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Preface

The theory of solitons is attractive and exciting; it brings together many
branches of mathematics, some of which touch on deep ideas. Several of
ity aspects are amazing and beautiful; we shall present some of them in
this book. T'he theory s, nevertheless, related to even more areas of
nathematics, and has even more applications to the physical sciences,
than the number which are mcluded here. It has an interesting history
and a pronusing future. Indeed, the work of Kruskal and his associates
which gave us the "inverse scattering transform’ - a grand title for soliton
theory —1s a major achievement of twentieth-century mathematics. Their
work was stimulated by a physical problem together with some surprising
computational results. This is a classic example of how numerical results
lead to the development of new mathematics, just as obscrvational and
experimental results have done since the time of Archimedes.

This book has grown out of Solirons written by one of us (PGD). That
book originated from lectures given to final-year mathematics honours
students at the University of Bristol. Much of the material in this version
has also been used as the basis for an introductory course on inverse
scattermg theory given to MSc students at the University of Newcastle
upon Tyne. In both courses the aim was to present the essence of inverse
scattering clearly, rather than to develop the theory rigorously and
completely. That is also the overall aim of this book. It is intended for
senior undergraduate students, and postgraduate students, in physics,
chemistry, and engineering, as well as mathematics. The book will also
help specialists in these and other fields to learn the theory of solitons.
However, the theory is not taken as far as the rapidly advancing frontiers
of rescarch.

This book introduces the fundamental ideas underlying the inverse
scattering transform from the point of view of a course of advanced
calculus or the methods of mathematical physics. Some knowledge of the
elements of the theories of linear waves, partial differential equations,
Fourier integrals, the calculus of variations, Sturm-Liouville theory and



the hypergeometric function. but little more, is assumed. Also. some
familiarity with the main ingredients of the theories of water waves,
continuous groups, elliptic functions and [lilbert spaces will be uscful, but
is not essential. The relevant ideas from one-dimensional wave mechanics
(both scattering and inverse scattering), nccessary lor the presentation of
the inverse scattering transform, are described. References are given in the
text (or at the end of each chapter) to help readers to lcarn more of the
foregoing topics. Some of the diverse applications of the theory of solitons
are mentioned only briefly, either in the main text. or in the exercises at
the end of each chapter. However, the Korteweg—de Vries equation is
derived for a water-wave problem.

The material is presented as simply as we can, and a number of worked
examples are also used to help the reader follow the various ideas. Of
course, some parts of the theory are more exacting than others, and some
problems are more difficult than others. The more difficult sections,
paragraphs and set problems arc indicated by asterisks; these passages
may be omitted on a first reading of the book. Further reading is offered
at the end of each chapter to direct the reader to more detailed treatments
of some of the topics. The sections are numbered according to the decimal
system, and the equations are numbered according to the chapter in which
they appear, e.g. equation (1.2} is cquation 2 of Chap. 1. The problems
are similarly numbered (e.g. Q1.2), as are the answers (c.g. A1.2) at the
end of the book.

We are grateful to Miss Sarah Trickett (Figs. 4.5, 4.7, 4.8), Mr Mark
Lewy {Fig. 8.1), Dr Adam Wheeler (Fig. 8.2), Mr Gregory Jones {Figs. &.3,
8.4, 8.6, 8.7) and Dr Stephen Thompson (Figs. 8.8, 8.9) for their computa-
tions and plots of solutions on which our figures have been based; to Miss
Carolyn Pharoah and Miss Alison Davies for their clear draughtsmanship
of the figures; to Professor Neil Freeman (various points) and Dr Andrew
Wathen (§7.3) for technical advice; to Academic Press (copyright of Figs.
8.8, 8.9); and to Mrs Heather Bliss, Mrs Hilary Cartwright and Mrs Nancy
Thorp for their careful and cheerful typing of the text.

Bristol PGD
Newcastle upon Tyne RSJ
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The Korteweg—de Vries equation

1.1 Preliminaries

Wave phenomena abound 1in mathematical physics, and are met carly
i undergraduate courses. They may be first introduced as waves on a
string. or perhaps on the surface of water, or in a stretched membrane.
With a httle more background they may be discussed in connection with
sound and then shock waves may be mentioned, or (for the physics
student) the first meeting might be via electromagnetic waves. In all these
areas it 1s common practice to develop the concepts of wave propagation
from the simplest - albeit idealised - model for one-dimensional motion.

Cu u

2N, L1
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where u(x. 1) is the amplitude of the wave and ¢ is a positive constant. This

cquation has a simple and well-known general solution, expressed in terms
ol characteristic rariables (x v oty as

X = f(x -+ glx + cet), (1.2)

where f and ¢ are arbitrary lTunctions. (In keeping with the usual
convention, we shall regard ¢ as a time coordinate and x as a spatial
coordinate, although 1n equation (1.1} these are readily interchangeable
since they differ only by the ‘scaling’ factor, ¢.)

The functions f and ¢ (not necessarily differentiable) can be determined
from, for example, initial data u(x, 0), {(¢u;C1)(x, 0). The solution (1.2), usually
referred to as d'Alembert’s solution, then describes two distinct waves. one
of which moves to the left and one to the right, both at the speed c. These
waves do not interact with themselves nor with each other; this is a
consequence of equation’s (1.1) being linear, and hence solutions of the
equation may be added (or superposed). Furthermore, the waves described
by (1.2) do not change their shape as they propagate. This is easily verified
if we consider one of the wave components — /" say — and choose a new
coordinate which is moving with this wave, ¢ = x — ¢t. Then f = f(&) and



this does not change as x and r change, at fixed & In other words, the
shape given by f(x) at t =0 is exactly the same at later times but shifted
to the right by an amount ct.

Before we develop some further elementary propertics of waves, it is
convenient first to restrict ourselves to waves which propagate in only
one direction. It is clear that this is an allowable choice in solution (1.2):
merely set g = 0, for example. A more practical approach is to set-up initial
data on bounded (compact) support, and then after a finite time the two
wave components f and g will move apart and no longer overlap.
Since they never interact, we can now follow one of them and ignore

the other. To be more specific, we may restrict the discussion to the
solution of

u, + cu, = 0. (1.3)

where we have introduced the short-hand notation for partiaf derivatives.
The general solution of equation (1.3) 1s

u(x. 1) = f(x = ct},
where f is an arbitrary function and, since we could redefine ¢ as t/c, we
may just as well sct ¢ = 1:
if U, +1,=0 then ufx, 0 = flx—1).

(We may also note the connection with equation (1.1} the operator can
be factorised, and either factor may be zero,

o _ 0 a ¢ ot ,0?
(E + CM)(E + C(,\‘x>ll = (th - Fx2>“ =0,
where the signs are ordered vertically.)

