

𝐻𝑛−1 ≥ 𝑘(𝐻𝑘−1 − 𝐻𝑘−2) + 𝐻𝑘−2 

that is 𝐻𝑛−1 = 1 + 𝐻𝑘−1. 
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Second inequality gives 

𝑘

𝑛
(𝐻𝑛−1 −𝐻𝑘−1) ≥  

𝑘 + 1

𝑛
(𝐻𝑛−1 −𝐻𝑘)  

𝑘𝐻𝑛−1 − 𝑘𝐻𝑘−1 ≥ 𝑘𝐻𝑛−1 +𝐻𝑛−1 − 𝑘𝐻𝑘 − 𝐻𝑘  

so 𝐻𝑛−1 ≤ 1 + 𝐻𝑘 . 

Combining two results we get 𝐻𝑘−1 ≤ 𝐻𝑛−1 − 1 ≤ 𝐻𝑘  or  

𝐻𝑛−1 − 1 ≤ 𝐻𝑘 ≤ 𝐻𝑛−1 − 1 +
1

𝑘
. 

Then we conclude that 𝑘 is the smallest integer for which 𝐻𝑘 ≥ 𝐻𝑛−1 − 1. 

For large values of 𝑛, the approximation 𝐻𝑛 ≈ ln𝑛 + 𝛾 yields 

ln 𝑘 + 𝛾 ≥ ln(𝑛 − 1) + 𝛾 − ln 𝑒 

which gives that 𝑘 = ⌈
𝑛−1

𝑒
⌉. 

 

 

 

 

 

 

 

E X E R C I S E S  
 

1. Prove that the following equalities hold for any positive integer 𝑛: 

a) ∑
𝐻𝑘

𝑘+1

𝑛
𝑘=1 =

1

2
((𝐻𝑛+1)

2 +𝐻𝑛+1
(2) ), 

b)  ∑
𝐻𝑘

𝑘+2

𝑛
𝑘=1 =

1

2
((𝐻𝑛+2)

2 + 𝐻𝑛+3
(2) ) +

1

𝑛+2
− 1, 

c) ∑
𝐻𝑘

𝑘+3

𝑛
𝑘=1 =

1

2
((𝐻𝑛+3)

2 +𝐻𝑛+3
(2) ) +

3

2(𝑛+3)
+

1

2(𝑛+2)
−
7

4
, 

d) ∑
1

𝑘(𝑛−𝑘+1)
 𝑛

𝑘=1 =
2

𝑛+1
𝐻𝑛 . 

2. Evaluate  

∑
𝐻𝑘
2𝑘

∞

𝑘=1

. 
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3. Define the sequence 𝑊𝑛 as follows: 𝑊𝑛 = 1 and for 𝑛 > 1 

𝑊𝑛 = {

𝑊𝑛−1 if decimal representation of 𝑛 contains at least one even digit

𝑊𝑛−1 +
1

𝑛
if otherwise

. 

Show that 𝑊𝑛 < 7 for any positive integer 𝑛. 

 

4. Show that  

a)  𝑛(𝑛 + 1)
1

𝑛 < 𝑛 + 𝐻𝑛 for 𝑛 > 1, 

b) (𝑛 − 1)𝑛−1/(𝑛−1) < 𝑛 − 𝐻𝑛 for 𝑛 > 2. 

 

5. Let 𝑚 and 𝑛 be positive integers with 𝑚 > 𝑛. Prove that 

∑
1

𝑚 − 𝑛 + 𝑘

2𝑛

𝑘=0

>
2𝑛 + 1

𝑚
, 

and deduce that, if 𝑟 > 1 is an integer and 𝑠 =
3𝑟−1

2
, then 

𝐻𝑟 > 𝑠. 

6. Let {𝑎𝑛} be a sequence of distinct positive integers. Prove that for any positive integer 𝑛, 

𝐻𝑛 ≤∑
𝑎𝑘
𝑘2

𝑛

𝑘=1

 . 

7. For each positive integer 𝑘, let 𝐻𝑛(𝑘) be the smallest harmonic number larger than 𝑘 and define 

the 𝑘-th excess as 𝐸(𝑘) = 𝐻𝑛(𝑘) − 𝑘.  

a) Determine whether the seuqence of excesses is convergent or not.  

b) Observe that 

𝐸(1) = 0.5, 𝐸(3) = 0.0833⋯ , 𝐸(3) = 0.0199⋯ , 𝐸(4) = 0.0272⋯. 

It is seen that the sequence of excesses is not monotonically decreasing. Find the smallest 𝑛 > 4 

such that 𝐸(𝑛) < 𝐸(𝑛 + 1). 
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8. In single-lane traffic, with no overtaking, each slow car is followed by a bunch of cars wishing to 

go faster, but unable to do so. If 𝑛 cars set out, expectedly how many bunches will form? 

9. Suppose you have a thousand wooden beams and want to find their minimum breaking strain. 

You build a simple machine which applies a gradually increasing force 𝐹 to a beam which is sup-

ported at its ends in a horizontal position. By increasing the force 𝐹 until the beam breaks, you 

can find the breaking strain of each beam. Suppose we denote the breaking strain of the 𝑛 th beam 

by 𝐹𝑛. A test to destruction carried out in this way has one major disadvantage. At the end you 

know the precise value of 𝐹𝑛 for every 𝑛 but have destroyed all the beams in the process. However, 

we did not actually want the precise value of 𝐹𝑛 for every 𝑛, only the minimum value of 𝐹𝑛 for 1 <

𝑛 < 1000.  Develop a procedure to find that minimum value by breaking, expectedly, no more 

than 10 beams. 

10. Your aim is to cross 1000 kilometers of desert using a jeep which can carry at most 80 liters of 

fuel at any time and can travel 5 kilometers of distance on 1 liter of fuel assuming that the jeep's 

fuel consumption is constant. At the beginning you are at a base where there is an unlimited sup-

ply of fuel. We assume that you can deposit fuel in containers at any point along the route for later 

use. Thus, for example, you can travel 100 kilometers into the desert, drop off 40 liters, and have 

just enough to get back to the starting point and refill. Now you can make a second trip. When you 

reach to the drop-off point, you have 60 liters left. You refill from the deposit and go another 100 

miles into the desert. There you drop off 40 liters, get back to the deposit point and refill, getting 

just enough fuel to get back to the base. You now have no fuel at the 100 kilometer mark, but 40 

liters at 200 kilometers into the desert. Can you get across the desert, and, if so, how many trips 

would it take? 
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The Catalan sequence was described in the 18th century by Leonhard Euler, who was interested 

in the number of different ways of dividing a polygon into triangles. The sequence is named after Eu-

gène Charles Catalan, who discovered the connection to parenthesized expressions during his explo-

ration of the Towers of Hanoi puzzle. The counting trick for Dyck words was found by D. André in 

1887. 

In 1988, it came to light that the Catalan number sequence had been used in China by the Mongo-

lian mathematician Mingantu by 1730. That is when he started to write his book Ge Yuan Mi Lu Jie Fa, 

which was completed by his student Chen Jixin in 1774 but published sixty years later. P.J. Larcombe 

(1999) sketched some of the features of the work of Mingantu, including the stimulus of Pierre Jartoux, 

who brought three infinite series to China early in the 1700s. 

 

 

 

D Y C K  S E Q U E N C E S  
 

Consider the following binary sequence 𝑠 which consists of six 0’s and six 1’s: 

𝑢𝑛:    0 1 0 1 0 0 0 1 1 0 1 1. An important property of this sequence is that, starting from the first 

term, 1’s are never on the majority throughout the sequence. In the below table, 𝑘 th column of 

third and fourth rows show the number of 0’s and 1’s appearing in the first 𝑘 terms of the se-

quence. The tie in the last column is a direct consequence of the fact that the sequence is balanced. 

We have another tie on the fourth column and except these ties, at each column, fourth row entry 

is less than the third row entry. 

https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Eug%C3%A8ne_Charles_Catalan
https://en.wikipedia.org/wiki/Eug%C3%A8ne_Charles_Catalan
https://en.wikipedia.org/wiki/Towers_of_Hanoi
https://en.wikipedia.org/wiki/China
https://en.wikipedia.org/wiki/Mingantu
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𝑛  1 2 3 4 5 6 7 8 9 10 11 12 

𝑢𝑛  0 1 0 1 0 0 0 1 1 0 1 1 

# 0’s  1 1 2 2 3 4 5 5 5 6 6 6 

# 1’s  0 1 1 2 2 2 2 3 4 4 5 6 

 

The fourth row of the table is in fact the sequence of partial sums {𝑆𝑘} of {𝑢𝑘}. Then, above 

property is equivalent to say that 2𝑆𝑘 ≤ 𝑘 for any 𝑘 = 1,… ,12.  

A finite binary sequence 𝑢1, … , 𝑢𝑛 is called a Dyck7 sequence if 2(𝑢1 +⋯+ 𝑢𝑘) ≤ 𝑘 for 𝑘 =

1,… , 𝑛.   

Call a binary sequence a (𝑝, 𝑞) sequence where 𝑝 and 𝑞 are the numbers of 0’s  and 1’s, respec-

tively. We wish to find the number 𝐶𝑝,𝑞  of (𝑝, 𝑞)  Dyck sequences. If 𝑝 ≤ 𝑞, then 𝐶𝑝,𝑞 = 0 , so we 

naturally assume that 𝑝 ≥ 𝑞.  

 

THEOREM 3.1. For any integers 𝑝 ≥ 𝑞 ≥ 0, the number of (𝑝, 𝑞) Dyck sequences is given by 

𝑝 + 1 − 𝑞

𝑝 + 1
(
𝑝 + 𝑞

𝑝
). 

Proof. Let 𝑆 be a (𝑝, 𝑞) sequence which is not a Dyck sequence. Let 𝑡 be the smallest index such 

that among the first 𝑡  terms, the number of 1’s outweighs the number of 0’s. If we flip (0 ↔ 1) the 

first 𝑡 terms of the sequence we obtain a (𝑝 + 1, 𝑞 − 1) sequence.  

Conversely, given an arbitrary (𝑝 + 1, 𝑞 − 1) sequence. Since 𝑝 + 1 > 𝑞 − 1, there is a smallest 

index 𝑡 such that among the first 𝑡  terms, the number of 0’s outweighs the number of 1’s. If we 

flip (0 ↔ 1) the first 𝑡 terms of the sequence we obtain a (𝑝, 𝑞) sequence which is not a Dyck se-

quence. 

                                                           
7 Walther Franz Anton von Dyck (1856-1934), German mathematician. 

https://en.wikipedia.org/wiki/Germany
https://en.wikipedia.org/wiki/Mathematician
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Combining the above arguments, we see that the set of (𝑝 + 1, 𝑞 − 1) sequences and the set 

(𝑝, 𝑞) non-Dyck sequences are in 1-1 correspondence. It follows that the number of non-Dyck se-

quences is (𝑝+𝑞
𝑝+1
). Since the number of all (𝑝, 𝑞) sequences is (𝑝+𝑞

𝑝
) we conclude that the number 

of Dyck sequences is (𝑝+𝑞
𝑝
) − (𝑝+𝑞

𝑝+1
) = (𝑝+𝑞

𝑝
) −

𝑞

𝑝+1
(𝑝+𝑞
𝑝
) =

𝑝+1−𝑞

𝑝+1
(𝑝+𝑞
𝑝
).   ∎ 

 

C A T A L A N  N U M B E R S  
 

For each positive integer 𝑛, the Catalan8 number 𝒞𝑛 is the number of balanced (𝑝 = 𝑞 =

𝑛) Dyck sequences:  

𝒞𝑛 =
1

𝑛 + 1
(
2𝑛

𝑛
). 

 

For 𝑛 = 0, by convention, 𝒞0 = 1. 

First few terms of the sequence {𝒞𝑛} are  1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,⋯. 

LEMMA 3.2. For 𝑛 ≥ 0, Catalan numbers satisfy the recursion 

𝒞𝑛+1 =
2(2𝑛 + 1)

𝑛 + 2
 𝒞𝑛. 

Proof. It follows from the definition that 

 𝒞𝑛+1 =
1

𝑛 + 2
(
2𝑛 + 2

𝑛 + 1
) 

=
1

𝑛 + 2
⋅
(2𝑛 + 2)(2𝑛 + 1)

(𝑛 + 1)2
(
2𝑛

𝑛
) . 

Then proof follows. ∎ 

 

                                                           
8 Eugène Charles Catalan (1814 –1894, French and Belgian mathematician. 

https://en.wikipedia.org/wiki/Belgium
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From the theorem it immediately follows that  

lim
n→∞

(
𝒞𝑛
𝒞𝑛+1 

) = 4. 

We observe another interesting recursion satisfied by the first terms of the sequence. 

𝒞1 = 𝒞0𝒞0 = 1 ⋅ 1 = 1, 

𝒞2 = 𝒞0𝒞1 + 𝒞1𝒞0 = 1 ⋅ 1 + 1 ⋅ 1 = 2, 

𝒞3 = 𝒞0𝒞2 + 𝒞1𝒞1 + 𝒞2𝒞0 = 1 ⋅ 2 + 1 ⋅ 1 + 2 ⋅ 1 = 5, 

𝒞4 = 𝒞0𝒞3 + 𝒞1𝒞2 + 𝒞2𝒞1 + 𝒞3𝒞0 = 1 ⋅ 5 + 1 ⋅ 2 + 2 ⋅ 1 + 5 ⋅ 1 = 14, 

⋮ 

In fact, above property is satisfied by all the terms of the sequence. 

THEOREM 3.3. The sequence {𝒞𝑛} of Catalan numbers satisfies the recursion 

𝒞𝑛 = 𝒞0𝒞𝑛−1 + 𝒞1𝒞𝑛−1 + 𝒞2𝒞𝑛−2 +⋯+ 𝒞𝑛−1𝒞0 = ∑𝒞𝑘𝒞𝑛−1−𝑘

𝑛−1

𝑘=0

 

for 𝑛 > 0. 

Proof.  Let 𝑠1, 𝑠2,⋯ 𝑠2𝑛 be a (𝑛, 𝑛) Dyck sequence and let 𝑆1, 𝑆2, … , 𝑆2𝑛 be the sequence of partial 

sums. Necessarily 𝑆1 = 𝑠1 = 0 and 𝑆2𝑛 = 𝑛. Let 2𝑡 be the smallest index for which 𝑆2𝑡 = 𝑡. Note 

that it may happen that 𝑡 = 𝑛. When 𝑆2𝑡 = 𝑡, it is certain that 𝑠2𝑡 = 1. Then the sequence is of the 

form  

0 , 𝑠2 ,⋯ , 𝑠2𝑡−1 , 1 , 𝑠2𝑡+1 ,⋯ , 𝑠2𝑛. 

Subsequences 𝑠2⋯𝑠2𝑡−1 and 𝑠2𝑡+1  ⋯  𝑠2𝑛 are both Dyck sequences of lengths 2𝑡 − 2 and 2𝑛 −

2𝑡  respectively. The number of such sequences is 𝒞𝑡−1𝒞𝑛−𝑡 for 𝑡 = 1,2, … , 𝑛. Sum of all such terms 

is the right hand side of the given equality and this completes the proof. ∎ 

COROLLARY 3.4. If 𝑎0, 𝑎1, … , 𝑎𝑛, … is a sequence such that 𝑎𝑛 = ∑ 𝑎𝑘𝑎𝑛−1−𝑘
𝑛−1
𝑘=0  for 𝑛 > 0, then 

the general term  is given by 𝑎𝑛 = 𝒞𝑛𝑎0
𝑛+1.  
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Proof. (Induction on 𝑛) It is clear that the assertion holds for 𝑛 = 1:  𝑎1 = 𝑎0
2. Now assume that 

𝑎𝑛 = 𝒞𝑛𝑎0
𝑛+1 for all 𝑛 ≤ 𝑛0 for some integer 𝑛0 ≥ 1. Then 

𝑎𝑛0+1 =∑𝑎𝑘𝑎𝑛0−𝑘

𝑛0

𝑘=0

 

=∑𝒞𝑘𝑎0
𝑘+1 ⋅ 𝒞𝑛0−𝑘𝑎0

𝑛0−𝑘+1

𝑛0

𝑘=0

 

= 𝑎𝑛0+2 ∑ 𝒞𝑘𝒞𝑛0−1−𝑘.

𝑛0−1

𝑘=0

 

Since ∑ 𝒞𝑘𝒞𝑛0−1−𝑘
𝑛0−1
𝑘=0 = 𝒞𝑛0 , claim follows.    ∎ 

2THEOREM 3.5. Generating function of the sequence of Catalan numbers is 

𝒞(𝑥) =
1 − √1 − 4𝑥

2𝑥
. 

Proof. Let {𝑤𝑛} be the convolution of {𝒞𝑛} with itself: {𝑤𝑛} = {𝒞𝑛 ∘ 𝒞𝑛}. Since 𝑤𝑘 = ∑ 𝒞𝑖𝒞𝑘−𝑖
𝑘
𝑖=0 ,  

𝑘 = 1,2,… generating function of {𝑤𝑛} is 

𝑤(𝑥) = ∑𝑤𝑘𝑥
𝑘

∞

𝑘=0

 

=∑(∑𝒞𝑖𝒞𝑘−𝑖

𝑘

𝑖=0

)𝑥𝑘
∞

𝑘=0

. 

Using the previous theorem, we see that 

𝑤(𝑥) = ∑𝒞𝑘+1𝑥
𝑘

∞

𝑘=0

 

=∑𝒞𝑘𝑥
𝑘−1

∞

𝑘=1

 

= ( 𝒞(𝑥) − 1)𝑥−1 

where 𝒞(𝑥) = 1 + 𝒞1𝑥 + 𝒞2𝑥
2 +⋯  is the generating function of {𝒞𝑛}. Since the generating func-

tion of a convolution of two sequences is the product of the generating functions of convoluted 

sequences we have 
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𝑤(𝑥) = 𝒞2(𝑥). 

Equating the two expressions for 𝑤(𝑥), we obtain 

𝑥𝒞2(𝑥) − 𝒞(𝑥) + 1 = 0 

which can be solved for 𝒞(𝑥) to give 2𝑥 𝒞(𝑥) = (1 ± √1 − 4𝑥). The condition 𝒞(0) = 1 forces us 

to choose the negative square root so that 

𝒞(𝑥) =
1 − √1 − 4𝑥

2𝑥
. 

Alternative proof. Recall that 

(
1 2⁄

𝑘
) =

1
2
⋅ (−

1
2
) ⋅ (−

3
2
)⋯(−

2𝑘 − 3
2

)

𝑘!
 

= (−1)𝑘−1  
1 ⋅ 3⋯ (2𝑘 − 3)

2𝑘 ⋅ 𝑘!
⋅
2 ⋅ 4 ⋅ 6⋯ (2𝑘 − 2)

2 ⋅ 4 ⋅ 6⋯ (2𝑘 − 2) 
 

= (−1)𝑘−1
(2𝑘 − 2)!

𝑘! 22𝑘−1 (𝑘 − 1)! 
 

=
(−1)𝑘−1

4𝑘
⋅
2

𝑘
 (
2𝑘 − 2

𝑘 − 1
)  =

(−1)𝑘−1

4𝑘
⋅ 2 𝒞𝑘−1 

 

so that 

(1 − 4𝑥)
1
2 =∑(

1 2⁄

𝑘
)

∞

𝑘=0

(−4)𝑘𝑥𝑘 

=  1 +∑
(−1)𝑘−1

4𝑘
⋅ 2 𝒞𝑘−1(−4)

𝑘𝑥𝑘
∞

𝑘=1

 

= 1 − 2∑  𝒞𝑘−1𝑥
𝑘

∞

𝑘=1

. 

Then, 

1 − √1 − 4𝑥

2𝑥
= ∑𝒞𝑘−1𝑥

𝑘−1

∞

𝑘=1

. 

Thus we obtain the generating function 𝒞(𝑥).  ∎ 
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COROLLARY 3.6. Generating function of the sequence {(𝟐𝒏
𝒏
)} is (1 − 4𝑥)−

1

2. 

Proof. In the proof of above theorem, we have obtained that (1 − 4𝑥)
1

2 = 1 − 2∑  𝒞𝑘−1𝑥
𝑘∞

𝑘=1 . 

Differentiating both sides of the equality we have 

−2(1 − 4𝑥)−
1
2 = −2∑𝑘𝒞𝑘−1𝑥

𝑘−1

∞

𝑘=1

 

= −2∑(𝑘 + 1)

∞

𝑘=0

𝒞𝑘𝑥
𝑘 

= −2∑(
2𝑘

𝑘
)𝑥𝑘 .

∞

𝑘=0

     ∎ 

 

An Approximation for 𝓒𝒏 

 

Using the Stirling approximation 𝑛! = (
𝑛

𝑒
)
𝑛

√2𝜋𝑛  for  𝑛! ,  one obtains (2𝑛
𝑛
) ≈

22𝑛

√𝜋𝑛
 

and 

𝒞𝑛 ≈
22𝑛

(𝑛 + 1)√𝜋𝑛
≈

4𝑛

𝑛3 2⁄ √𝜋
 . 

 

T A B L E  O F  C A T A L A N  N U M B E R S  

 
Below table is a list of 𝒞𝑛 and its approximations for 𝑛 = 0,1,2,… ,16.  
 

n 𝒞𝑛 
22𝑛

(𝑛 + 1)√𝜋𝑛
 

4𝑛

𝑛3 2⁄ √𝜋
 . 

0 1   

1 1 1,13 2,26 

2 2 2,13 3,19 

3 5 5,21 6,95 

4 14 14,44 18,05 

5 42 43,06 51,67 

6 132 134,78 157,24 

7 429 436,72 499,11 

8 1.430 1.452,51 1.634,07 

9 4.862 4.929,96 5.477,74 

10 16.796 17.007,18 18.707,90 

11 58.786 59.457,60 64.862,84 

12 208.012 210.189,50 227.705,30 

13 742.900 750.075,90 807.774,10 

14 2.674.440 2.698.421 2.891.165 

15 9.694.845 9.775.958 10.427.688 

16 35.357.670 35.634.938 37.862.122 
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P R O B L E M S  I N V O L V I N G  C A T A L A N  N U M B E R S  
 

There are many interesting problems whose solutions involve Catalan numbers. To give some 

examples, they are related  with the number of binary bracketings of 𝑛 letters, the ballot problem, 

the number of trivalent planted planar trees, the number of states possible in an 𝑛-flexagon, the 

number of different diagonals possible in a frieze pattern, the number of Dyck paths with 𝑛 

strokes, the number of ways of forming an 𝑛-fold exponential, the number of rooted planar binary 

trees with 𝑛 internal nodes, the number of rooted plane bushes with 𝑛 graph edges, the number 

of extended binary trees with 𝑛 internal nodes, and the number of mountains which can be drawn 

with 𝑛 upstrokes and 𝑛 downstrokes, the number of noncrossing handshakes possible across a 

round table between 𝑛 pairs of people. The book Enumerative Combinatorics: Volume 2,  by 

Richard P. Stanley describes many different interpretations of the Catalan numbers. 

Here we give several examples of such questions. Exercises at the end of this chapter also con-

sider such problems. 

 

Problem 1. There are 2𝑛 distinct points given on a circle. If no pair of chords intersect in or on the 

circle, find the number of drawing 𝑛 chords whose end points are the 

given points.  

in the clockwise sense, label each point either 0 or 1. Assign a 0 to the 

first point. For the following points, if the point is end point of a chord 

whose other end is already has been labeled assign 1, otherwise assign 0. In this man-

ner we obtain a balanced Dyck sequence. It is not difficult to show that the drawings 

and labelings are in one-to-one correspondence. It follows that the number of such 

drawings is 𝒞𝑛. 

 

Problem 2. 
Find the number of ways of distributing 20 balls to 20 labeled boxes such that the total 

number of balls in the first 𝑘 boxes is at least 𝑘 for 𝑘 = 1,… ,20. 

Assume that the balls are distributed in the desired manner. Represent the 𝑘-th box 

with the array 𝑢𝑘 = 0⋯01 where the number of zeroes is equal to the number of balls 

in that box. Then the concatenation 𝑢1 ∥ ⋯ ∥ 𝑢20 of these arrays is a balanced Dyck ar-

ray. The number of distributions is 𝒞𝑛.  

 

Problem 3. Find the number of ways of arranging the integers 1,2, … ,2𝑛 as a 2 × 𝑛 array such that 

each row is in ascending order and 𝑘 th term of the first row is larger than the 𝑘 th 

term of second row for 𝑘 = 1,2, … , 𝑛. 

http://mathworld.wolfram.com/BinaryBracketing.html
http://mathworld.wolfram.com/BallotProblem.html
http://mathworld.wolfram.com/PlantedPlanarTree.html
http://mathworld.wolfram.com/Flexagon.html
http://mathworld.wolfram.com/FriezePattern.html
http://mathworld.wolfram.com/DyckPath.html
http://mathworld.wolfram.com/GraphEdge.html
http://mathworld.wolfram.com/BinaryTree.html
https://en.wikipedia.org/wiki/Richard_P._Stanley
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Assume that we are given an arrangement satisfying the required conditions. Define 

the sequence 𝑠1, … , 𝑠2𝑛 such that 𝑠𝑖 = 𝑎 if 𝑖 is in the first array or 𝑠𝑖 = 𝑏 otherwise. Then 

necessarily, {𝑠𝑛} is a Dyck sequence.  Then the arrangement given below  

2 5 6 8 11 12 

1 3 4 7 9 10 

corresponds to the sequence {𝑠𝑛} as follows:  

𝑛 1 2 3 4 5 6 7 8 9 10 11 12 

𝑠𝑛 b a b b a a b a b b a a 

It follows that the number of such arrangements is 𝒞𝑛. 

 

Problem 4. A triangulation of a plane region is a partition of the region into pairwise non-inter-

secting triangles. Find the number of all triangulations a convex 𝑛-gon by non-inter-

secting diagonals. The following hexagons illustrate the case 𝑛 =  6. 

 

 

Let 𝑇𝑛 be the number of triangulations of a convex 𝑛-gon 𝑛 = 4,5, …. It is obvious that 

𝑇4 = 2, 𝑇5 = 5,… . By convention we set 𝑇2 = 𝑇3 = 1. Assume that 𝐴1𝐴2⋯𝐴𝑛 is a 

given convex 𝑛-gon. In each triangulation of the 𝑛-gon, the side 𝐴1𝐴2 will be a side of 

the triangle 𝐴1𝐴2𝐴𝑘 for some 𝑘 = 3,… , 𝑛.  

If 𝑘 = 3, then 𝑛-gon is subdivided into two regions: a triangle (𝐴1𝐴2𝐴3) and a (𝑛 − 1)-

gon (𝐴1𝐴3𝐴4⋯𝐴𝑛) . Since the (𝑛 − 1)-gon can be triangulated in 𝑇𝑛−1 ways, 𝐴1𝐴2𝐴3 

appears in 𝑇𝑛−1 triangulations. 

If 𝑘 = 4,… , 𝑛 − 1, then 𝑛-gon is subdivided into three regions: a 𝑘 − 1-gon 

(𝐴2𝐴3⋯𝐴𝑘), a triangle (𝐴1𝐴2𝐴𝑘) and a (𝑛 − 𝑘 + 2)-gon (𝐴1𝐴𝑘 …𝐴𝑛). Therefore the 

𝐴1𝐴2𝐴𝑘 appears in 𝑇𝑘−1 ⋅ 𝑇𝑛−𝑘+2 triangulations. 

If 𝑘 = 𝑛, then 𝑛-gon is subdivided into two regions: a (𝑛 − 1)-gon (𝐴2𝐴3⋯𝐴𝑛) and a 

triangle (𝐴1𝐴2𝐴𝑛).  Then, 𝐴1𝐴2𝐴𝑛 appears in 𝑇𝑛−1 triangulations. 

Since the cases for 𝑘 = 3,… , 𝑛 are all pairwise disjoint, the number of all triangulations 

of the 𝑛-gon is the sum of numbers triangulations in all these cases. 

Then we obtain the recursion 

𝑇𝑛 = 𝑇𝑛−1 + 𝑇3𝑇𝑛−2 + 𝑇4𝑇𝑛−3 +⋯+ 𝑇𝑛−3𝑇4 + 𝑇𝑛−2𝑇3 + 𝑇𝑛−1.  
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Using the convention 𝑇2 = 1, the recursion can be written as 

𝑇𝑛 = 𝑇2𝑇𝑛−1 + 𝑇3𝑇𝑛−2 + 𝑇4𝑇𝑛−3 +⋯+ 𝑇𝑛−3𝑇4 + 𝑇𝑛−2𝑇3 + 𝑇𝑛−1𝑇2. 

or 

𝑇𝑛+2 = 𝑇2𝑇𝑛+1 + 𝑇3𝑇𝑛 + 𝑇4𝑇𝑛−1 +⋯+ 𝑇𝑛−1𝑇4 + 𝑇𝑛𝑇3 + 𝑇𝑛+1𝑇2. 

Now, substitution 𝐶𝑛 = 𝑇𝑛+2  leads to write 

𝐶𝑛 = 𝐶0𝐶𝑛−1 + 𝐶1𝐶𝑛−2 + 𝐶2𝐶𝑛−3 +⋯+ 𝐶𝑛−3𝐶2 + 𝐶𝑛−2𝐶1 + 𝐶𝑛−1𝐶0. 

The last recursion we have obtained is the recursion satisfied by Catalan numbers. 

Since 𝐶0 = 𝑇2 = 1 = 𝒞0, we conclude that 𝐶𝑛 = 𝒞0. It follows that the number of possi-

ble triangulations is 𝑇𝑛 = 𝒞𝑛−2.  

 

E X E R C I S E S  

 

1. 𝑝  students, each one having a single 10 TL banknote and 𝑞 students, each one having a single 

20 TL banknote, form a queue in front of a counter to buy 10 TL worth tickets. Each student is 

to buy only one ticket. At the beginning there are no banknotes at the counter. The counter quits 

selling tickets once he faces with a 20 TL banknote when he has no change to re-pay 10 TL. If 

we call a queue, ‘good queue’ if all the students buy tickets, find the number of good queues. 

2. Suppose we have an election between two candidates and the ballots are counted one-by-one. 

Further suppose that the first candidate is never behind (she’s always ahead or tied), but that 

the final count ends in a tie with each candidate getting n votes. How many ways can this hap-

pen? 

3. Let ∗ be a non-associative binary operation defined on a set 𝑋.  For 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑋, find the 

number of distinct ways of performing the operation 𝑥1 ∗ 𝑥2 ∗ ⋯∗ 𝑥𝑛 . 

4. Find the number of expressions containing 𝑛 pairs of parentheses which are correctly matched: 

((()))     ()(())     ()()()     (())()     (()()). 

5. A monotonic path along the edges of a grid with 𝑛 × 𝑛 

square cells is one which starts in the lower left corner, fin-

ishes in the upper right corner, and consists entirely of 

edges pointing rightwards or upwards. Find the number of 

monotonic paths which do not pass above the diagonal. The following diagrams show the case 

𝑛 = 4 

6. Find the number of ways to tile a stair step 

shape of height 𝑛 with 𝑛 rectangles. The fol-

lowing figure illustrates the case 𝑛 = 4.
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Fibonacci or Leonard of Pisa (1170-1250), played an important role in reviving ancient mathe-

matics while making significant contributions of his own. He traveled to North Africa, Egypt, Syria, 

recognizing the advantages of the mathematical systems used in these countries.  

Liber Abaci, published in 1202 after his return 

to Italy, is based on bits of arithmetic and algebra 

that Leonardo had accumulated during his travels. 

The Liber Abbaci introduced the Hindu-Arabic 

place-valued decimal system and the use of Arabic 

numerals into Europe. In Liber Abaci the following 

problem is posed: How many pairs of rabbits will be 

produced in a year, beginning with a single pair, if in 

every month each pair bears a new pair which be-

comes productive from the second month on? 

Today the solution to this problem is known as 

the Fibonacci sequence, or Fibonacci numbers. A 

search of the Internet for “Fibonacci” will find doz-

ens of Web sites and hundreds of pages of material. 

There is even a Fibonacci Association that pub-

lishes a scholarly journal, the Fibonacci Quarterly. 
 

 

 

 

F I B O N A C C I ' S  R A B B I T S  

The problem posed in Liber Abaci of Fibonacci can be formulated as follows. Beginning with a 

pair of new born rabbits, how many pairs of rabbits could be reached in a year assuming that  

 each rabbit reaches maturity after one month, 

 the gestation period of a rabbit is one month, 

 each mature female rabbit gives birth to one male and one female rabbit every month, 

 no rabbits die during the year. 

After one month, the first pair is not mature and can't mate. At two months, the rabbits have 

mated but not yet given birth, resulting in only one pair of rabbits. After three months, the first 

pair will give birth to another pair, resulting in two pairs. At the fourth month mark, the original 

pair gives birth again, and the second pair mates but does not yet give birth, leaving the total at 

three pairs. This continues until a year has passed. Say that the number of newborn and mature 
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pairs at month 𝑛 are 𝔟𝑛 and 𝔪𝑛, respectively. Next month all these rabbits will be mature, 

i.e., 𝔪𝑛+1 = 𝔪𝑛 + 𝔟𝑛. For each mature pair of 𝑛th month, there will be a pair of newborn pair in 

next month: 𝔟𝑛+1 = 𝔪𝑛. Now we have 𝔪𝑛+1 + 𝔟𝑛+1 = (𝔪𝑛 + 𝔟𝑛) + 𝔪𝑛 = (𝔪𝑛 + 𝔟𝑛) + (𝔪𝑛−1 +

𝔟𝑛−1). Denoting the number of all rabbits in the 𝑛th month by 𝔯𝑛, that is, 𝔯𝑛 = 𝔪𝑛 + 𝔟𝑛, we get the 

relation 𝔯𝑛+1 = 𝔯𝑛 + 𝔯𝑛−1  for 𝑛 = 1,2,3,… . Since we have started with a pair of new born pair 𝔯1 =

1. One month later we have a pair of mature rabbits, thus 𝔯2 = 1. Then the remaining terms of the 

sequence {𝔯𝑛} can be computed as 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233. One year later there 

will be 233 pairs of rabbits. 

