EE 583
‘ PATTERN RECOGNITION

Syntactic Pattern Recognition via Parsing
Parsing
CYK Parsing Algorithm
Higher Dimensional (Tree) Grammars
Grammatical Inference

Introduction

» After a grammar is constructed to generate a
language, next step is to design a recognizer that
will recognize patterns (represented by strings)
generated by this grammar

= One way of recognition is as follows : Given the
description of a pattern as a string produced by a
class-specific grammar, the objective is fo
determine which L&) i=1,2,...,c the string belongs
= One way of recognition is by matching the string against

each pattern in each library. The class membership of this
string can be found with a huge computational complexity

= Another way of recognition iparsing

!‘W Parsing (1/2)

= Parsing is a fundamental concept which determines
whether the input pattern (string) is syntactically
well formed in the context of theprespecified
grammars (parsing=recognizing=syntax analyzing)

= Given a string (sentence) x and a grammar G, a parser
should construct a derivation of x and find a
corresponding derivation free of the tree (complete
description of patterns andsubpatterns)

= Usually different parsing methods are associated
with restricted classes of grammars.

= The constraints in restricted classes yield efficient
parser complexities at the expense of losing
representational flexibility

Parsing (2/2)

= Givena string x and a grammar G, if selfonsistent S
tree of derivations can fill the triangle, x is elemenf/\

of the language obtained by this class —

» Example : 6={v;,V\P.S} where \ =(S,T}, Vy={I={ab.c},+*}, Pas
0s>T () T>TT (3) 5>5+T @ T>I
Derivation tree for the sentence: a*b+c*a+b

S
S
T/S T T/ T
T T T
M 10
I|I|TI|I\TI I|IT|TI|I I
x:clx*L+ |0+|b (ll*L+| | |

|

|C * - * - * *
X = ¢c*a+hpx=a*b+c*a-+b
Bottom-up dpproach Top-dowiapproach

Top-down Parsing

Beginning from right part of production $X;X,..X,, the goal is
= If X;is aterminal symbol® string must begin with this symbol
= If X is anonterminalsymbol = a subgoalis obtained : whether the
head of the string may be reduced to,X
= If amatchis found for X continue with X% ..
= If no match is found for someX; = report to higher level and
apply an alternative productiom™->X',X',.. X',
S @

] @
Example: 6={V;,V\,P,S} where T

Va={S,T.1}, Vr={a,b,c.f.g}, P as (?
Ms>T (2)5>Tfs (3) T>IgT 6
@ T>I (B)Ida (6)Idb (7)I>c ®)

Check x=afbgc Q)
“
]

+H-0

o—I~mH

o—H
o—H —o

Bottom-up Parsing

Start from the string (sentence), s, apply productions backward
= No general rule but some rulof-thumbs :
= Begin from leftmost symbol of the string

= Process A>b cases where A, b are elements dfy and Vi respectively

R @
Example: 6={V;,V\.,P.S} where T TC’ ®
Vy={S,T.I}, Vo ={a,b,c.fg}, P as T “)
1)S>T (2)5>TfS (3) T>IgT T @
@ T>I G)I>a (B)I>b (7)I>c | ®)
I I| II @)
a fgbec ©

= Bottom-up procedure is not efficient because a large number of false
trails or errors may be made

Cocke-Younger-Kasami (CYK) Parsing Algorithm (1/2)
= CYK algorithm requires the grammar to be

= Contextfree (CFG) :v> (V UV "¢
= ChomskyNormal Form (CNF) : ABC, A>a

. Example: S>AB|BB A->CC|AB|a B>BB|CA|b C>BA|AA|b
\ Parse x=aabb

85| (14)Y>ASACAA{1+3) (14CSCACB (2+2) (14 CBABCCAC {3+1)
(13> ASAA{1+2) (1,3)>CBLC {2+1)

(23 >ASAAAB{1+2} (2,3)>SB,SCABAC {2+1}
(12)>AA (22)>ABAC (3.2pBB.CBBCLC

CA|scaA

¢ |s.Alsag

A | A |BC |BC

A>a A>a B,.(C>b BCSb

b i'l"! -y = T = = =
] — — | 1 ':':::;'L_I

Cocke-Younger-Kasami (CYK) Parsing Algorithm (2/2)

= ConvertaFSG to CFG in order to utilize CYK algorithm

= Example: FSG: S>bA|cA, A>bA, A,>bla A,

FSG>CFG :

SPAA, AOb SPAA, ASc ADAA, ASbADAA Aa

h b

S
- |Al

Al

A2

Al| - - | A2
2,A3142,43 A5 | ap A24A3| A4 |A2,A3 A5 A2,A3

bba ab c b ab

Transition Networks in Parsing (1/2)

We have seen a graphical representation of a FSG;
similar ideas can be applied to CFG by transition
networks (TN)