When wave equations are derived from some underlying physical
principles (or from more general governing equations), certain simplifying
assumptions are made: in extreme cases we might derive equation (1.1) or
(1.3). However, if the assumptions are less extreme, we might obtain
equations which retain more of the physical detail: for example, wave
dispersion or dissipation, or nonlinearity. Consider, first, the equation

U, + U, + =0, (1.4)

which is the simplest dispersive wave equation. To see this let us examine
the form of the harmonic wave solution

u(x, 1) = eitkx—on, (1.5)

(We can always choose to take the real or imaginary part, or form
Aelk*~e) L complex conjugate, where A is a complex constant.) Now (1.5)



is a solution of equation (1.4} if
m=k -k (1.6)

this 15 the dispersion relation which determines w(k) for given k. Here, k is
the ware muonber (taken to be real so that solution (1.5) is certainly
oscillatory at 1 - 0) and o 1s the frequency. From (1.5) we see that

kx - ot=kix—(1 -k,

and so solution (1.5), with condition (1.6), describes a wave which
propagates at the velocity

c=—=1—-k" (1.7)

whicl is a function of k. (Note that ¢ changes sign across k = + 1.) In other
words, waves of dilferent wave number propagate at different velocities:
this 15 the charactenistic of a dispersive wave. Thus a single wave profile
which can be represented. let us supposc. by the sum of just two components
cach like solution (1.5) will change 1ts shape as time evolves by virtue of
the different veloctties of the two componcents. However, this interpretation
1s virtually a repetition of the solution (1.2) of the classical wave equation.
To extend the idea we nced only add as many components as we desire
or, for grcater generality, integratc over all k to yield

u(x, ) = f Ak)e' ™ Mg, (1.8)

for somc given A(k). (Note that A(k) is essentially thc Fourier transform
of u(x,0).) The overall effect is to produce a wave profile which changes
its shape as it moves; in fact, since different components travel at different
veloeities the profile will necessarily spread out or disperse.

1he velocity of an individual wave component is given by equation

(1.7, and 1s usually termed the phase velocity. It is clear that equation (1.6)
will admit another velocity defined by

dw
¢, = ——=1-3k%
£ dk
this is the group velocity, which detcrmines the velocity of a wave

packet (see Fig. 1.1). For many (but not all) realistic wave motions it turns
out that

cg<C

and, furthermore, the group velocity is the velocity of propagation of
energy.



Thus far we have tacitly assumcd that (k). the dispersion function, is
real for real k. However this remains true only if we add to equation (1.4)
odd derivatives of u with respect to x. If we choose to use eren derivatives,
taking for example

u,+u,—u,, =0, (1.9)
then the picturc is quite diffcrent. From cquations (1.5) and (1.9) we obtain
w=k—1k?,
and so
u(x, 1y =exp { — k2t + ik(x — 1)} (1.10)

is a solution of equation (1.9). This describes a wave which propagates at
a speed of unity for all k& but which also decays exponentially for any
real k (#0)ast — + co. (Note that the sign of the term u, . is important.) The
decay exhibited in solution (1.10) is usually called dissipation. Clearly we
could have equations, like (1.4) or (1.9), which incorporate linear combina-
tions of even and odd derivatives. In this case the harmonic wave solution
may be both dispersive and dissipative (at least for suitable signs of the even
terms).

Finally, let us briefly look at one rather more involved aspect of wave
motion, namely that of nonlinearity. Most wavc cquations (like (1.1) and
(1.3)) are valid only for sufficiently small amplitudes. If somc account is
taken of the amplitude (irr a ‘better approximation’) we might obtain the
nonlinear partial differential equation

u, + (1 + wu, = 0. (111)
This equation embodies the simplest type of nenlincanty (ua ). and
comparison with equation (1.3) might suggest that it is merely a case of
replacing cby 1 + uin the solution. It turns out (by the method of character-
istics) that this is correct! From equation (1.11) we see that

. dx
u = constant on lines — =1 + u,

dr

Fig. 1.1 A sketch of a wave packet, showing the wave and its envelope. The
wave moves at the phase velocity, ¢, and the envelope at the group velocity, ¢,.

envelope




and so the characteristic lines are x = (1 + u)t + constant. Thus the general
solution is

ulx, 1) = f{x — (1 +u)}, (1.12)
wherc f'1s an arbitrary function.

Now, given the initial wave profile, u(x, 0) = f(x), it is a matter of solving
equation (1.12) for u; this may be far from straightforward, even though
the geometrical construction of the solution by characteristics is easy. In
fact the solution of equation (1.12)(with f > 0, say, for some x) will generate
a single-valucd solution for u only for a finitc time; thercafter the solution
will be multi-valued (i.c. non-unique). The solution obtained by construc-
tion exhibits the non-uniqueness as a wavc which has ‘broken’ (see Fig. 1.2).
(Thus the solution must necessarily change its shape as it propagates.) This
difficulty is usually overcome by the insertion of a jump (or discontinuity)
which models a shock (again, see Fig. 1.2). Strictly, a discontinuous solution
is not a proper solution of equation (1.11) but it may be allowable as a
solution of the integral conservation equation from which (1.11) may have
been derived.

Another complication arises with nonlinear equations: let us supposc
that we have two solutions of equation (1.11), u,(x, t) and u,(x, ). We have
already met the ‘superposition principle’ which says that, for lincar
equations, any linear combination of u, and u, is also a solution. However
this is not true, in general, for nonlinear equations. It is easily verified that
u=u, +u, does not satisfy equation (1.11). Thus solutions of nonlincar
cqtrations can not be superposed to form new solutions, although a related
principle iv avanlable for certain nonlinear partial differential equations as
we shall see.

It 15 clear that, by making suitable assumptions in a given physical
problem, we might obtain an equation which is both nonlinear and

Iig. 1.2 The evolution of a nonlinear wave as time increases (@) t=t,;

(hytr=1t,>1t,;(c)t=1y>1,. The wave becomes vertical at one point at t = t,,

and thereafter the solution is triple-valued in a region. The solution can be

made single-valued by the insertion of a discontinuity (and the smooth ‘lobes’
are then ignored).

u discontinuity
@ \ (&) ©)

T X 1=



contains dispersive or dissipative ternis (o1

hoth). So, for example, we
might derive

u,+ (1w, tou 0, (113

T

or

w4 (L, w0 (1 1.h
The first of these is the simplest equation entbodynig nonhneatrty and
dispersion; this, or onc of its elementary vanants, 18 known as the
Korteweg—de Vries (or KdV) equation, of which wc shall say much more
later. The second one, equation (1.14), with nonlinearity and dissipation,
is the Burgers equation. In fact the general solution of equation (1.14) has
been known since 1906 (Forsyth, 1906). and it turns out that there are
some potinters in the method of solution which are relevant to the solution
of the KdV equation. (The properties of the Burgers equation will be left
to the reader to explore in the exercises.) Our main concern will be with
the method of solution — and the properties of — the KdV equation, and
other related ‘exaetly integrable’ equations. However, before we embark
upon a more detailed discussion, the various alternative forms of the
equation should be mentioned. We can transform equation (1.13) under