 
 

F I B O N A C C I  S E Q U E N C E  
 

Let {𝑎𝑛} be a solution of the recursion 

 𝑎𝑛+2 = 𝑎𝑛+1 + 𝑎𝑛. (1) 

We can write ∑ (𝑎𝑛+2 − 𝑎𝑛+1 − 𝑎𝑛)
∞
𝑘=0 𝑥𝑛+2 = 0. By letting 𝑎(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 +⋯ to be 

the generating function of  {𝑎𝑛} we see that 𝑎(𝑥) − 𝑎1𝑥 − 𝑎0 − 𝑥𝑎(𝑥) + 𝑥𝑎0 − 𝑥
2𝑎(𝑥) = 0  which 

gives  

𝑎(𝑥) =
𝑎0 + (𝑎1 − 𝑎0)𝑥

1 − 𝑥 − 𝑥2
. 

(2) 

Now, factorization (1 − 𝜑𝑥)(1 − 𝜓𝑥) of 1 − 𝑥 − 𝑥2, where 𝜑 =
1+√5

2
  and 𝜓 =

1−√5

2
   yields 

𝑎(𝑥) =
1

√5
(
𝑎1 − 𝜓𝑎0
1 − 𝜑𝑥

+
𝜑𝑎0 − 𝑎1
1 − 𝜑𝑥

) 

=
1

√5
(𝑎1 − 𝜓𝑎0)∑(𝜑𝑥)𝑘

∞

𝑘=0

+
1

√5
(𝜑𝑎0 − 𝑎1)∑(𝜓𝑥)𝑘

∞

𝑘=0

 

=
1

√5
∑((𝑎1 −𝜓𝑎0)𝜑

𝑘

∞

𝑘=0

+ (𝜑𝑎0 − 𝑎1)𝜓
𝑘) 𝑥𝑘. 

 

Thus, the general term of {𝑎𝑛} is  

𝑎𝑛 =
1

√5
((𝑎1 − 𝜓𝑎0)𝜑

𝑛 + (𝜑𝑎0 − 𝑎1)𝜓
𝑛). 

(3) 

 

                                                           
  𝜑 =

1+√5

2
=1.618033⋯ is known as the golden ratio. 
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Fibonacci sequence {𝔣𝑛} is the solution of (1) with the initial values  𝔣0 = 0, 𝔣1 = 1. Each term 

of this sequence is called a Fibonacci number. First few Fibonacci numbers are: 0, 1, 1, 2, 3, 5,

8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,⋯. From (3), the general term of this sequence 

is 

𝔣𝑛 =
1

√5
(𝜑𝑛 − 𝜓𝑛). 

 

This expression for the general term is known as Binet’s formula9. From (2) we obtain the 

generating function of {𝔣𝑛} as  

𝔣(𝑥) =
𝑥

1 − 𝑥 − 𝑥2
. 

 

For 𝑛 ≤ 1, by writing the basic recursion as 𝔣𝑛−2 = 𝔣𝑛 − 𝔣𝑛−1 , Fibonacci numbers 𝔣−1, 𝔣−2, … 

with negative indices can be defined:  

For 𝑛 = 1,  𝔣−1 = 𝔣1 − 𝔣0 = 1 

For 𝑛 = 0, 𝔣−2 = 𝔣0 − 𝔣−1 = −1 

For 𝑛 = −1, 𝔣−3 = 𝔣−1 − 𝔣−2 = 2 

For 𝑛 = −2, 𝔣−4 = 𝔣−2 − 𝔣−3 = −3 

For 𝑛 = −3, 𝔣−5 = 𝔣−3 − 𝔣−4 = 5 

The resulting ‘bidirectional’ sequence {𝔣𝑛}𝑛=−∞
∞  is 

⋯ ,−55, 34,−21, 13,−8, 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5,⋯ 

It can be shown that 

𝔣−𝑛 = (−1)
𝑛+1𝔣𝑛 . 

Binet’s formula holds for negative indices as well. 

 

PROPOSITION 4.1. General term of the solution {𝑎𝑛} of (1) with initial terms 𝑎0, 𝑎1 is 

𝑎𝑛 = 𝑎1𝔣𝑛 + 𝑎0𝔣𝑛−1. 

                                                           
9 Jacques Philippe Marie Binet (1786 –1856), French mathematician, physicist and astronomer. 

https://en.wikipedia.org/wiki/France
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Astronomer
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Proof. From (3) we obtain  

𝑎𝑛 =
1

√5
((𝑎1 − 𝜓𝑎0)𝜑

𝑛 + (𝜑𝑎0 − 𝑎1)𝜓
𝑛) 

=
1

√5
(𝑎1(𝜑

𝑛 − 𝜓𝑛) + 𝑎0(−𝜓𝜑
𝑛 + 𝜑𝜓𝑛))  

=
1

√5
(𝑎1(𝜑

𝑛 − 𝜓𝑛) + 𝑎0(𝜑
𝑛−1 − 𝜓𝑛−1)) . 

Now the claim follows from Binet's formula.   ∎  

Example 1  

(Lucas10 Numbers).   

The solution {ℒ𝑛} of (1) with initial conditions ℒ0 = 2,  ℒ1 = 1 is called the Lucas se-

quence. Then, the general term of this sequence is 

ℒ𝑛 = 𝔣𝑛 + 2𝔣𝑛−1 

=
1

√5
(𝜑𝑛 + 2𝜑𝑛−1 −𝜓𝑛 − 2𝜓𝑛−1) 

=
1

√5
(𝜑𝑛−1(𝜑 + 2) − 𝜓𝑛−1(𝜓 + 2)) 

Note that 𝜑 + 2 = √5 𝜑 and 𝜓 + 2 = −√5 𝜓.  Then  

ℒ𝑛 = 𝜑
𝑛 + 𝜓𝑛 . 

 

Generating function of the Lucas sequence is ℒ(𝑥) =
2−𝑥

1−𝑥−𝑥2
. Each term of this sequence is 

called a Lucas number. First few Lucas numbers are: 

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207,⋯ 

 

 

M a t r i x  R e p r e s e n t a t i o n  o f  F i b o n a c c i  N u m b e r s  

 

For any integer 𝑛, basic recursion of Fibonacci sequence can be written as 

(
𝔣𝑛+1
𝔣𝑛
) = (

1 1
1 0

) (
𝔣𝑛
𝔣𝑛−1

) . 

                                                           
10 François Édouard Anatole Lucas (1842 –1891), French mathematician. 

https://en.wikipedia.org/wiki/France
https://en.wikipedia.org/wiki/Mathematician
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It follows that 

(
𝔣𝑛+1
𝔣𝑛
) = (

1 1
1 0

)
𝑛

(
1

0
) . 

It is easy to observe that 

(
1 1
1 0

)
𝑛

= (
𝔣𝑛+1 𝔣𝑛
𝔣𝑛 𝔣𝑛−1

). 

 

 

B A S I C  I D E N T I T I E S  
 

In this section we prove that the following equalities hold for all integers 𝑛, 𝑚 and 𝑟.  

 𝔣𝑛+𝑚 = 𝔣𝑛+1𝔣𝑚 + 𝔣𝑛𝔣𝑚−1  

 𝔣2𝑛 = 𝔣𝑛+1𝔣𝑛 + 𝔣𝑛𝔣𝑛−1  

 𝔣2𝑛+1 = 𝔣𝑛+1
2 + 𝔣𝑛

2   

 𝔣𝑛
2 − 𝔣𝑛+1𝔣𝑛−1 = (−1)

𝑛−1 (Cassini’s11 Identity) 

 𝔣𝑛
2 − 𝔣𝑛+𝑟𝔣𝑛−𝑟 = (−1)

𝑛−𝑟𝔣𝑟
2 (Catalan’s Identity) 

 𝔣𝑚+1𝔣𝑛 − 𝔣𝑚𝔣𝑛+1 = (−1)
𝑛𝔣𝑚−𝑛. (D’Ocagne’s12 Identity) 

 

 

  

 

 
   

THEOREM 4.2. For any integers  𝑚 and 𝑛, Fibonacci numbers satisfy the following: 

𝔣𝑛+𝑚 = 𝔣𝑛+1𝔣𝑚 + 𝔣𝑛𝔣𝑚−1. 

Proof. Since for any integers 𝑛 and 𝑚,  𝐴𝑛𝐴𝑚 = 𝐴𝑛+𝑚 for any square matrix 𝐴, we can write 

(
1 1
1 0

)
𝑛+𝑚

= (
1 1
1 0

)
𝑛

(
1 1
1 0

)
𝑚

which is equivalent to write 

(
𝔣𝑛+𝑚+1 𝔣𝑛+𝑚
𝔣𝑛+𝑚 𝔣𝑛+𝑚−1

) = (
𝔣𝑛+1 𝔣𝑛
𝔣𝑛 𝔣𝑛−1

) . (
𝔣𝑚+1 𝔣𝑚
𝔣𝑚 𝔣𝑚−1

) 

= (
𝔣𝑛+1𝔣𝑚+1 + 𝔣𝑛𝔣𝑚 𝔣𝑛+1𝔣𝑚 + 𝔣𝑛𝔣𝑚−1
𝔣𝑛𝔣𝑚+1 + 𝔣𝑛−1𝔣𝑚 𝔣𝑛𝔣𝑚 + 𝔣𝑛−1𝔣𝑚−1

). 

Comparing the corresponding entries of these matrices, desired identity follows. ∎        

 

                                                           
11 Giovanni Domenico Cassini (1625 –1712), Italian mathematician,astronomer, astrologer and engineer. 
12 Philbert Maurice d'Ocagne (1862 –1938), French engineer and mathematician. 

https://en.wikipedia.org/wiki/Italians
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Astronomer
https://en.wikipedia.org/wiki/Astrologer
https://en.wikipedia.org/wiki/Engineer
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COROLLARY 4.3. For any integer 𝑛, the following equalities hold true:  

𝔣2𝑛 = 𝔣𝑛+1
2 − 𝔣𝑛−1

2 , 

𝔣2𝑛+1 = 𝔣𝑛+1
2 + 𝔣𝑛

2  . 

Proof.  In the theorem substitute 𝑚 = 𝑛 to obtain the first identity: 

𝔣2𝑛 = 𝔣𝑛+1𝔣𝑛 + 𝔣𝑛𝔣𝑛−1 = 𝔣𝑛(𝔣𝑛+1 + 𝔣𝑛−1) = (𝔣𝑛+1 − 𝔣𝑛−1)(𝔣𝑛+1 + 𝔣𝑛−1) = 𝔣𝑛+1
2 − 𝔣𝑛−1

2 . 

The second identity is obtained directly from the theorem by substituting 𝑚 = 𝑛 + 1. ∎ 

THEOREM 4.4 (Cassini’s Identity). For any integer  𝑛, Fibonacci numbers satisfy the following 

identity: 

𝔣𝑛
2 − 𝔣𝑛+1𝔣𝑛−1 = (−1)

𝑛−1. 

Proof.  Result directly follows from   

det (
𝔣𝑛+1 𝔣𝑛
𝔣𝑛 𝔣𝑛−1

) = 𝔣𝑛+1𝔣𝑛−1 − 𝔣𝑛
2 = det (

1 1
1 0

)
𝑛

= (−1)𝑛.    ∎ 

LEMMA 4.5. For any integer  𝑚, the following equality holds: 

𝔣𝑚+1
2 − 𝔣𝑚𝔣𝑚+1 − 𝔣𝑚

2 = (−1)𝑚. 

Proof. 

𝑓𝑚+1
2 − 𝔣𝑚𝔣𝑚+1 − 𝔣𝑚

2 = (𝔣𝑚+1+𝔣𝑚)(𝔣𝑚+1 − 𝔣𝑚)−𝔣𝑚𝔣𝑚+1 

= 𝔣𝑚+1𝔣𝑚−1 + 𝔣𝑚𝔣𝑚−1 − 𝔣𝑚𝔣𝑚+1 

= 𝔣𝑚
2 + (−1)𝑛 − 𝔣𝑚(𝔣𝑚+1 − 𝔣𝑚−1) 

= 𝔣𝑚
2 + (−1)𝑚 − 𝔣𝑚

2  

= (−1)𝑚.      

The claim follows.   ∎  

 

The following is a generalization of Cassini’s identity. 

THEOREM 4.6 (Catalan’s Identity). For all integers 𝑛 and 𝑟 the following identity is true.  

𝔣𝑛
2 − 𝔣𝑛+𝑟𝔣𝑛−𝑟 = (−1)

𝑛−𝑟𝔣𝑟
2. 

Proof.  For arbitrary integers 𝑚 and 𝑎 we have 

𝔣𝑚+𝑎
2 − 𝔣𝑚+2𝑎𝔣𝑚 = (𝔣𝑚+1𝔣𝑎 + 𝔣𝑚𝔣𝑎−1)

2 − (𝔣𝑚+1𝔣2𝑎 + 𝔣𝑚𝔣2𝑎−1)𝔣𝑚 

= 𝔣𝑚+1
2 𝔣𝑎

2 + 𝑓𝑚
2𝔣𝑎−1
2 + 2𝔣𝑚+1𝔣𝑎𝔣𝑚𝔣𝑎−1  

= −𝔣𝑚[𝔣𝑚+1(𝔣𝑎+1𝔣𝑎 + 𝔣𝑎𝔣𝑎−1) + 𝔣𝑚(𝔣𝑎
2 + 𝔣𝑎−1

2 )] 

= 𝔣𝑚+1
2 𝔣𝑎

2 + 𝔣𝑚+1𝔣𝑎𝔣𝑚𝔣𝑎−1 − 𝔣𝑚𝔣𝑚+1𝔣𝑎𝔣𝑎+1 − 𝔣𝑚
2 𝔣𝑎
2  
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= 𝔣𝑚+1
2 𝔣𝑎

2 − 𝔣𝑚𝔣𝑚+1𝔣𝑎
2 + 𝔣𝑚

2 𝔣𝑎
2  

= ( 𝔣𝑚+1
2 − 𝔣𝑚𝔣𝑚+1 − 𝔣𝑚

2 )𝔣𝑎
2  

= (−1)𝑚 𝔣𝑎
2 . 

Now substitute 𝑚 = 𝑛 − 𝑟 and  𝑟 = 𝑎. ∎ 

 

THEOREM 4.7 (d'Ocagne's Identity). For all integers 𝑚 and 𝑛 the following identity is true.  

𝔣𝑚𝔣𝑛+1 − 𝔣𝑚+1𝔣𝑛 = (−1)
𝑛𝔣𝑚−𝑛. 

Proof. 

𝔣𝑚𝔣𝑛+1 − 𝔣𝑚+1𝔣𝑛 =
1

√5
[(𝜑𝑚 − 𝜓𝑚)(𝜑𝑛+1 − 𝜓𝑛+1) − (𝜑𝑚+1 − 𝜓𝑚+1)(𝜑𝑛 − 𝜓𝑛)] 

=
1

√5
(−𝜑𝑚𝜓𝑛+1 −𝜓𝑚𝜑𝑛+1 + 𝜑𝑚+1𝜓𝑛 + 𝜓𝑚+1𝜑𝑛) 

=
1

√5
[𝜑𝑚𝜓𝑛(𝜑 − 𝜓) − 𝜑𝑛𝜓𝑚(𝜑 − 𝜓)] 

=
1

√5
𝜑𝑛𝜓𝑛[𝜑𝑚−𝑛 − 𝜓𝑚−𝑛] 

Now the result follows from Binet’s formula and the fact that 𝜑𝜓 = −1. ∎ 

 

 

D E C I M A T E D  S U B S E Q U E N C E S   
 

In this section we investigate the properties of decimated subsequences of {𝔣𝑛}.  Since a regular 

decimation of a sequence does not increase the linear complexity, any decimated subsequence of 

{𝔣𝑛} has linear complexity at most 2.  

 

Example 2. Let {𝔤𝑛} be the 2 −decimated subsequence of {𝔣𝑛}, that is   𝔤𝑛 = 𝔣2𝑛, 𝑛 = 1,2, …. If 𝔤(𝑥) 

is the generating function of {𝔤𝑛},  then 

𝔤(𝑥) =
1

2
[𝔣(√𝑥) + 𝔣(−√𝑥)] 

=
1

2
(

√𝑥

1 − √𝑥 − 𝑥
+

−√𝑥

1 + √𝑥 − 𝑥
) 

=
𝑥

1 − 3𝑥 − 𝑥2
. 

It follows that 𝔤𝑛+2 = 3𝔤𝑛+1 − 𝔤𝑛. 
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LEMMA 4.8. For any positive integer 𝑘, Fibonacci numbers satisfy the relation 

𝔣𝑛+𝑘 + (−1)
𝑘𝔣𝑛−𝑘 = ℒ𝑘𝔣𝑛 

𝑛 = 𝑘, 𝑘 + 1,… where ℒ𝑘 is the 𝑘 th Lucas number. 

Proof. By Binet’s formula 

ℒ𝑘𝔣𝑛 =
1

√5
(𝜑𝑛 −𝜓𝑛)(𝜑𝑘 + 𝜓𝑘) 

=
1

√5
(𝜑𝑛+𝑘 − 𝜓𝑛+𝑘 + 𝜑𝑘𝜓𝑘(𝜑𝑛−𝑘 −𝜓𝑛−𝑘)). 

Since 𝜑𝜓 = −1, claim follows.  ∎ 

THEOREM 4.9.  If {𝑤𝑛} is a 𝜆 −decimated subsequence of {𝔣𝑛}, that is 𝑤𝑛 = 𝔣𝜆𝑛+𝜇  for some inte-

gers 0 ≤ 𝜇 < 𝜆 , then terms of {𝑤𝑛} satisfy the linear recursion 

𝑤𝑛+1 = ℒ𝜆𝑤𝑛 − (−1)
𝜆𝑤𝑛−1. 

Proof. Using the lemma, we write  

𝑤𝑛+1 + (−1)
𝜆𝑤𝑛−1 = 𝔣𝜆𝑛+𝜇+𝜆 + (−1)

𝜆𝔣𝜆𝑛+𝜇−𝜆 = ℒ𝜆𝔣𝜆𝑛+𝜇 . 

Since 𝔣𝜆𝑛+𝜇 = 𝑤𝑛, the desired equality is obtained.   ∎ 

Example 3. Below table demonstrates subsequences {𝔣𝜆𝑛+𝜇} for several values of 𝜆 and 𝜇 to-

gether with the recursion of the subsequence. 

 

(𝜆, 𝜇)  {𝔣𝜆𝑛+𝜇} recursion 

(2,0) 0  1  3  8  21  55  144  377  987  2584 ⋯  𝑢𝑛 = 3𝑢𝑛−1 − 𝑢𝑛−2  

(3,0) 0  2  8  34  144  610  2584  10946  46368  196418 ⋯ 𝑢𝑛 = 4𝑢𝑛−1 + 𝑢𝑛−2  

(3,1) 1  3  13  55  233  987  4181  17711  75025  317811 ⋯ 𝑢𝑛 = 4𝑢𝑛−1 + 𝑢𝑛−2  

(3,2) 1  5  21  89  377  1597  6765  28657  121393  514229 ⋯ 𝑢𝑛 = 4𝑢𝑛−1 + 𝑢𝑛−2  

(4,3) 1  8  55  377  2584  17711  121393  832040  5702887  39088169 ⋯ 𝑢𝑛 = 7𝑢𝑛−1 − 𝑢𝑛−2  

(5,0) 0  5  55  610  6765  75025  832040  9227465  102334155   ⋯ 𝑢𝑛 = 11𝑢𝑛−1 + 𝑢𝑛−2  

(5,3) 2  21  233  2584  28657  317811  3524578  39088169  433494437   ⋯ 𝑢𝑛 = 11𝑢𝑛−1 + 𝑢𝑛−2  

(6,2) 1  21  377  6765  121393  2178309  39088169  701408733   ⋯ 𝑢𝑛 = 18𝑢𝑛−1 − 𝑢𝑛−2  

(7,0) 0  13  377  10946  317811  9227465  267914296  7778742049   ⋯ 𝑢𝑛 = 29𝑢𝑛−1 + 𝑢𝑛−2  

(8,1) 1  34  1597  75025  3524578  165580141  7778742049  ⋯   𝑢𝑛 = 47𝑢𝑛−1 − 𝑢𝑛−2  
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F I N I T E  S U M S  I N V O L V I N G  𝖋𝒏 

In this section we compute the following finite sums: 

∑𝔣𝑘

𝑛

𝑘=0

= 𝔣𝑛+2 − 1, 

∑𝑘𝔣𝑘

𝑛

𝑘=0

= (𝑛 + 1)𝔣𝑛+2 − 𝔣𝑛+4 + 2, 

∑𝔣2𝑘

𝑛

𝑘=0

= 𝔣2𝑛+1 − 1, 

∑𝔣2𝑘+1

𝑛

𝑘=0

= 𝔣2𝑛+2, 

∑𝔣𝑘
2

𝑛

𝑘=0

= 𝔣𝑛𝔣𝑛+1. 

First recall that if 𝑢 and 𝑈 are functions defined on integers such that  Δ𝑈(𝑘) = 𝑈(𝑘 + 1) −

𝑈(𝑘) = 𝑢(𝑘), then 

∑𝑢𝑘

𝑏

𝑘=𝑎

= 𝑈(𝑏 + 1) − 𝑈(𝑎). 

The following proposition computes two useful differences concerning Fibonacci numbers. 

PROPOSITION 4.10. For any integer 𝑘 we have  

Δ𝔣𝑘+1 = 𝔣𝑘 , 

Δ[𝑘𝔣𝑘+1 − 𝔣𝑘+3] = 𝑘𝔣𝑘 . 

Proof. Since for any 𝑘 ≥ 1, Δ𝔣𝑘 = 𝔣𝑘+1 − 𝔣𝑘 = 𝔣𝑘−1 we obtain the first equality. For the second 

equality, first observe that Δ𝑘𝔣𝑘+1 = (𝑘 + 1)𝔣𝑘+2 − 𝑘𝔣𝑘+1 = 𝑘(𝔣𝑘+2 − 𝔣𝑘+1) + 𝔣𝑘+2 = 𝑘𝔣𝑘 + 𝔣𝑘+2. 

On the other hand, Δ𝔣𝑘+3 = 𝔣𝑘+2 , so Δ[𝑘𝔣𝑘+1 − 𝔣𝑘+3] = 𝑘𝔣𝑘 .   ∎ 

Using the above proposition we immediately obtain  ∑ 𝔣𝑘
𝑛
𝑘=1 = 𝔣𝑛+2 − 1 and similarly  

∑𝑘𝔣𝑘

𝑛

𝑘=0

= (𝑛 + 1)𝔣𝑛+2 − 𝔣𝑛+4 + 𝔣3 = (𝑛 + 1)𝔣𝑛+2 − 𝔣𝑛+4 + 2. 

Each of the remaining three sums can be written as a telescoping series: 
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∑𝔣2𝑘

𝑛

𝑘=0

= 𝔣0 + 𝔣2 + 𝔣4 + 𝔣6 +⋯+ 𝔣2𝑛−2 + 𝔣2𝑛 

= 0 + (𝔣3 − 𝔣1) + (𝔣5 − 𝔣3) + (𝔣7 − 𝔣5) + ⋯+ (𝔣2𝑛−1 − 𝔣2𝑛−3) + (𝔣2𝑛+1 − 𝔣2𝑛−1) 

= 𝔣2𝑛+1 − 𝔣1. 

∑𝔣2𝑘+1

𝑛

𝑘=0

= 𝔣1 + 𝔣3 + 𝔣5 + 𝔣7 +⋯+ 𝔣2𝑛−1 + 𝔣2𝑛+1 

= (𝔣2 − 𝔣0) + (𝔣4 − 𝔣2) + (𝔣6 − 𝔣4) + (𝔣8 − 𝔣6) +⋯+ (𝔣2𝑛+1 − 𝔣2𝑛−2)

+ (𝔣2𝑛+2 − 𝔣2𝑛) 

= 𝔣2𝑛+2. 

∑𝔣𝑘
2

𝑛

𝑘=0

= 𝔣1
2 + 𝔣2

2 + 𝔣3
2 +⋯+ 𝔣𝑛−1 

2 + 𝔣𝑛
2  

= (𝔣1𝔣2 − 𝔣1𝔣0) + (𝔣2𝔣3 − 𝔣2𝔣1) + (𝔣3𝔣4 − 𝔣3𝔣2) +⋯+ (𝔣𝑛−1𝔣𝑛 − 𝔣𝑛−1𝔣𝑛−2)

+ (𝔣𝑛𝔣𝑛+1 − 𝔣𝑛𝔣𝑛−1) 

= 𝔣𝑛𝔣𝑛+1. 

 

C O N V E R G E N C E  O F  R A T I O S  A N D  T H E  G E N E R A T I N G  F U N C T I O N  

For any positive integer 𝑛, 𝑐onsider the ratio 
𝔣𝑛+1

𝔣𝑛
   which can be written as 

𝔣𝑛+1

𝔣𝑛
=

𝜑𝑛+1−𝜓𝑛+1

𝜑𝑛−𝜓𝑛
=
𝜑−𝜓 (𝜓 𝜑⁄ )𝑛

1−(𝜓 𝜑⁄ )𝑛
. Since |𝜑| > |𝜓|, we have lim

𝑛→∞
(
𝜓

𝜑
) = 0, then  

lim
𝑛→∞

(
𝔣𝑛+1
𝔣𝑛
) = 𝜑. 

 

Similarly, for any positive integer 𝑘, the ratio 𝔣𝑛+𝑘 𝔣𝑛⁄  can be written as 
𝜑𝑛+𝑘−𝜓𝑛+𝑘

𝜑𝑛−𝜓𝑛
=
𝜑𝑘−𝜓𝑘 (𝜓 𝜑⁄ )𝑛

1−(𝜓 𝜑⁄ )𝑛
.  

Then 

lim
𝑛→∞

(
𝔣𝑛+𝑘
𝔣𝑛
) = 𝜑𝑘 . 

The series ∑ 𝔣𝑘𝑥
𝑘∞

𝑘=0  is convergent for −
1

𝜑
< 𝑥 <

1

𝜑
 and for such 𝑥, the sum is given by 

 ∑ 𝔣𝑘𝑥
𝑘

∞

𝑘=0

=
𝑥

1 − 𝑥 − 𝑥2
. 
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Example 4. By substituting 𝑥 =
1

2
 in the generating function of {𝔣𝑛} we have 

∑
𝔣𝑘
2𝑘
 

∞

𝑘=0

= 2. 

Note that 
𝔣𝑛

𝔣𝑛+1
<

1

𝜑
 if and only if 𝑛 is even. Then the sequence ∑ 𝔣𝑘𝑥

𝑘∞
𝑘=0  is convergent 

for 𝑥 =
𝔣2𝑛

𝔣2𝑛+1
 where 𝑛 is some fixed integer. We obtain 

∑(
𝔣2𝑛
𝔣2𝑛+1

)
𝑘

𝔣𝑘  

∞

𝑘=0

=
𝔣2𝑛𝔣2𝑛+1

𝔣2𝑛+1
2 − 𝔣2𝑛𝔣2𝑛+1 − 𝔣2𝑛

2  

 

But since 𝔣𝑚+1
2 − 𝔣𝑚𝔣𝑚+1 − 𝔣𝑚

2 = (−1)𝑚 for any integer 𝑚, denominator of the 

righthandside is 1. S we get   

∑(
𝔣2𝑛
𝔣2𝑛+1

)
𝑘

𝔣𝑘  

∞

𝑘=0

= 𝔣2𝑛𝔣2𝑛+1. 

 

S O M E  O T H E R  P R O P E R T I E S  
 

 

- For each positive integer 𝑛, the sequence 

(𝑛
0
), (𝑛−1

1
), (𝑛−2

2
), (𝑛−3

3
),… (𝑛−𝑘

𝑘
) where 𝑘 =

⌊𝑛/2⌋ is called a shallow diagonal of the 

Pascal’s triangle. The sum of all terms on a 

shallow diagonal is a Fibonacci number: 

∑ (
𝑛 − 𝑘

𝑘
)

⌊𝑛/2⌋

𝑘=0

= 𝔣𝑛. 

(See Theorem 1.5.) 

- We have two more examples which involve Fibonacci numbers and binomial coefficients: 

∑(
𝑛

𝑘
) 𝔣𝑘

𝑛

𝑘=0

= 𝔣2𝑛 ,                    ∑ (
𝑛

𝑘
)2𝑘𝔣𝑘

𝑛

𝑘=0

= 𝔣3𝑛. 

- Applying binomial inversion to above expressions we have: 

∑(−1)𝑛−𝑘 (
𝑛

𝑘
) 𝔣2𝑘

𝑛

𝑘=0

= 𝔣𝑛 ,                    ∑(−1)𝑛−𝑘 (
𝑛

𝑘
) 𝔣3𝑘

𝑛

𝑘=0

= 2𝑛𝔣𝑛. 
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- We can compute the 𝑛th Fibonacci number by rounding up  
𝜑𝑛

√5
 to the closest integer.  In 

Binet’s formula 𝔣𝑛 =
1

√5
(𝜑𝑛 −𝜓𝑛), since 

|𝜓|

√5
<
1

2
, for any integer  𝑛, 𝔣𝑛 is the closest integer 

to 
𝜑𝑛

√5
. That is, 

𝔣𝑛 = [
𝜑𝑛

√5
]. 

- Any power of the golden ratio can be written as a linear combination of 𝜑 and 1 with inte-

ger coefficients as 𝜑𝑛 = 𝜑𝔣𝑛 + 𝔣𝑛−1. 

- Golden ratio is the limit of a continuous fraction: 

𝜑 = 1 +
1

1 +
1

1 +
1

1 +
1
1+⋱

 . 

- Reciprocal Fibonacci constant: ∑
1

𝔣𝑘

∞
𝑘=1 = 3.359885⋯. 

- Golden ratio is the limit of a nested square roots: 

 

𝜑 = √1 +√1 + √1 +⋯. 

- An integer 𝑚 is a Fibonacci number if and only if at least one of 5𝑚2 + 4 and 5𝑚2 − 4 is a 

perfect square. 

- If it is known that a given integer is a Fibonacci number, then the index of 𝐹 in the sequence 

{𝔣𝑛} is 

𝑛(𝐹) = ⌊log𝜑 (
1

2
+ 𝐹 ⋅ √5)⌋. 

- For any positive integers  𝑚 and 𝑛, if 𝑚|𝑛, then 𝔣𝑚|𝔣𝑛. 

- For any positive integers  𝑚 and 𝑛, gcd(𝔣𝑚, 𝔣𝑛) = 𝔣gcd (𝑚,𝑛). 

- For any integer 𝑛 > 1,   (𝔣2𝑛−1 , 2𝔣𝑛𝔣𝑛−1 , 𝔣𝑛
2 − 𝔣𝑛−1

2 ) is a Phytogoran triple. 
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E X E R C I S E S  
 

1. Show that 

a) 𝔣𝑛−1 + 𝔣𝑛+1 = ℒ𝑛 , 

b) ℒ𝑛−1 + ℒ𝑛+1 = 5𝔣𝑛 , 

c) 𝔣2𝑛 = ℒ𝑛𝔣𝑛 , 

d) 𝔣𝑛𝑚 = ℒ𝑛𝔣𝑛(𝑚−1) − (−1)
𝑛𝔣𝑛(𝑚−2), 

e) 𝔣𝑛𝔣𝑚 =
1

5
[ℒ𝑛+𝑚 − (−1)

𝑚ℒ𝑛−𝑚]. 

2. Prove that greatest common divisor of two Fibonacci numbers is again a Fibonacci numbers. Spe-

cifically 

gcd(𝔣𝑛 , 𝔣𝑚) = 𝔣gcd(𝑚,𝑛). 

3. Prove that 

∑(
𝑛 + 𝑘

2𝑘
) = 𝔣2𝑛+1

𝑛

𝑘=0

. 

4. Let {𝔣𝑛} be the standard Fibonacci sequence (𝔣0 = 𝔣1 = 1). For each of the following, write first 

few terms of {𝑢𝑛}, find the generating function of {𝑢𝑛}, find a constant coefficient, linear, homo-

geneous linear recursion of smallest possible value satisfied by {𝑢𝑛}, evaluate lim
𝑛→∞

𝑢𝑛+1/𝑢𝑛 and 

determine whether {𝑢𝑛} is periodic. 

a)   𝑢𝑛 = (𝔣𝑛)
2, 

g)   𝑢𝑛 = {
1 + 𝔣𝑛                 2|𝑛  
𝑛 + 𝔣𝑛      otherwise

 , 

b)   𝑢𝑛 = 𝔣𝑛 + 𝑛
2,  

c)   𝑢𝑛 = 𝔣𝑛 + 3,  
h)   𝑢𝑛 = {

𝔣𝑛 + 1                    2|𝑛
𝔣𝑛 − 1       otherwise

, 

d)   𝑢𝑛 = 𝔣2𝑛 ,  

e)   𝑢𝑛 = 𝔣0 + 𝔣1 +⋯+ 𝔣𝑛 ,  
i)    𝑢𝑛 = {

3 + 𝔣𝑛                 2|𝑛    or/and   3|𝑛
𝑛 + 𝔣𝑛                               otherwise

 . 

 
f)   𝑢𝑛 = {

1 + 𝔣𝑛                  2|𝑛  
𝑛 + 𝔣𝑛      otherwise

, 

  

5. Show that the number of ways to cover a 2 × 𝑛 checkerboard by 2 × 1 dominoes is 𝔣𝑛+1. The figure 

shows all possible 𝔣6 = 8 ways of covering a 2 × 5 checkerboard. 