= TN is a directional graph to show productions via
= Nodes : representing states
= Arc: labeled fo represent eithemonterminalsor ferminals
= TN parses an input string by
= starting from an initial state,
= sequentially checking each symbol in the input string against
label of an arc emanating from present node
= if a match is found attention focuses on this new node and
matching process is repeated
= if a goal state is reached, parsing stops, successfully

= if it reaches a state in TN without an outgoing are failure,
apply backtracking to the previous node

Transition Networks in Parsing (2/2)

= Ex amgle 1 65{V 1 VW P.S}, V 1+ ={the computer program,crashes}, S : <sentence>,
V), ={<sentence>, <noun phrase>, <verb phrase>, <article>, <noun>, < verb>}

P: <sentence> -><noun phrase>+<verb phrase> , <noun phrase> > <article>+ <nourn>, <verb
phrase> > <verb>+<noun phrase>, <verb> - crashes, <article> > the, <noun> - computer|program

noun phrase verb phrase computer

article noun crashes

- phr‘ase @\g‘\ ot @‘\
verb noun phrase the
verb phrase @‘\ W article @‘\

Higher Dimensional Grammars

= There exist grammars other than "string
grammars”

= They are useful in 2-D or higher-D
pattern representation applications, but
they have more complex production rules

= In 2D, it is possible to define
“attachment points”

= The most popular approach :
= Tree grammar

iMTree Grammars (1/4)

A freeis a directedacyclical graph

= Trees store pattern info into two ways :
= Nodes : store pattern primitive info
= Arcs : reflect relational info between nodes

= Tree structures are useful for

= Structural representation that involve
hierarchical decompositions

= Describing complex patterns using primitives

with multiple connection points
a

c b b a b c

a
c c c b c b

a c a
/é b a P/ c a b

Tree Grammars (2/4)

Enumeration of all the nodes of
a general tree can be obtained
by the alphabet V={0,1,2,.. JU{.} /oik)) M3

T=(00.10.2,03,0.4,011,01.2,01.3,..0.43)

= Inorder to formally characterize tree grammars, tree generatio
should be constrained

= Ranked alphabets is a pair (V,r) which maps alphabet symbols to
nonnegative integers and they are used to relate node labels to
trees:

= eg. V:labels nodes, r : denotes outlegree of the node
T={(0,4),(0.1,3),(0.2,3),(0.3,3),(0.4,3),(0.1.1,0),(0.1.2,0)04.3,0)}

= A iree grammaris a four-tuple 6={V,r P,S} where V=\,UV,,, P is a
set of productions involving trees, S is an element of “startihg
(often single-node) tree

Tree Grammars (3/4)

= For free grammars, replacement rules fo form productions
mean a tree is replaced by another tree

= There are two options for tree grammar productions

= Rewriting of a (sub)tree with nodes initiallabelledas
nonterminalby exactly the same tree with terminal nodes

A a a a
{ ¥ Y ¢ YN
= Expansive production form (including a special case : expansion

terminated) \ { a\c

a
= A derivation using a free grammar : T, 0T,

B——»b

C——c

= There is significance of making the derivation at node a:

= eg.a tree production rule 7> T, should exist, while T,T; are
subtreesof T, and T; at node a, respectively

Tree Grammars (4/4)

= Example : A free grammar to generate{C networks :
6={V,r P,S} whereV.={Vin L,C,W,$} and r{in)=1, r(L)=(2,1},
r(w)=0, r($)=2; P:

s\ 7y T
l l |

= After applying 3 productions consecutively, one can obtain :

VaeN

Vin L

5_
(\
="
N
N }—}Z

i«éramma’rncal Inference

Learning a grammar by examples (6rammatical Inference) is
much preferable compared to a design by hand

= Grammatical inference (GI) is the supervised learning
approach inSyntPR

= A general algorithm for GI

Initialize with an initial grammar,G

Find positive and negative examples for the desired grammar

For every x, check whether @ parses x

If not, add a new "simple’ production rule tg €hat parses %, and does
not parse the whole x

5. Repeat until the resulting grammar achieves correct parsing

= "Adding a new production rule” is usually achieved by :
= choosing from a predetermined set with simple rules first
= using a specific initial knowledge about the underlying model
= using a constrained grammar, such as FSG

N

iMGramma‘rical Inference : Examples

= Inferring asingle string, xeaaab, into a FSG :
> Minimum Vi and Vy should be Vi={a,b,c} ; ={S.A,A,}
> From left to right, following productions will generate x
S2cA; Aj2aA;, A,2aA; As;2aA, APb (note A, are redundant)

= Inferring several strings into a FSG :
Following strings are given : B={bbaab,caab,bbab,cab bbb,cb}
* From left to right, following productions will generate the st
SPbA, SPcA, ADbA, A,Ob A DaA; ADb A DaAy AyDb
AOb A > aA; AsdaAy AsOb As Db
= Merge redundant generations :
SObA, S>cA, ADbA, A,Db A, DaA, A;Ob ADdA,
= A final refinement gives :
SPbA, SDcA, ADbA, A,Db A DaA,