1 +u—ou, t— pt. XX,
where a, 8,7 are real (non-zero) constants, to yield

o p

U+ —uu, +—u,, =0
N N
i /

This is a general form of the KdV equation, and a convement choice,
which we shall often use, is

U, — 6uu, + u,, =0 (1.15)

Some of these transformations of variables (as used above) belong to a

continuous group or Lie group. As an example, consider the transformation,
G,. of the variables x,t and u into

X =kx, T = k1, U=k ?u,

for real k # 0. The application of successive transformations G, and G, is
equivalent to the single transformation G, thereby producing the multi-
plication law G,G, = G,,. This law is commutative since G,G, = G, = G,,.
Furthermore, the associative law is also satisfied because G(G,G,) =G, G, =
Guym = GG, =(G,G)G,. Clearly G, is the identity transformation:
GG, = G,, = G, for all k (#0). If we form G,,G, = G, and G,G,, = Gy,
wesee that G, , is both the left-hand and right-hand inverse of G,. Therefore
the elements of G, for all real k # 0 form an infinite group. We call k the



parameter of this continuous group. Now let us apply the transformation
G, to the KdV cquation (1.15); it becomes

U, 6UUy+ Uyyy=0,
re s meariant under the continuous group of transformations, G,. This
sigpests that we seek invariant properties of the solutions. In particular,
we antiapate the eaistence of sunilarity solutions which depend only on
invariunt combinations of the variables (see Q1.13 and section 2.6).

We have touched on ideas assoctated with waves in one spatial
dimension, mainly because the KdV equation (and other equations we
shall meet later) take this form. Of course, waves do occur in higher
dimensions; in particular the classical wave equation can be written as

u

ar?

—*V?u=0 (1.16)

where V2 is the Laplace operator in the chosen coordinate system. It is
clear that if we wished to examine more-complicated wave phenomena
(with nonlinearity and dispersion), such as ring waves or waves crossing
obliquely, then we must seek new equations. These might embody some
of the character of both equations (1.15) and (1.16); in fact higher-
dimensional KdV equations (and other integrable equations) do exist, but

their discussion is beyond the scope of this text although one or two will
be mentioned in the exercises.

1.2 The discovery of solitary waves

We have seen that the Korteweg  de Vries equation can be written down on
the basis that both nonlincarity and dispersion might occur together.
ITowever, the KAV cquation not only is of mathematical interest but also
is of practical importance. To introduce this aspect, let us see how the
solitary wave first appeared on the scientific scene. We shall then mention
some of the analytical properties of this wave, and finally show that the
KdV equation is indeed the relevant one for the solitary wave (and much
more besides).

The solitary wave, so-called because it often occurs as this single entity
and is localised, was first observed by J. Scott Russell on the Edinburgh—
Glasgow canal in 1834; he called 1t the ‘great wave of translation’. Russell

reported his observations to the British Association in his 1844 ‘Report
on Waves’ in the following words:

1 believe I shall best introduce the phenomenon by describing the circumstances of



my own first acquaintance with 1t. I was observing the motion of a boat which
was rapidly drawn along a narrow channel by a patr of horses, when the
boat suddenly stopped - not so the mass of water i the channel wlich 1t had pit
in motion; it accumulated round the prow of the vessel ina state of violent agitation,
then suddenly leaving it behind. rolied forward with great velocity, assuming the
form of a large solitary elevation, a rounded, smooth and well-defined heap of
water, which continued its course along the channel apparently without change
of form or diminution of speed. 1 followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour, preserving its original
figure some thirty feet long and a foot to a foot and a half in height Its height

gradually diminished, and after a chase of one or two miles T lost it in the windings
of the channel.

Russell also performed some laboratory experiments, generating solitary
waves by dropping a weight at one end of a water channel (see Fig. 1.3).
He was able to deduce empirically that the volume of water in the wave
is equal to the volume of water displaced and, further, that the speed, c,
of the solitary wave is obtained from

c? = glh + a), (1.17)
where a is the amplitude of the wave, h the undisturbed depth of water
and ¢ the acceleration of gravity (sce Fig. 1.4). The solitary wave is
therefore a gravity wave. We note immediately an important consequence
of equation (1.17). higher ‘waves travel faster. Fig. 1.3 and result (1.17)
apply to waves of elevation: any attempt to generate a wave of depression
results in a train of oscillatory waves, as Russell found in his own
experiments.

To put Russell’s formula (1.17) on a firmer footing, both Boussinesq
(1871) and Lord Rayleigh (1876) assumed that a solitary wave has a
length scale much greater than the depth of the water. They deduced,
from the equations of motion for an inviscid incompressible fluid, Russell’s

formula for ¢. In fact they also showed that the wave profile z = {(x, 1) is
given by

{(x, 1) = asech? {f(x — ct)} (1.18)

Fig. 1.3 Diagram of Scott Russell's expertment to generate a solitary wave.
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where 7% =4h*(h+ a)/3a for any a >0, although the sech? profile is
strictly only correct if ¢/ft «< 1. These authors did not, however, write down
a stmple equation for J(x, 1) which admits (1.18) as a solution. This final

step was completed by Korteweg & de Vries in 1895, They showed that,
provided « and ¢ were small, then

03 g\ 1 o8 o8 1o
39 R = | (1.19)
ct 2\ h 3oy o 3oy

where y is a coordinate chosen to be moving (almost) with the wave, If
we use the change of varables

(] 12
=X, X=y+¢ f}— t
]

/

then equation (1.19) can be re-cast as the KdV equation

. 3 g\l'z » 1 .
S =5 ]*1) Ssx‘*‘;”‘:xxx .

The parameter ¢ incorporates the surface tension, T, in the form
o =+h? — Thigp, where p is the density of the liquid (and often T « ! gph’);
&1s an arbitrary parameter. We shall not reproduce the work of Korteweg
& de Vries here, but it is instructive to see how the KdV equation arises
from a set of fundamental governing equations. To this end we shall stay
with water waves, but use the rather more satisfying technique of
multiple-scale asvmptotics.