 

http://mathworld.wolfram.com/Checkerboard.html
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6. Find the number of subsets of {1,2, … , 𝑛} which do not contain any pair of two consecutive num-

bers. 

7. Compute the probability of not getting two heads in a row of 𝑛 tosses of a coin. 

8. Find the number of ways in which 𝑛 coin tosses can be made such that there are not three con-

secutive heads or tails.  

9. Find the number of binary strings of length 𝑛 without consecutive1’s. List of 13 such strings of 

length 5 is: 00000, 00001, 00010, 00100, 00101, 01000, 01001, 01010, 10000, 10001, 10010, 

10100, 10101. 

10. Show that the number of binary strings of length 𝑛 without an odd number of consecutive 1’s is 

the Fibonacci number 𝔣𝑛+1. 

11. Find the number of binary strings of length 𝑛 without an even number of consecutive 0’s or 1’s.  

12. Find the number of permutations 𝜎1𝜎2⋯𝜎𝑛 of {1,2, … , 𝑛} such that |𝜎𝑖 − 𝑖| ≤ 1 for 𝑖 = 1,2, …𝑛. 

13. Find the number of ways of arranging coins in rows such that 

there are no gaps between blocks of coins in each row, each 

coin except ones on the bottom row touches two coins on the 

row below, and there are 𝑛 coins in the bottom row. The figure shows all possible ways for 𝑛 =

1,2,3,4. 

http://mathworld.wolfram.com/CoinTossing.html
http://mathworld.wolfram.com/CoinTossing.html
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James Stirling13 (1692-1770), remembered for the Stirling numbers, the Stirling's interpolation 

formula, and the formula for the Gamma function among many other things, was one of the great 

minds of classic numerical analysis. Among Stirling's goals was to find methods to speed up series 

convergence. The studies yield interesting number sequences that are now known as Stirling 

numbers. Stirling numbers have applications in various fields of study, particularly in combinatorial 

problems. Generalized definitions and implementations for the two types of Stirling numbers are 

desired.  

Following types of problems are related with Stirling numbers: finding the number of ways to 

distribute 𝑛 distinct objects into 𝑘 non-empty, indistinct bins; number of partitions of a set of 𝑛 objects 

into k non-empty subsets; number of equivalence relations with k equivalence classes, defined on a 

set with n elements; number of factorizations, each with exactly k factors greater than 1, of a square-

free positive integer that has exactly n different prime factors.  

 

 

 

 

 

 

 

 

 

 

 

 

There are two kinds of Stirling numbers and in most cases it is more convenient to start with 
the second kind. 
  

                                                           
13 James Stirling (1692-1770), Scottish mathematician. 

https://en.wikipedia.org/wiki/James_Stirling_(mathematician)
https://en.wikipedia.org/wiki/Scotland
https://en.wikipedia.org/wiki/Mathematician
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S T I R L I N G  N U M B E R S  O F  T H E  S E C O N D  K I N D  

The number of ways of partitioning an 𝑛 −set into 𝑚 disjoint subsets is called a Stirling num-

ber of the second kind and is denoted by {𝑛
𝑚
}, by convention we set {0

0
} = 1 and  {𝑛

0
} = 0 for any 

positive integer 𝑛. 

Example 1. Partitions of {1,2,3,4} 

1 part  {1,2,3,4} 

2 parts                {1,2,3}{4}    {1,2,4}{3}    {1,3,4}{2}      {2,3,4}{1}  

                   {1,2}{3,4}    {1,3}{2,4}    {1,4}{2,3}  

3 parts                {1,2}{3}{4}    {1,3}{2}{4}    {1,4}{2}{3}       

                  {2,3}{1}{4}    {2,4}{1}{3}    {3,4}{1}{2}  

4 parts                {1}{2}{3}{4} 

Then we conclude 

{
4

1
} = 1     {

4

2
} = 7     {

4

3
} = 6     {

4

4
} = 1. 

It is easy to observe that {𝑛
1
} = 1, because the only option is to place all the objects into the 

single subset. Similarly {𝑛
𝑛
} = 1, for we must place each object in a different subset. Thus 

{
𝑛

1
} = 1,        {

𝑛

𝑛
} = 1. 

Choose any nonempty proper subset of a given set 𝑋 with 𝑛 elements. This choice, together 

with its complement, constitutes a partition of 𝑋 into two subsets. In this way each partition is 

counted twice, so 

{
𝑛

2
} = 2𝑛−1 − 1. 

Any partitioning of 𝑋 into 𝑛 − 1 subsets consists of 𝑛 − 2 subsets with one element and one 

subset with two elements. Such a partition is completely determined when the subset with two 

elements is determined. Then  

{
𝑛

𝑛 − 1
} = (

𝑛

2
). 
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THEOREM 5.1 (Basic recursion of the Stirling numbers of the second kind). For any inte-

gers 𝑛 ≥ 2 and 1 ≤ 𝑚 ≤ 𝑛, Stirling numbers of the second kind satisfy the recurrence 

{
𝑛

𝑚
} = 𝑚 {

𝑛 − 1

𝑚
} + {

𝑛 − 1

𝑚 − 1
}. 

Proof. In a partition of {1, 2, . . . , 𝑛} into 𝑚 nonempty subsets, the element 𝑛 either appears as a 

singleton or it is in of the 𝑘 nonempty subsets with more than one element. In the first case, the 

partition is {𝑛} together with a partition of {1, 2, . . . , 𝑛 − 1} into 𝑚 − 1 nonempty parts. There are 

{𝑛−1
𝑚−1

} of them. In the second case, take a collection of 𝑚 nonempty subsets partitioning 

{1, 2, . . . , 𝑛 − 1}. There are {𝑛−1
𝑚
} of them. The number 𝑛 can be put back into any of the 𝑚 parts.  ∎ 

Example 2. Compute {5
3
}. 

We will obtain {5
3
} by counting all partitions of the set  {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} into three parts. 

Below we see that each partition of {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} into three parts can be obtained 

from partitions of the set {𝐴, 𝐵, 𝐶, 𝐷} into two parts and three parts: 

First recall that {4
2
} = 7 and  {4

3
} = 6 (Example 1). 

We have {4
3
} = 6 and all partitions of {𝐴, 𝐵, 𝐶, 𝐷} into 3 parts are: 

{𝐴, 𝐵}{𝐶}{𝐷}    {𝐴, 𝐶}{𝐵}{𝐷}     {𝐴, 𝐷}{𝐵}{𝐶} 

{𝐵, 𝐶}{𝐴}{𝐷}    {𝐵, 𝐷}{𝐴}{𝐶}     {𝐶, 𝐷}{𝐴}{𝐵} 

We can insert the fifth element ‘𝐸’, into any one of the existing parts so that 

                {𝐴, 𝐵}{𝐶}{𝐷}     ⟼   {𝐴, 𝐵, 𝑬}{𝐶}{𝐷}    {𝐴, 𝐵}{𝐶, 𝑬}{𝐷}    {𝐴, 𝐵}{𝐶}{𝐷, 𝑬} 

 {𝐴, 𝐶}{𝐵}{𝐷}     ⟼   {𝐴, 𝐶, 𝑬}{𝐵}{𝐷}    {𝐴, 𝐶}{𝐵, 𝑬}{𝐷}    {𝐴, 𝐶}{𝐵}{𝐷, 𝑬} 

 {𝐴, 𝐷}{𝐵}{𝐶}     ⟼   {𝐴, 𝐷, 𝑬}{𝐵}{𝐶}    {𝐴, 𝐷}{𝐵, 𝑬}{𝐶}    {𝐴, 𝐷}{𝐵}{𝐶, 𝑬}      

 {𝐵, 𝐶}{𝐴}{𝐷}     ⟼   {𝐵, 𝐶, 𝑬}{𝐴}{𝐷}    {𝐵, 𝐶}{𝐴, 𝑬}{𝐷}    {𝐵, 𝐶}{𝐴}{𝐷, 𝑬}  

 {𝐵, 𝐷}{𝐴}{𝐶}     ⟼   {𝐵, 𝐷, 𝑬}{𝐴}{𝐶}    {𝐵, 𝐷}{𝐴, 𝑬}{𝐶}    {𝐵, 𝐷}{𝐴}{𝐶, 𝑬} 

 {𝐶, 𝐷}{𝐴}{𝐵}     ⟼   {𝐶, 𝐷, 𝑬}{𝐴}{𝐵}     {𝐶, 𝐷}{𝐴, 𝑬}{𝐵}    {𝐶, 𝐷}{𝐴}{𝐵, 𝑬} 

and in this manner we obtain  3 ⋅ {4
3
} = 18 partitions of  {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} into 3 parts. 

Now we consider the partitions of {𝐴, 𝐵, 𝐶, 𝐷} into two parts. We have {4
2
} = 7 and all 

such partitions are:   

{A,B,C}{D}    {A,B,D}{C}    {A,C,D}{B}    {B,C,D}{A}    {A,B}{C,D}    {A,C}{B,D}        {A,D}{B,C} 

By appending {𝐸} as an additional new part in each of these partitions we get 

{A,B,C}{D}{𝐸}    {A,B,D}{C}{𝐸}    {A,C,D}{B}{𝐸}    {B,C,D}{A}{𝐸} 

{A,B}{C,D}{𝐸}    {A,C}{B,D}{𝐸}        {A,D}{B,C}{𝐸} 

{4
2
} = 7 more partitions of  {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} into 3 parts. Then 

{5
3
} = 3{4

3
} + {4

2
} = 3 ⋅ 6 + 7 = 25. 
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THEOREM 5.2. Let 𝑋 and 𝑌 be two sets with |𝑋| = 𝑛 and |𝑌| = 𝑚. The number of functions 

𝑓: 𝑋 → 𝑌 such that |𝑓(𝑋)| = 𝑘 is  

𝑚!

(𝑚 − 𝑘)!
{
𝑛

𝑚
}. 

Proof. Assume that the size of image set 𝑓(𝑋) of 𝑓 is 𝑘. If 𝑓(𝑋) = {𝑦1, 𝑦2, ⋯ , 𝑦𝑘}, then 

𝑓−1(𝑦1),⋯ , 𝑓
−1(𝑦𝑘) is a partition of 𝑋 into 𝑘 pairwise disjoint subsets. Consequently any function 

which has 𝑘 points in the image set describes a partition of 𝑋 into 𝑘 subsets. On the other hand, 

assume that we have given a partition of 𝑋 into 𝑘 subsets, say 𝑋1, … , 𝑋𝑘 . Each arrangement 

𝑦1𝑦2⋯𝑦𝑘 of 𝑘 elements of 𝑌 describes a function 𝑋 → 𝑌 by setting 𝑓(𝑥) = 𝑦𝑖  for all 𝑥 ∈ 𝑋𝑖 ,  𝑖 =

1,… , 𝑘. Thus, each partition of 𝑋 into 𝑘 subsets defines (𝑚
𝑘
)𝑘! =

𝑚!

(𝑚−𝑘)!
  functions each of which 

has 𝑘 points in the image set.  ∎ 

COROLLARY 5.3. Let 𝑋 and 𝑌 be two sets with |𝑋| = 𝑛 and |𝑌| = 𝑚. The number of onto func-

tions 𝑓: 𝑋 → 𝑌 is 𝑚! {𝑛
𝑚
}. 

Proof. Just write 𝑘 = 𝑚 in the theorem. ∎ 

Since the number of onto functions is given by ∑ (−1)𝑚−𝑘(𝑚
𝑘
)𝑘𝑛𝑚

𝑘=0 , a closed form  expression 

for {𝑛
𝑚
} is 

{
𝑛

𝑚
} =

1

𝑚!
∑(−1)𝑚−𝑘 (

𝑚

𝑘
)𝑘𝑛

𝑚

𝑘=0

. 

 

COROLLARY 5.4.  For  any  integers 0 ≤ 𝑚 ≤ 𝑛, the following equality holds  

∑𝑘!(
𝑚

𝑘
) {
𝑛

𝑘
}

𝑚

𝑘=1

= 𝑚𝑛. 

Proof. Each side of the equality counts the number of all functions from a set with 𝑛 elements 

into a set of 𝑚 elements in another way.  ∎ 

Now we obtain ordinary and exponential generating functions of Stirling numbers of the sec-

ond kind. 
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LEMMA 5.5. If  𝑘 ≥ 0, then 

𝑥𝑘

(1 − 𝑥)(1 − 2𝑥)⋯ (1 − 𝑘𝑥)
=
1

𝑘!
 ∑(−1)𝑘−𝑗 (

𝑘

𝑗
)

1

1 − 𝑗𝑥

𝑘

𝑗=0

 .   

Proof. (By induction on 𝑘. ) For 𝑘 = 1 equality holds: left hand side is 
𝑥

1−𝑥
 and right hand side 

is −1 +
1

1−𝑥
=

𝑥

1−𝑥
. Assume that the equality holds for some integer 𝑘 ≥ 0 then 

𝑥𝑘+1

(1 − 𝑥)(1 − 2𝑥)⋯(1 − (𝑘 + 1)𝑥)
=
1

𝑘!
 ∑(−1)𝑘−𝑗 (

𝑘

𝑗
)

𝑥

1 − (𝑘 + 1)𝑥
⋅
1

1 − 𝑗𝑥

𝑘

𝑗=0

 . 

Now we can write the quotient in the summation as  

𝑥

(1 − (𝑘 + 1)𝑥)(1 − 𝑗𝑥)
=

1

𝑘 + 1 − 𝑗
(

1

1 − (𝑘 + 1)𝑥
−

1

1 − 𝑗𝑥
) 

to obtain 

𝑥𝑘+1

(1 − 𝑥)(1 − 2𝑥)⋯(1 − (𝑘 + 1)𝑥)
=
1

𝑘!
 ∑(−1)𝑘−𝑗 (

𝑘

𝑗
)

𝑘

𝑗=0

1

𝑘 + 1 − 𝑗
(

1

1 − (𝑘 + 1)𝑥
−

1

1 − 𝑗𝑥
) 

=
1

(𝑘 + 1)!
∑[(−1)𝑘−𝑗 (

𝑘 + 1

𝑗
) (

1

1 − (𝑘 + 1)𝑥
−

1

1 − 𝑗𝑥
)]

𝑘

𝑗=0

 

=
1

(𝑘 + 1)!

1

1 − (𝑘 + 1)𝑥
∑(−1)𝑘−𝑗 (

𝑘 + 1

𝑗
)

𝑘

𝑗=0

 

= +
1

(𝑘 + 1)!
∑(−1)𝑘+1−𝑗 (

𝑘 + 1

𝑗
)

1

1 − 𝑗𝑥
  

𝑘

𝑗=0

  

=
1

(𝑘 + 1)!
[

1

1 − (𝑘 + 1)𝑥
+∑(−1)𝑘+1−𝑗 (

𝑘 + 1

𝑗
)

1

1 − 𝑗𝑥
  

𝑘

𝑗=0

 ] 

=
1

(𝑘 + 1)!
∑(−1)𝑘+1−𝑗 (

𝑘 + 1

𝑗
)

1

1 − 𝑗𝑥
  

𝑘+1

𝑗=0

 

which completes the proof.  ∎ 
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THEOREM 5.6. For any fixed integer 𝑘 ≥ 0 , generating function of the sequence {{𝑛
𝑘
}} 𝑛=𝑘
∞  is 

𝐺(𝑥) = ∑ {
𝑛

𝑘
}

∞

𝑛≥ 𝑘

𝑥𝑛 =
𝑥𝑘

(1 − 𝑥)(1 − 2𝑥)⋯(1 − 𝑘𝑥)
. 

Proof. From the lemma we have 

𝑥𝑘

(1 − 𝑥)(1 − 2𝑥)⋯ (1 − 𝑘𝑥)
=
1

𝑘!
 ∑(−1)𝑘−𝑗 (

𝑘

𝑗
)

1

1 − 𝑗𝑥

𝑘

𝑗=0

  

=
1

𝑘!
 ∑(−1)𝑘−𝑗 (

𝑘

𝑗
)∑ 𝑗𝑛𝑥𝑛
∞

𝑛=0

𝑘

𝑗=0

 

= ∑(
1

𝑘!
 ∑(−1)𝑘−𝑗 (

𝑘

𝑗
) 𝑗𝑛

𝑘

𝑗=0

)

∞

𝑛=0

𝑥𝑛  

Since  
1

𝑘!
 ∑ (−1)𝑘−𝑗 (𝑘

𝑗
) 𝑗𝑛𝑘

𝑗=0  is the closed form of {𝑛
𝑘
} we obtain the desired equality. ∎ 

Note that the generating function given in the theorem can also be written as 

𝐺(𝑥) =
1

𝑥(𝑘 + 1)! (1/𝑥
𝑘+1
)
. 

THEOREM 5.7. For any fixed integer 𝑘 ≥ 0 , exponential generating function of the sequence 

{{𝑛
𝑘
}} 𝑛=𝑘
∞  is 

𝐻(𝑥) = ∑ {
𝑛

𝑘
}
𝑥𝑛

𝑛!

∞

𝑛≥ 𝑘

=
(𝑒𝑥 − 1)𝑘

𝑘!
. 

Proof. We consider the power series expansion of 
(𝑒𝑥−1)𝑘

𝑘!
: 

(𝑒𝑥 − 1)𝑘

𝑘!
=
1

𝑘!
∑(−1)𝑘−𝑖 (

𝑘

𝑖
) 𝑒𝑖𝑥

𝑘

𝑖=0

 

=
1

𝑘!
∑(−1)𝑘−𝑖  (

𝑘

𝑖
)∑

𝑖𝑛𝑥𝑛

𝑛!

∞

𝑛=0

𝑘

𝑖=0

 

= ∑(
1

𝑘!
∑(−1)𝑘−𝑖 (

𝑘

𝑖
)

𝑘

𝑖=0

𝑖𝑛)
𝑥𝑛

𝑛!
   

∞

𝑛=0

 

 

Since  
1

𝑘!
 ∑ (−1)𝑘−𝑖(𝑘

𝑖
)𝑖𝑛𝑘

𝑖=0 = {𝑛
𝑘
} we obtain the desired equality.   ∎ 
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THEOREM 5.8.  Bivariate exponential generating function for the Stirling numbers of the sec-

ond kind is 

𝐹(𝑥, 𝑦) = ∑ {
𝑛

𝑘
}
𝑥𝑛𝑦𝑘

𝑛!
=

∞

𝑛,𝑘=0

𝑒𝑦(𝑒
𝑥−1). 

Proof. We have to show that coefficient of 
𝑥𝑛𝑦𝑘

𝑛!
 in power series representation of 𝑒𝑦(𝑒

𝑥−1) is 

{𝑛
𝑘
}. 

𝑒𝑦(𝑒
𝑥−1) =∑

1

𝑘!
𝑦𝑘(𝑒𝑥 − 1)𝑘  

∞

𝑘=0

 

=∑
1

𝑘!
𝑦𝑘∑(−1)𝑘−𝑗 (

𝑘

𝑗
) 𝑒𝑗𝑥

𝑘

𝑗=0

 

∞

𝑘=0

 

=∑
1

𝑘!
𝑦𝑘∑(−1)𝑘−𝑗 (

𝑘

𝑗
)∑

𝑗𝑛𝑥𝑛

𝑛!

∞

𝑛=0

𝑘

𝑗=0

 

∞

𝑘=0

 

=∑∑(
1

𝑘!
∑(−1)𝑘−𝑗 (

𝑘

𝑗
)

𝑘

𝑗=0

𝑗𝑛)

∞

𝑛=0

𝑥𝑛

𝑛!
 𝑦𝑘 

∞

𝑘=0

 

= ∑ {
𝑛

𝑘
}

∞

𝑛,𝑘=0

𝑥𝑛

𝑛!
 𝑦𝑘 . 

Thus, proof is completed. ∎ 

S T I R L I N G  N U M B E R S  O F  T H E  F I R S T  K I N D  
 

We denote the set of all permutations of {1, 2,⋯ , 𝑛} by 𝑆(𝑛). A permutation 𝜎 ∈  𝑆(𝑛) is a bi-

jective mapping whose ‘word representation’ is 𝜎 =  𝜎1⋯𝜎𝑛  where 𝜎𝑖 = 𝜎(𝑖) for 𝑖 = 1,… , 𝑛. Un-

der the operation of composition 𝑆(𝑛) forms the symmetric group of order 𝑛. An alternative way 

to describe a permutation is its cycle decomposition. For every 𝑖, the sequence 𝑖, 𝜎(𝑖), 𝜎2(𝑖), … 

eventually terminates with 𝑖 again. If 𝑘 is the smallest positive integer such that 𝜎𝑘(𝑖) = 𝑖, we 

denote the cycle containing 𝑖 by [𝑖 𝜎(𝑖) 𝜎2(𝑖)⋯𝜎𝑘−1(𝑖)]. If 𝜎𝑡(𝑖) = 𝑗, then the cycles containing 𝑖 

and 𝑗 are defined to be the same. Cycle decomposition of 𝜎 is the list of all distinct cycles of 𝜎.  

Example 3. Let 𝜎 = 936478251 ∈ 𝑆(9). Then 𝜎 is the bijection from {1,2,3,4,5,6,7,8,9} to itself 

which is defined as 𝜎(1) = 9, 𝜎(2) = 3, 𝜎(3) = 6, 𝜎(4) = 4, 𝜎(5) = 7, 𝜎(6) =

8, 𝜎(7) = 2, 𝜎(8) = 5, 𝜎(9) = 1.  Observe that  𝜎(3) = 6, 𝜎(6) = 8, 𝜎(8) = 5, 𝜎(5) =

7, 𝜎(7) = 2 and 𝜎(2) = 3. Thus, starting with 3 we have the chain 3
  𝜎  
→ 6

  𝜎  
→ 8

  𝜎  
→ 5

  𝜎  
→ 7

  𝜎  
→ 2

  𝜎  
→ 3. The cycle containing 3 is [368572]. It is clear that the cycle containing 

5 is [572368] and by definition these cycles are the same. The cycle containing  1 is 

[19] and the cycle containing 4 is [4]. Then cycle decomposition of 𝜎 is 𝜎 =

[19][236857][4]. 
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To represent a cycle, we may start with any element in the cycle. Order of cycles is irrelevant. 

Cycles of length 1 are fixed points in 𝜎. Cycles of length 2 are transpositions 𝑖 ↔  𝑗. In the above 

example 4 is a fixed point of 𝜎 and  and 1 ↔ 9 (𝜎(1) = 9, 𝜎(9) = 1) is a transposition. 

Example 4. For the permutation 𝜎 of the previous example, 4 is a fixed point and [19] is a trans-

position.  

In the identity permutation each element is a fixed point thus, it has the most 

crowded cycle decomposition: 𝑖𝑑 = [1][2][3]⋯ [𝑛]. On the other etreme we may 

have permutations whoso cycle decomposition consists of a single cycle. Such a per-

mutation is called cyclic. There are (𝑛 −  1)! cyclic permutations of 𝑆(𝑛).  

 

Example 5. Let 𝜏 = 3421 ∈ 𝑆(4), then 1
  𝜏  
→ 3

  𝜏  
→ 2

  𝜏  
→ 4

  𝜏  
→ 1 and the cycle containing 1 is [1324]. 

Since this cycle contains all of the elements, cycle decomposition of 𝜏 consists of a 

single cycle: 𝜏 = [1324]. All cyclic permutations of 𝑆(4) are 

[1234] , [1243] , [1324] , [1342] , [1423] , [1432]. 

 

The number of permutations of {1,2,… , 𝑛}  with 𝑚 −cycles is called a Stirling Number of the 

first kind and is denoted by [𝑛
𝑚
]. By convention we set [0

0
] = 1 and [𝑛

0
] = 0  for 𝑛 > 0. 

As subsets  {1,2,3,4} = {2,3,4,1} = {1,2,4,3}, 

As cycles  [1,2,3,4] = [2,3,4,1] ≠ [1,2,4,3]. 

Example 6. Permutations and cycle decompositions of {1,2,3,4}: 

 

1234 [1][2][3][4] 4 cycles 

1243 [1][2][34] 3 cycles 

1324 [1][23][4] 3 cycles 

1342 [1][234] 2 cycles 

1423 [1][243] 2 cycles 

1432 [1][42][3] 3 cycles 

2134 [12][3][4] 3 cycles 

2143 [12][34] 2 cycles 

2314 [123][4] 2 cycles 

2341 [1234]  1 cycle 

2413 [1243]  1 cycle 

2431 [124] [3] 2 cycles 

3124  [132] [4] 2 cycles 

3142  [1342]                   1 cycle 

3214  [13] [2] [4] 3 cycles 

3241  [134] [2] 2 cycles 

3412  [1342]  1 cycle 

3421  [1324]  1 cycle 

4123  [1432]  1 cycle 

4132  [142] [3] 2 cycles 

4213  [14] [2]                 2 cycles 

4231  [14] [2] [3] 3 cycles 

4312  [1423]  1 cycle 

4321  [14] [23] 4 cycles  
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 1 cycle                  [1,2,3,4]     [1,2,4,3]    [1,3,2,4]    [1,3,4,2]    [1,4,2,3]    [1,4,3,2]  

2 cycles  [1,2,3][4]     [1,3,2][4]    [1,2,4][3]    [1,4,2][3]  

  [1,3,4][2]    [1,4,3][2]     [2,3,4][1]    [2,4,3][1] 

  [1,2][3,4]    [1,3][2,4]     [1,4][2,3] 

3 cycles  [1,2][3][4]    [1,3][2][4]    [1,4][2][3] 

                                [2,3][1][4]    [2,4][1][3]    [3,4][1][2] 

4 cycles  [1][2][3][4] 

Then we conclude 

[
4

1
] = 6,      [

4

2
] = 11,      [

4

3
] = 6      [

4

4
] = 1 

 

It is obvious that [𝑛
1
] = (𝑛 − 1)!, because a single cycle consisting of 𝑛 elements is a cyclic per-

mutation of these elements and there are (𝑛 − 1)! such permutations. Similarly [𝑛
𝑛
] = 1,  since only 

way of defining 𝑛 cycles with 𝑛 elements is to take each element as a cycle:  

[
𝑛

1
] = (𝑛 − 1)! ,                      [

𝑛

𝑛
] = 1. 

If we wish to define 𝑛 − 1 cycles, we have to pick two arbitrary elements to form one of the 

cycles and all the remaining cycles will consist of a single element. Then 

[
𝑛

𝑛 − 1
] = (

𝑛

2
). 

THEOREM 5.9 (Basic recursion of the Stirling numbers of the first kind). For any inte-

gers 𝑛 ≥ 2 and 1 ≤ 𝑚 ≤ 𝑛, Stirling numbers of the second kind satisfy the recurrence 

[
𝑛

𝑚
] = (𝑛 − 1) [

𝑛 − 1

𝑚
] + [

𝑛 − 1

𝑚 − 1
] 

with initial conditions [0
0
] = 1 and [𝑛

0
] = [0

𝑛
] = 0 for 𝑛 > 0. 

Proof. Consider forming a new permutation with 𝑛 objects from a permutation of 𝑛 −  1 ob-

jects by inserting an ‘𝑛’. There are exactly two ways in which this can be accomplished. First, we 

could form a singleton cycle, leaving the extra object fixed. This increases the number of cycles by 

1 and so accounts for the [𝑛−1
𝑚−1

] term in the recurrence. Second, we could insert the object into one 

of the existing cycles. Consider an arbitrary permutation of 𝑛 −  1 objects with 𝑚 cycles. To form 

the new permutation, we insert the new object before any of the 𝑛 −  1 objects already present. 

This explains the (𝑛 −  1)[𝑛−1
𝑚
]term of the recurrence. These two cases include all of the possibil-

ities, so the recurrence relation follows with. 



 

82 | Stirling Numbers 

 

Example 7. 

 

Compute [5
3
]. 

First recall that [4
3
] = 6 and all permuations of {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} with three cycles are: 

[𝐴, 𝐵][𝐶][𝐷]    [𝐴, 𝐶][𝐵][𝐷]    [𝐴, 𝐷][𝐵][𝐶]     [𝐵, 𝐶][𝐴][𝐷]    [𝐵, 𝐷][𝐴][𝐶]    [𝐶, 𝐷][𝐴][𝐵]. 

We can insert ‘E’ to one of the cycles of each these permutations in 4 different ways : 

[𝐴, 𝐵][𝐶][𝐷]    →    [𝐴, 𝐵, 𝐸][𝐶][𝐷]      [𝐴, 𝐸, 𝐵][𝐶][𝐷]      [𝐴, 𝐵][𝐶, 𝐸][𝐷]     [𝐴, 𝐵][𝐶][𝐷, 𝐸] 

[𝐴, 𝐶][𝐶][𝐷]    →    [𝐴, 𝐶, 𝐸][𝐶][𝐷]      [𝐴, 𝐸, 𝐶][𝐶][𝐷]      [𝐴, 𝐶][𝐶, 𝐸][𝐷]     [𝐴, 𝐶][𝐶][𝐷, 𝐸] 

[𝐴, 𝐷][𝐵][𝐶]    →    [𝐴, 𝐷, 𝐸][𝐵][𝐶]      [𝐴, 𝐸, 𝐷][𝐵][𝐶]      [𝐴, 𝐷][𝐵, 𝐸][𝐶]     [𝐴, 𝐷][𝐵][𝐶, 𝐸] 

[𝐵, 𝐶][𝐴][𝐷]    →    [𝐵, 𝐶, 𝐸][𝐴][𝐷]      [𝐵, 𝐸, 𝐶][𝐴][𝐷]      [𝐵, 𝐶][𝐴, 𝐸][𝐷]     [𝐵, 𝐶][𝐴][𝐷, 𝐸] 

[𝐵, 𝐷][𝐴][𝐶]    →    [𝐵, 𝐷, 𝐸][𝐴][𝐶]      [𝐵, 𝐸, 𝐷][𝐴][𝐶]      [𝐵, 𝐷][𝐴, 𝐸][𝐶]     [𝐵, 𝐷][𝐴][𝐶, 𝐸] 

[𝐶, 𝐷][𝐴][𝐵]    →    [𝐶, 𝐷, 𝐸][𝐴][𝐵]      [𝐶, 𝐸, 𝐷][𝐴][𝐵]      [𝐶, 𝐷][𝐴, 𝐸][𝐵]     [𝐶, 𝐷][𝐴][𝐵, 𝐸] 

To obtain the remaining permutations, we add the cycle [𝐸] to each permutation of 

{𝐴, 𝐵, 𝐶, 𝐷} with two cycles. There are [4
2
] = 11 such permutations: 

[𝐴, 𝐵, 𝐶][𝐷]      [𝐴, 𝐶, 𝐵][𝐷]      [𝐴, 𝐵, 𝐷][𝐶]      [𝐴, 𝐷, 𝐵][𝐶]      [𝐴, 𝐶, 𝐷][𝐵]      [𝐴, 𝐷, 𝐶][𝐵] 

[𝐵, 𝐶, 𝐷][𝐴]     [𝐵, 𝐷, 𝐶][𝐴]     [𝐴, 𝐵][𝐶, 𝐷]       [𝐴, 𝐶][𝐵, 𝐷]      [𝐴, 𝐷][𝐵, 𝐶] 

Thus we acquire 11 cycles of {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} with 3 cycles where [𝐸] appears as a single 

cycle: 

[𝐴, 𝐵, 𝐶][𝐷][𝐸]     [𝐴, 𝐶, 𝐵][𝐷][𝐸]     [𝐴, 𝐵, 𝐷][𝐶][𝐸]     [𝐴, 𝐷, 𝐵][𝐶][𝐸] 

[𝐴, 𝐶, 𝐷][𝐵][𝐸]      [𝐴, 𝐷, 𝐶][𝐵][𝐸]    [𝐵, 𝐶, 𝐷][𝐴][𝐸]     [𝐵, 𝐷, 𝐶][𝐴][𝐸] 

[𝐴, 𝐵][𝐶, 𝐷][𝐸]       [𝐴, 𝐶][𝐵, 𝐷][𝐸]      [𝐴, 𝐷][𝐵, 𝐶][𝐸] 

 

Then we conclude  [5
3
] = 4[4

3
] + [4

2
] = 4 ⋅ 6 + 11 = 35. 

 

THEOREM 5.10 (Basic Identities). For nonnegative integers 𝑛 and 𝑟 let 𝐻𝑛 be the harmonic 

number and 𝐻𝑛
(𝑟) be generalized harmonic numbers. The following identities hold. 

i. ∑ [𝑛
𝑘
]𝑛

𝑘=1 = 𝑛!, 

ii. [𝑛
2
] = (𝑛 − 1)!𝐻𝑛−1, 

iii. [𝑛
3
] =

1

2
(𝑛 − 1)! [𝐻𝑛−1

2 −𝐻𝑛−1
(2)
], 

iv. [𝑛
4
] =

1

3!
(𝑛 − 1)! [𝐻𝑛−1

3 − 3𝐻𝑛−1𝐻𝑛−1
(2) + 2𝐻𝑛−1

(3)
], 

v. [ 𝑛
𝑛−2
] =

1

4
(3𝑛 − 1)(𝑛

3
), 

vi. [ 𝑛
𝑛−3
] = (𝑛

2
)(𝑛
4
). 
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Proof. Part i. follows immediately from the definition. Parts ii., iii. and iv. can be proved by 

similar methods. We prove parts ii. and iii.; leave the proof of part iv. as exercise. Parts v.  and vi. 

are proved by direct computation.   

i.  [𝑛
𝑘
] is the number of permutations with 𝑘 cycles,so the sum [𝑛

1
] + [𝑛

2
] + ⋯+ [𝑛

𝑛
] counts each 

permutation once and only once. 

ii. Define the sequence {𝑢𝑛} by setting 𝑢𝑛 =
1

(𝑛−1)!
[𝑛
2
]. Since [𝑛−1

1
] = (𝑛 − 2)! for 𝑛 > 2, from the 

basic recursion we write 

𝑢𝑛 =
1

(𝑛 − 1)!
((𝑛 − 1) [

𝑛 − 1

2
] + (𝑛 − 2)!) 

=
1

(𝑛 − 2)!
 [
𝑛 − 1

2
] +

1

𝑛 − 1
. 

As 𝑢𝑛−1 =
1

(𝑛−2)!
 [𝑛−1

2
], we see that  𝑢𝑛 = 𝑢𝑛−1 +

1

𝑛−1
. Now  

∑𝑢𝑘

𝑛

𝑘=2

= ∑𝑢𝑘

𝑛−1

𝑘=1

+∑
1

𝑘

𝑛−1

𝑘=1

 

so, 𝑢𝑛 = 𝐻𝑛−1 and consequently [𝑛
2
] = (𝑛 − 1)!𝐻𝑛−1. 

iii. Let 𝑢𝑛 =
1

(𝑛−1)!
[𝑛
3
],  𝑛 = 3,4,… and use the basic recursion  

[
𝑛

3
] = (𝑛 − 1) [

𝑛 − 1

3
] + [

𝑛 − 1

2
] 

= (𝑛 − 1) [
𝑛 − 1

3
] + (𝑛 − 2)! 𝐻𝑛−2 

for Stirling numbers of the first kind to write 

𝑢𝑛 =
1

(𝑛 − 1)!
((𝑛 − 1) [

𝑛 − 1

3
] + (𝑛 − 2)!𝐻𝑛−2) 

=
1

(𝑛 − 2)!
[
𝑛 − 1

3
] +

1

𝑛 − 1
𝐻𝑛−2. 

It follows that 𝑢𝑛 = 𝑢𝑛−1 +
1

𝑛−1
𝐻𝑛−2. Now we consider the sum over all 𝑛 ≥  3 

∑𝑢𝑘

𝑛

𝑘=3

=∑𝑢𝑘−1

𝑛

𝑘=3

+∑
1

𝑘 − 1
𝐻𝑘−2

𝑛

𝑘=3

 

= ∑𝑢𝑘

𝑛−1

𝑘=2

+∑
1

𝑘
𝐻𝑘−1.

𝑛−1

𝑘=2
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Since 𝑢2 = 0, we obtain 𝑢𝑛 = ∑
1

𝑘
𝐻𝑘−1

𝑛−1
𝑘=2  and 

𝑢𝑛 = ∑
1

𝑘
(𝐻𝑘 −

1

𝑘
)

𝑛−1

𝑘=2

 

= (∑
1

𝑘
(𝐻𝑘 − 1)

𝑛−1

𝑘=1

) − (∑
1

𝑘2

𝑛−1

𝑘=1

− 1) 

=
1

2
((𝐻𝑛−1)

2 +𝐻𝑛−1
(2)
) − 𝐻𝑛−1

(2)
 

=
1

2
((𝐻𝑛−1)

2 −𝐻𝑛−1
(2)
). 

v. A permutation 𝜎 ∈ 𝑆(𝑛) decomposes into 𝑛 − 2  cycles in one of two ways: 

- A cycle of size 3 and 𝑛 − 3 cycles of size 1. There are 2! (𝑛
3
) =

𝑛!

3(𝑛−3)
 such permutations. 

- Two cycles of size 2 elements and 𝑛 − 4  cycles of size 1. There are  
1

2
(𝑛
2
)(𝑛−2

2
) =

𝑛!

8(𝑛−4)!
 such 

permutations. 

 

 It follows that [ 𝑛
𝑛−2
] =

𝑛!

3(𝑛−3)
+

𝑛!

8(𝑛−4)!
 which simplifies into  

[
𝑛

𝑛 − 2
] = (

𝑛

3
)(2 +

3

4
(𝑛 − 3)) 

= (
𝑛

3
)
3𝑛 − 1

4
. 

 

vi. A permutation 𝜎 ∈ 𝑆(𝑛) decomposes into 𝑛 − 3  cycles in one of three ways: 

- Lengths of cycles: 4, 1, 1, … , 1⏟      
𝑛−4   𝑐𝑦𝑐𝑙𝑒𝑠

. Number of such cycles is 3! (𝑛
4
),   

- Lengths of cycles: 3, 2, 1, 1, … , 1⏟      
𝑛−5   𝑐𝑦𝑐𝑙𝑒𝑠

. Number of such cycles is 2! (𝑛
3
)(𝑛−3

2
) = 4(𝑛 − 5)(𝑛

4
), 

- Lengths of cycles: 2, 2,2 1, 1, … , 1⏟      
𝑛−6   𝑐𝑦𝑐𝑙𝑒𝑠

. Number of such cycles is 
1

3!
(𝑛
2
)(𝑛−2

2
)   (𝑛−4

2
) =

(𝑛−4)(𝑛−5)

2
(𝑛
4
). 

Then we have 

[
𝑛

𝑛 − 3
] = (

𝑛

4
) (6 + 4(𝑛 − 4) + (𝑛 − 4)(𝑛 − 5)/2) 

= (
𝑛

4
)
𝑛(𝑛 − 1)

2
.  
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As 
𝑛(𝑛−1)

2
= (𝑛

2
), claim follows.   ∎ 

THEOREM 5.11. Bivariate exponential generating function for the Stirling numbers of the first 

kind is 

(
1

1 − 𝑥
)
𝑦

= ∑∑[
𝑛

𝑘
]

𝑛

𝑘=0

∞

𝑛=0

𝑥𝑛

𝑛!
𝑦𝑘  . 

For any fixed integer 𝑘 ≥ 0 , generating function of the sequence {[𝑛
𝑘
]} 𝑛=𝑘
∞  is  

−
(ln(1 + 𝑧))𝑘

𝑘!
= ∑ [

𝑛

𝑘
]

∞

𝑛=0

𝑥𝑛

𝑛!
. 

 

R E L A T I O N S  B E T W E E N  T W O  K I N D S  O F  S T I R L I N G  N U M B E R S  

The following inequality is a direct consequence of the definition 

[
𝑛

𝑚
] ≥ {

𝑛

𝑚
}            𝑛,𝑚 ≥ 0     (integer). 

THEOREM 5.12 (Falling and rising factorial powers). For any integer 𝑛 ≥ 0, the following 

equalities hold 

𝑥𝑛 = (−1)𝑛(−𝑥)𝑛, 

𝑥𝑛 = (−1)𝑛(−𝑥)𝑛, 

𝑥 ⋅ 𝑥𝑛 = 𝑥𝑛+1 + 𝑛𝑥𝑛. 

Proof. 

(−𝑥)𝑛 = (−𝑥)(−𝑥 + 1)⋯(−𝑥 + 𝑛 − 1) 

= (−1)𝑛𝑥(𝑥 − 1)⋯ (𝑥 − 𝑛 + 1) 

= (−1)𝑛𝑥𝑛 

(−𝑥)𝑛 = (−𝑥)(−𝑥 − 1)⋯(−𝑥 − 𝑛 + 1) 

= (−1)𝑛𝑥(𝑥 + 1)⋯ (𝑥 + 𝑛 − 1) 

= (−1)𝑛𝑥𝑛 

𝑥𝑛+1 = 𝑥(𝑥 − 1)⋯ (𝑥 − 𝑛 + 1)(𝑥 − 𝑛) 

= 𝑥𝑛(𝑥 − 𝑛) 

= 𝑥𝑥𝑛 − 𝑛𝑥𝑛. 

This completes the proof.   ∎ 
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THEOREM 5.13. For any integer 𝑛 ≥ 0, factorial powers can be written in terms of ordinary 

powers  as follows:  

𝑥𝑛 =∑[
𝑛

𝑘
] (−1)𝑛−𝑘𝑥𝑘

𝑛

𝑘=0

, 

 𝑥𝑛 =∑[
𝑛

𝑘
] 𝑥𝑘

𝑛

𝑘=0

. 

Proof. (Mathematical induction on 𝑛) For 𝑛 = 1 the claim holds:  𝑥1 = 𝑥(𝑥 − 1) = 𝑥2 − 𝑥 =

[1
0
]𝑥2 − [1

1
]𝑥 . Now assume that 𝑥𝑛 = ∑ [𝑛

𝑘
](−1)𝑛−𝑘𝑥𝑘𝑛

𝑘=0  for some 𝑛 ∈ ℕ, then 

𝑥𝑛+1 = 𝑥𝑛(𝑥 − 𝑛) = ∑ [
𝑛

𝑘
] (−1)𝑛−𝑘𝑥𝑘+1

𝑛

𝑘=0

−∑𝑛 [
𝑛

𝑘
] (−1)𝑛−𝑘𝑥𝑘

𝑛

𝑘=0

 

= ∑ [
𝑛

𝑘 − 1
] (−1)𝑛−𝑘+1𝑥𝑘

𝑛+1

𝑘=1

−∑𝑛 [
𝑛

𝑘
] (−1)𝑛−𝑘𝑥𝑘

𝑛

𝑘=0

 

= 𝑥𝑛+1 +∑(−1)𝑛−𝑘+1 ([
𝑛

𝑘 − 1
] + 𝑛 [

𝑛

𝑘
]) 𝑥𝑘

𝑛

𝑘=1

 

= ∑(−1)𝑛−𝑘+1 [
𝑛 + 1

𝑘
] 𝑥𝑘

𝑛+1

𝑘=1

. 

This proves the first equality. Second one can be obtained as follows 

𝑥𝑛 = (−1)𝑛(−𝑥)𝑛 

= (−1)𝑛∑[
𝑛

𝑘
] (−1)𝑛−𝑘(−𝑥)𝑘

𝑛

𝑘=0

 

=∑ [
𝑛

𝑘
] 𝑥𝑘

𝑛

𝑘=0

. 

The desired result is obtained.   ∎ 

Example 8. 

 

𝑥4 = 𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3) = 𝑥4 − 6𝑥3 + 11𝑥2 − 6𝑥, 

𝑥4 = 𝑥(𝑥 + 1)(𝑥 + 2)(𝑥 + 3) = 𝑥4 + 6𝑥3 + 11𝑥2 + 6𝑥. 

THEOREM 5.14. For any integer 𝑛 ≥ 0, ordinary powers can be written in terms of factorial 

powers  as follows 

𝑥𝑛 =∑{
𝑛

𝑘
}𝑥𝑘

𝑛

𝑘=0

, 

𝑥𝑛 =∑{
𝑛

𝑘
} (−1)𝑛−𝑘𝑥𝑘

𝑛

𝑘=0

. 
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Proof. (Mathematical induction on 𝑛) For 𝑛 = 1 claim holds:  

𝑥1 =∑ {
1

𝑘
}𝑥𝑘

1

𝑘=0
 

= 𝑥1 

= 𝑥. 

Now assume that 𝑥𝑛 = ∑ {𝑛
𝑘
}𝑥𝑘𝑛

𝑘=0  for some 𝑛 ∈ ℕ, then 

𝑥𝑛+1 = 𝑥∑ {
𝑛

𝑘
}𝑥𝑘

𝑛

𝑘=0

 

=∑{
𝑛

𝑘
}

𝑛

𝑘=0

(𝑥𝑘+1 + 𝑘𝑥𝑘) 

=   ∑ {
𝑛

𝑘
}

𝑛

𝑘=0

𝑥𝑘+1 +∑{
𝑛

𝑘
}

𝑛

𝑘=0

𝑘𝑥𝑘 

=   ∑ {
𝑛

𝑘 − 1
}

𝑛+1

𝑘=1

𝑥𝑘 +∑{
𝑛

𝑘
}

𝑛

𝑘=0

𝑘𝑥𝑘 

=   ∑ {
𝑛 + 1

𝑘
}

𝑛

𝑘=0

𝑥𝑘 . 

This proves the first equality, for the second one: 

𝑥𝑛 = (−1)𝑛(−𝑥)𝑛 

=∑{
𝑛

𝑘
}

𝑛

𝑘=0

(−1)𝑛(−𝑥)𝑘 

=∑{
𝑛

𝑘
}

𝑛

𝑘=0

(−1)𝑛−𝑘(𝑥)𝑘 . 

The desired result is obtained.   ∎ 

Example 9. 

 

We compute ∑ 𝑥5𝑛
𝑥=1 .  

𝑥5 =∑{
5

𝑘
} 𝑥𝑘

5

𝑘=0

 

= {
5

0
} 𝑥0 + {

5

1
} 𝑥1 + {

5

2
} 𝑥2 + {

5

3
} 𝑥3 + {

5

4
} 𝑥4 + {

5

5
} 𝑥5 

= 𝑥1 + 15𝑥2 + 25𝑥3 + 10𝑥4 + 𝑥5. 
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Example 10. 

 

Recall that ∑ 𝑥𝑚𝑛
𝑥=1 = ∑ 𝑥𝑚𝑛+1

1 𝛿𝑥 =
𝑥𝑚+1

𝑚+1
|
𝑥=1

𝑛+1

=
(𝑛+1)𝑚+1

𝑚+1
. Then,  

∑𝑘𝑚
𝑛

𝑘=1

=∑∑{
𝑚

𝑗
} 𝑘𝑗

𝑚

𝑗=1

𝑛

𝑘=1

 

=∑{
𝑚

𝑗
}∑𝑘𝑗
𝑛

𝑘=1

𝑚

𝑗=1

 

=∑{
𝑚

𝑗
}

𝑚

𝑗=1

(𝑛 + 1)𝑗+1

𝑗 + 1
  

=∑{
𝑚

𝑗
}

𝑚

𝑗=1

(𝑛 + 1)𝑗+1

𝑗 + 1
 

= ∑  ∑
1

𝑗
{
𝑚

𝑗 − 1
} [
𝑗

𝑙
] (−1)𝑗−𝑙(𝑛 + 1)𝑙

𝑚+1

𝑗=𝑙

𝑚+1

𝑙=1

 . 

Then 

∑𝑥5
𝑛

𝑥=1

=∑(𝑥1 + 15𝑥2 + 25𝑥3 + 10𝑥4 + 𝑥5)

𝑛

𝑥=1

 

=
1

2
(𝑥 + 1)2 + 5(𝑥 + 1)3 +

25

4
(𝑥 + 1)4 + 2(𝑥 + 1)5 +

1

6
(𝑥 + 1)6 

=
𝑥6

6
+
𝑥5

5
+
7𝑥4

12
+
𝑥3

3
+
𝑥2

12
 

=
1

12
𝑥2(𝑥 + 1)2(2𝑥2 + 2𝑥 + 1). 

 

THEOREM 5.15. For any integers  𝑛,≥ 𝑚 ≥ 0, the following equality holds 

∑{
𝑛

𝑘
} [
𝑘

𝑚
] (−1)𝑛−𝑘

𝑛

𝑘=0

= 𝛿𝑚
𝑛  . 

Proof.  

𝑥𝑛 =∑{
𝑛

𝑘
} (−1)𝑛−𝑘𝑥𝑘

𝑛

𝑘=0

 

=∑{
𝑛

𝑘
} (−1)𝑛−𝑘

𝑛

𝑘=0

(∑ [
𝑘

𝑚
] 𝑥𝑚

𝑘

𝑚=0

) 

= ∑ (∑{
𝑛

𝑘
} [
𝑘

𝑘
] (−1)𝑛−𝑘

𝑛

𝑘=0

)𝑥𝑚
𝑛

𝑚=0

 

Comparing the coefficients of powers of  𝑥 the desired result is obtained.   ∎ 
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Using the basic recursions in reverse direction, for the Stirling numbers of both kinds can be 

defined for negative arguments. In this case we have 

[
𝑛

𝑚
] = {

−𝑛

−𝑚
}. 

 

 

B E L L  N U M B E R S  
 

Bell numbers count the number of partitions of a set. Namely, the 𝒏 th Bell number 𝓑𝒏 counts 

the number of ways to partition a set with 𝑛 elements into pairwise disjoint nonempty subsets. In 

other words, ℬ𝑛 is the number of equivalence relations on a set with 𝑛 elements. From these def-

initions it follows that  

ℬ𝑛 =∑{
𝑛

𝑘
}

𝑛

𝑘=1

. 

 

THEOREM 5.16 (Dobinski’s Formula). For any integer 𝑛 > 0, Bell number ℬ𝑛 can be repre-

sented with the infinite sum 

ℬ𝑛 =
1

𝑒
∑
𝑘𝑛

𝑘!

∞

𝑘=0

. 

Proof. Define the function 𝒫(𝑥) as follows: 

𝒫(𝑥) = 𝑒−𝑥∑
𝑘𝑛

𝑘!

∞

𝑘=0

𝑥𝑛. 

We have to show that ℬ𝑛 = 𝒫(1). Now we have 

𝒫(𝑥) = (∑(−1)𝑖
𝑥𝑖

𝑖!

∞

𝑖=0

) ⋅ (∑
𝑗𝑛

𝑗!

∞

𝑗=0

𝑥𝑛) 

https://en.wikipedia.org/wiki/Partition_of_a_set
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=∑∑(−1)𝑖
1

𝑖! 𝑗!
𝑗𝑛

∞

𝑗=0

𝑥𝑖+𝑗
∞

𝑖=0

 

=∑(∑(−1)𝑘−𝑗
1

(𝑘 − 𝑗)! 𝑗!
𝑗𝑛

𝑘

𝑗=0

)𝑥𝑘
∞

𝑘=0

 

=∑(
1

𝑘!
∑(−1)𝑘−𝑗 (

𝑘

𝑗
) 𝑗𝑛

𝑘

𝑗=0

)𝑥𝑘
∞

𝑘=0

 

=∑{
𝑛

𝑘
}

∞

𝑘=0

𝑥𝑘 . 

Since {𝑛
𝑘
} = 0 for 𝑘 ≥ 𝑛 we have 𝒫(𝑥) = ∑ {𝑛

𝑘
}𝑛

𝑘=1 𝑥𝑘  and consequently 𝒫(1) = ℬ𝑛.   ∎ 

THEOREM 5.17. Exponential generating function of Bell numbers is 

ℬ(𝑥) = 𝑒𝑒
𝑥−1 = ∑

ℬ𝑛
𝑛!

∞

𝑛=0

𝑥𝑛. 

Proof. Recall that ∑ {𝑛
𝑘
}∞

𝑛=𝑘
𝑥𝑛

𝑛!
=
(𝑒𝑥−1)𝑘

𝑘!
. Then 

ℬ(𝑥) = ∑ℬ𝑛
𝑥𝑛

𝑛!

∞

𝑛=0

 

 = ∑∑{
𝑛

𝑘
}

𝑛

𝑘=1

𝑥𝑛

𝑛!

∞

𝑛=0

 

=∑∑{
𝑛

𝑘
}

∞

𝑛=𝑘

𝑥𝑛

𝑛!

∞

𝑘=0

 

=∑
(𝑒𝑥 − 1)𝑘

𝑘!

∞

𝑘=0

. 

But the last term we have obtained is just 𝑒𝑒
𝑥−1. ∎ 

THEOREM 5.18. Bell numbers satisfy the following recursive relations 

ℬ𝑛+1 =∑(
𝑛

𝑘
)ℬ𝑘

𝑛

𝑘=0

 

and 

ℬ𝑛+𝑚 =∑∑{
𝑚

𝑗
} (
𝑛

𝑘
) 𝑗𝑛−𝑘ℬ𝑘

𝑚

𝑗=0

𝑛

𝑘=0

. 
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Proof. We prove the first relation and leave the second as an exercise. We first compute 

𝑒𝑥ℬ(𝑥): 

𝑒𝑥ℬ(𝑥) =∑
𝑥𝑖

𝑖!

∞

𝑖=0

⋅∑
ℬ𝑗

𝑗!

∞

𝑗=0

𝑥𝑗  

=∑∑
1

𝑖! 𝑗!

∞

𝑗=0

∞

𝑖=0

ℬ𝑗  𝑥
𝑖+𝑗 

= ∑∑
1

(𝑛 − 𝑘)! 𝑘!

𝑛

𝑘=0

∞

𝑛=0

ℬ𝑘  𝑥
𝑛 

= ∑
1

𝑛!
∑(

𝑛

𝑘
)

𝑛

𝑘=0

∞

𝑛=0

ℬ𝑘  𝑥
𝑛 

Derivative of  ℬ(𝑥) is given by 

ℬ′(𝑥) = ∑ℬ𝑛

∞

𝑛=1

𝑥𝑛−1

(𝑛 − 1)!
 

= ∑ℬ𝑛+1

∞

𝑛=0

𝑥𝑛

𝑛!
 

On the other hand ℬ(𝑥) = 𝑒𝑒
𝑥−1 so ℬ′(𝑥) = 𝑒𝑥𝑒𝑒

𝑥−1 = 𝑒𝑥ℬ(𝑥). Thus 

∑ℬ𝑛+1

∞

𝑛=0

𝑥𝑛

𝑛!
= ∑

1

𝑛!
∑(

𝑛

𝑘
)

𝑛

𝑘=0

∞

𝑛=0

ℬ𝑘  𝑥
𝑛. 

Now, comparing the coefficients of 
𝑥𝑛

𝑛!
 leads the desired equality.  ∎ 

B e l l  T r i a n g l e  

 

The Bell numbers can easily be calculated by the Bell triangle, 

- The first row consists of a single 1, 

- Each row starts with the last element of the previous row, 

- Each element is equal to the sum of elements on its left and left-top, 

- Each row has one more element than the previous row, 

- The last element of 𝑛 th row is ℬ𝑛. 

 

  1 

  1    2 

  2    3    5 

  5    7  10    15 

15  20  27    37    52 

52  67  87  114  151  203 

https://en.wikipedia.org/wiki/Bell_triangle
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We close this section by stating a double sum expression and an integral representation of 

Bell numbers. 

ℬ𝑛 =∑∑(−1)𝑘−𝑖
𝑖𝑛

𝑘!

𝑘

𝑗=1

,

𝑛

𝑘=1

 

 

ℬ𝑛 =
𝑛!

2𝜋𝑖𝑒
∫
𝑒𝑒

𝑡

𝑡𝑛+1
𝑑𝑡

𝛾

. 

 

T A B L E  O F  S T I R L I N G  N U M B E R S  
 

𝑛\𝑘 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1             

2 1 1            

3 1 3 1           

4 1 7 6 1          

5 1 15 25 10 1         

6 1 31 90 65 15 1        

7 1 63 301 350 140 21 1       

8 1 127 966 1701 1050 266 28 1      

9 1 255 3025 7770 6951 2646 462 36 1     

10 1 511 9330 34105 42525 22827 5880 750 45 1    

11 1 1023 28501 145750 246730 179487 63987 11880 1155 55 1   

12 1 2047 86526 611501 1379400 1323652 627396 159027 22275 1705 66 1  

13 1 4095 261625 2532530 7508501 9321312 5715424 1899612 359502 39325 2431 78 1 

Table of Stirling Numbers {𝑛
𝑘
} for 1 ≤ 𝑛 ≤ 13 and 1 ≤ 𝑘 ≤ 𝑛 

 

n\k 1 2 3 4 5 6 7 8 9 10 11 

1 1           

2 1 1          

3 2 3 1         

4 6 11 6 1        

5 24 50 35 10 1       

6 120 274 225 85 15 1      

7 720 1764 1624 735 175 21 1     

8 5040 13068 13132 6769 1960 322 28 1    

9 40320 109584 118124 67284 22449 4536 546 36 1   

10 362880 1026576 1172700 723680 269325 63273 9450 870 45 1  

11 3628800 10628640 12753576 8409500 3416930 902055 157773 18150 1320 55 1 

 

Table of Stirling Numbers [𝑛
𝑘
] for 1 ≤ 𝑛 ≤ 11 and 1 ≤ 𝑘 ≤ 𝑛 
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E X E R C I S E S  
 

1. In how many ways can 30 distinguishable balls be placed in four identical boxes so that 

a) There is at least one ball in each box, 

b) Some boxes may be empty? 

2. Prove the following identities without using induction: 

𝑥�̅�

𝑛!
=∑ (

𝑛 − 1

𝑖 − 1
)

𝑛

𝑖=1

𝑥𝑖

𝑖!
  , 

𝑥𝑛

𝑛!
=∑ (

𝑛 − 1

𝑖 − 1
)

𝑛

𝑖=1

𝑥𝑖  

𝑖!
  . 

3. Show that  {𝑛
3
} =

1

2
(3𝑛−1 + 1) − 2𝑛−1 for 𝑛 ≥ 1 . 

4. Show that ∑ {𝑛
𝑘
}𝑛

𝑘=0 𝑥𝑘 = 𝑥𝑛. 

5. Let 𝑢𝑛 be the number of ways of partitioning a set with 𝑛 > 0 elements into subsets of sizes not 

exceeding  2.  Show that 𝑢𝑛+1 = 𝑢𝑛 + 𝑛𝑢𝑛−1. 

6. Show that ∑ {𝑛
𝑗
} [𝑗
𝑘
]𝑛

𝑗=0 = ∑ [𝑛
𝑗
] {𝑗
𝑘
} =𝛿𝑛

𝑘.𝑛
𝑗=0   

7. Show that  

a) [𝑛
1
] = (𝑛 − 1)!   c) [𝑛

2
] = (𝑛 − 1)! 𝐻𝑛−1 ,  

b) [ 𝑛
𝑛−1
] = (𝑛

2
),   d) [ 𝑛

𝑛−2
] =

1

4
(3𝑛 − 1)(𝑛

3
) . 

8. For any nonnegative integer 𝑛 prove that the following are true: 

a) ℬ𝑛 < 𝑛! , 

b) ℬ𝑛 =
1

𝑒
∑

𝑘𝑛

𝑘!
𝑛
𝑘=1 . 

9. Below figure is for 𝑛 = 4. Draw a figure for 𝑛 = 5. 
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The number of permutations of {1,2,… , 𝑛}  that have 𝑚−ascents is called an Eulerian number 

and is denoted by ⟨𝑛
𝑚
⟩. By convention ⟨0

0
⟩ = 0 and ⟨𝑛

0
⟩ = 1 for 𝑛 > 0. 

Example 1.   The following permutation has 5 ascents: 

4   10   3   9   1   5   6   2   8   7 

   ↗     ↘  ↗   ↘   ↗  ↗   ↘  ↗  ↘ 

 

Example 2.   In the following table we see all permutations of {1,2,3,4} together with the number 

of ascents they contain. 

 

1234 ↗↗↗ 3 2134  ↘↗↗ 2 3124 ↘↗↗ 2 4123 ↘↗↗ 2 

1243  ↗↗↘ 2 2143 ↘↗↘ 1 3142 ↘↗↘ 1 4132 ↘↗↘ 1 

1324  ↗↘↗ 2 2314 ↗↘↗ 2 3214 ↘↘↗ 1 4213 ↘↘↗ 1 

1342  ↗↗↘ 2 2341 ↗↗↘ 2 3241 ↘↗↘ 1 4231 ↘↗↘ 1 

1432  ↗↘↘ 1 2413 ↗↘↗ 2 3412 ↗↘↗ 2 4312 ↘↘↗ 1 

1423  ↗↘↗ 2 2431 ↗↘↘ 1 3421 ↗↘↘ 1 4321 ↘↘↘ 0 

 

 It is seen that ⟨4
0
⟩ = 1,  ⟨4

1
⟩ = 11,  ⟨4

2
⟩ = 11, ⟨4

3
⟩ = 1. 
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There cannot be any permutation of {1,… , 𝑛} which has 𝑛 ascents, therefore 

⟨
𝑛

𝑛
⟩ = 0,      𝑛 > 0. 

For fixed 𝑛, (1,2,… , 𝑛 − 2, 𝑛 − 1, 𝑛) has n-1  ascents and there is no other permutation with 𝑛 −

1 ascents, thus 

⟨
𝑛

𝑛 − 1
⟩ = 1,         𝑛 > 0. 

 

For fixed 𝑛, there is only one permutation without any ascents: (𝑛, 𝑛 − 1, 𝑛 − 2,⋯2,1), then 

⟨
𝑛

0
⟩ = 1,          𝑛 > 0 

A permutation has 𝑘 ascents if and only if the reverse permutation has 𝑛 − 1 − 𝑘 ascents, so 

⟨
𝑛

𝑚
⟩ = ⟨

𝑛

𝑛 −𝑚 − 1
⟩ ,          𝑛 > 0 

THEOREM 6.1 (Basic recursion of Eulerian numbers). For any integers 0 < 𝑛 and 0 ≤ 𝑚 <

𝑛, Eulerian numbers satisfy the recursive relation 

⟨
𝑛

𝑚
⟩ = (𝑚 + 1) ⟨

𝑛 − 1

𝑚
⟩ + (𝑛 −𝑚) ⟨

𝑛 − 1

𝑚 − 1
⟩. 

Proof. Consider any permutation 𝜎1𝜎2⋯𝜎𝑛 of {1, 2, … , 𝑛} with 𝑘 ascents. We have 𝜎𝑖  =  𝑛 for 

some 1 ≤  𝑖 ≤  𝑛, and removing this 𝜎𝑖 yields a permutation �̃� of {1, 2, . … , 𝑛 −  1} with either 𝑘 

or 𝑘 −  1 ascents. Every permutation of {1, 2, … , 𝑛} with 𝑘 ascents is therefore built from a unique 

permutation of {1, 2, … , 𝑛 − 1} with 𝑘 or 𝑘 −  1 ascents by inserting 𝑛. There are now two cases. 

Given a permutation of {1, 2, … , 𝑛 − 1} with 𝑘 − 1 ascents, we gain an ascent by inserting 𝑛 only 

when we do so at a descent or at the end of the permutation. There are 𝑛 −  𝑘 −  1 descents, so 

this produces 𝑛 −  𝑘 permutations of {1, 2, . . . , 𝑛} with k ascents. Similarly, given a permutation of 

{1, 2, … , 𝑛 − 1} with 𝑘 ascents, we want to preserve the number of ascents when inserting 𝑛. To 

do this, the insertion must happen at one of the 𝑘 ascents, or at the beginning of the permutation. 

This produces 𝑘 +  1 permutations of {1, 2, . . . , 𝑛} with 𝑘 ascents. Combining these two cases 

yields the desired recurrence.  ∎ 
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Example 3.   It is given that ⟨5
2
⟩ = 66 and ⟨5

3
⟩ = 26, Compute ⟨6

3
⟩. 

Any permutation of {1,2,3,4,5,6} can be obtained from a unique permutation  

𝜎1𝜎2𝜎3𝜎4𝜎5 of {1,2,3,4,5} by inserting ‘6′ in the slot between two successive terms or 

by appending to one of the ends: 

𝟔 𝜎1𝜎2𝜎3𝜎4𝜎5         𝜎1𝟔 𝜎2𝜎3𝜎4𝜎5     ⋯            𝜎1𝜎2𝜎3𝜎4 𝜎5𝟔 

Let 𝜎1𝜎2𝜎3𝜎4𝜎5 be a permutation of {1,2,3,4,5}. Appending ‘6’ to the left end of 

𝜎1𝜎2𝜎3𝜎4𝜎5 or inserting it in one of the ascending slots does not increase the number 

of ascents. So, each permutation of {1,2,3,4,5} with 3 ascents produces 4 permuta-

tions of {1,2,3,4,5,6} with 3 ascents. Contribution is  (𝑚 + 1)⟨𝑛−1
𝑚
⟩ = 4 ⋅ ⟨5

3
⟩. 

Let 𝜎1𝜎2𝜎3𝜎4𝜎5 be a permutation of {1,2,3,4,5}. Since appending ‘6’ to the right end of 

𝜎1𝜎2𝜎3𝜎4𝜎5 or inserting it in one of descending slots increases the number of ascents 

by one. So, each permutation of {1,2,3,4,5} with 2 ascents produces 3 permutations 

of {1,2,3,4,5,6} with 3 ascents. Contribution is  (𝑛 − 𝑚)⟨𝑛−1
𝑚−1

⟩ = 3 ⋅ ⟨5
2
⟩. 

Finally, ⟨6
3
⟩ = 4⟨5

3
⟩ + 3⟨5

2
⟩ = 302. 

THEOREM 6.2. For integers 0 < 𝑚 < 𝑛, a closed form expression for Eulerian numbers is  

⟨
𝑛

𝑚
⟩ =∑(−1)𝑗 (

𝑛 + 1

𝑗
) (𝑚 + 1 − 𝑗)𝑛.

𝑛

𝑗=0

 

∎                                                                                      

 

THEOREM 6.3 (Basic Identities). For any positive integer 𝑛 and real number 𝑥, the following 

equalities hold: 

i. ∑ ⟨𝑛
𝑘
⟩ = 𝑛!𝑛

𝑘=0  

ii. 𝑥𝑛 = ∑ ⟨𝑛
𝑘
⟩(𝑥+𝑘

𝑛
)𝑛

𝑘=0  (Worpitzky’s identity) 

iii. ∑ 𝑘𝑚𝑛
𝑘=1 = ∑ ⟨𝑚

𝑖
⟩(𝑛+𝑖+1
𝑚+1

)𝑚
𝑖=1 .             