* The governing equations of irrotational two-dimensional motion of an
mcompressible mviseid fluid, bounded above by a free surface and below
by a nigid horizontal plane, are

(/)::+52¢xx=0; (f)_,:o on Z:‘O
CH b TPl + 2 =0 . (1.20)
p ,eonz=1+af,
. = 82+ 219.L) :

where ¢ is the velocity potential. The variables used here have already

Fig. 1.4 The parameters and variables used in the description of the solitary
wave.




been non-dimenstonalised by the use of the undisturbed depth, h, a typical
horizontal length scale, I, and the typical speed (yh)' 2. The surface is at
z=1+ of and on this surface we assume that the pressure is constant (so
that in this simple theory the surface tension is ignored). The parameters
appearing in equations{1.20) are given by

O(:(.l/}l, (5:}[/1,

where a 1s a measure of the wave amplitude. The two boundary conditions
on z =1+ o describe the constancy of pressure at the surface, and the
continuity of the vertical velocity component there.

We are interested in small-amplitude long waves ie. in the limits as
ox—0 and § —» 0. It turns out that one choice we could make and which
leads to the KdV equation for { —is to set 6% = O(x) as « — 0. (This seems
reasonable if we note the way in which o and ¢ appear in equations (1.20).)
Clearly, however, this is rather special and we would hope that the solitary
wave is a more enduring and general phenomenon than this would suggest.
It is, as the following scaling for arbitrary é demonstrates. Introduce

112 32 12

o o
f=—5'(x—t), T=——1, (D:T(f), (121)

then equations (1.20) become

D, +ad,;=0; ®.=0 onz=0
c—®§+a®r4§(®§+a®§):o}on R
O, =of —{o+ 2l +2Dy) ’
(Note that & =0(1), ¢ = O(1) and t = O(x~ ') if 62 = O(%).) The choice of
variables (1.21) means that equations (1.22) hold in a frame of reference
which is moving with a speed of unity to the right, and then for large
times (¢) if T = O(1) as o« — O (for any fixed §). In other words, scalings (1.21)
describe a particular neighbourhood of (x, t)-space where we hope the KdV
equation will be valid. The appearance of a speed of unity is by virtue of
the non-dimensionalisation; this corresponds to a dimensional speed of
(gh)!/? (cf. formula (1.17) for small a). Finally, the right-ward propagation
is merely for convenience: we could equally well discuss left-ward motion
by introducing & = &!/?(x + 1)/d.
The solution of equations (1.22), as « — 0, is surprisingly straightforward.

To initiate the analysis we suppose that there exists a solution which takes
the form

(1.22)

o

O~ Y COE Tz, (~ Y WUED as a0,
n=0

n=0

for fixed & and . (Note that ze[0, 1 + «{] which is a bounded domain if



¢ is bounded.) The leading order approximation now yields

D,,..=0 with ®,,=00nz=0,
and so @& 1.0y = 0,(E, 1), say, an arbitrary function. Furthermore, the
first surface boundary condition requires that J,=®,; on z=1 (if we
expand these conditions in a Taylor series about = = 1), and thus {, = 0,,.

[f we continue the expansion for @ then Laplace’s equation, m conjunction
with the bottom boundary condition, gives

D~ O+ o, — 327055 + 2705, — 5270, . + 33 2%05)

where (), = 0,(& 1), n =0, 1, 2, are arbitrary functions. The surface boundary
conditions now become

So 28, = Woe+ 20, : — 300s) | + 204, + %0‘08: = O(x?)
and
— o1+ 2Woze + 27 (=0, e + 600506
= o —{pe = 2o 4 2o+ 2000 + O(),

respectively. These two equations require that

G = 0e4 3000+ 00, + 305 =0
and

v

1 . o - .
~Lo00se — Oree + 6 00ze: = — L1+ Coe + Oneloss

where (), = (,. If we eliminate J; — 0, then [ (£, 7) must satisfy

“

- e
RAPTE 35050; T Isor = 0, {1.23)

the KdV equation. (The interested reader might care to verify that the
higher-order terms, J,. satisfy an equation of the form

L

- R 1 e
RN z(s<>’sn)§+35n;;§:»7n-la n=12...,
where .#,_ | denotes a function of {4, {y .., ey oo+ 1)

We have seen that the Korteweg—de Vries equation is indeed valid in
an appropriate region of (x, t)-space, for small amplitude waves. However,
we are left with one final connection to make: that between the KdV
equation and the sech? profile. To demonstrate this, let us return to the
equation as derived by Korteweg & de Vries themselves, equation (1.19).
This has the advantage that it is written in physical variables and can
therefore more readily be related to the work of Russell, Boussinesq and
Rayleigh as expressed in equations (1.17) and (1.18). If the solution of
equation (1.19) is stationary in the frame y then { = {(y) and so

“r

260 4+ 08+ 300 =0, (1.24)



wnere tne prime denotes the dertvative with respect to y. If we consider
{—0as |y|— oo (as 1s the case for the solitary wave) then equation (1.24)
can be integrated twice to yield

2002 4+ 00 b o) =0,

(the second integration requiring the integrating factor ). This equation
may be integrated once again (see §2.2), but it is more easily verified by
direct substitution that

{(x) = asech?(Bx)
is a solution, provided

a=40p? and = — 20"
The coordinate y is defined (Korteweg & de Vries, 1895) as

xzx—(gh)”(l—:l)t

and so the solitary-wave solution becomes

1/2
U, 1) = asech? B(g) {x - (gh)”2<1 + ;fl)rﬂ (1.25)

This agrees with equations (1.17) and (1.18) if we neglect surface tension
(so that ¢ = 1h%) and assume that a/h « 1, for then

1la 1/3a\'"?
- 172 1a P
c~(gh) <1 + 2h> and p 2<h3> .

Thus Russell’s solitary wave is a solution of the KdV equation.

In conclusion, let us make two observations concerning the solitary-
wave result given in equation (1.25). With an amplitude of a, we see that
the speed of the wave relative to the speed of infinitesimal waves (i.e. (gh)}'?)
is proportional to a. Also the ‘width’ of the wave (defined as the distance
between the points of height 1a, say) is inversely proportional to a'/2. In
other words, taller waves travel faster and are narrower. Finally, note how
a appears in equation (1.25) and compare this with the way « appears in

the scaled variables (1.21) that were used in our derivation of the KdV
equation.

1.3 The discovery of soliton interactions

Hidden away in Russell’s ‘Report on Waves’ (1844, see plate XLVII) is the
diagram reproduced in Fig. 1.5, and the associated description. One
interpretation of this result (with a little hindsight) is that an arbitrary



initial profile (which in other words is not an exact solitary wave) will
evolve into two (or more?) waves which then move apart and progressively
approach individual solitary waves as t — co. (Remember that our solitary
wave is defined on (— ¢, oc).) This alone is rather surprising, but another
remarkable property can also be observed. If we start with an initial profile
like that given m Fig. 1.5, but with the taller wave somewhat to the left
of the shorter, then the development is as depicted in Fig. 1.6. In this case
the taller wave catches up, interacts with and then passes the shorter one.
The taller one, therefore, appears to overtake the shorter one and continue
on its way intact and undistorted. This, of course, is what we would expect
if the two waves were to satisfy the linear superposition principle. But they
certainly do not: this suggests that we have a special type of nonlinear
process at work here. (In fact, the only indication that a linear interaction
has not occurred is that the two waves are phase-shifted i.e. they are not
in the positions after the interaction which would be anticipated if each
were to move at a constant speed throughout the collision.)