 

Eulerian Numbers | 97 
 

Proof. i.  ⟨𝑛
𝑘
⟩ is the number of permutations with 𝑘 ascents, so the sum ⟨𝑛

0
⟩  + ⟨𝑛

1
⟩  + ⋯+ ⟨ 𝑛

𝑛−1
⟩  

counts each permutation once and only once. Thus, the sum of the Eulerian numbers for a fixed 

value of 𝑛 is the total number of permutations. 

ii. (Induction on 𝑛) Claim is true for 𝑛 = 0: 𝑥0 = ⟨0
0
⟩(𝑥
0
) = 1. Assume that equality holds for some 

non-negative integer 𝑛.  Then 

∑⟨
𝑛 + 1

𝑘
⟩ (
𝑥 + 𝑘

𝑛 + 1
) =

𝑛+1

𝑘=0

∑(𝑘 + 1) ⟨
𝑛

𝑘
⟩ (
𝑥 + 𝑘

𝑛 + 1
)

𝑛+1

𝑘=0

+∑(𝑛 + 1 − 𝑘) ⟨
𝑛

𝑘 − 1
⟩ (
𝑥 + 𝑘

𝑛 + 1
)

𝑛+1

𝑘=1

 

=∑(𝑘 + 1) ⟨
𝑛

𝑘
⟩ (
𝑥 + 𝑘

𝑛 + 1
)

𝑛

𝑘=0

+∑(𝑛 − 𝑘) ⟨
𝑛

𝑘
⟩ (
𝑥 + 𝑘 + 1

𝑛 + 1
)

𝑛

𝑘=0

 

=∑(
(𝑘 + 1)(𝑥 + 𝑘 − 𝑛) + (𝑛 − 𝑘)(𝑥 + 𝑘 + 1)

𝑛 + 1
) ⟨
𝑛

𝑘
⟩ (
𝑥 + 𝑘

𝑛
)

𝑛

𝑘=0

 

= 𝑥∑ ⟨
𝑛

𝑘
⟩ (
𝑥 + 𝑘

𝑛
)

𝑛

𝑘=0

= 𝑥𝑛+1. 

iii. Recall that ∑ (𝑘+𝑗
𝑚
)𝑛

𝑘=0 = (𝑛+𝑗+1
𝑚+1

).  

∑𝑘𝑚
𝑛

𝑘=0

=∑∑⟨
𝑚

𝑗
⟩ (
𝑘 + 𝑗

𝑚
)

𝑚

𝑗=0

𝑛

𝑘=1

=∑⟨
𝑚

𝑗
⟩∑(

𝑘 + 𝑗

𝑚
)

𝑛

𝑘=0

𝑚

𝑗=1

 

=∑⟨
𝑚

𝑗
⟩ (
𝑛 + 𝑗 + 1

𝑚 + 1
)

𝑚

𝑗=1

.    ∎ 

THEOREM 6.4. For integer 𝑛, the following identities are true. 

⟨
𝑛

1
⟩ = 2𝑛 − 𝑛 − 1, 

⟨
𝑛

2
⟩ = 3𝑛 − 2𝑛(𝑛+1) +

1

2
𝑛(𝑛 + 1). 

Proof. Define the sequence {𝑢𝑛} by setting 𝑢𝑛 = ⟨
𝑛
1
⟩. By the basic recursion we have 𝑢𝑛 =

2𝑢𝑛−1 + 𝑛 − 1. Then 

∑𝑢𝑛𝑥
𝑛 =

∞

𝑛=1

2∑𝑢𝑛−1𝑥
𝑛 +

∞

𝑛=1

∑(𝑛−1)𝑥𝑛
∞

𝑛=1
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= 2𝑥∑𝑢𝑛𝑥
𝑛 +

∞

𝑛=1

𝑥2

(1 − 𝑥)2
.   

Rearranging the terms we have 

∑𝑢𝑛𝑥
𝑛 =

∞

𝑛=1

1

(1 − 2𝑥)(1 − 𝑥)2
 

=
1

1 − 2𝑥
−

1

(1 − 𝑥)2
 

= (∑2𝑛𝑥𝑛
∞

𝑛=1

) − (∑(𝑛+1)𝑥𝑛
∞

𝑛=1

) 

= ∑(2𝑛 − 𝑛 − 1)𝑥𝑛
∞

𝑛=1

 

thus we obtain the first identity. The second one can be obtained similarly. ∎ 

The following are interesting infinite sums related with Eulerian numbers: 

∑𝑘𝑥𝑘 =
𝑥

(1 − 𝑥)2

∞

𝑘=1

 , 

∑𝑘2𝑥𝑘 =
𝑥

(1 − 𝑥)2
(1 + 𝑥) ,

∞

𝑘=1

 

∑𝑘3𝑥𝑘 =
𝑥

(1 − 𝑥)2

∞

𝑘=1

(1 + 4𝑥 + 𝑥2) , 

and in general 

∑𝑘𝑛𝑥𝑘 =
𝑥

(1 − 𝑥)𝑛+1

∞

𝑘=1

∑⟨
𝑛

𝑗
⟩ 𝑥𝑗

𝑛−1

𝑗=0

. 

 

THEOREM 6.5.  A bivariate exponential generating function for Eulerian numbers is  

(𝑡 − 1)𝑒𝑥

𝑡𝑒𝑥 − 𝑒𝑥𝑡
=∑∑⟨

𝑛

𝑘
⟩

∞

𝑛=0

∞

𝑘=0

 
𝑥𝑛

𝑛!

𝑡𝑘

𝑘!
. 
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T A B L E  O F  E U L E R I A N  N U M B E R S  
 

𝑛\𝑘 1 2 3 4 5 6 7 8 9 10 11 

1 1           

2 1 1          

3 1 4 1         

4 1 11 11 1        

5 1 26 66 26 1       

6 1 57 302 302 57 1      

7 1 120 1191 2416 1191 120 1     

8 1 247 4293 15619 15619 4293 247 1    

9 1 502 14608 88234 156190 88234 14608 502 1   

10 1 1013 47840 455192 1310354 1310354 455192 47840 1013 1  

11 1 2036 152637 2203488 9738114 15724248 9738114 2203488 152637 2036 1 

 

Table of Eulerian Numbers 〈𝑛
𝑘
〉 for 1 ≤ 𝑛 ≤ 11 and 1 ≤ 𝑘 ≤ 𝑛 
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There are several well-known problems which are used to introduce derangements. One 

of them is ‘Old Hats Problem’: 

A group of 𝑛 men enter a restaurant and check their hats.  The hat-checker is absent 

minded, and upon leaving, she redistributes the hats back to the men at random.  What is the 

probability 𝑃𝑛 that no man gets his correct hat, and how does 𝑃𝑛 behave as 𝑛 approaches 

infinity? 

Let 𝑛 = 4 and call the men 𝐴, 𝐵, 𝐶, 𝐷. Then the ordering 𝐴𝐵𝐶𝐷 of hats means that each man 

gets his correct hat, whereas 𝐴𝐵𝐷𝐶 means that 𝐴 and 𝐵 get their own hats but those of 𝐶 and 

𝐷 are swapped. The ordering 𝐵𝐶𝐷𝐴 means that no one gets his own hat. To find the number 

of all such orderings, we list all possible orderings of four hats: 

ABCD ABDC ACBD ACDB ADBC ADCB 

BACD BADC BCAD BCDA BDAC BDCA 

CABD CADB CBAD CBDA CDAB CDBA 

DABC DACB DBAC DBCA DCAB DCBA 

The orderings for which no man gets his own hat are in bold typeset. There are 9 such 

orderings out of total 24  orderings. Thus, 𝑃𝑛 = 9/24 = 0,375. 

If we let 𝑛 = 10 or 𝑛 = 100 how would this probabiliy change? Would it be smaller, too 

smaller or larger than 0.375? To answer thes questions, since we know that the number of all 

orderings is 𝑛!, we have to find the number of orderings for which no letter is in its original 

position.   
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Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be an ordered set. In a permutation of elements of 𝑋 an element which 

appears in its original position is called a fixed point of the permutation. A derangement is a 

permutation which has no fixed points. We denote the number of derangements of 𝑛 objects with 

𝒟𝑛. By convention 𝒟0 = 1. 

Example 1. For 𝑛 = 1, there is only one permutation of {1} and this permutation has a fix point. 

Thus 𝒟1 = 0. 

For 𝑛 = 2, there are two permutations of {1,2}, namely 12 and 21. Since only one of 

these has no fixed points, 𝒟2 = 1. 

For 𝑛 = 3, the list of all permutations are 𝟏𝟐𝟑, 𝟏32, 21𝟑, 231, 312, 3𝟐1 where the 

bold characters show fixed points. It follows that there are only 2 derangements. 

𝒟3 = 2. 

Denote the number of permutations of 𝑛 objects with 𝑘 fixed points with 𝒟𝑛,𝑘 . To construct 

such a permutation, the fixed points can be chosen in (𝑛
𝑘
) ways and the remaining elements can 

be arranged in 𝒟𝑛−𝑘 ways to form a derangement among themselves. Then  

𝒟𝑛,𝑘 = (
𝑛

𝑘
)𝒟𝑛−𝑘. 

THEOREM 7.1. For any positive integer 𝑛 

∑𝒟𝑛,𝑘 = 𝑛!.

𝑛

𝑘=0

 

Proof. Since 𝒟𝑛,𝑘 is the number of permutations with 𝑘 fixed points, the sum ∑ 𝒟𝑛,𝑘
𝑛
𝑖=0  counts 

each permutation exactly once.  ∎ 

From the theorem it follows that  

∑(
𝑛

𝑘
)𝒟𝑘

𝑛

𝑘=0

= 𝑛! 
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In all permutations of {1,… , 𝑛}, the element 1 is at the first position in exactly (𝑛 − 1)! permu-

tations. This means that 𝑛 appears as a fixed point in (𝑛 − 1)! permutations. Since this is the same 

for all elements of the set, the total number of fixed points in all permutations is 𝑛 ⋅ (𝑛 − 1)! = 𝑛!. 

It follows that the average number of fixed points of all permutations of {1,… , 𝑛} is 1. Another way 

of writing the total number of fixed points in all permutations is ∑ 𝑘𝒟𝑛,𝑘
𝑛
𝑘=0 , then 

∑𝑘(
𝑛

𝑘
)𝒟𝑛−𝑘

𝑛

𝑘=0

= 𝑛!. 

THEOREM 7.2 (Second Order Recursion for Derangements). For 𝑛 > 2, the number of de-

rangements satisfy the second order recursion 

𝒟𝑛 = (𝑛 − 1)(𝒟𝑛−1 +𝒟𝑛−2). 

Proof. Suppose that there are 𝑛 balls numbered 1,2,… , 𝑛 and let there be 𝑛 boxes also num-

bered 1,2,… , 𝑛. We wish to put one ball to each boxes such that the number of each box is different 

from the number of the ball in it. Clearly, the number of such distributions is 𝒟𝑛. There are 𝑛 −

1 ways to put a ball in the first box. Let us assume that the first box contains the ball 𝑖. Now there 

are two possibilities, depending on whether or not box 𝑖 contains ball 1: 

- Box 𝑖 does not contain the ball 1. This case is equivalent to solving the problem with 𝑛 − 1 boxes 

𝑛 − 1 balls. 

- Box 𝑖 contains the ball 1. Now the problem reduces to 𝑛 − 2 balls and 𝑛 − 2 boxes. 

Then we obtain the desired recursion.   ∎ 

THEOREM 7.3 (First Order Recursion for Derangements). For 𝑛 > 1, the number of derange-

ments satisfy the first order recursion 

𝒟𝑛 = 𝑛𝒟𝑛−1 + (−1)
𝑛 . 
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Proof. Rearrange the second order recursion as 𝒟𝑛 − 𝑛𝒟𝑛−1 = −(𝒟𝑛−1 − (𝑛 − 1)𝒟𝑛−2). Now 

define the sequence  {𝑢𝑛} by 𝑢𝑛 = 𝒟𝑛 − 𝑛𝒟𝑛−1 for 𝑛 = 1,2,…. We observe that 𝑢𝑛 = −𝑢𝑛−1. Since 

𝑢1 = 𝒟1 −𝒟0 = −1, we conclude that 𝑢𝑛 = (−1)
𝑛. Now we have 𝑢𝑛 = (−1)

𝑛 = 𝒟𝑛 − 𝑛𝒟𝑛−1.   ∎ 

THEOREM 7.4. Exponential generating function of the number of derangements is  

∑𝒟𝑛
𝑥𝑛

𝑛!

∞

𝑛=1

=
𝑒−𝑥

1 − 𝑥
. 

Proof. Multiply both sides of the first order recursion by 𝑥𝑛 and form the sum for 𝑛 = 1,2, … 

∑𝒟𝑛
𝑥𝑛

𝑛!

∞

𝑛=1

=∑𝒟𝑛−1
𝑥𝑛

(𝑛 − 1)!

∞

𝑛=1

+∑(−1)𝑛
𝑥𝑛

𝑛!

∞

𝑛=1

. 

Then 

∑𝒟𝑛
𝑥𝑛

𝑛!

∞

𝑛=0

− 1 = 𝑥∑𝒟𝑛−1
𝑥𝑛−1

(𝑛 − 1)!

∞

𝑛=1

+∑
(−𝑥)𝑛

𝑛!

∞

𝑛=0

− 1 

which means 

𝒟(𝑥) = 𝑥𝒟(𝑥) + 𝑒−𝑥. 

We obtain the result by rearranging the last equality.   ∎ 

THEOREM 7.5. For any nonnegative integer 𝑛, the number of derangements of 𝑛 objects is  

𝒟𝑛 = 𝑛!∑
(−1)𝑘

𝑘!

𝑛

𝑘=0

. 

Proof. We give three different proofs. 

(Principle of Inclusion-Exclusion.) Define the condition 𝐶𝑖 to be ‘𝑖 is at position 𝑖’ for 𝑖 =

1,… , 𝑛. Then 𝒟𝑛 is the number of permutations of {1,… , 𝑛} for which none of the conditions 𝐶𝑖 is 

satisfied. In terms of inclusion-exclusion principle 𝒟𝑛 = 𝑁.   

For any 𝑖 = 1,… 𝑛, the number of permutations which satisfy 𝐶𝑖 is (𝑛 − 1)!, then 𝑁1 = 𝑛 ⋅ (𝑛 − 1)!. 

Analogously, the number of permutations which satisfy 𝑘 of the conditions is (𝑛 − 𝑘)!, then 𝑁𝑘 =

(𝑛
𝑘
) ⋅ (𝑛 − 𝑘)! =

𝑛!

𝑘!
. 
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It follows that 𝑁0 = 𝑛!  and for any 𝑘 = 1,2, … , 𝑛, 𝑁𝑘 =
𝑛!

𝑘!
. We obtain  

𝒟𝑛 = 𝑁 = 𝑁0 −𝑁1 +𝑁2 −⋯ 

= 𝑛!∑
(−1)𝑘

𝑘!

𝑛

𝑘=0

. 

(Exponential Generating Function) We consider the exponential generating function of the 

number of derangements  

∑𝒟𝑛
𝑥𝑛

𝑛!

∞

𝑛=1

=
𝑒−𝑥

1 − 𝑥
 

= (∑𝑥𝑖
∞

𝑖=0

)(∑
(−𝑥)𝑗

𝑗!

∞

𝑗=0

) 

=∑∑
(−1)𝑗

𝑗!
𝑥𝑖+𝑗

∞

𝑗=0

∞

𝑖=0

 

=∑(∑
(−1)𝑘

𝑘!

𝑛

𝑘=0

)𝑥𝑛
∞

𝑛=0

. 

Comparing the coefficients of 
𝑥𝑛

𝑛!
 we obtain the desired expression.  

 

(Binomial Inversion)  Since ∑ (𝑛
𝑘
)𝒟𝑘

𝑛
𝑘=0 = 𝑛!, from binomial inversion theorem we have 

𝒟𝑛 =∑(−1)𝑛−𝑘 (
𝑛

𝑘
) 𝑘!

𝑛

𝑘=0

 

=∑(−1)𝑛−𝑘
𝑛!

(𝑛 − 𝑘)!

𝑛

𝑘=0

 

= 𝑛!∑(−1)𝑘
1

𝑘!

𝑛

𝑘=0

 . 

This completes proof.   ∎∎∎ 
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We return back to the ‘Old Hats Problem’. The number of orderings for which no man gets his 

own hat is  𝒟𝑛 and the probability 𝑃𝑛 that no man gets his correct hat is  

𝑃𝑛 =
𝒟𝑛
𝑛!
= ∑(−1)𝑘

1

𝑘!
.

𝑛

𝑘=0

 

Now we observe that 

lim
𝑛→∞

(∑(−1)𝑘
1

𝑘!

𝑛

𝑘=0

) = ∑(−1)𝑘
1

𝑘!

∞

𝑘=0

=
1

𝑒
. 

Then, as 𝑛 → ∞, the probability converges to 1/𝑒 and consequentely  

𝑃𝑛 ≈
1

𝑒
. 

Since the series ∑ (−1)𝑘
1

𝑘!
𝑛
𝑘=0  converges to 1/𝑒 very rapidly, above approximation can be used 

even for  small values of 𝑛. For comparing 1 𝑒⁄ = 0.36787944⋯ to actual probability values, we 

give the list 

𝑛 𝒟𝑛 𝑛!⁄  

2 0.5000 

5 0.3667 

10 0.3679 

At the beginning of this section we have computed that 𝑃4 = 0.375. Now we see that as the 

number of men gets larger the probability that no one gets his own hat decreases very slightly. 

For practical purposes, independent of 𝑛, we say that this probability is 1/𝑒. 

Then, The number of derangements can be approximated by 
𝑛!

𝑒
. In fact, for any nonnegative integer 

we have 

𝒟𝑛 = [
𝑛!

𝑒
] 

where [ ] is the closest integer function.  
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In the late 18th century, Büttner, a German schoolmaster, gave —with the intention of 

keeping his pupils busy for another hour— the task to sum hundred terms of an arithmetic 

progression to a class of little boys who, of course, had never heard of arithmetic 

progressions. The youngest pupil, however, wrote down the answer instantaneously and 

waited gloriously, with his arms folded, for the next hour while his classmates toiled: at the 

end it turned out that little Johann Friederich Carl Gauss had been the only one to hand in 

the correct answer. Young Gauss had seen instantaneously how to sum such a series 

analytically: the sum equals the number of terms multiplied by the average of the first and 

the last term. (To quote E.T.Bell: “The problem was of the following sort, 81297 + 81495 + 

81693 + ... + 100899, where the step from one number to the next is the same all along 

(here 198), and a given number of terms (here 100) are to be added.”)  

To compute the sum easily Gauss made a pair of first and last terms, that's 182196, Then 

multiplied by 50 pairs, to find 9109800 and there, the job is done. 

In two respects this is a classical example: firstly young Gauss produced his answer about 

a thousand times as fast as his classmates, secondly he was the only one to produce the 

correct answer. So much for the effective ordering of one’s thoughts!  

 

1 16 

2 15 

3 14 

4 13 

5 12 

6 11 

7 10 

8 9 

𝟏 + 𝟐 + 𝟑 +⋯+ 𝟏𝟔 = (𝟏 + 𝟏𝟔) + (𝟐 + 𝟏𝟓) +⋯+ (𝟖 + 𝟗) = 𝟏𝟕 ×
𝟏𝟔

𝟐
 

 



 

Finite Sums | 107 
 

Concern of this section is to introduce a collection of methods for the evaluation of finite 

sums whose summands are given as a sequence, either in functional form 𝑓(𝑘), or in subscript 

form 𝑎𝑘. The last part of the section is devoted to ‘Finite Calculus’ which mimics the methods 

of calculus for computing the finite sums. 

 

Let {𝑎𝑛} = 𝑎0, 𝑎1, … be a sequence of real (or complex) numbers. We denote the sum 𝑎0 +

𝑎1 +⋯+ 𝑎𝑛 by 𝑆𝑛, that is 

𝑆𝑛 = 𝑎0 + 𝑎1 +⋯+ 𝑎𝑛 =∑𝑎𝑘

𝑛

𝑘=0

. 

More generally, the sum 𝑎𝑚 + 𝑎𝑚+1 +⋯+ 𝑎𝑛 for any 𝑚 with 0 ≤ 𝑚 ≤ 𝑛 is written as 

∑ 𝑎𝑘       or 

𝑛

𝑘=𝑚

    ∑ 𝑎𝑘
𝑛

𝑘=𝑚
. 

In the above notation 𝑘 is called the index variable. Note that index variable is dummy, in the 

sense that it does not make any harm replacing 𝑘 with any other variable: ∑ 𝑎𝑘
𝑛
𝑘=𝑚 = ∑ 𝑎𝑗

𝑛
𝑗=𝑚 . 

𝑚 is called the lower bound (or lower limit); 𝑏 is called the upper bound (or upper limit) and 

𝑎𝑘, for each 𝑘 = 𝑚,… , 𝑛, is called a summand. 

An alternative notation is ∑ 𝑎𝑘𝑘∈ 𝐴  which means that the terms 𝑎𝑘 are summed up for all values 

of 𝑘 ∈ 𝐴.   For the given context, if  there is no doubt about the  bounds, one may write  ∑ 𝑎𝑘𝑘  

or even ∑𝑎𝑘.  

After listing some basic properties of the finite summation, we examine several methods for 

computing 𝑆𝑛. 
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P R O P E R T I E S  O F  S U M M A T I O N  

 
For any sequences {𝑎𝑛}, {𝑏𝑛}, and 𝜆 ∈ ℂ the following properties hold for finite sums: 
 

∑ 𝜆

𝑛

𝑘=𝑚

= 𝜆(𝑛 −𝑚 + 1), 

∑ 𝜆(𝑎𝑘 + 𝑏𝑘)

𝑛

𝑘=𝑚

= 𝜆 ∑ 𝑎𝑘

𝑛

𝑘=𝑚

+ ∑ 𝑏𝑘

𝑛

𝑘=𝑚

, 

∑ 𝑎𝑘

𝑛

𝑘=𝑚

= ∑ 𝑎𝑘

ℓ

𝑘=𝑚

+ ∑ 𝑎𝑘

𝑛

𝑘=ℓ+1

  for any integer  𝑚 ≤ ℓ ≤ 𝑛, 

∑ 𝑎𝑘

𝑛

𝑘=𝑚

= ∑ 𝑎𝑛+𝑚−𝑘,

𝑚

𝑘=𝑛

 

∑ 𝑎𝑘

𝑛

𝑘=𝑚

= ∑ 𝑎𝜑(𝑘),

𝑛

𝑘=𝑚

 for any permutation 𝜑 of {𝑚,… , 𝑛} 

∑ 𝑎𝑘

𝑛

𝑘=𝑚

= ∑ 𝑎𝑘+ℓ

𝑛−ℓ 

𝑘=𝑚−ℓ

    for any integer ℓ, 

∑(𝑎𝑘 + 𝑏𝑘)
2

𝑛

𝑘=𝑚

= ∑ 𝑎𝑘
2

𝑛

𝑘=𝑚

+ 2 ∑ 𝑎𝑘𝑏𝑘

𝑛

𝑘=𝑚

+ ∑ 𝑏𝑘
2

𝑛

𝑘=𝑚

, 

 

D o u b l e  S u m s  

Let {𝑎𝑖𝑗} be a two dimensional array, say 

 

𝑎00 𝑎01 𝑎02 ⋯ 𝑎0𝑗 ⋯ 𝑎0𝑛

𝑎10 𝑎11 𝑎12 ⋯ 𝑎1𝑗 ⋯ 𝑎1𝑛

𝑎20 𝑎21 𝑎22 ⋯ 𝑎2𝑗 ⋯ 𝑎2𝑛

⋮ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮

𝑎𝑖0 𝑎𝑖1 𝑎𝑖2 ⋯ 𝑎𝑖𝑗 ⋯ 𝑎𝑖𝑛

⋮ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮

𝑎𝑚0 𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑗 ⋯ 𝑎𝑚𝑛

. 

If we wish to compute the sum 𝑆 of all terms of this array, we can first find sum of each row, 

then compute the sum of row sums. Say that the sum of terms on row 𝑖 is 𝑅𝑖 for 𝑖 = 0,… ,𝑚, 

that is  

𝑅𝑖 =∑𝑎𝑖𝑗

𝑛

𝑗=0
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and consequently 

𝑆 =∑𝑅𝑖

𝑚

𝑖=0

 

=∑(∑𝑎𝑖𝑗

𝑛

𝑗=0

)

𝑚

𝑖=0

. 

Dropping the braces, we write this sum as 

∑∑𝑎𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

. 

This iterated sum is called a double sum.  

To compute the sum 𝑆 of all terms of this array, we could first compute the sums of columns 

rather than that of rows. Assume that the sum of terms on column 𝑗 is 𝐶𝑗 for 𝑖 = 0,… , 𝑛, that is  

𝐶𝑗 =∑𝑎𝑖𝑗

𝑚

𝑖=0

 

and sum of all elements of the array {𝑎𝑖𝑗} is then, 

𝑆 =∑𝐶𝑗

𝑛

𝑗=0

 

=∑(∑𝑎𝑖𝑗

𝑚

𝑖=0

)

𝑛

𝑗=0

 

=∑∑𝑎𝑖𝑗

𝑚

𝑖=0

𝑛

𝑗=0

. 

We observe that 

∑∑𝑎𝑖𝑗

𝑛

𝑗=0

𝑚

𝑖=0

=∑∑𝑎𝑖𝑗

𝑚

𝑖=0

.

𝑛

𝑗=0
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P E R T U R B A T I O N  O F  S U M M A T I O N  

The sum 𝑆𝑛 can be written as 𝑆𝑛 = 𝑎0 + ∑ 𝑎𝑘
𝑛
𝑘=1 . Then by replacing the index 𝑘 with 𝑘 + 1, 

we get 𝑆𝑛 = 𝑎0 + ∑ 𝑎𝑘+1
𝑛−1
𝑘=0 . Finally, adding 𝑎𝑛+1 − 𝑎𝑛+1 to the sum we obtain the following 

perturbation of the original sum: 

𝑆𝑛 = 𝑎0 +∑𝑎𝑘+1

𝑛−1

𝑘=0

+ 𝑎𝑛+1 − 𝑎𝑛+1 

= 𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛⏞          

∑ 𝑎𝑘+1
𝑛−1
𝑘=0

+ 𝑎𝑛+1⏟                
∑ 𝑎𝑘+1
𝑛
𝑘=0

− 𝑎𝑛+1 

or 

𝑆𝑛 = 𝑎0 − 𝑎𝑛+1 +∑𝑎𝑘+1

𝑛

𝑘=0

 

 

If the general term 𝑎𝑘 has a suitable relation with 𝑎𝑘+1, the last summation can help us in 

computing 𝑆𝑛. 

Example 1. Compute 𝑆𝑛 = ∑ 𝑟𝑘𝑛
𝑘=0 .  

 If 𝑟 = 0, then 𝑆𝑛 = ∑ 𝑟𝑘𝑛
𝑖=0 = 0 and if 𝑟 = 1, then 𝑆𝑛 = ∑ 1𝑛

𝑖=0 = 𝑛 + 1. Now assume 

that 𝑟 ∈ ℂ − {0,1}. As 𝑎0 = 𝑟
0 = 1, 𝑎𝑛+1 = 𝑟

𝑛+1 and 𝑎𝑘+1 = 𝑟
𝑘+1 = 𝑟 ⋅ 𝑟𝑘 , perturbed 

sum is 

𝑆𝑛 = 1 − 𝑟
𝑛+1 +∑𝑎𝑘+1

𝑛

𝑘=0

 

= 1 − 𝑟𝑛+1 + 𝑟∑𝑟𝑘
𝑛

𝑘=0⏟  
𝑆𝑛

 

which gives (1 − 𝑟)𝑆𝑛 = 1 − 𝑟
𝑛+1, that is, 

∑𝑟𝑘
𝑛

𝑘=0

=
1 − 𝑟𝑛+1

1 − 𝑟
. 
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Example 2. Compute 𝑆𝑛 = ∑ 𝑘𝑟𝑘𝑛
𝑖=1  where 𝑟 ∈ ℂ − {1} . 

There is no harm in writing 𝑆𝑛 = ∑ 𝑘𝑟𝑘𝑛
𝑖=0 . If 𝑟 = 0, then 𝑆𝑛 = ∑ 𝑟𝑘𝑛

𝑖=0 = 0. Assume 

that 𝑟 ≠ 0, then we have 𝑎0 = 0, 𝑎𝑛+1 = (𝑛 + 1)𝑟
𝑛+1 and 𝑎𝑘+1 = (𝑘 + 1)𝑟

𝑘+1 =

𝑟𝑘𝑟𝑘 + 𝑟𝑟𝑘 . Then  

𝑆𝑛 =∑𝑘𝑟𝑘
𝑛

𝑘=0

 

= −(𝑛 + 1)𝑟𝑛+1 + 𝑟∑𝑘𝑟𝑘
𝑛

𝑘=0⏟    
𝑆𝑛

+ 𝑟∑𝑟𝑘
𝑛

𝑘=0⏟  
1−𝑟𝑛+1

1−𝑟

 

= −(𝑛 + 1)𝑟𝑛+1 + 𝑟𝑆𝑛 + 𝑟
(1 − 𝑟𝑛+1)

1 − 𝑟
 

which simplifies into 

(1 − 𝑟)𝑆𝑛 =
𝑟 − (𝑛 + 1)𝑟𝑛+1 + 𝑛𝑟𝑛+2

1 − 𝑟
. 

So we obtain 

∑𝑘𝑟𝑘
𝑛

𝑘=1

=
(𝑛𝑟 − 𝑛 − 1)𝑟𝑛+1 + 𝑟

(1 − 𝑟)2
. 

 

Example 3. Compute 𝑆𝑛 = ∑ 𝑘2𝑛
𝑘=1 .  

We have 𝑎1 = 1, 𝑎𝑛+1 = (𝑛 + 1)
2 and 𝑎𝑘+1 = (𝑘 + 1)

2 = 𝑘2 + 2𝑘 + 1. Thus 

𝑆𝑛 = 1 − (𝑛 + 1)
2 +∑𝑘2

𝑛

𝑘=1⏟  
𝑆𝑛

+ 2∑𝑘

𝑛

𝑘=1

+∑1

𝑛

𝑘=1⏟
𝑛

 

= 1 − (𝑛 + 1)2 + 𝑆𝑛 + 2∑𝑘

𝑛

𝑘=1

+ 𝑛. 

which results in ∑ 𝑘𝑛
𝑘=1 =

1

2
((𝑛 + 1)2 − 1 − 𝑛) =

𝑛(𝑛+1)

2
. Direct application of the 

method did not work properly and resulted in the sum ∑𝑘 rather than ∑ 𝑘
2

. Then we 

try our chance by attempting to compute the sum 𝑇𝑛 = ∑ 𝑘3𝑛
𝑘=1 . 
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 Perturbed sum is 

𝑇𝑛 = 1 − (𝑛 + 1)
3 +∑(𝑘 + 1)3

𝑛

𝑘=1

 

= 1 − (𝑛 + 1)3 +∑𝑘3
𝑛

𝑘=1⏟  
𝑇𝑛

+ 3∑𝑘2
𝑛

𝑘=1⏟  
𝑆𝑛

+ 3 ∑𝑘

𝑛

𝑘=1⏟
1
2
𝑛(𝑛+1)

+∑1

𝑛

𝑘=1⏟
𝑛

 

= 1 − (𝑛 + 1)3 + 𝑇𝑛 + 3𝑆𝑛 +
3

2
𝑛(𝑛 + 1) + 𝑛. 

As expected, 𝑇𝑛 is vanished and we are left with 𝑆𝑛: 

3𝑆𝑛 = (𝑛 + 1)
3 −

3

2
𝑛(𝑛 + 1) − 𝑛 − 1 

=
1

2
𝑛(𝑛 + 1)(2𝑛 + 1). 

Consequently 

∑𝑘2 =

𝑛

𝑘=1

1

6
𝑛(𝑛 + 1)(2𝑛 + 1). 

 

Example 4. Compute 𝑆𝑛 = ∑ 𝑘 ⋅ 𝑘!𝑛
𝑘=0 . 

Since 𝑎0 = 0, 𝑎𝑛+1 = (𝑛 + 1)(𝑛 + 1)! and 𝑎𝑘+1 = (𝑘 + 1)(𝑘 + 1)! = (𝑘 + 1)
2𝑘! =

𝑘2𝑘! + 2𝑘𝑘! + 𝑘!, perturbed sum is  𝑆𝑛 = −(𝑛 + 1)(𝑛 + 1)! + ∑ 𝑘2𝑘!𝑛
𝑘=1 + 2𝑆𝑛 +

∑ 𝑘!𝑛
𝑘=1 . Now, 𝑆𝑛 is not vanished, but we are faced with two sums ∑ 𝑘2𝑘!𝑛

𝑘=1  

and ∑ 𝑘!𝑛
𝑘=1  , neither of which is easier than the sum we have started with. In fact, 

there is not a known simple closed form to express the sum 𝑃𝑛 = ∑ 𝑘!𝑛
𝑘=0 . We can try 

to compute 𝑃𝑛 hoping to obtain 𝑆𝑛 . Perturbation of 𝑃𝑛 gives 

𝑃𝑛 = 1 − (𝑘 + 1)! +∑(𝑘 + 1)!

𝑛

𝑘=1

 

= 1 − (𝑘 + 1)! +∑(𝑘 + 1)𝑘!

𝑛

𝑘=1

 

= 1 − (𝑘 + 1)! + 𝑆𝑛 + 𝑃𝑛 . 

So we get 

∑𝑘 ⋅ 𝑘!

𝑛

𝑘=0

= (𝑛 + 1)! − 1. 
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Example 5. Compute 𝑆𝑛 = ∑ 𝑘(𝑛
𝑘
)𝑛

𝑘=0 . 

We have 𝑎0 = 0, 𝑎𝑛+1 = 0 and 𝑎𝑘+1 = (𝑘 + 1)(
𝑛
𝑘+1
) = (𝑛 − 𝑘)(𝑛

𝑘
). Then 

𝑆𝑛 =∑(𝑛 − 𝑘) (
𝑛

𝑘
)

𝑛

𝑘=0

 

= 𝑛∑(
𝑛

𝑘
)

𝑛

𝑘=0

− 𝑆𝑛  

= 𝑛2𝑛 − 𝑆𝑛 . 

Hence 𝑆𝑛 = 𝑛2
𝑛−1. Note that ∑ 𝑘(𝑛

𝑘
)𝑛

𝑘=0 = 𝑛2𝑛−1 is the total number of elements in all 

subsets of a set with 𝑛 elements. 

 

Example 6. Compute 𝑆𝑛 = ∑ 𝑘2(𝑛
𝑘
)𝑛

𝑘=0 . 

We have 𝑎0 = 0, 𝑎𝑛+1 = 0 and 𝑎𝑘+1 = (𝑘 + 1)
2( 𝑛
𝑘+1
) = (𝑛 − 𝑘)(𝑘 + 1)(𝑛

𝑘
). Then 

𝑆𝑛 =∑(𝑛 − 𝑘)(𝑘 + 1) (
𝑛

𝑘
)

𝑛

𝑘=0

 

= (𝑛 − 1)∑𝑘 (
𝑛

𝑘
)

𝑛

𝑘=0⏟      
𝑛2𝑛−1

−∑𝑘2 (
𝑛

𝑘
)

𝑛

𝑘=0⏟      
𝑆𝑛

+ 𝑛∑(
𝑛

𝑘
)

𝑛

𝑘=0⏟    
2𝑛

 

= 𝑛(𝑛 − 1)2𝑛−1 + 𝑛2𝑛 − 𝑆𝑛 

= 𝑛(𝑛 + 1)2𝑛−1 − 𝑆𝑛. 

Hence 𝑆𝑛 = ∑ 𝑘2(𝑛
𝑘
)𝑛

𝑘=0 = 𝑛(𝑛 + 1)2𝑛−2.  

 

Example 7. Compute 𝑆𝑛 = ∑ sin(𝑘𝑥)𝑛
𝑘=0  where 𝑥 ∈ ℝ. 

First we define an auxiliary summation as 𝐶𝑛 = ∑ cos(𝑘𝑥)𝑛
𝑘=0 . Since 𝑎0 = 0,  𝑎𝑛+1 =

sin((𝑛 + 1)𝑥) and 𝑎𝑘+1 = sin((𝑘 + 1)𝑥) = cos 𝑥 sin(𝑘𝑥) + sin 𝑥 cos(𝑘𝑥) , perturbed 

sum is 
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𝑆𝑛 = −sin((𝑛 + 1)𝑥) + cos 𝑥 𝑆𝑛 + sin 𝑥 𝐶𝑛. 

In a similar manner, perturbation of 𝐶𝑛 gives 

𝐶𝑛 = 1 − cos((𝑛 + 1)𝑥) + cos 𝑥 𝐶𝑛 − sin 𝑥 𝑆𝑛 . 

We obtain the system of equations 

[cos 𝑥 − 1]𝑆𝑛 + sin 𝑥 𝐶𝑛 = sin((𝑛 + 1)𝑥) 

−sin 𝑥 𝑆𝑛 + [cos 𝑥 − 1]𝐶𝑛 = cos((𝑛 + 1)𝑥) − 1 

whose solution is  

𝑆𝑛 =
[cos 𝑥 − 1] sin((𝑛 + 1)𝑥) − (cos((𝑛 + 1)𝑥) − 1)sin (𝑥)

2(1 − cos 𝑥)
 

𝐶𝑛 =
[cos 𝑥 − 1](cos((𝑛 + 1)𝑥) − 1) + sin((𝑛 + 1)𝑥) sin(𝑥) 

2(1 − cos 𝑥)
. 

 

Making use of trigonometric identities, solution can be expressed as 

𝑆𝑛 =
sin (

𝑛 + 1
2

𝑥) sin
𝑛𝑥
2

sin
𝑥
2

, 

𝐶𝑛 = 1 +
cos (

𝑛 + 1
2

𝑥) sin
𝑛𝑥
2

sin
𝑥
2

 . 

Note that, using these sums, interesting trigonometric identities can be obtained such as  

 

sin 2° + sin 4° + sin 6° + ⋯+ sin 180° =
sin 91°

sin 1°
 

sin 2° + sin 4° + sin 6° + ⋯+ sin 60° =
sin 31°

2 sin 1°
 

sin 10° + sin 20° + sin 30° +⋯+ sin 180° =
sin 95°

sin 5 °
 

or 

sin 20° + sin 40° + sin 60° + ⋯+ sin 180° =
sin 100°

sin 10 °
. 
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C O N V E R T I N G  A  S I N G L E  S U M  T O  A  D O U B L E  S U M  

 If it is possible to write the general term 𝑎𝑘 as a finite sum 𝑎𝑘 = ∑ 𝑏𝑘𝑗
𝑘
𝑗=0 , then the sum 𝑆𝑛 =

∑ 𝑎𝑘
𝑛
𝑘=0  can be written as a double sum 𝑆𝑛 = ∑ ∑ 𝑏𝑘𝑗

𝑘
𝑗=0

𝑛
𝑘=0 . If we change the order of the dou-

ble sum we get 𝑆𝑛 = ∑ ∑ 𝑏𝑘𝑗
𝑛
𝑘=𝑗

𝑛
𝑗=0 :  

∑∑𝑏𝑘𝑗

𝑘

𝑗=0

𝑛

𝑘=0

= 𝑏00 + (𝑏10 + 𝑏11) + (𝑏20 + 𝑏21 + 𝑏22) + ⋯+ (𝑏𝑛0 + 𝑏𝑛1 +⋯𝑏𝑛𝑛) 

= (𝑏00 + 𝑏10 +⋯+ 𝑏𝑛0) + (𝑏11 + 𝑏21 +⋯+ 𝑏𝑛1) + (𝑏22 +⋯+ 𝑏𝑛2)⋯+ 𝑏𝑛𝑛 

=∑∑𝑏𝑘𝑗.

𝑛

𝑘=𝑗

𝑛

𝑗=0

 

Note that, above property can be generalized as 

∑∑𝑏𝑘𝑗

𝑘

𝑗=𝑎

𝑛

𝑘=𝑎

=∑∑𝑏𝑘𝑗

𝑛

𝑘=𝑗

.

𝑛

𝑗=𝑎

 

 

It may be the case that computing ∑ ∑ 𝑏𝑘𝑗
𝑛
𝑘=𝑗

𝑛
𝑗=0  is easier than computing ∑ ∑ 𝑏𝑘𝑗

𝑘
𝑗=0

𝑛
𝑘=0 . 

 

Example 8. Compute 𝑆𝑛 = ∑ 𝑘2𝑛
𝑘=1 . 

First note that ∑ 1 = 𝑘𝑘
𝑗=1  and  ∑ 𝑘𝑘

𝑗=1 = 𝑘2 . Then the given sum can be written as 

𝑆𝑛 =∑𝑘2
𝑛

𝑘=1

=∑∑𝑘

𝑘

𝑗=1⏟
𝑘2

𝑛

𝑘=1

 

=∑∑𝑘

𝑛

𝑘=𝑗

𝑛

𝑗=1

 

=
1

2
∑(𝑛(𝑛 + 1) − 𝑗(𝑗 − 1))

𝑛

𝑗=1

 

=
1

2
[𝑛2(𝑛 + 1) −∑𝑗2

𝑛

𝑗=1

−∑𝑗

𝑛

𝑗=1

] =
1

2
𝑛2(𝑛 + 1) −

1

2
𝑆𝑛 −

1

4
𝑛(𝑛 + 1) 

and finally 

𝑆𝑛 =
1

6
𝑛(𝑛 + 1)(2𝑛 + 1). 
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Example 9. Compute 𝑆𝑛 = ∑ 𝑘2𝑘𝑛
𝑘=1 . 

𝑆𝑛 =∑𝑘2𝑘
𝑛

𝑘=1

 

=∑∑2𝑘
𝑘

𝑗=1

𝑛

𝑘=1

 

=∑∑2𝑘
𝑛

𝑘=𝑗

𝑛

𝑗=1

 

=∑(2𝑛+1 − 2𝑗)

𝑛

𝑗=1

 

= 𝑛2𝑛+1 − (2𝑛+1 − 2) 

= (𝑛 − 1)2𝑛+1 + 2 

Example 10. Compute 𝑆𝑛 = ∑ 𝐻𝑘
𝑛
𝑘=1  where 𝐻𝑘  is the harmonic number: 𝐻𝑘 = 1 +

1

2
+⋯+

1

𝑘
.  

𝑆𝑛 =∑𝐻𝑘

𝑛

𝑘=1

 

=∑∑
1

𝑗

𝑘

𝑗=1

𝑛

𝑘=1

 

=∑∑
1

𝑗

𝑛

𝑘=𝑗

𝑛

𝑗=1

 

=∑
(𝑛 + 1 − 𝑗)

𝑗

𝑛

𝑗=1

 

= (𝑛 + 1)∑
1

𝑗

𝑛

𝑗=1

−∑1

𝑛

𝑗=1

 

= (𝑛 + 1)𝐻𝑛 − 𝑛. 

Example 11. Compute 𝑆𝑛 = ∑ 𝑘𝑛
𝑘=1 𝐻𝑘 . 

We replace 𝑘 with ∑ 1𝑘
𝑗=1 : 

 

𝑆𝑛 =∑∑𝐻𝑘

𝑛

𝑘=𝑗

𝑛

𝑗=1

 

=∑((𝑛 + 1)𝐻𝑛 − 𝑛 − 𝑗𝐻𝑗−1 + 𝑗 − 1)

𝑛

𝑗=1

 

= 𝑛(𝑛 + 1)𝐻𝑛 − 𝑛
2 −∑𝑗𝐻𝑗−1

𝑛

𝑗=1

+
1

2
𝑛(𝑛 + 1) − 𝑛 
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= 𝑛(𝑛 + 1) (𝐻𝑛+1 −
1

𝑛 + 1
) −

𝑛2

2
−
𝑛

2
−∑𝑗 (𝐻𝑗 −

1

𝑗
)

𝑛

𝑗=1

 

= 𝑛(𝑛 + 1)𝐻𝑛+1 − 𝑛 −
1

2
𝑛(1 + 𝑛) − 𝑆𝑛 + 𝑛 

= 𝑛(𝑛 + 1)𝐻𝑛+1 −
𝑛(𝑛 + 1)

2
− 𝑆𝑛 . 

Then 

∑𝑘

𝑛

𝑘=1

𝐻𝑘 =
1

2
𝑛(𝑛 + 1) (𝐻𝑛+1 −

1

2
). 

Alternatively, we could try to replace 𝐻𝑘  with ∑
1

𝑗

𝑘
𝑗=1 : 

∑𝑘𝐻𝑘

𝑛

𝑘=1

=∑∑
𝑘

𝑗

𝑘

𝑗=1

𝑛

𝑘=1

 

=∑
1

𝑗
∑𝑘

𝑛

𝑘=𝑗

𝑛

𝑗=1

 

=
1

2
∑
1

𝑗
(𝑛(𝑛 + 1) − 𝑗(𝑗 − 1))

𝑛

𝑗=1

 

=
1

2
(𝑛(𝑛 + 1)𝐻𝑛 −

𝑛(𝑛 + 1)

2
+ 𝑛) 

=
1

2
(𝑛(𝑛 + 1)𝐻𝑛+1 −

𝑛(𝑛 + 1)

2
) 

=
1

2
𝑛(𝑛 + 1) (𝐻𝑛+1 −

1

2
). 

 

 

C O N V E R T I N G  T H E  S U M  T O  A  P O W E R  S E R I E S  

 

If the function 𝑆:ℝ → ℝ is defined by 𝑆(𝑥) = ∑ 𝑎𝑘𝑥
𝑘𝑛

𝑘=0  where 𝑎𝑖 ∈ ℝ , 𝑖 = 1,… , 𝑛, then 

 𝑆′(𝑥) =∑ 𝑘𝑎𝑘𝑥
𝑘−1

𝑛

𝑘=0
 

=
1

𝑥
∑ 𝑘𝑎𝑘𝑥

𝑘
𝑛

𝑘=0
 

and  

𝑆′′(𝑥) =∑ 𝑘(𝑘 − 1)𝑎𝑘𝑥
𝑘−2

𝑛

𝑘=0
 

=
1

𝑥2
∑ 𝑘(𝑘 − 1)𝑎𝑘𝑥

𝑘
𝑛

𝑘=0
. 
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Then  

∑𝑎𝑘

𝑛

𝑘=0

= 𝑆(1), 

∑𝑘𝑎𝑘

𝑛

𝑘=0

= 𝑆′(1), 

∑𝑘2𝑎𝑘

𝑛

𝑘=0

= 𝑆′′(1) + 𝑆′(1). 

 

Example 12. Compute 𝑆𝑛 = ∑ (𝑛
𝑘
).𝑛

𝑘=0  

Define 𝑆(𝑥) = ∑ (𝑛
𝑘
)𝑥𝑘𝑛

𝑘=0 = (1 + 𝑥)𝑛, then 𝑆𝑛 = 𝑆(1) = 2
𝑛. 

 

Example 13. Compute 𝑆𝑛 = ∑ 𝑘(𝑛
𝑘
).𝑛

𝑘=0  

Define 𝑆(𝑥) = ∑ (𝑛
𝑘
)𝑥𝑘𝑛

𝑘=0 = (1 + 𝑥)𝑛, then 𝑆′(𝑥) = ∑ 𝑘(𝑛
𝑘
)𝑥𝑘−1𝑛

𝑘=0  so that we have 

 𝑆′(1) = 𝑆(𝑛).  On the other hand 𝑆′(𝑥) = 𝑛(1 + 𝑥)𝑛−1, hence 𝑆𝑛 = 𝑆′(1) = 𝑛2
𝑛−1. 

 

In certain cases, expressing the general term 𝑎𝑘 as a function of 𝑥 and employing methods 

of calculus can be helpful fo computing finite sums. 

Example 14. Compute 𝑆𝑛 = ∑ 𝑘𝑟𝑘 .𝑛
𝑘=0  

Define 𝑆(𝑟) = ∑ 𝑟𝑘𝑛
𝑘=0  and differentiate 𝑆(𝑟) with respect to 𝑟: 

𝑑𝑆(𝑟)

𝑑𝑟
= ∑𝑘𝑟𝑘−1

𝑛

𝑘=0

 

=
1

𝑟
∑𝑘𝑟𝑘 .

𝑛

𝑘=0

 

On the other hand 𝑆(𝑟) =
1−𝑟𝑛+1

1−𝑟
 and 

𝑑𝑆(𝑟)

𝑑𝑟
=
𝑛𝑟𝑛+1 − (𝑛 + 1)𝑟𝑛 + 1

(1 − 𝑟)2
. 

Comparing the two expressions obtained for 𝑑𝑆(𝑟)/𝑑𝑟 we get 

∑𝑘𝑟𝑘
𝑛

𝑘=0

= 𝑟 
𝑛𝑟𝑛+1 − (𝑛 + 1)𝑟𝑛 + 1

(1 − 𝑟)2
. 
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F I N I T E  C A L C U L U S  

 

 The difference (or finite derivative) operator Δ maps a function 𝑓:ℝ → ℝ to the function 

Δ𝑓:ℝ → ℝ   which is defined as 

Δ𝑓(𝑥) = 𝑓(𝑥 + 1) − 𝑓(𝑥). 

It is seen that Δ𝑝 = 0 if and only if 𝑝(𝑥) is a function which is periodic with 1, for exam-

ple Δ(sin(2𝜋𝑥)) = 0. In particular, difference of a constant function is zero. It follows that Δ𝑓 =

Δ𝑔 if and only if the functions 𝑓 and 𝑔 differ by a function which is periodic with 1. 

Difference of the function 𝑓(𝑥) = 𝑥 is (𝑥 + 1) − 𝑥 = 1, that is 

Δ𝑥 = 1. 

Since 2𝑥+1 − 2𝑥 = 2𝑥 , difference of the function 𝑓(𝑥) = 2𝑥 is itself: 

Δ2𝑥 = 2𝑥 . 

Differences of some frequently used functions are as follows 

Δ𝑥2 = (𝑥 + 1)2 − 𝑥2 = 2𝑥 + 1 , 

Δ
1

𝑥
=

1

𝑥 + 1
−
1

𝑥
=

1

𝑥(𝑥 + 1)
 . 

If 𝑥 ∈ ℕ, then 

Δ𝑥! = 𝑥 ⋅ 𝑥! , 

Δ (
𝑥

𝑘
) = (

𝑥

𝑘 − 1
) , 

Δ𝐻𝑥 =
1

𝑥 + 1
 , 

Δ(∑𝑎𝑘

𝑥

𝑘=1

) = 𝑎𝑥+1 . 

Linearity of difference operator is obvious, that is  

Δ(𝑎𝑓 + 𝑔) = 𝑎Δ𝑓 + Δ𝑔 

for any 𝑓, 𝑔:ℝ → ℝ and 𝑎 ∈ ℝ. 
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If the difference of 𝐹 is 𝑓, that is, Δ𝐹 = 𝑓, the function 𝐹 is called an anti-difference of 𝑓. The 

operation which sends 𝑓 to an anti-difference is denoted by Σ. Thus, Σ is inverse of the opera-

tor Δ. For a given function 𝑓, the class of all anti-differences is denoted by ∑𝑓(𝑥)𝛿𝑥  and it is 

called the indefinite sum of 𝑓. The definite sum of 𝑓 is defined by setting ∑ 𝑓(𝑥)𝛿𝑥 = 𝐹(𝑏) −𝑏
𝑎

𝐹(𝑎) = 𝐹|𝑎
𝑏

  where 𝐹 is any antiderivative of 𝑓. 

For any integers 𝑎, 𝑏 and 𝑐 such that 𝑎 ≤ 𝑏 ≤ 𝑐, the definite sum satisfies the following equali-

ties: 

∑ 𝑓(𝑥)𝛿𝑥
𝑎

𝑎
= 0 , 

∑ 𝑓(𝑥)𝛿𝑥
𝑏

𝑎
= −∑ 𝑓(𝑥)𝛿𝑥

𝑎

𝑏
 , 

∑ 𝑓(𝑥)𝛿𝑥
𝑐

𝑎
=∑ 𝑓(𝑥)𝛿𝑥

𝑏

𝑎
+∑ 𝑓(𝑥)𝛿𝑥

𝑐

𝑏
 . 

Let Δ𝐹 = 𝑓, then the relation between the finite sum ∑ 𝑓(𝑘)𝑏
𝑘=𝑎  and the definite 

sum ∑ 𝑓(𝑥)Δ𝑥𝑏
𝑎  is obtained as follows: 

∑𝑓(𝑘)

𝑏

𝑘=𝑎

= 𝑓(𝑎) + 𝑓(𝑎 + 1) + 𝑓(𝑎 + 2) +⋯+ 𝑓(𝑏 − 2) + 𝑓(𝑏 − 1) + 𝑓(𝑏) 

= 𝐹(𝑎 + 1) − 𝐹(𝑎)⏟          
𝑓(𝑎)

+ 𝐹(𝑎 + 2) − 𝐹(𝑎 + 1)⏟              
𝑓(𝑎+1)

+ 𝐹(𝑎 + 3) − 𝐹(𝑎 + 2)⏟              
𝑓(𝑎+2)

+⋯+ 

= 𝐹(𝑏 − 1) − 𝐹(𝑏 − 2)⏟              
𝑓(𝑏−2)

+ 𝐹(𝑏) − 𝐹(𝑏 − 1)⏟          
𝑓(𝑏−1)

+ 𝐹(𝑏 + 1) − 𝐹(𝑏)⏟          
𝑓(𝑏)

 

= 𝐹(𝑏 + 1) − 𝐹(𝑎) 

=∑ 𝑓(𝑥)𝛿𝑥
𝑏+1

𝑎
 

Example 15. Let 𝑟 be a nonzero real number, then ∑ 𝑟𝑘𝑛
𝑘=0 = ∑ 𝑟𝑥𝛿𝑥𝑛+1

0 .  

We compute the difference of 𝑟𝑥:  Δ𝑟𝑥 = 𝑟𝑥+1 − 𝑟𝑥 = 𝑟𝑥(𝑟 − 1) which implies 

that Δ (
𝑟𝑥

𝑟−1
) = 𝑟𝑥 . Then 

∑𝑟𝑘
𝑛

𝑘=0

=∑ 𝑟𝑥𝛿𝑥
𝑛+1

0
 

=
𝑟𝑥

𝑟 − 1
|
0

𝑛+1

=
𝑟𝑛+1 − 1

𝑟 − 1
 . 



 

Finite Sums | 121 
 

Example 16. Since  Δ (
1

𝑥
) =

1

𝑥+1
−
1

𝑥
= −

1

𝑥(𝑥+1)
 we obtain 

∑
1

𝑘(𝑘 + 1)

𝑛

𝑘=1

= ∑
1

𝑥(𝑥 + 1)
𝛿𝑥

𝑛+1

0

 

= −
1

𝑥
|
0

𝑛+1

 

=
𝑛

𝑛 + 1
. 

Example 17. Using Δ𝑥! = 𝑥 ⋅ 𝑥! , 

∑𝑘 ⋅ 𝑘! =

𝑛

𝑘=0

∑ 𝑥 ⋅ 𝑥!
𝑛+1

0
𝛿𝑥 = 𝑥!|0

𝑛+1 = (𝑛 + 1)! − 1. 

 

Example 18. As Δ( 𝑥
𝑚+1

) = (𝑥
𝑚
) , we have 

∑ (
𝑘

𝑚
)

𝑛

𝑘=𝑚

=∑ (
𝑥

𝑚
)𝛿𝑥

𝑛+1

𝑚
= (

𝑥

𝑚 + 1
)|
0

𝑛+1

= (
𝑛 + 1

𝑚 + 1
). 

 

F a l l i n g  f a c t o r i a l  p o w e r s  

 

 For 𝑥 ∈ ℝ and 𝑛 ∈ ℕ, the product 𝑥(𝑥 − 1)⋯ (𝑥 − 𝑛 + 1)⏟              
𝑛 factors

 is called a falling factorial power 

of 𝑥 and it is denoted by 𝑥𝑛, that is, for the positive integer 𝑛 

𝑥𝑛 = 𝑥(𝑥 − 1)⋯ (𝑥 − 𝑛 + 1). 

 

Some examples are 𝑥1 = 𝑥, 𝑥2 = 𝑥2 − 𝑥, 12 = 0. If 𝑛 is a positive integer then 𝑛𝑛 = 𝑛! and 
𝑛𝑚 = 𝑛!/(𝑛 − 𝑚)! for integer 𝑚 ≤ 𝑛.  

By convention  

𝑥0 = 1 

and for negative falling factorial powers we define 

𝑥−𝑛 =
1

(𝑥 + 1)(𝑥 + 2)⋯ (𝑥 + 𝑛)
. 
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Difference of 𝑥𝑛 is 

Δ(𝑥𝑛) = (𝑥 + 1)𝑛 − 𝑥𝑛 

= [(𝑥 + 1)𝑥(𝑥 − 1)⋯ (𝑥 − 𝑛 + 2)] − [𝑥(𝑥 − 1)⋯(𝑥 − 𝑛 + 1)] 

= 𝑥(𝑥 − 1)⋯ (𝑥 − 𝑛 + 2)[(𝑥 + 1) − (𝑥 − 𝑛 + 1)] 

= 𝑛𝑥𝑛−1. 

 

It follows that for any integer 𝑎 ≠ −1 

∑ 𝑥𝑎𝛿𝑥
𝑛

0
=

1

𝑎 + 1
𝑥𝑎+1|

0

𝑛

=
1

𝑎 + 1
𝑛𝑎+1 . 

Since Δ𝐻𝑥 =
1

(𝑥+1)
= 𝑥−1, we have ∑ 𝑥−1𝛿𝑥𝑛

0 = 𝐻𝑥|0
𝑛 = 𝐻𝑛. We combine these two sums as 

∑ 𝑥𝑎𝛿𝑥
𝑛

0
= {

1

𝑎 + 1
𝑛𝑎+1 if 𝑎 ≠ −1

𝐻𝑛 if 𝑎 = −1

. 

 

In terms of finite sums, we can write 

∑𝑘𝑎
𝑛

𝑘=0

=∑ 𝑥𝑎𝛿𝑥
𝑛+1

0
= {

1

𝑎 + 1
(𝑛 + 1)𝑎+1 if 𝑎 ≠ −1

𝐻𝑛+1 if 𝑎 = −1

. 

Some particular cases are 

∑𝑘

𝑛

𝑘=1

=∑ 𝑥1𝛿𝑥
𝑛+1

1
=
1

2
𝑥2|

1

𝑛+1

=
1

2
𝑛(𝑛 + 1), 

∑(𝑘 − 1)𝑘

𝑛

𝑘=1

=
1

3
(𝑛 − 1)𝑛(𝑛 + 1), 

∑(𝑘 − 2)(𝑘 − 1)𝑘

𝑛

𝑘=1

=
1

4
(𝑛 − 2)(𝑛 − 1)𝑛(𝑛 + 1). 

 

Example 19. Compute ∑ 𝑘3𝑛
𝑘=1 . First observe that 𝑘3+3𝑘2 + 𝑘1 = 𝑘3. Then 

∑𝑘3
𝑛

𝑘=1

=∑𝑘3 + 3𝑘2 + 𝑘1
𝑛

𝑘=1

 

=
1

4
(𝑛 + 1)4 + (𝑛 + 1)3 +

1

2
(𝑛 + 1)2 

=
1

4
(𝑛 + 1)𝑛((𝑛 − 1)(𝑛 − 2) + 4(𝑛 − 1) + 2) 

=
1

4
(𝑛 + 1)2𝑛2. 



 

Finite Sums | 123 
 

For the product of two functions we have 

Δ(𝑓𝑔)(𝑛) = (𝑓𝑔)(𝑛 + 1) − (𝑓𝑔)(𝑛) 

= 𝑓(𝑛 + 1)𝑔(𝑛 + 1) − 𝑓(𝑛)𝑔(𝑛). 

To have a product rule which is analogous of the product rule for derivatives, we define a new 

operator, namely the shift operator 𝐸 which maps a function 𝑓:ℝ → ℝ to the function E𝑓:ℝ →

ℝ   which is defined as E𝑓(𝑥) = 𝑓(𝑥 + 1). Using the shift operator, we can write 

Δ(𝑓𝑔)(𝑥) = 𝑓(𝑥 + 1)𝑔(𝑥 + 1) − 𝑓(𝑥)𝑔(𝑥) + 𝑔(𝑥 + 1)𝑓(𝑥) − 𝑔(𝑥 + 1)𝑓(𝑥) 

= 𝑔(𝑛 + 1)(𝑓(𝑥 + 1) − 𝑓(𝑥)) + 𝑓(𝑥)(𝑔(𝑥 + 1) − 𝑔(𝑥)) 

= (𝐸𝑔 ⋅ Δ𝑓)(𝑥) − (𝑓 ⋅ Δ𝑔)(𝑥) 

so that 

Δ(𝑓𝑔) = 𝐸𝑓 ⋅ Δ𝑔 + 𝑓 ⋅ Δ𝑔 

which leads to 

∑𝑢Δ𝑣 = 𝑢𝑣 −∑𝐸𝑣 Δ𝑢. 

 

Above rule is known as the summation by parts.  

 

Example 20. Compute ∑ 𝑘2𝑛
𝑘=1 . 

First write ∑ 𝑘2𝑛
𝑘=1 = ∑ 𝑥2𝑛+1

1 𝛿𝑥 and let 𝑢(𝑥) = 𝑥 and Δ𝑣(𝑥) = 𝑥𝛿𝑥 = 𝑥1𝛿𝑥 so that 

Δ𝑢(𝑥) = 𝛿𝑥 and 𝑣(𝑥) =
1

2
𝑥2 and 𝐸𝑣(𝑥) =

1

2
(𝑥 + 1)2. Then 

∑𝑥2𝛿𝑥 =
1

2
𝑥2 −

1

2
∑(𝑥 + 1)2𝛿𝑥 

=
1

2
𝑥 ⋅ 𝑥2 −

1

6
(𝑥 + 1)3 

=
1

6
𝑥(𝑥 + 1)(3𝑥 − (𝑥 − 1)) 

=
1

6
𝑥(𝑥 + 1)(2𝑥 + 1). 
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Then  

∑𝑘2
𝑛

𝑘=1

=∑ 𝑥2𝛿𝑥
𝑛+1

1
 

=
1

6
𝑥(𝑥 − 1)(2𝑥 − 1)|

0

𝑛+1

 

=
1

6
𝑛(𝑛 + 1)(2𝑛 + 1). 

Example 21. Compute ∑ 𝑘𝐻𝑘
𝑛
𝑘=1 . 

First write ∑ 𝑘𝐻𝑘
𝑛
𝑘=1 = ∑ 𝑥𝐻𝑥

𝑛+1
1 𝛿𝑥 and let 𝑢(𝑥) = 𝐻𝑥  and Δ𝑣(𝑥) = 𝑥1𝛿𝑥 so that 

Δ𝑢(𝑥) = 𝑥−1𝛿𝑥 and 𝑣(𝑥) =
1

2
𝑥2 and 𝐸𝑣(𝑥) =

1

2
(𝑥 + 1)2. Then 

∑𝑥𝐻𝑥

𝑛+1

1

𝛿𝑥 =
1

2
𝑥2𝐻𝑥|

1

𝑛+1

−
1

2
∑𝑥−1
𝑛+1

1

(𝑥 + 1)2𝛿𝑥 

=
1

2
(𝑛 + 1)2𝐻𝑛+1 −

1

2
∑𝑥1𝛿𝑥

𝑛+1

1

 

=
1

2
(𝑛 + 1)−2𝐻𝑛+1 −

1

4
𝑥2|

1

𝑛+1

 

=
1

2
(𝑛 + 1)−2𝐻𝑛+1 −

1

4
(𝑛 + 1)2|

1

𝑛+1

 

=
1

2
(𝑛 + 1)−2 (𝐻𝑛+1 −

1

2
) 

=
1

2
𝑛(𝑛 + 1) (𝐻𝑛+1 −

1

2
). 
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All the finite sums we computed throughout the examples in this section are listed in the fol-

lowing table. The boldface numbers in the table are numbers of examples in which the corre-

sponding sum is computed. Italicized numbers refer to exercises. 

 
Perturbation 

Double 
 Sums 

Power  
Series 

Finite  
Calculus 

∑𝒌

𝒏

𝒌=𝟎

=
1

2
𝑛(𝑛 + 1) 

3 2. a)   

∑𝒌𝟐
𝒏

𝒌=𝟎

=
1

6
𝑛(𝑛 + 1)(2𝑛 + 1) 

3 8  20 

∑𝒌𝟑
𝒏

𝒌=𝟎

=
1

4
𝑛2(𝑛 + 1)2 

 2. b)  19 

∑𝒓𝒌
𝒏

𝒌=𝟎

=
1 − 𝑟𝑛+1

1 − 𝑟
 

1   15 

∑𝒌𝒓𝒌
𝒏

𝒌=𝟎

=
(𝑛𝑟 − 𝑛 − 1)𝑟𝑛+1 + 𝑟

(1 − 𝑟)2
 

2 2. c) 14  

∑𝒌𝟐𝒌
𝒏

𝒌=𝟏

= (𝑛 − 1)2𝑛+1 + 2  
 9   

∑𝒌 ⋅ 𝒌!

𝒏

𝒌=𝟎

= (𝑛 + 1)! − 1 
4   17 

∑(
𝒏

𝒌
)

𝒏

𝒌=𝟎

= 2𝑛 
  12  

∑𝒌(
𝒏

𝒌
)

𝒏

𝒌=𝟎

= 𝑛2𝑛−1 
5  13  

∑𝒌𝟐 (
𝒏

𝒌
)

𝒏

𝒌=𝟎

= 𝑛(𝑛 + 1)2𝑛−2 
6    

∑ (
𝒌

𝒎
)

𝒏

𝒌=𝒎

= (
𝑛 + 1

𝑚 + 1
) 

1. a)   18 

∑𝐬𝐢𝐧(𝟐𝝅𝒌)

𝒏

𝒌=𝟎

=
sin (

𝑛 + 1
2

𝑥) sin
𝑛𝑥
2

sin
𝑥
2

 

∑𝐜𝐨𝐬(𝟐𝝅𝒌) 

𝒏

𝒌=𝟎

= 1 +
cos (

𝑛 + 1
2

𝑥) sin
𝑛𝑥
2

sin
𝑥
2

  

7    

∑𝑯𝒌

𝒏

𝒌=𝟏

= (𝑛 + 1)𝐻𝑛 − 𝑛. 
1. b) 10   

∑𝒌

𝒏

𝒌=𝟏

𝑯𝒌 ==
1

2
𝑛(𝑛 + 1) (𝐻𝑛+1 −

1

2
) 

1. c) 11  21 

∑
𝟏

𝒌(𝒌 + 𝟏)

𝒏

𝒌=𝟏

=
𝑛

𝑛 + 1
 

   16 
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E X E R C I S E S  

1. Compute the following sums by perturbing the sum: 

a) 𝑆𝑛 = ∑ (𝑘
𝑚
)𝑛

𝑘=𝑚 , 

b) 𝑆𝑛 = ∑ 𝐻𝑘
𝑛
𝑘=1 , 

c) ∑ 𝑘𝑛
𝑘=1 𝐻𝑘  , 

d) ∑ 𝑘2𝑛
𝑘=1 (𝑛

𝑘
). 