The first hint that there was something unusual in the KdV equation

Fig. 1.5 A sketch of Scott Russell’s ‘compound’ wave. This figure ‘represents

the genesis by a large low column of fluid of a compound or double wave of

the first order, which immediately breaks down by spontaneous analysis into

two, the greater moving faster and altogether leaving the smaller’. (Russell,
1844, p. 384)

Iig. 1.6 A sketch depicting the interaction of two ‘solitons”, for times (a) t =¢,:
Myt=t,>t5(0)t=t3>1; (dVt=t,>15.
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4Ny SoNtary waves came in (955, Ferm, Pasta & Ulam were working at
Los Alamos on a numerical model of phonons tn an anharmonic lattice,
a model which turns out to be closely related to a diserctisation of
the KdV equation (Fermi, Pasta & Ulam, 1955). They observed that there
was no equipartition of €nergy among the modes. Taking this up in 1965,
Zabusky & Kruskal considered the initial-value problem for the equation

u, +uu, + 0%, =0, {1.26)

with periodic boundary conditions (a more complicated problem than our

infinite-domain solitary wave, but well-suited to numerical computation).
They solved equation (1.26) with

u(x,0) = cos mx, 0<x<2,

and u, uy, uy, periodic on [0, 2] for all ¢; they chose § = 0.022. A set of their
results is shown in Fig. 1.7. After a short time the wave steepens and
almost produces a shock, but the dispersive term (5%u,,.} then becomes
significant and some sort of local balance between nonlinearity and
dispersion ensues. At later times the solution develops a train of eight
well-defined waves, each like sech? functions, with the faster (taller) waves
for ever catching-up and overtaking the slower (shorter) waves. (And there
is another surprise: after a very long time, the initial profile — or something
very close to it — reappears, a phenomenon requiring the topology of the
torus for its explanation. TFhis is an example of recurrence.)

At the heart of these observations is the discovery that these nonlinear
waves can Interact strongly and then continue thereafter almost as if there
had been no interaction at all. This persistence of the wave led Zabusky &
Kruskal to coin the name ‘soliton’ {after photon, proton, etc.}, to emphasise

Fig. 1.7 The solution of the periodic boundary-value problem for the KdV
equation (after Zabusky & Kruskal, 1965). Initial profile at t = 0 (dotted line);
profile at ¢ = 1/r (broken line); profile at ¢ = 3.6/ (full line).
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the particle-like character of these waves which seem to retain their
identities in a collision. The discovery has led, in turn, to an intense study
over the last twenty years. Many equations have now been found which
possess similar properties, and diverse branches of pure and applied
mathematics have had to be invoked to clarify many of the novel aspects
that have appeared. We shall meet some of them in later chapters.

It is not easy to give a comprehensive and precise definition of a soliton,
However, we shall associate the term with any solution of a nonlinear
equation (or system) which (i) represents a wave of permanent form; (ii)
1s localised, so that it decays or approaches a constant at infinity; (iii) can
interact strongly with other solitons and retain its identity. (There are
more formal definitions  some of which concern discrete eigenvalues of
ascattering problem  but these must wait until we have a more substantial
mathematical framework.) In the context of the KdV equation, and other
similar cquations. it is usual to refer to the single-soliton solution as the
solitary ware, but when more than one of them appear in a solution they
are called solitons. Another way of expressing this is to say that the soliton
becomes a solitary wave when it is infinitely separated from any other
soliton. Also, we must mention the fact that for equations other than the
KdV equation the solitary-wave solution may not be a sech? function;
for example, we shall meet a sech function and also arctan(c¢*®). Further-
more, some nonlinear systems have solitary waves but not solitons,

whereas others (like the KdV equation) have solitary waves which are
solitons.

1.4 Applications of the KdV equation

We have scen (in §1.1) that the KdV equation 1s the simplest equation we
can envisage which incorporates both nonlinearity and dispersion. In fact
it 1s easy to show that this equation should occur often in the description
of real wave propagation. Consider a linear wave motion in one dimension

with dispersion: we already know that the dispersion relation must take
the form

w(k) = ke(k?),
since only odd derivatives of u are allowed. (Our choice of dispersion,
represented by a sum of derivative terms, will naturally produce a
dispersion relation like @ = kY7 ,¢,k*", but a more general functional

dependence, w = w(k), can arise which then has this form of expansion as
k — 0.) Now let us suppose that for infinitely long waves (k — 0) there exists
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and usually long waves travel the fastest, and so # > 0. This approximate
dispersion relation is clearly obtained from the equation

U+ ot + Auy,, = 0.

Furthermore, if the medium in which the propagation is occurring is a
classical continuum, then the time evolution will be given by the material
derivative (or convective operator) D/Dit = ¢/ct 4 u(¢/cx). If these two
effects are to balance then we shall obtain

U, + coity + 2l + Ag,,) =0,

where « is a small parameter measuring the weak nonlinearity and long
waves. Thus we have

U, + Uy + Atge, = 0; =X—cpot, T=at,

<

the KdV equation for small amplitude long waves, valid in an appropriate
region of the (x, 7}-plane (defined by x — ¢t = O(1), t = O(x™ '), as x> 0.)

With these points in mind, we anticipate that the KdV equation will
arise 1n a number of different contexts. We have already seen how the
equation can be derived for the classical water-wave problem. A few of
the many other applications include internal gravity waves in a stratified
fluid, waves in a rotating atmosphere (Rossby inertial waves), ion-acoustic
waves in a plasma and pressure waves in a liquid- gas bubble mixture.
(The other equations which we shall meet later also have a wide application,
and one of them - the nonlinear Schrddinger (or NLS) equation is
perhaps even more generally useful than the KdV equation.) In summary,
we see that the KdV equation is a characteristic equation governing weakly

nonlinear long waves whose phase speed attains a simple maximum for
waves of infinite length.

Further reading

The following, referenced by sections. is intended to give some useful further reading.

1.1 For basic properties of linear and nonlinear waves, see Whitham (1974). For more
information concerning group velocity, see Lighthill (1978). For the application of group
transformations to differential equations, see Bluman & Cole (1974).

1.2 For another derivation of the KdV equation for water waves, see Kevorkian & Cole
(1981); for other water-wave applications see Johnson (1973) for variable depth, Freeman

& Johnson (1970) for waves on arbitrary shears and Johnson (1980) for a review of one-
and two-dimensional KdV equations.