2. Compute the following sums by converting the given sum to a double sum: 

a) 𝑆𝑛 = ∑ 𝑘𝑛
𝑘=1 , 

b) 𝑆𝑛 = ∑ 𝑘3𝑛
𝑘=1 , 

c) 𝑆𝑛 = ∑ 𝑘𝑟𝑘𝑛
𝑘=0 . 

3. Show that ∑ (−1)𝑘𝑘2𝑛
𝑘=1 = (−1)𝑛

𝑛(𝑛+1)

2
. 

4. Compute the following sums  

a)  ∑ (−1)𝑘(𝑛
𝑘
)𝑘𝑛𝑛

𝑘=0 , 

b) ∑ 2𝑛−𝑘𝑘2𝑛
𝑘=1 , 

c) ∑
𝑘

(𝑘+1)!

𝑛
𝑘=1 . 
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The coupon collector’s problem is one of the most popular topics in discrete probability, 

as it is simple and useful. It is known since 1708, when the problem is first seen in the liter-

ature in ‘De Mensura Sortis’ (On the Measurement of Chance) written by A. De Moivre. In 

1938 the problem appeared in ‘A Problem in Cartophily’, written by F. G. Maunsell. In 1950, 

it was introduced in the book ‘An Introduction to Probability Theory and Its Applications’, 

written by Willam Feller. From then on, the coupon collector appears in many textbooks. 

The coupon collector’s problem has many applications, including cryptography, electrical 

engineering and biology. In cryptography the problem is im-

portant for its relation with the random mappings. In electri-

cal engineering it is related to the cache fault problem; in biol-

ogy, the problem can be used to estimate the number of spe-

cies of animals.  

 

 

C O U P O N  C O L L E C T O R ’ S  P R O B L E M   
 

We assume a bag which contains 𝑚 distinct balls. We pick a ball from the bag randomly in the 

manner that each ball is equally likely and the choices are independent. After replacing the picked 

ball to the bag, we repeat the same experiment until we see all of the balls at least once. Let 𝑇𝑚 be 

the random variable defined to be the number of trials required for each ball being picked at least 

once. We wish to compute the expected value 𝐸(𝑇𝑚) of 𝑇𝑚, that is, the expected number of times 

to pick an object until seeing each object (ball) at least once.  
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Example 1. 

 

Consider a football fan who wants to collect a complete set of 10 football cards. Cards are avail-

able in a completely random fashion, one per package of candy, which the fan buys one package 

a day. How long, on the average, will it take the fan to get a complete set? 

If the set of cards for 𝑚 = 10 is represented by a,b,c,d,e,f,g,h,i,j then a possible se-

quence of cards bought on each day could be 

c g h g d h a j c g f b d c a e d c j g e f a i 

A frame around a term of the sequence indicates the first occurrence of the card a,…,j. In 

that sequence we see that the collection is completed (for the first time) at 24-th package of 

candy so that the fan had to buy 24 packages to complete the set of the 10 distinct cards. After 

buying the 8th package, there are six different cards in the collection: 

c g h g d h a j. 

 

As the example suggests, we may expect to collect the first cards very quickly with a small 

number of repetitions. But when we get down to the last few items in the collection, it seems to 

take much longer to obtain those pieces. 

THEOREM B.1. From a set of 𝑚 distinct objects, the expected number of objects to be picked 

randomly, with replacement,  until completing the collection is  

𝐸(𝑇𝑚) = 𝑚𝐻𝑚 . 

Proof. If there is only one ball, that is if 𝑚 = 1, when we buy the first package, the collection 

will be completed, 𝐸(𝑇1) = 1.  

If there are just two balls 𝑎 and 𝑏, the first time we pick a ball, we will naturally have a new ball, 

say 𝑎. After having the first piece of the collection we find how many additional balls we are ex-

pected to pick for finding the other ball. So we focus on a new experiment, namely, obtaining the 

ball ‘𝑏’ starting from that point. In the first attempt of new experiment, the resulting ball can be 𝑎 

or 𝑏. The set will be completed if the first ball is a ‘𝑏’. Thus probability of completing the set at the 

first attempt is 1/2. If the first ball is an ‘𝑎’ (with pobability 1/2) we have to buy a second ball and 

probability of seeing a ‘𝑏’ is 1/2. So completing the collection after the second ball is 1/4. Contin-

uing in this manner we see that completing the collection at 𝑘-th ball is 1/2𝑘. Then after having 

the first ball, the expected number of balls required to be picked for seeing ball ‘𝑏’ is 

1 ⋅
1

2
+ 2 ⋅

1

4
+ 3 ⋅

1

8
+ 4 ⋅

1

16
+ ⋯+ 𝑘 ⋅

1

2𝑘
+⋯. 
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To compute this sum recall that if 𝑓(𝑥) =
1

1−𝑥
= ∑ 𝑥𝑡∞

𝑡=0 , then 𝑓′(𝑥) =
1

(1−𝑥)2
= ∑ 𝑡𝑥𝑡−1∞

𝑡=0  and 

∑ 𝑡𝑥𝑡 =
𝑥

(1−𝑥)2
.∞

𝑡=1  By substituting 𝑥 = 1/2 we see that above sum is equal to 2. To obtain the first 

ball we have to buy one ball, and for the second ball we are expected to buy 2 more balls. Then 

𝐸(𝑇2) = 3. 

Now we return to the general case of 𝑚 balls. We consider the stage of the experiment when 

the number of distinct balls in the collection is increased to 𝑘. Assume that in the next 𝑡 − 1 tries 

we could not acquire a new ball and after picking the 𝑡-th ball we have found a new ball. Probabil-

ity of this event is 
𝑘𝑡−1

𝑚𝑡−1
⋅
(𝑚−𝑘)

𝑚
. Then, starting from that stage, the expected number of balls we 

have to pick until acquiring a new ball is 

∑𝑡 ⋅
𝑘𝑡−1(𝑚 − 𝑘)

𝑚𝑡

∞

𝑡=0

=
(𝑚 − 𝑘)

𝑚
∑𝑡 (

𝑘

𝑚
)
𝑡−1

 

∞

𝑡=0

=
𝑚

𝑚 − 𝑘
 

After picking the first ball, we have a new ball. To see a second new ball we expect 
𝑚

𝑚−1
 addi-

tional tries. After seeing two distinct balls, we will expectedly try 
𝑚

𝑚−2
 more times to see the third 

one. Then, to complete the entire collection, the expected number of drawings is 𝐸(𝑇𝑚) =
𝑚

𝑚−0
+

𝑚

𝑚−1
+⋯+

𝑚

𝑚−(𝑚−2)
+

𝑚

𝑚−(𝑚−1)
. But this expression is 𝐸(𝑇𝑚) = 𝑚(

1

𝑚
+

1

𝑚−1
+⋯+

1

2
+ 1), that is 

𝐸(𝑇𝑚) = 𝑚𝐻𝑚.      ∎ 

 

Example 1. 

(Continued) 

We return back to the Example 1. Since 𝐻10 = 2.928⋯ we have 𝐸(𝑇10) = 29.28⋯. 

This means that, the fan is expected to buy about 30 packages of candies for complet-

ing the collection. 

In general, after repeating the experiment for 𝑟 times, the number of distinct balls we have 

collected so far will be called the collection size and will be denoted by 𝐶𝑟.  

Now we focus on two questions.  

When balls are picked for 𝑛 times, what is the expected number 𝐸(𝐶𝑛) of distinct balls in the 

collection?  

When 𝑛 balls are picked, what is the probability Pr (𝐶𝑛 = 𝑚) of having a complete collection? 

THEOREM B.2. From a set of 𝑚 distinct balls, if n balls are picked randomly, with replacement,  

then the expected number of distinct balls is  

𝐸(𝐶𝑛) = 𝑚(1 − (1 − 1 𝑚⁄ )𝑛 ). 
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Proof. In an experiment of picking a ball 𝑛 times from the bag, call each ball which has seen at 

least once as a revealed ball. If we have picked a ball 𝑛 times, the number of all possible collections 

(respecting order of the balls we pick them) is 𝑚𝑛. The number of collections for which a certain 

ball, say the ball labeled ‘1’, has never seen is (𝑚 − 1)𝑛. Then, ‘1’ is counted as a revealed ball in 

exactly 𝑚𝑛 − (𝑚 − 1)𝑛 collections. Since this is the same for all 𝑚 balls as well, we count a total of 

𝑚(𝑚𝑛 − (𝑚 − 1)𝑛 ) revealed balls in all possible collections. It follows that the average number 

of revealed balls per collection is, obtained by dividing this quantity by 𝑚𝑛 . Hence we obtain 

𝐸(𝐶𝑛) = 𝑚(𝑚
𝑛 − (𝑚 − 1)𝑛)/𝑚𝑛.   

Alternative proof.  When we pick the (𝑘 + 1)-st ball, we can have a ball which is already in the 

collection with a probability 𝐸(𝐶𝑘)/𝑚  or a ball which appears for the first time with probability 

1 − 𝐸(𝐶𝑘)/𝑚. Then 

𝐸(𝐶𝑘+1) = (𝐸(𝐶𝑘) + 1) (1 −
𝐸(𝐶𝑘)

𝑚
) + 𝐸(𝐶𝑘) ⋅

𝐸(𝐶𝑘)

𝑚
 

= (1 −
1

𝑚
)𝐸(𝐶𝑘) + 1. 

Multiply both sides with 𝑥𝑘+1 and sum over 𝑘 = 1,2,…: 

∑𝐸(𝐶𝑘+1)𝑥
𝑘+1

∞

𝑘=1

= (1 −
1

𝑚
)∑𝐸(𝐶𝑘)𝑥

𝑘+1

∞

𝑘=1

+∑𝑥𝑘+1
∞

𝑘=1

 

If we let ℱ(𝑥) to be the generating function of 𝐸(𝐶0), 𝐸(𝐶1), … we can write 

ℱ(𝑥) =
𝑥

(1 − (1 −
1
𝑚
) 𝑥) (1 − 𝑥)

 

=
𝑚

1 − 𝑥
− 

𝑚

(1 − (1 −
1
𝑚
)𝑥)

 

= 𝑚∑𝑥𝑛 −𝑚∑(1 −
1

𝑚
)
𝑛

𝑥𝑛
∞

𝑛=0

∞

𝑛=0

 

= 𝑚∑(1 − (1 −
1

𝑚
)
𝑛

)𝑥𝑛
∞

𝑛=0

. 

Now, the coefficient of 𝑥𝑛 gives 𝐸(𝐶𝑛).    ∎

Since lim
𝑚→∞

(1 − 1 𝑚⁄ )𝑚 = 𝑒−1, for large values of 𝑚, (1 − 1 𝑚⁄ )𝑚 can be approximated with 

𝑒−1. Now, writing the expected collection size given as  𝑚(1 − [(1 − 1 𝑚⁄ )𝑚]𝑛 𝑚⁄ ), for large values 

of 𝑚 we can write  the approximation 

𝐸(𝐶𝑛) ≈ 𝑚(1 − 𝑒
−𝑛 𝑚⁄ ). 
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Example 1. 

(Continued) 

We return back to the problem where the fan has stopped buying new packages after 

he has bought 15 packages. In this case, for 𝑚 = 10, the expected size of his collection 

is 𝐸(𝐶15) ≈ 10(1 − 𝑒
−1.5) = 7.76⋯. He has expectedly completed %78 of the entire 

collection. 

For 𝑚 = 𝑛,  the expected value is  

𝐸(𝐶𝑛) = 𝑛 (1 − (1 −
1

𝑛
)
𝑛

) ≈ 𝑛 (1 −
1

𝑒
) = 0.6321 𝑛 

THEOREM B.3. From a set of 𝑚 distinct balls, if 𝑛 times a ball is picked randomly, with replace-

ment,  then the probability of having 𝑐 ≤ 𝑚 distinct balls is  

Pr(𝐶𝑛 = 𝑐) =
𝑐!

𝑚𝑛
{
𝑛

𝑐
} (
𝑚

𝑐
). 

Proof. If the collection size is 𝑐, the balls in the collection can be chosen in (𝑚
𝑐
) ways. After 

choosing the balls, assume that we have ordered them so that it is determined which will be the 

first ball, which will be the second ball, and so on. But this ordering describes a partition of the 

ordering numbers 1,2,… , 𝑛, into 𝑐 classes. So the number of such orderings is {𝑛
𝑐
}. Finally the clas-

ses can be permuted in 𝑐! different ways. Then, the number of ways of having a collection of size 

𝑐 after picking 𝑛 packages is 𝑐! {𝑛
𝑐
}(𝑚
𝑐
). And we obtain Pr(𝐶𝑛 = 𝑐) =

𝑐!

𝑚𝑛
{𝑛
𝑐
}(𝑚
𝑐
).   ∎

COROLLARY B.4. From a set of 𝑚 distinct balls, if 𝑛 ≥ 𝑚 balls are picked randomly, with replace-

ment,  then the probability of having a complete collection of 𝑚 distinct balls is 

Pr(𝐶𝑛 = 𝑚) =
𝑚!

𝑚𝑛
{
𝑛

𝑚
}. 

Proof. Just take 𝑐 = 𝑚 in Theorem 3.   ∎

After computing 𝐸(𝐶𝑛),  we could obtain 𝐸(𝑇𝑚) alternatively as follows.  It is clear that the 

sequence 𝐸(𝐶1),… , 𝐸(𝐶𝑘),… is an increasing sequence with lim
𝑘→∞

𝐸(𝐶𝑘) = 𝑚. This means that by 

choosing 𝑘 sufficiently large, 𝐸(𝐶𝑘) can be made as closer to 𝑚 as we wish.  
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Example 1. 

(Continued) 

In the below table we see the number of packages bought and the corresponding ex-

pected collection size for 𝑚 = 10. 

 

𝑛 𝐸(𝐶𝑛)  𝑛 𝐸(𝐶𝑛)  𝑛 𝐸(𝐶𝑛) 

1 1.00  16 8.15  31 9.62 

2 1.90  17 8.33  32 9.66 

3 2.71  18 8.50  33 9.69 

4 3.44  19 8.65  34 9.72 

5 4.10  20 8.78  35 9.75 

6 4.69  21 8.91  36 9.77 

7 5.22  22 9.02  37 9.80 

8 5.70  23 9.11  38 9.82 

9 6.13  24 9.20  39 9.84 

10 6.51  25 9.28  40 9.85 

11 6.86  26 9.35  41 9.87 

12 7.18  27 9.42  42 9.88 

13 7.46  28 9.48  43 9.89 

14 7.71  29 9.53  44 9.90 

15 7.94  30 9.58  45 9.91 

 

 for 𝑛 ≥ 22 we have 𝑚 − 𝐸(𝐶𝑛) ≤ 1. If 𝑛 ≥ 29, then 𝑚− 𝐸(𝐶𝑛) ≤ 1/2  and so on. 

 

For any finite 𝑘, we can think of 𝐸(𝑇𝑚) to be the smallest integer 𝑘 such that 𝐸(𝐶𝑘) > 𝑚 − 휀. 

Here 휀  measures how the expected value is close to 𝑚. Inequality 𝑚(1 − (1 − 1 𝑚⁄ )𝑘) > 𝑚 − 휀 

can be written as  𝑘 >
ln𝑚−ln𝜀

ln𝑚−ln(𝑚−1)
. If we take 휀 = 1, by the approximation ln𝑚 − ln(𝑚 − 1) ≈

1

𝑚
 

for large values of 𝑚, we get 𝑘 > 𝑚 ln𝑚. We can conclude that 

𝐸(𝑇𝑚) ≈ 𝑚 ln𝑚. 

 

Example 1. 
(Continued) 

We again return back to Example 1 to consider the case where the fan has stopped 

buying new packages after he sees a card which has seen for the second time. Now 

what is the expected number of cards he has collected until seeing the first repeating 

card? 

Now we define a new random variable 𝑅𝑚 to be the number of the balls picked until the first 

repeating card.  

Consider the sequence 𝐸(𝐶1),… , 𝐸(𝐶𝑘),… . Necessarily, 𝐸(𝐶1) = 1 and 𝐸(𝐶𝑘) < 𝑘 for = 2,3,… . 

In the first few terms 𝐸(𝐶𝑘) will be quite close to 𝑘. As 𝑘 gets larger, 𝐸(𝐶𝑘) will get farther from 𝑘. 

When the 𝐸(𝐶𝑘) < 𝑘 − 1 the expected image size is smaller than the cards picked. In such a case 
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it is natural to expect repetitions of the balls. In the table above, we see that for 6 packages, ex-

pected collection size is less than 5 cards in which case a repetition is not a surprise.  

In general, we can expect a repetition when the difference 𝑘 − 𝐸(𝐶𝑘) exceeds a certain bound, 

say 1/2. Let 𝑅𝑚 be the number of packages bought until the first repetition. Then we can think of 

𝐸(𝑅𝑚) to be the smallest integer 𝑘 such that 𝑘 − 𝐸(𝐶𝑘) > 1/2.  

THEOREM B.5. From a set of 𝑚 distinct cards, the expected number of cards to be picked ran-

domly, with replacement,  until the first repetition is 

𝐸(𝑅𝑚) ≈ √𝑚. 

Proof. After some simplifications, the inequality 𝑚(1 − (1 − 1 𝑚⁄ )𝑘) < 𝑘 −
1

2
 can be written as  

1 − (1 −
1

𝑚
)
𝑘

<
𝑘

𝑚
−
1

2𝑚
 

1 − (1 − (
𝑘

1
)
1

𝑚
+ (
𝑘

2
)
1

𝑚2
− (
𝑘

3
)
1

𝑚3
+⋯) <

𝑘

𝑚
−
1

2𝑚
 

𝑘(𝑘 − 1)

𝑚2
− 2(

𝑘

3
)
1

𝑚3
+⋯ < −

1

𝑚
 

−
𝑘2

𝑚2
−
𝑘

𝑚2
+ 𝒪 ((

𝑘

𝑚
)
3

) < −
1

𝑚
 

As 𝑘 is quite small compared to 𝑚, we can asymptotically write 𝑘 ≥ √𝑚. We conclude that 

𝐸(𝑅𝑚) ≈ √𝑚.     ∎ 

 

B i r t h d a y  P a r a d o x  

 

Birthday paradox (or birthday problem) considers the probability that, in a set of 𝑛 people, at 

least one pair to have the same birthday. The result of the problem is quite surprising and far away 

from the intuitive answer. For this reason, the problem is known as a paradox and is a classic of 

counting and probability.  

The main question asks how many people are required to have a 50-50 chance that two of them 

will share a birthday. 

In the general form, we wish to know the minimum number 𝑘 of selections, among 𝑛 different 

equally likely items so that the probability of at least one match has probability at least 𝑝0.  

https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Birthday
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THEOREM B.6. From a set of 𝑚 distinct balls, if n balls are picked randomly, with replacement,  

then the probability that at least two balls are the same is  

𝑝(𝑛, 𝑘) = 1 −
𝑛!

(𝑛 − 𝑘)! 𝑛𝑘
. 

Proof. Let 𝑝(𝑛, 𝑘) denote the probability that at least two balls are the same for the experiment 

of choosing 𝑘 balls, out of 𝑛 equally likely balls, allowing repetitions. We first compute the com-

plementary probability 𝑞(𝑛, 𝑘) that all selected balls are distinct. Start with an arbitrary ball, then 

that the probability that the second ball is different is 
𝑛−1

𝑛
, that the third ball is different from the 

first two is 
𝑛−1

𝑛
⋅
𝑛−2

𝑛
 and so on, up through the 𝑘-th ball. Explicitly, 

𝑞(𝑛, 𝑘) =
𝑛

𝑛
⋅
𝑛 − 1

𝑛
⋅
𝑛 − 2

𝑛
⋯
𝑛 − 𝑘 + 1

𝑛
 

=
𝑛!

(𝑛 − 𝑘)! 𝑛𝑘
 

and the complementary probability is what we try to compute.   ∎ 

For the birthday problem we have to find the smallest value of 𝑘 such that  

𝑝(365, 𝑘) = 1 −
365!

(365 − 𝑘)! 365𝑘
>
1

2
. 

In the table below we see the values of 𝑝(365, 𝑘) for 𝑘 = 1,… ,60: 

𝑘 𝑝(365, 𝑘)  𝑘 𝑝(365, 𝑘)  𝑘 𝑝(365, 𝑘)  𝑘 𝑝(365, 𝑘)  𝑘 𝑝(365, 𝑘)  𝑘 𝑝(365, 𝑘) 
1 0,000  11 0,141  21 0,444  31 0,730  41 0,903  51 0,974 

2 0,003  12 0,167  22 0,476  32 0,753  42 0,914  52 0,978 

3 0,008  13 0,194  23 0,507  33 0,775  43 0,924  53 0,981 

4 0,016  14 0,223  24 0,538  34 0,795  44 0,933  54 0,984 

5 0,027  15 0,253  25 0,569  35 0,814  45 0,941  55 0,986 

6 0,040  16 0,284  26 0,598  36 0,832  46 0,948  56 0,988 

7 0,056  17 0,315  27 0,627  37 0,849  47 0,955  57 0,990 

8 0,074  18 0,347  28 0,654  38 0,864  48 0,961  58 0,992 

9 0,095  19 0,379  29 0,681  39 0,878  49 0,966  59 0,993 

10 0,117  20 0,411  30 0,706  40 0,891  50 0,970  60 0,994 

We see that the smallest value of 𝑘 for which 𝑝(365, 𝑘) > 1/2 is 𝑘 = 23.  We conclude that if 

there are 23 people, then the probability that at least two of them have the same birthday is larger 

than 0.5. For 41 people the same probability is larger than 0.9 and for = 57 , by probability 0.99 

at least two people in the group have the same birthday. 
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Since the formula 𝑝(𝑛, 𝑘) = 1 −
𝑛!

(𝑛−𝑘)!𝑛𝑘
 is not practical for large values of 𝑛, we develop some 

approximations. First note that if  
𝑚

𝑛
 is sufficiently small, then in the expansion 

𝑒−𝑚/𝑛 = 1 −
𝑚

𝑛
+
𝑚2

𝑛2
−
𝑚3

𝑛3
+⋯ 

the terms 
𝑚2

𝑛2
,
𝑚3

𝑛3
, ⋯ can be neglected and we can write 

𝑒−𝑚/𝑛 ≈ 1 −
𝑚

𝑛
. 

Now write 𝑝(𝑛, 𝑘) in the form 

 𝑝(𝑛, 𝑘) = 1 −
𝑛

𝑛
⋅ (1 −

1

𝑛
) ⋅ (1 −

2

𝑛
)⋯(1 −

𝑘 − 1

𝑛
) 

and use the above approximation to have 

𝑝(𝑛, 𝑘) ≈ 1 − 𝑒−1 𝑛⁄ 𝑒−2 𝑛⁄ ⋯𝑒−
𝑘−1
𝑛  

= 1 − 𝑒−
1+2+⋯+(𝑘−1)

𝑛  

= 1 − 𝑒−
𝑘(𝑘−1)
2𝑛

. 

Using the approximation 𝑒−𝑚/𝑛 = 1 −𝑚/𝑛 once more we obtain 

𝑝(𝑛, 𝑘) ≈
𝑘(𝑘 − 1)

2𝑛
 

=
𝑘2

2𝑛
−
𝑘

2𝑛
. 

As 𝑘 is very small, compared to 𝑛, we can neglect 𝑘/2𝑛 and reach to  a coarser but practical 

approximation 

𝑝(𝑛, 𝑘) ≈
𝑘2

2𝑛
. 
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To find the smallest 𝑘 for which 𝑝(𝑛, 𝑘) > 𝑝0 we write 𝑘2 > 2𝑛𝑝0 or 𝑘 > √2𝑛𝑝0. We conclude 

that, when 𝑛 is large enough, if at least 

𝑘 = √2𝑛𝑝0 

items are chosen (out of 𝑛 distinct items), then at least two of them  will be the same with proba-

bility at least 𝑝0.   

 

R A N D O M  M A P P I N G S  

By ℱ𝑛,𝑚 we denote the collection of all functions 𝑓 from a finite domain 𝑋 of size 𝑛 to a finite 

range 𝑌 of size 𝑚. We assume the random mapping model where every function from ℱ𝑛,𝑚 is cho-

sen equally likely. This model is equivalent to the model where 𝑓: 𝑋 → 𝑌 assigns each input 𝑥 ∈ 𝑋 

independently to an image point 𝑦 ∈ 𝑌, that is Pr(𝑓(𝑥) = 𝑦) = 1/𝑚  for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌. The 

number of all functions 𝑋 → 𝑌  is 𝑚𝑛, in other words |ℱ𝑛,𝑚 | = 𝑚
𝑛. A random mapping 𝑓 ∈ ℱ𝑛,𝑚  is 

equivalent to the experiment of buying 𝑛 candies to collect the set of 𝑚 cards. The properties we 

have obtained in coupon collector’s problem translates in the language of functions as follows.  

Image size of a random function 𝑓 ∈ ℱ𝑛,𝑚, is 𝑘 with probability  

Pr(|𝑓(𝑋)| = 𝑘) =
𝑘!

𝑚𝑛
(
𝑚

𝑘
) {
𝑛

𝑘
}. 

If 𝑛 ≥ 𝑚, then Probability of a random function 𝑓 ∈ ℱ𝑛,𝑚 to be an onto function is 

Pr(|𝑓(𝑋)| = 𝑚) =
𝑚!

𝑚𝑛
{
𝑛

𝑚
}. 

The expected image size of a random function  𝑓 ∈ ℱ𝑛,𝑚 is 

𝐸(|𝑓(𝑋)| ) = 𝑚(1 − (1 −
1

𝑚
)
𝑛

). 

From the last statement it follows that 

∑𝑘
𝑘!

𝑚𝑛
(
𝑚

𝑘
) {
𝑛

𝑘
}

𝑚

𝑘=1

= 𝑚(1 − (1 −
1

𝑚
)
𝑛

). 

 

 



 

Random Mappings and Permutations | 137 
 

R A N D O M  P E R M U T A T I O N S  

A random permutation of 𝑛-objects is a permutation which is chosen among all permutations 

where each of the 𝑛! possible permutations are equally likely. Since a random permutation is 

a random ordering of a set of objects, the use of them is fundamental to fields that use random-

ized algorithms such as coding theory, cryptography, and simulation. A good example of a ran-

dom permutation is the shuffling of a deck of cards.  

There are 𝑛! permutations of 𝑛 elements. That is too many to generate them by numbering 

them all and choosing one at random. Random permutations are quite useful in randomized algo-

rithms. So it is helpful to have efficient algorithms for generating them. An equivalent way to gen-

erate a random permutation 𝜎 of {1, … , n} is to put 𝑛 balls labeled 1 to 𝑛 in a box and then at each 

step drawing a ball randomly and without replacement from the box to determine the values 

of 𝜎(1), 𝜎(2), … , 𝜎(𝑛) sequentally.  

The statistics of random permutations, such as the cycle structure, fixed points  are of funda-

mental importance in the analysis of algorithms. We compute certain characteristics of random 

permutations. 

 

THEOREM B.7. The expected number of 𝑘-cycles of a random permutation of  𝑛 objects is  
1

𝑘
. 

Proof. Assume that that we have written down the cycle decomposition of all permutations of 

{1,… , 𝑛}. How many cycles of length 𝑘 are there? Fix a cycle, say [1,2, … , 𝑘 ], of 𝑘 elements and 

arrange the remaining 𝑛 − 𝑘 elements in all possible ways. In this way we obtain all (𝑛 − 𝑘)! per-

mutations in which [1,2,… , 𝑘 ] appears in the cycle decomposition. Since these 𝑘 elements can 

define (𝑘 − 1)! cycles and the 𝑘 elements of the cycle can be picked in (𝑛
𝑘
) different ways, in the 

list of all permutations, there are (𝑛 − 𝑘)! (𝑛
𝑘
)(𝑘 − 1)! =

𝑛!

𝑘
  cycles of length 𝑘. Thus, on the average 

a random permutation has 
1

𝑘
 cycles of length 𝑘.   ∎ 

COROLLARY B.8. The expected number of cycles of a random permutation of  𝑛 objects is  𝐻𝑛. 

Proof. Follows immediately from the theorem.    

Alternative proof. Recall that 𝑥𝑛 = ∑ [𝑛
𝑘
]𝑥𝑘𝑛

𝑘=0  so that 𝑓(𝑥) = 𝑥𝑛 is the generating function of 

the sequence[𝑛
0
], [𝑛
1
], [𝑛
2
],… , [𝑛

𝑛
]. Then the expected number of cycles is𝑓′(1)/𝑓(1). But 

𝑓′(𝑥) = 𝑥𝑛 (
1

𝑥
+

1

𝑥 + 1
+⋯+

1

𝑥 + 𝑘 − 1
), 

then 𝑓′(1) = 𝑛!𝐻𝑛 and 𝑓(1) = 𝑛!. Expected number of cycles is 𝐻𝑛.  ∎

 

https://en.wikipedia.org/wiki/Random
https://en.wikipedia.org/wiki/Randomized_algorithm
https://en.wikipedia.org/wiki/Randomized_algorithm
https://en.wikipedia.org/wiki/Coding_theory
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Simulation
https://en.wikipedia.org/wiki/Shuffling
https://en.wikipedia.org/wiki/Playing_card
https://en.wikipedia.org/wiki/Permutation_group#Examples
https://en.wikipedia.org/wiki/Analysis_of_algorithms
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COROLLARY B.9. For any positive integer 𝑛, 

∑𝑘[
𝑛

𝑘
]

𝑛

𝑘=1

 = 𝑛!𝐻𝑛. 

 

Proof. Each side of  equality counts all cycles in all permutations of 𝑛 objects.   ∎ 

Following theorem shows that the probability of a fixed element to be in a cycle of length 𝑘 

does not depend on 𝑘. 

THEOREM B.10. Probability that a fixed element of {1,… , 𝑛} is in a cycle of length 𝑘 is 1/𝑛.  

Proof. A fixed element say ‘1’ is in a cycle of length 𝑘 if 𝜎(1), 𝜎2(1),… , 𝜎𝑘−1(1) are pairwise 

distinct and they are all different from 1 , and 𝜎𝑘(1) = 1. Probability of that event is 
𝑛−1

𝑛
⋅

𝑛−2

𝑛−1
⋯

𝑛−𝑘

𝑛−𝑘+1
⋅
1

𝑛−𝑘
=
1

𝑛
.   ∎ 

THEOREM B.11. The expected length of the cycle containing a fixed element is 
𝑛+1

2
. 

Proof. The length of the cycle containing a fixed element can take any value 1,2,… , 𝑛 with equal 

probabilities. The average of these lengths is 
𝑛+1

2
.   ∎ 

THEOREM B.12. Any fixed 𝑚 elements of {1,… , 𝑛} lie in the same cycle of a random permutation, 

with probabilty 1/𝑚. 

Proof.  Assume that the fixed elements lie in some cycle of length 𝑚 + 𝑘, then we need 𝑘 more 

elements to form the cycle, which can be chosen in (𝑛−𝑚
𝑘
) ways. Then the cycle can be formed in 

(𝑚 + 𝑘 − 1)! ways and the remaining 𝑛 −𝑚 − 𝑘 elements can be arranged in one of (𝑛 − 𝑚 −

𝑘)! ways. As a result, the number of permutations in which the fixed 𝑚 elements in the same cycle 

of length 𝑘 is 

(
𝑛 − 𝑚

𝑘
) (𝑚 + 𝑘 − 1)! (𝑛 −𝑚 − 𝑘)! =

(𝑛 − 𝑚)!

𝑘!
(𝑚 + 𝑘 − 1)! 

If we sum over 𝑘 = 1,… , 𝑛 − 𝑚: 

(𝑛 − 𝑚)! ∑
(𝑚 + 𝑘 − 1)!

𝑘!

𝑛−𝑚

𝑘=0

= (𝑛 −𝑚)! (𝑚 − 1)! ∑ (
𝑚 + 𝑘 − 1

𝑘
)

𝑛−𝑚

𝑘=0

 

= (𝑛 −𝑚)! (𝑚 − 1)! (
𝑛

𝑛 −𝑚
) 

=
𝑛!

𝑚
. 

Then assertion follows.  ∎



 

Random Mappings and Permutations | 139 
 

A cycle which contains more than half of all elements is called a long cycle.  

THEOREM B.13. As 𝑛 gets larger, the probability of having a long cycle converges to ln 2.   

Proof. The number of cycles of length 𝑘 in all permutations is 
𝑛!

𝑘
. If 𝑘 > 𝑛/2, the permutation 

can not have more than one cycles of length 𝑘. Thus, the probability of having a cycle of length 𝑘 >

𝑛/2 is 1/𝑘. Then summing on all values of 𝑘 larger than 𝑛/2 we see that the probability of having 

a long cycle is 
1

𝑛

2
+1
+⋯+

1

𝑛
= 𝐻𝑛 −𝐻𝑛 2⁄ . For large values of 𝑛 we use the approximation 𝐻𝑛 ≈

ln𝑛 + 𝛾 which results in 𝐻𝑛 −𝐻𝑛 2⁄ ≈ ln𝑛 − ln(𝑛 2⁄ ) = ln 2.   ∎ 

The function 
1

1−𝑥
 is the exponential generating function of number of permutations of 𝑛 objects: 

1

1−𝑥
= ∑ 𝑥𝑘 =∞

𝑘=0 ∑ 𝑘!
𝑥𝑘

𝑘!
 ∞

𝑘=0  so that the coefficient of 
𝑥𝑛

𝑛!
 is 𝑛!, the number of permutations of 𝑛 ob-

jects. We can write this function as 
1

1−𝑥
= exp (− ln(1 − 𝑥)). But − ln(1 − 𝑥) = ∑

𝑥𝑘

𝑘
=∞

𝑘=1

 ∑ (𝑘 − 1)!
𝑥𝑘

𝑘!
∞
𝑘=1 . It is seen that − ln(1 − 𝑥) is the exponential generating function of number of 

cycles of length 𝑘. Then, expression  

exp (−ln(1 − 𝑥)) = exp(𝑥 +
𝑥2

2
+
𝑥3

3
+
𝑥4

4
+⋯) 

for the exponential generating function of permutations, takes the cycle structure in account. For 

example  

exp (𝑥 +
𝑥2

2
+
𝑥3

3
+
𝑥4

4
+
𝑥5

5
) 

is the exponential generating function of number of permutations with longest cycle length 5. 

Example 2. 

 (Problème des 
 Rencontres) 

A derangement is a permutation with no fixed points, that is with no cycles of length 

1.  Then the exponential generating function of derangements is 

exp (
𝑥2

2
+
𝑥3

3
+
𝑥4

4
+ ⋯) = exp (−𝑥 − ln (1 − 𝑥)) 

=
𝑒−𝑥

1 − 𝑥
. 

𝑒−𝑥  is the exponential generating function of the sequence {
(−1)𝑘

𝑘!
} And 

𝑒−𝑥

1−𝑥
 is the se-

quence of partial sums of that sequence. Then 𝐷𝑛 = 𝑛!∑
(−1)𝑘

𝑘!

𝑛
𝑘=0 . 
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Example 3. 

 (Number of 
 Involutions) 

An involution is a permutation whose cycle decomposition consists of fixed points 

and 2-cycles. Then the exponential generating function of involutions is 

exp (𝑥 +
𝑥2

2
) = ∑

1

𝑘!
(𝑥 +

𝑥2

2
)

𝑘∞

𝑘=0

 

= ∑
1

𝑘!
∑(

𝑘

𝑖
)
1

2𝑖
𝑥𝑘+𝑖

𝑘

𝑖=0

∞

𝑘=0

 

= ∑(∑
1

2𝑘(𝑛 − 𝑘)! 
(
𝑛 − 𝑘

𝑘
)

⌊𝑛 2⁄ ⌋

𝑘=0

)𝑥𝑛
∞

𝑛=0

 

= ∑(∑
1

2𝑘𝑘! (𝑛 − 2𝑘)!

⌊𝑛 2⁄ ⌋

𝑘=0

)𝑥𝑛
∞

𝑛=0

. 

Then number of involutions of 𝑛 objects is 

𝑛!

2
∑

1

2𝑘𝑘! (𝑛 − 2𝑘)!

⌊𝑛 2⁄ ⌋

𝑘=0

. 
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The theory of rook polynomials provides a way of counting permutations with restricted 

positions. Classical theory was developed by Kaplansky and Riordan in 1946 and has been 

researched and studied quite extensively since then. In chess, a rook can attack any square 

in its corresponding row or column of the 8 × 8 chessboard. Rook theory focuses on the 

placement of non-attacking rooks in a more general situation. The rook polynomial of a 

board counts the number of ways of placing non-attacking rooks on the board. 

 

 

For positive integers 𝑛 and 𝑚 we define an 𝒏 ×𝒎 board to be a rectangular chessboard con-

sisting of 𝑛 rows and 𝑚 columns. A rook placement is an arrangement of a number of non-attack-

ing rooks on some board. Note that since rooks attack squares in their row and column, a rook 

placement is, in fact, choosing a number of unit squares (cells) no two of which are on the same 

column or on the same row.  

 

Figure 1.  Six non-attacking rooks on a 9 × 12  board. 
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We use the ordered pair (𝑖, 𝑗),  𝑖 = 1,… , 𝑛, 𝑗 = 1,… ,𝑚  to denote the cell that is on row 𝑖 and 

column 𝑗 of an 𝑛 × 𝑚 board. In the above figure, rooks are placed at the cells 

(2,6), (3,10), (5,7), (6,2), (7,12), (9,8). 

A placement of 𝑛 rooks on an 𝑛 × 𝑛 square board can be associated to the permutation 𝜎 =

𝜎1𝜎2⋯𝜎𝑛 of {1,… , 𝑛}, by saying the placement has a rook on the cell (𝑖, 𝑗) of the board if and only 

if 𝜎𝑖 = 𝑗. For example, the placement of 5 non-attacking rooks on a 5 × 5 board shown in below 

figure is the permutation 2 4 5 1 3. 

 

In a similar manner, a placement of 𝑘 rooks on an 𝑛 ×𝑚 board corresponds to a particular 

arrangement of 𝑘 distinct objects, each of which is chosen from a set of 𝑛 elements. In this way, 

we see that any theorem about rook placements is a generalization of a theorem about permuta-

tions. 

We are interested in computing the number of ways of rook placements on a board. The 𝑘-th 

rook number  𝑟𝑘(𝐵), counts the number of ways to place 𝑘 non-attacking rooks on a board 𝐵. We 

will often denote 𝑟𝑘(𝐵) as 𝑟𝑘 when 𝐵 is clear for the given context. The rook polynomial of a board 

𝐵 is the polynomial 

𝑅(𝐵; 𝑥) = 𝑟0 + 𝑟1𝑥 + 𝑟2𝑥
2 +⋯.   

For any board, since there is only one way to place 0 rooks, we always have 𝑟0 = 1, no matter 

which board is considered.  

A single rook can be placed on any cell of a board with no other rook to attack it. It follows that 

𝑟1 is the number of unit squares of the board. 

The largest possible number of non-attacking rooks on an 𝑛 ×𝑚 board is equal to the smallest 

of 𝑛 and 𝑚, because we cannot allocate non-attacking rooks more than the number of columns or 

rows. Thus, 𝑟𝑘 = 0 for 𝑘 > min(𝑚, 𝑛). For a 1 × 1 board, 𝑟0 = 𝑟1 = 1 and 𝑟𝑘 = 0 for 𝑘 ≥ 2. Since 

we cannot allocate more than one rook on a 1 × 𝑛 or on an 𝑛 × 1 board, the rook polynomial of 

such a board is 1 + 𝑛𝑥. 

THEOREM C.1. The number of rook placements of 𝑘 rooks on an 𝑛 ×𝑚 board is  

𝑟𝑘 = (
𝑛

𝑘
)(
𝑚

𝑘
)𝑘! 

Proof. Consider an 𝑛 ×𝑚 board on which we wish to allocate 𝑘 rooks. To 

place the rooks, first choose 𝑘 columns and 𝑘 rows arbitrarily. This can be 

done in (𝑛
𝑘
)(𝑚
𝑘
) ways. Each chosen row intersects the chosen columns in 𝑘 

cells, hence for the first chosen row there are 𝑘 positions to place a rook. For 

the second one there are 𝑘 − 1 positions and continuing in this manner, we   

see that there are 𝑘! ways to place 𝑘 rooks on the chosen rows and columns. Hence we have a 

total of (𝑛
𝑘
)(𝑚
𝑘
)𝑘! ways to place the 𝑘 rooks on an 𝑛 ×𝑚 board.  ∎ 
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COROLLARY C.2. Rook polynomial of an 𝑛 ×𝑚 board 𝐵𝑚,𝑛 is 

𝑅(𝐵𝑚,𝑛; 𝑥) = 1 +𝑚𝑛𝑥 + 2(
𝑛

2
)(
𝑚

2
) 𝑥2 +⋯+ (

𝑛

𝑘
)(
𝑚

𝑘
)𝑘! 𝑥𝑘 +⋯. 

Proof. Claim is a direct consequence of the theorem. ∎ 

Example 1. Some obvious rook polynomials are 

𝑅( ; 𝑥) = 1 + 𝑛𝑥, 

𝑅( ; 𝑥) = 1 + 4𝑥 + 2𝑥2, 

𝑅( ; 𝑥) = 1 + 2𝑛𝑥 + 𝑛(𝑛 − 1)𝑥2, 

𝑅 ( ; 𝑥) = 1 + 9𝑥 + 18𝑥2 + 6𝑥3, 

𝑅 ( ; 𝑥) = 1 + 3𝑛𝑥 + 3𝑛(𝑛 − 1)𝑥2 + 𝑛(𝑛 − 1)(𝑛 − 2)𝑥3. 

Now we generalize the problem in the sense that we consider boards where some of the squares 

are not allowed for placing a rook. For example, in the below figure we see a 2 × 4 board with 3 

shaded squares which are forbidden to rook placement.  

 

Such a subset of an 𝑛 × 𝑛 board will be called a generalized board.  A generalized board can be 

represented as a subset of a rectangular board by shading the forbidden cells or it can be drawn 

as it is, neglecting the forbidden cells: 

 

Example 2. We find the rook polynomial of the following generalized board 𝔅: 

       

which can be represented as 

 

There is only one way to place 0 rooks on the board, hence 𝑟0(𝔅) = 1: 
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A single rook can be placed in any cell of 𝔅 with no other rooks to attack it.  It follows that, as for 

any generalized board, 𝑟1 is the number of available cells.  In our example 𝑟1(𝔅) = 10: 

 

There are 34 ways to allocate 2 non-attacking rooks on the board, 𝑟2(𝔅) = 34: 

 

The number of ways of placing 3 non-attacking rooks is 45, 𝑟3(𝔅) = 45: 

 

Finally, the number of ways of placing 4 non-attacking rooks is 20, 𝑟4(𝔅) = 20: 

 

For the board in this example we obtain 

𝑟0(𝔅) = 1, 𝑟1(𝔅) = 10, 𝑟2(𝔅) = 34, 𝑟3(𝔅) = 45, 𝑟4(𝔅) = 20. 

Then, rook polynomial is 

𝑝(𝔅; 𝑥) = 1 + 10𝑥 + 34𝑥2 + 45𝑥3 + 20𝑥4. 
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E q u i v a l e n t  B o a r d s  

 

To obtain the rook polynomial or rook numbers of a generalized board, it is not practical to 

count the ways of rook placements by explicitly considering all possible cases. In the following 

part, we obtain some shortcuts for obtaining rook numbers and the rook polynomial. We first list 

some trivial properties of rook numbers: 

1. 𝑟0 is always 1 because there is only one way to place 0 rooks on a generalized board.  

2. 𝑟1 is always the number of cells of the board because a single rook can be placed in any cell 

with no other rook to attack it. 

3. Once we attain 𝑟𝑘  =  0, we will always have 𝑟𝑘+1, 𝑟𝑘+2, …  =  0.  

4. If the board is contained in an 𝑛 ×𝑚 square board and 𝑘 > min(𝑚, 𝑛), then 𝑟𝑘  =  0. How-

ever, note that 𝑟𝑘 could be equal to 0 for smaller values of 𝑘 as well. 

If the number of placements of 𝑘 rooks on two boards are the same for all 𝑘 = 1, 2, …, we call 

the boards equivalent. In other words, two boards are equivalent if and only if their rook polyno-

mials are identical.  

THEOREM C.3. If a generalized board can be obtained from another one by permuting the rows 

and columns, then the boards are equivalent.  

Proof. It is sufficient to prove the theorem for rectangular boards. Interchanging rows or col-

umns of a rectangular board does not alter the number of ways to place k mutually non-attacking 

rooks. In fact, given a placement of 𝑘 rooks, then permuting the rows or the columns of the board 

results in another rook placement. Moreover, the number of distinct placements is not affected by 

such permutations.   ∎ 

Converse of the above theorem is not true. As a counter example for the converse statement 

we can consider the following generalized boards. 

 

These boards cannot be obtained from each other by permuting the rows or columns. However, 

they both have the same rook polynomial 1 + 4𝑥 + 2𝑥2, hence they are equivalent.  

If there are some empty rows (or empty columns) of a generalized board, by permuting the 

rows (or columns) of the board, we can move these empty rows to the bottom (or empty columns 

to the rightmost) of the board so that the generalized board is squeezed to give an equivalent 

board without any empty rows or columns. 

We return back to the board 𝔅 .The third and the fifth rows do not contain any cell of the gen-

eralized board 𝔅, similarly on the third column there is no cell of the generalized board. 

 

By squeezing these columns and rows, we obtain the following equivalent board: 

 

Continuing on permuting the rows and columns we reach the following board: 
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It follows that the boards and  are equivalent: 

 

𝑅 ( ; 𝑥) = 𝑅 ( ; 𝑥) 

 

D e c o m p o s i t i o n  R u l e s  

 

If a generalized board 𝐵 is a disjoint union of two sub-boards 𝐵1 and 𝐵2 in which no cell of one 
subboard is in the same row or in the same column of any cell of the other subboard, then 𝐵1 and 
𝐵2 are said to be disjoint. The board 𝐵 given in below figure is a disjoint union of the boards 𝐵1 
and 𝐵2. 

B1

B2

 

The next theorem shows that if a board is composed of two disjoint sub-boards, the rook poly-

nomial of the board can be calculated in terms of the rook polynomials of the sub-boards. 

THEOREM C.4 (Board Decomposition). If a board 𝐵 is union of two disjoint boards 𝐵1 and 𝐵2 

then 

𝑅(𝐵; 𝑥) = 𝑅(𝐵1; 𝑥)𝑅(𝐵2; 𝑥). 

Proof. Rook placements in 𝐵1 does not affect rook placements in 𝐵2, except in terms of the total 

number of rooks being placed. Assume that we wish to place 𝑘 rooks on board 𝐵. If we place 𝑚 

rooks on 𝐵1, then 𝑘 −𝑚 rooks must be placed on 𝐵2. The number of ways of placing 𝑚 rooks on 

𝐵1 and 𝑘 −𝑚  rooks on 𝐵2 is 𝑟𝑚(𝐵1)𝑟𝑘−𝑚(𝐵2). Since 𝑚 can take any value 𝑘 = 1,… ,𝑚, the number 

of ways of placing 𝑘 rooks on 𝐵 = 𝐵1 ∪ 𝐵2 is 

𝑟𝑘(𝐵) = 𝑟0(𝐵1)𝑟𝑘(𝐵2) + ⋯+ 𝑟𝑚(𝐵1)𝑟𝑘−𝑚(𝐵2) + ⋯+ 𝑟𝑘(𝐵1)𝑟0(𝐵2).  

The right hand side of the equality is in fact the coefficient of 𝑥𝑘 in the product 

(𝑟0(𝐵1) + 𝑟1(𝐵1)𝑥 + ⋯)(𝑟0(𝐵2) + 𝑟1(𝐵2)𝑥 + ⋯) = 𝑅(𝐵1; 𝑥)𝑅(𝐵2; 𝑥). 

It follows that 𝑅(𝐵; 𝑥) = 𝑅(𝐵1; 𝑥)𝑅(𝐵2; 𝑥). ∎ 

We have shown the board 𝔅 is equivalent to . Since the latter board is disjoint union 

of the boards  and , we can write 
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𝑅 ( ; 𝑥) = 𝑅( ; 𝑥)𝑅( ; 𝑥). 

Example 3.  The staircase consisting of 𝑛 cells is a disjoint union of 𝑛 single cells. Since the 

rook polynomial of a single cell is 1 + 𝑥, for the staircase we have  

𝑅 ( ; 𝑥) = (1 + 𝑥)𝑛. 

Suppose that on a given board 𝐵, a cell 𝑐 is selected and marked as a special cell. By 𝐵\𝑐 we 

denote the board obtained from 𝐵 by deleting the row and column that contain the cell 𝑐, and we 

let 𝐵 − 𝑐 to denote the board obtained from 𝐵 by deleting only that special cell 𝑐.  

c

 
   

 
  

      
𝐵    𝐵\𝑐   𝐵 − 𝑐 

 

THEOREM C.5 (Cell decomposition). For any cell 𝑐 of a board 𝐵,  

𝑅(𝐵; 𝑥) = 𝑥𝑅(𝐵\𝑐; 𝑥) + 𝑅(𝐵 − 𝑐; 𝑥). 

Proof. To find the value of 𝑟𝑘(𝐵), we observe that the ways of placing 𝑘 non-attacking rooks on 

𝐵 can be divided into two classes, those that have rook in the special cell and those that do not 

have a rook in the special cell. The number of ways in the first class is equal to 𝑟𝑘−1(𝐵\𝑐), and the 

number of ways in the second class is equal to 𝑟𝑘(𝐵 − 𝑐 ). We have then the relation 𝑟𝑘(𝐵)  =

 𝑟𝑘−1(𝐵\𝑐)  + 𝑟𝑘(𝐵 − 𝑐). Correspondingly, 𝑅(𝐵; 𝑥) = 𝑥𝑅(𝐵\𝑐; 𝑥) + 𝑅(𝐵 − 𝑐; 𝑥).   ∎ 

 

Example 4. As an example, we compute the rook polynomials of  the boards    and

: 

𝑅( c ; 𝑥) = 𝑥𝑅( ; 𝑥) + 𝑅( c ; 𝑥) 

= 𝑥𝑅( ; 𝑥) + 𝑥𝑅( ; 𝑥) + 𝑅( ; 𝑥) 

= (𝑥 + 1)(1 + 3𝑥) + 𝑥(1 + 2𝑥) 

= 1 + 5𝑥 + 5𝑥2. 

𝑅( c ; 𝑥) = 𝑥𝑅( ; 𝑥) + 𝑅( ; 𝑥) 

= 𝑥(1 + 2𝑥) + 1 + 4𝑥 + 2𝑥2 

= 1 + 5𝑥 + 4𝑥2. 

Now we can re-calculate the rook polynomial of the board 𝔅: 

𝑅(𝔅; 𝑥) = 𝑅 ( ; 𝑥) 

= 𝑅( ; 𝑥)𝑅( ; 𝑥) 

= (1 + 5𝑥 + 5𝑥2)(1 + 5𝑥 + 4𝑥2) 

= 1 + 10𝑥 + 34𝑥2 + 45𝑥3 + 20𝑥4. 
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C o m p l e m e n t a r y  B o a r d s  

 

THEOREM C.6 (Complementary Board Theorem). Let 𝐵 be the complement of 𝐵 in an 𝑛 ×𝑚 

rectangular board. If  𝑅(𝐵; 𝑥) = ∑𝑟𝑘𝑥
𝑘 and 𝑅( 𝐵; 𝑥) = ∑𝑟𝑘𝑥

𝑘  are rook polynomials of 𝐵 and 𝐵 , 

respectively, then  

𝑟𝑘 =∑(−1)𝑖 (
𝑚 − 𝑖

𝑘 − 𝑖
) (
𝑛 − 𝑖

𝑘 − 𝑖
)

𝑘

𝑖=0

(𝑘 − 𝑖)! 𝑟𝑖 

where we let 𝑟𝑖 = 0 for 𝑖 larger than the degree of 𝑅(𝐵; 𝑥). 

Proof. We consider all possible placements of 𝑘 non-attacking rooks on the 𝑚 × 𝑛 board and 

remove those where one or more rooks are placed on 𝐵 using the Inclusion-Exclusion Principle. 

Assume that the 𝑘 rooks are labeled in our counting process, which means we will be counting 

𝑘! 𝑟𝑘 rather than𝑟𝑘. The total number of ways to place 𝑘 labeled rooks on the 𝑛 × 𝑛 board is  

(𝑚
𝑘
)(𝑛
𝑘
)𝑘!2.  Let 𝐴𝑖  denote the set of rook placements where the 𝑖-th rook is on the board 𝐵. We 

have to remove these placements from the set of all placements. There are 𝑟1 ways to place the 𝑖-

th rook on 𝐵 and (𝑚−1
𝑘−1
)(𝑛−1
𝑘−1
)(𝑘 − 1)!2 ways to place the remaining 𝑘 − 1 rooks in the other rows 

and columns. Hence there are 𝑟1(
𝑚−1
𝑘−1
)(𝑛−1
𝑘−1
)(𝑘 − 1)!2 placements in 𝐴𝑖  and there are 𝑘 many 𝐴𝑖 ’s. 

Similarly, there are 𝑟2(
𝑚−2
𝑘−2
)(𝑛−2
𝑘−2
)(𝑘 − 2)!2 elements in 𝐴𝑖 ∩ 𝐴𝑗   for 𝑖 ≠ 𝑗 and there are (𝑘

2
) of these 

double intersections, and so on. Hence, using the principle of inclusion-exclusion, the number of 

ways to place 𝑘 labeled rooks on 𝐵  is  

∑(−1)𝑖 (
𝑘

𝑖
) 𝑖! (

𝑚 − 𝑖

𝑘 − 𝑖
) (
𝑛 − 𝑖

𝑘 − 𝑖
)

𝑘

𝑖=0

(𝑘 − 𝑖)!2 𝑟𝑖 

which can be written as 

∑(−1)𝑖𝑘! (
𝑚 − 𝑖

𝑘 − 𝑖
) (
𝑛 − 𝑖

𝑘 − 𝑖
)

𝑘

𝑖=0

(𝑘 − 𝑖)! 𝑟𝑖 . 

 

To discard the effect of labeling the rooks, we divide this quantity by 𝑘! to achieve the result.   ∎ 

Finding the number of placements of 𝑛 rooks on a board which is a subset of an 𝑛 × 𝑛 board 

is a quite common problem. For this particular case, the following corollary is very useful. 

COROLLARY C.7. Let 𝐵 be a generalized board in an 𝑛 × 𝑛 rectangular board. If  ∑𝑟𝑘𝑥
𝑘 is the 

rook polynomial of 𝐵, then the number of ways of placing 𝑛 non-attacking rooks on 𝐵 is 

𝑟𝑛 =∑(−1)𝑖
𝑛

𝑖=0

(𝑛 − 𝑖)! 𝑟𝑖. 

Proof. Just put 𝑘 = 𝑚 = 𝑛 in the theorem.   ∎ 

Example 5 (Problème des Rencontres). We find the number of ways of placing on an 𝑛 × 𝑛 

square board if the diagonal cells are forbidden. We have to compute 𝑟𝑛 for the generalized board 

𝐵 which consists of white cells of the below board. The shaded cells constitute 𝐵. 
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 Note that the board 𝐵 corresponds to a permutation 𝜎 = 𝜎1𝜎2⋯𝜎𝑛 of the set {1, …𝑛} such that 

𝜎𝑖 ≠ 𝑖, which means a derangement. Hence 𝑟𝑛 is the number of derangements of the set {1, …𝑛}, 

that is 𝑟𝑛 = 𝒟𝑛 . Now we obtain the number derangements by means of rook numbers. 

𝐵 is a staircase with 𝑅(𝐵) = (1 + 𝑥)𝑛 = ∑ (𝑛
𝑖
)𝑥𝑖𝑛

𝑖=0 , hence 𝑟𝑖 = (
𝑛
𝑖
). Then from the corollary it fol-

lows that  

𝑟𝑛 =∑(−1)𝑖
𝑛

𝑖=0

(𝑛 − 𝑖)! 𝑟𝑖 

=∑(−1)𝑖
𝑛

𝑖=0

(𝑛 − 𝑖)! (
𝑛

𝑖
) 

= 𝑛!∑
(−1)𝑖

𝑖!

𝑛

𝑖=0

 

= 𝒟𝑛 .  

 

E X E R C I S E S  

 

1. Find the rook polynomial of the following (unshaded) board. 

 

2. At a university, seven freshmen, 𝐹1, 𝐹2, … , 𝐹7, enter the same academic program. The chairman 

wants to assign each incoming freshman a mentor from among the upperclassmen of the 

program. Seven mentors 𝑀1, 𝑀2, …𝑀7, but there are some scheduling conflicts. 𝑀1 cannot work 

with 𝐹1 or 𝐹3, 𝑀2 cannot work with 𝐹1 or 𝐹5, 𝑀4 cannot work with 𝐹3 or 𝐹6, 𝑀5 cannot work with 

𝐹2 or 𝐹7, and 𝑀7 cannot work with 𝐹4. In how many ways can the chairman assign the mentors so 

that each incoming freshman has a different mentor? 

3. Given a permutation 𝜎 = 𝜎1𝜎2⋯𝜎𝑛 of {1, … , 𝑛}, consider the corresponding rook placement of 𝑛 

rooks on the 𝑛 × 𝑛 board and let 𝐵 = (𝑏𝑖𝑗)  be the matrix such that 𝑏𝑖𝑗 = 1 if the square (𝑖, 𝑗) of 

the board is occupied by a rook and 𝑏𝑖𝑗 = 0 otherwise. Show that 𝜎 is an even permutation if and 

only if det(𝐵) = 1. 

4. Which of the following polynomials can be the rook polynomial of a board? Give reasons, 

including examples of appropriate boards, where possible. 

a)   1 +  𝑥, 

b)  (1 +  𝑥)𝑛 , 

c)   1 +  5𝑥 +  6𝑥2, 

d)  1 +  5𝑥 +  7𝑥2, 

e)  (1 +  4𝑥 +  2𝑥2)2, 

f)   1 + 7𝑥 − 6𝑥2 + 3𝑥3, 
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5. Let 𝑆𝑛 be the ‘staircase’ board illustrated below, consisting of 𝑛 rows.  

 

Show that 𝑆𝑛 has the rook polynomial 

𝑅(𝑆𝑛; 𝑥) = ∑(
2𝑛 − 𝑘 + 1

𝑘
)

𝑛

𝑘=0

𝑥𝑘. 

6. Let 𝑛 be a positive even integer and consider an 𝑛 × 𝑛 chess-board in which the squares are 

coloured black and white in the usual chequered fashion. In how many ways can 𝑛 non-attacking 

rooks be placed on the white squares? 

7. Find the rook polynomial of the ‘staircase’ board illustrated below, consisting of 𝑛 rows.  

 

8. Using the result of Problem 7, find the number of permutations 𝜎 = 𝜎1⋯𝜎𝑛 of {1, … , 𝑛} such that 

|𝜎𝑖 − 𝑖| ≤ 1. 

9. A club holds a weekly lottery for its 𝑛 members, n being a positive even integer. Upon joining the 

club, each member is assigned a number, based on the order in which they have joined the club 

(the 𝑖-th member to join is assigned the integer 𝑖). In the weekly lottery drawing, each member is 

assigned randomly a number from 1 to 𝑛, such that each number is used once and only once, and 

winners are determined as follows: if Member 𝑖 draws either 𝑖 or 𝑛 + 1 − 𝑖 for the week, he or she 

wins. In the case of multiple winners, the pot would be split among them. In how many ways can 

there be no winners the first week of the lottery? 

10.  (Triangular Boards) Consider the family 𝑇𝑛 of 2-dimensional boards called the triangle boards. 

A triangle board of size 𝑛 consists of the cells which are below the diagonal cells of a an 𝑛 × 𝑛  

square board. The triangle board 𝑇5 of size 5 is shown below. 

 

  Show that  

𝑟𝑘(𝑇𝑛) = {
𝑛 + 1

𝑛 + 1 − 𝑘
}. 

11. (Problème des ménages.) This question concerns 𝑛 couples. Making use of rook polynomials, 

find the number of ways of seating the 𝑛 couples (2𝑛 people) around a circular table such that 

men and women are sitting alternately and no woman is sitting next to her own partner.  
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Solutions to Exercises 

1.a) 
𝑆𝑛 = 1 − (

𝑛 + 1

𝑚
) + ∑ (

𝑘 + 1

𝑚
)

⏟    

(𝑘𝑚)+(
𝑘

𝑚−1)

𝑛

𝑘=𝑚

 

= 1 − (
𝑛 + 1

𝑚
) + ∑ (

𝑘

𝑚
)

𝑛

𝑘=𝑚⏟    
𝑆𝑛

+ ∑ (
𝑘

𝑚 − 1
)

𝑛

𝑘=𝑚

 

Thus we have 

∑ (
𝑘

𝑚 − 1
) =

𝑛

𝑘=𝑚

1 − (
𝑛 + 1

𝑚
) − 1 

and replacing 𝑚 with 𝑚+ 1 

∑ (
𝑘

𝑚
) =

𝑛

𝑘=𝑚+1

(
𝑛 + 1

𝑚 + 1
) − 1 

which gives 

∑ (
𝑘

𝑚
) =

𝑛

𝑘=𝑚

(
𝑛 + 1

𝑚 + 1
). 

 

1.b) 
First define the sum 𝑇𝑛 = ∑ 𝑘𝐻𝑘

𝑛
𝑘=1  and perturb this sum: 

𝑇𝑛 = 1 − (𝑛 + 1)𝐻𝑛+1 +∑(𝑘 + 1)𝐻𝑘+1

𝑛

𝑘=1

 

= 1 − (𝑛 + 1)𝐻𝑛+1 +∑(𝑘 + 1) (𝐻𝑘 +
1

𝑘 + 1
)

𝑛

𝑘=1

 

= 1 − (𝑛 + 1)𝐻𝑛+1 +∑(𝑘 + 1)𝐻𝑘

𝑛

𝑘=1

+ 𝑛 

= 1 − (𝑛 + 1)𝐻𝑛+1 +∑𝑘𝐻𝑘

𝑛

𝑘=1⏟    
𝑇𝑛

+∑𝐻𝑘

𝑛

𝑘=1⏟  
𝑆𝑛

+ 𝑛 

= (𝑛 + 1)𝐻𝑛 + 𝑇𝑛 + 𝑆𝑛 + 𝑛 

which simplifies as  

∑𝐻𝑘 =

𝑛

𝑘=1

(𝑛 + 1)𝐻𝑛 − 𝑛. 



 

152 | Rook Polynomials 

 

1.c) As in the previous example, we define a new sum whose perturbation leads to the 

desired sum. Let 𝑈𝑛 = ∑ 𝑘2𝐻𝑘
𝑛
𝑘=1  , then 

𝑈𝑛 = 1 − (𝑛 + 1)
2𝐻𝑛+1 +∑(𝑘 + 1)2𝐻𝑘+1

𝑛

𝑘=1

 

= 1 − (𝑛 + 1)2𝐻𝑛+1 +∑(𝑘2 + 2𝑘 + 1) (𝐻𝑘 +
1

𝑘 + 1
)

𝑛

𝑘=1

 

= 1 − (𝑛 + 1)2𝐻𝑛+1 + 𝑈𝑛 + 2𝑆𝑛 + (𝑛 + 1)𝐻𝑛 − 𝑛 +∑(𝑘 + 1)

𝑛

𝑘=1

 

𝑈𝑛 vanishes and the equation takes the form 

2𝑆𝑛 = (𝑛 + 1)
2𝐻𝑛+1 − 1 − (𝑛 + 1)𝐻𝑛 + 𝑛 −

(𝑛 + 1)(𝑛 + 2)

2
+ 1 

= (𝑛 + 1)2𝐻𝑛+1 − (𝑛 + 1)𝐻𝑛 −
𝑛2 + 𝑛 + 2

2
 

= (𝑛 + 1)2𝐻𝑛+1 − (𝑛 + 1)𝐻𝑛+1 + 1 −
𝑛2 + 𝑛 + 2

2
 

= 𝑛(𝑛 + 1)𝐻𝑛+1 −
𝑛(𝑛 + 1)

2
 

and finally 

𝑆𝑛 =
1

2
𝑛(𝑛 + 1) (𝐻𝑛 −

1

2
). 

 

2.a) We can write 𝑘 = ∑ 1𝑘
𝑗=1  so that 

𝑆𝑛 =∑∑1

𝑛

𝑗=1

𝑛

𝑘=1

 

=∑∑1

𝑛

𝑘=𝑗

𝑛

𝑗=1

 

=∑(𝑛 − 𝑗 + 1)

𝑛

𝑗=1

 

=∑(𝑛 + 1)

𝑛

𝑗=1⏟      
𝑛(𝑛+1)

+∑𝑗

𝑛

𝑗=1⏟
𝑆𝑛

 

Which results in 

𝑆𝑛 =
1

2
𝑛(𝑛 + 1). 
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2.b) We can write 𝑘3 = ∑ 𝑘2𝑘
𝑗=1  so that 

𝑆𝑛 =∑∑𝑘2
𝑘

𝑗=1

𝑛

𝑘=1

 

=∑∑𝑘2
𝑛

𝑘=𝑗

𝑛

𝑗=1

 

=
1

6
(𝑛2(𝑛 + 1)(2𝑛 + 1) −∑𝑗(𝑗 − 1)(2𝑗 − 1)

𝑛

𝑗=1

) 

=
1

6
(𝑛2(𝑛 + 1)(2𝑛 + 1) −∑(2𝑗3 − 3𝑗2 + 𝑗

𝑛

𝑗=1

))    . 

So we have  

8𝑆𝑛 = 𝑛
2(𝑛 + 1)(2𝑛 + 1) +

1

2
𝑛(𝑛 + 1)(2𝑛 + 1) −

𝑛(𝑛 + 1)

2
 

=
𝑛(𝑛 + 1)

2
(2𝑛(2𝑛 + 1) + (2𝑛 + 1) − 1)  

=
1

2
𝑛(𝑛 + 1)(4𝑛2 + 4𝑛). 

Thus 

𝑆𝑛 =
1

4
𝑛2(𝑛 + 1)2. 

 

2.c) We can write 𝑘𝑟𝑘 = ∑ 𝑟𝑘𝑘
𝑗=1  so that 

  

𝑆𝑛 =∑∑𝑟𝑘
𝑘

𝑗=1

𝑛

𝑘=1

 

=∑∑𝑟𝑘
𝑛

𝑘=𝑗

𝑛

𝑗=1

 

=
1

1 − 𝑟
∑(𝑟𝑗 − 𝑟𝑛+1)

𝑛

𝑗=1

 

=
𝑟

1 − 𝑟
(
(𝑛 + 1)𝑟𝑛 − 1 − 𝑛𝑟𝑛+1

𝑟 − 1
) 

= 𝑟 
𝑛𝑟𝑛+1 − (𝑛 + 1)𝑟𝑛 + 1

(1 − 𝑟)2
. 

 

 
 