1.3 Sec the motion pictures of soliton interactions, particularly Zabusky, Kruskal &

Deem (11965) and Filbeek (F1981).

For a comparison of the KdV equation with

witer winve experiments, see Hammack & Scpur (1974).

L4 Atew ol the many papers: internal gravity waves (Benney, 1966); Rossby waves (Benney.

1966, Redekopp & Weidman, 1978); ion-acoustic waves (Washimi & Taniuti, 1966); g
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bubbles in a hquid (van Wiyngaarden, 1968).

Q11

Ql.2
Q1.3

Ql.4

QL5

Q1.6

Q1.7

Q1.8

Q1.9

Exercises
Use the method of characteristics to derive d’Alembert’s solution of the
classical wave cquation, (1.1).
Express d’Alembert’s solution in terms of u(x.0) = p{x) and u,(x,0) = g(x).
Find a relation between p(x) and ¢g(x) in Q1.2 which produces a wngle
wave-component travelling to the right.
Discuss the dispersion relation for the equation

U+ Uy + U —u,, =0
Compare the dispersion relations for the equations
utu,+u,,=0
and
U+u, —u, =0

particularly in the limting cases of long and short waves.
Obtain the solution of the equation

w,+ (1 +wu, =0

with
Uy X, 0<x<1
Hx,0)=19 uyl2 —x), I1<x<2
0, x<0,x=22,

where i, 15 a positive constant,
[Note that this initial profile is not differentiable at x =0, 1.2.]

By using the characteristics, sketch the solution of the problem in Q1.6
at various times.

Find the implicit solution of the equation
u,+uu, =0

with u(x,0) = cos mx. Show that u first has a point where u_ is infinite at

t=n"'. What form may the solution take if it is allowed to develop
beyond t =n"1?

A general nonlinear wate. Suppose that u(x, ) satisfies the equation
u, + ¢(wu, =0, —c<x<w, t>0,

with u(x,0)= f(x), where both / and c are differentiable. Use the method



QI.10

Ql.11

QLI2

Q113

Ql.14

of characteristics to find the implicit solution, and hence deduce that u,
remains finite untilt = min ¢ [ 00) 0y D

Linear KdV dispersion. 1f
’ ot =0

with u(x,0)= f(x)and w,u .1, —0 as |[x]|— 7. use the Fourier transform

to show that
-1'3 ’ IA; X—¥ )
U(X,[)=(3[) —1f(]) 1 W d],

where Ai(z) is the Airy function of z.
Solitary wave. Obtain the solitary-wave solution of the equation

u,—6uu, +u,, =0,

XXxx
for a wave of amplitude — 2«2,
Rational solitary ware. Show that

(x0)=6 (x3 —24n
D= S

is a solution of the KdV equation given in Q1.11. {Note that this solution
is singular on x* +12r =0,

[Hint: it might help to write u= 61 22 f(). = vt '3 (see Q1.13), and
then to observe that f = —~4{log F)". F(y)=n*+ 12.]
Painlevé equation. Show that the KdV equation

u,—bun, +u, =0

is invariant under the transformation x —kx, t =kt u -k “u (k 7 0). Also
verify that 1**u and xt™''? are invariant under the same transformation.
Show that if u{x.t)= —-(31)"23F(y), where n = x(3t) ', then

F” +(6F — q)F' —2F =0,

Hence, by setting F=/4dV/dy — V2, V = V(y), where / is a constant (o be
determined, verify that after two integrations the equation for Vin) can
be written as

V'i—nV-2V3=0,
provided V decays exponentially as either 1> + % or n— — o..

[This equation for V is a Painlevé equation of the second kind: see
Chap. 7 and Ince (1927).]
KdV equation. Suppose that the phase velocity of some linear wave is
c(k), where k is the wave number. Now weakly nonlinear waves can often
be described by an equation of the form

U+ uu, + J- Kix =Qug& ndé=0,



*Q1.15

where the kernel K is determined from linear theory as the Fourier
transform of ¢,

1 o
K(x})=— J c(kye** dk.

n ),
For water waves it is well-known that ¢? = (¢g/k)tanh (kh) where g is the
acceleration of gravity and h 1s the undisturbed depth of the water: use
this information to justify the KdV equation for long waves.
Benjamin- Ono equation. In Q1.14 take c(k) = ¢o(1 — A1k]), where ¢, and £
are constants, and hence deduce that

Aco |7 uedl )
U, + (o +ulu, +— - dé=0,
o)., E—X
where § denotes the Cauchy principal value, provided u;—0as [{|— ~.
[Thisis the Benjamin-Ono equation which arises in the study of internal
waves: Davis & Acrivos, 1967; Benjamin, 1967: Ono, 1975.]



Elementary solutions of the
Korteweg—de Vries equation

2.1 Travelling-wave solutions

A travelling wave of permanent form has already been met; this 1s the
solitary-wave solution of the KdV equation itself. Such a wave is a special
solution of the governing equation which does not change its shape and
which propagates at constant speed. This wave may be localised or
periodic. In the case of lincar equations the profile is usually arbitrary,
and is rarely of any special significance; a nonlinear equation, however,
will normally determine a restricted class of profiles which often play an
important role in the solution of the initial-value problem as t— oo. So,
for example, the classical wave equation

Uy — ()zuxx =0

has the travelling-wave solutions f{x — ct) and g(x + ct), for arbitrary f

and g (which together correspond to d’Alembert’s solution). On the other
hand the nonlinear equation

u, + (1l +uu,=0

has a travelling-wave solution u(x, 1) = f(x — ct) only if

(I—c+/}f"=0
and so f = constant: a trivial (non-wave-like) solution. It is obvious that
neither of these examples — as they stand — will teach us very much.

Let us restrict consideration to the more interesting area of nonlinear
equations. The simplest such equation (mentioned above) does not have a
travelling-wave solution at all, and this is to be expected from the general
solution discussed in §1.1. The wave steepens and, if allowed, will ‘break’
and become multi-valued; at no stage is a steady profile possible. Similarly
the effects of dispersion alone also produce a wave which forever changes
its shape, but now in the opposite sense in that it causes the wave to
spread out rather than to steepen. Perhaps these two effects may maintain
a balance and thereby produce a wave of permanent form. Of course it
is precisely this balance which gives rise to the solitary wave. (A similar



balance can be struck between nonlinearity and dissipation; see Q2.1(i).)
As an example of the general method for seeking travelling-wave

solutions, let us consider
u, + (1 + wyu, = v(u) 2.1y

for some function wv(u). The required solution must take the form
u(x,t)= f(x — ct), where ¢ is a constant which may play the role of a
parameter (as in the KdV solitary wave, see §2.2) or it may be determined
uniquely. Equation (2.1) now becomes

(1—c+ N)f" =v(/)

and so

J(I_T(Cf_;_mfldfzé, where ¢ = x — ct.

Let us suppose that equation (2.1) is given with v(u) = u(1 — u?), and for

simplicity we choose ¢ = 1.(The problem for arbitrary c may be undertaken
as an exercise.) Thus we have

1 1 1 .
(o

A |
CAer 41

where A is an arbitrary constant. This solution is more conveniently written
as

which yields
1+ f

1
Ogl—f

= Ae? or

u(x,t) = f(x —t) =tanh(x —t — x),

where 4 =exp(— 2x,), and this describes a smoothed step propagating
to the right.

2.2 Solitary waves
We now turn specifically to the KdV equation, and briefly discuss the

solitary-wave solution mentioned in §1.2. It is convenient (particularly in
view of the later work) to write the KdV equation in the standard form
u, — 6uu, +u,, =0. (2.2

The travelling-wave solutions of this equation are u(x,t) = f(&), where
&= x—ct and ¢ is a constant. Thus equation (2.2) becomes

—cf —6ff"+ " =0,



which may be mtegrated once to yield

—cf =3 - A
where A is an arbitrary constant. If we now use /7 as an integrating factor
we may integrate once more to give

WY =+ efT+ A+ B, (2.3)

where B is a second arbitrary constant. (We shall examine equation (2.3)

for general 4, Bin the next section.) At this stage let us impose the boundary

conditions f, f', " >0 as { » 4+ o which describe the solitary wave. Thus
A and B are both zero,

(=12 +0 (2.4
{essentially as we quoted in §1.2), and we can sce immediately that a real
solution exists only if (/' =01ie. if 2/ 4+ ¢ = 0.
Equation (2.4) can be integrated as follows: first writc

af [
Jﬂz—’" +T)'7 =+ Jdc_

and then use the substitution f = — 1¢sech? € (¢ = 0) to obtain

flx —cty= —esech? e 2(x —of — xg) L. (2.5)
where x, is an arbitrary constant of integration. Note that the choice +
is redundant since the solution is an even function, and also that the
constant x, (a phase shift) plays a minor réle: it merely denotes the position
of the peak at r = 0. The solitary-wave solution (2.5) of equation (2.2) forms
a one-parameter family (ignoring x,), and in fact the solution exists for
all ¢ = 0 no matter how large or small the wave may be. (The solitary-wave
solution of the original water-wave equations (1.20) exists only up to a
maximum amplitude and its profile is only approximated by a sech?
function.) The fact that f <0 reflects our choice of KdV equation (2.2)

with negative nonlinearity; we may recover the classical wave of elevation
by transforming u— —u.

2.3 General waves of permanent form

The qualitative nature of the solution f(&) of equation (2.3), for arbitrary
values of the constants c¢,4 and B, can be determined by elementary
analysis. The quantitative behaviour, however, requires the use of elliptic
functions (see §2.4) or numerical computation,

It is clear that, for practical applications, we are interested only in real



bounded solutions f(&) of
WP =S +3ef?+ Al + B=F(f).

Thus we require (as before) (f}? 2 0, and the form of F(f)} shows that f
will vary monotonically until f* vanishes (i.e. F(f) has at least one real
zero). In other words. we can anticipate that the zeros of F(f) are important.

A little thought shows that the zeros of F(f), according to the values
of ¢, A and B, must fall into one of the six categories depicted in Fig. 2.1.
Since (f)? = 0, a real - but not necessarily bounded - solution will occur
only in the intervals shaded in the figure. Further, to lay the foundations
for our discussion, we neced to consider the behaviour of f near a zero of
F(fYand clearly three cases can arise: F(f) will have a simple, double or
triple zevo. Let F(f,) =0 and we then examine each case in turn.

(i) If f, is o simple zero then

() =20 = fOF )+ 0 = 1)),
as [ » [, which can be solved iteratively to yield
f:fl +%(é*él)2F,(f1)+O((é*élﬁ)’

as £ ¢, where f(&,)= f,. Thus [ has a local minimum or maximum at
E=¢,, as F'(f,) is positive or negative, respectively.

Fig. 2.1 Sketches of the graphs of F( ) for the six different cases. Real solutions,
(f)? 20, will occur only in the shaded regions.

(a) (b)

......... / f /
/3 Hl f3 fl




(1) If f, is a double zero then

(P ==Y Uo+0u o

as f— f,, and this is allowable only il F7(fy) -0 (sce Fig. 2.1{(M}) This
time we obtain

f—fi~aexp[+ EF(H)] as o 7, (2.6)
if f is to be bounded; x 1s an arbltrary constant. Thus f— f, as £—> F x
(signs vertically ordered throughout), and the solution can therefore have
only one peak and the wave must extend from — oc to + oc.

(i) If f, is a triple zero then there is only one possibility, namely
f, = —c/6 with A= 3(c/6)* and B =(c/6): see Fig. 2.1(f). The complete
solution for f(&) is then easily obtained as

f&)= —‘ ,2,; ~ 2.7)
where f is an arbitrary constant. This solution is unbounded at &= f.
(Note that there is always available the trivial solution f = f, (for example,
o =0 in expression (2.6) or { f| - > in (2.7)) but this is not a propagating-
wave solution.) Thus, on ignoring (1it) which is not relevant, " will either
change sign across f = f, (see (i}) or f' >0 as £— + oc (see (ii)).

Now consider the cases depicted in Figs 2.1(a), (d), (e) and the right-hand
part of (¢) (beyond f = f;). If at some point ¢ = £, (say) on the solution,
the slope is such that f'>0, then F >0 for all £ > ¢, and f— + > as
& — + o0. If, however, f7(£) < O then f will decrease until it reaches [ = f|
(the largest real zero of F); this is a simple zero and so f' changes sign
and once again f — + o as & — + oc. Hence, for these four cases, there 1s
no bounded solution.

From Fig. 2.1(b) we see that F has a simple zero at f3 and a double
zero at f; the solution has a minimum at f = f3(F'(f;) > 0) and attains
S =f,as £—> 4+ oc. This, of course, is therefore the solitary-wave solution
with an amplitude f5 — f,( < 0).

Finally we are left with the left-hand part of curve (¢) in the finite region
where (f)? = 0. Here we have simple zeros at both f, and f5; in fact there
is a local maximum at f, (since F'(f,}<0) and a local minimum at f,
(since F'(f3)> 0). Thus f’ will change sign at these points and since the
behaviour near them s algebraic (not exponential as in (it)), consecutive
pomnts [ = f,, f = f3 will be a finite distance apart. The unique solution
will be completely determined if f, and the sign of f’, are given at any
point £ = ¢4, which then fixes a poimnt on the curve between f, and f;.
The solution will thereafter oscillate between f, and f73, with a finite period.



This period can be expressed as

e df S df )
ZL‘ I 7Jh W (f2>13)

and the solution itsclf is given mmplicitly by

ot

s dr

i: \iJ\ (2F(ff)”2 (28)
where /(&) =/ and the 4+ 1s according to f* 2 0. Any further discussion
of this solution requires the introduction of Jacobian elliptic functions, as
uscd by Korteweg & de Vrnes themselves in 1895. In fact they named these
new penodic solutions cnoidal waves (after “cn’, the relevant Jacobian
clliptic function), we shall examine them more thoroughly in the next
section. where two typical wave profiles are reproduced.

The methods used in this and the next section are applied to the Kdv
equation, but it should be noted that they may also be applied to many
other nonlinear partial differential equations (or systems). The methods

describe, qualitatively, the solutions f(&) of any equation which can be
wntten as

dv

/’ = W,

for a given ‘potential’ function V([f), where f"=df/dé. We can at once
obtain the integral

sV =E=V{f)=F(f),

for some constant of integration, E, an ‘energy’. We shall sce that there
exist pertodic solutions f(&) if F(f) is positive between two simple zcros
of F, and there exist solitary-wave solutions if F is positive between a
simple zero and a double zero. Also there exist monotone solutions such
that f({)— f,as&— + oc and f(&)— f, as £ - F o0, if Fis positive between
two double zeros, f; and f,. Thxs third case will arise later (in connection
with the sine-Gordon equation}; the solution is called a kink or tropological
soliton (see Q2.19).

Here is one final and quite general point before we leave travelling waves
of permanent form. We have seen, particularly for the KdV equation, how
such solutions can be found. However, there is no guarantee that such
waves will exist in the practical - or even computational - sense. If these
special solutions are unstable to small perturbations then any physical (or
numerical) disturbance will eventually destroy them. So, strictly, our task
1s not complete until we have examined the stability of these waves to at



jcasL sidl (UIIEAT) disturoances. 1 nis aspect ot the problem goes beyond
the scope of this book, but such analyses hive been undertaken. For
example, Benjamin (1972) has shown that the shape ol the solitary wirve
is stable (1.e. ultimately unchanged) to small distortions (although the elfect
upon the phase shift, 1.e. postition, of the wave over long times is still an
open question). Indeed, the vast amount of numerical work over the years
attests to the amazing stability of the solitary wave. Similarly, Drazin
(1977) has shown that the cnotdal wave is also stable to small disturbances.

*2.4 Description in terms of elliptic functions
A more complete mathematical discusston of the implicit relation (2.8)
requires a brief introduction to elliptic functions and integrals. We shall

present here all the information necessary to enable us to describe the
cnoidal wave.

First we define the integral

¢ do

where we shall take m, the parameter, such that 0 < m < 1. We may compare
the integral (2.9) with the clementary integral

vooodr
W = J\O F—T[T)W’ (2 1 0)

where we use r = sin 6 so that w=arcsiny or sinw =¥, and so observe
that integral (2.10) defines the inverse of the trigonometric function, sin.
This led Jacobi (and also Abel) to define a new pair of inverse functions
from (2.9)

snv = sin ¢, cn v = Cos ¢. (2.1
These are two of the Jacobian elliptic functions; they are usually written
sn(v|m), cn(vim) to denote the dependence on the parameter. (It is not

unusual to work with the modulus, k, where m = k*; however, m is slightly
more advantageous in the present context.)

The two special cases m =0, | enable integrals (2.9) and functions (2.11)
to be reduced to elementary functions: if m = 0 then,

v=¢ and so cn(v|0) = cos ¢ = cos v,
and if m =1 the integral can be evaluated to yield
= arcsech (cos ¢) and so cn(vf1) = sechv.

It therefore follows that cn(v|m) and sn(vim) are periodic functions for



0 <m < [, but that periodicity 1s lost for m = . Now the period of cn and
sn corresponds to the period 27 of cos and sin. and so the pertod of these
elliptic functions can be written as

2n do 4 2 do
o (L=msin?0 2 "], (1—msin?0)* ¥

This latter integral s the complete elliptic integral of the first kind
(‘complete’ because it has fixed limits),

K(m) " a0 (2.12)
m) = - .
o (I —msin?@)?
It 1s immediately clear that K(0) = =/2, and it is also straightforward to
show that K(m) increases monotonically as m increases. In fact
K{m)~ Ylog {16/(1 —m)}

asm—17,and so K(m)— + > asm— 1" (sece Q2.7}. Of course, this just
demonstrates the infinite ‘period’ of the cn(z|1) = sech v function.

Algebraic and differential relations between the Jacobian elliptic func-
tions can also be obtained quite easily. For example

cn? +sn’ =1
{(from the Pythagorean result for the trigonometric functions), and
d de d d
acnza—?@cn = (1 — msin? ¢)"2T¢cos¢,

which is usually expressed in terms of a third elliptic function dn(r|m) =
(1 —msin®¢)' 2, so that

g = —sn dn’
(and also we see that dn? + msn® = 1). Note that, since the argument ()
and parameter (m) are the same throughout thesc identities, we have
suppressed them altogether.

We may now use this knowledge to derive the solution of equation (2.3),
for the travelling-wave, in the case depicted in Fig. 2.1(c). One possible
method is to use the differential and algebraic relations directly to verify
that there exists a solution of equation (2.3} in the form

f(&y=a+ben? {x(& - &5)|m),
for certain a,b,a,m. This is left as an exercise for the reader. We shall

* It would be more accurate — but not relevant for us - to write (¢'7't) cn since the denvative
(¢/dm) cn also exists.



weupt tav avauwilLE LIUILC dYdLEIHALC dPpproden. 1 ne tnree distinct zeros
of F(f) are denoted by f, < f, < [, (sce Fig. 2.1{¢)), and so we can write

. +J_I dg o)
= , 2
T2 o o 1)

from equation (2.8). This is transformed into a standard clliptic integral
by using the substitution

s

g=f1+(f>— fi)sin*0
to give

@ do
r __x o 112 I
%~§3i{2/(.f1 f3)1 J\O (1 wmsinlf))”
where m=(f, — f3)/(f, — f3) and
f=li+ 1= fsn? ¢ = f,=(fs— fy)lcos” .

Thus we have

o o . - 9
enl(& = Sa Sy = f3)2) Fim) = cos &,
where the + is suppressed since ¢n is an even function, and so

JE=fr=(fa=fen’[& = ENUS = f3)/21 2 Im), (214
the cnoidal-wave solution.

The shape of the cnoidal wave can now be obtained by direct
computation — or from tables of the Jacobian elliptic functions - given
values of f, f5. /5. One period of the wave is shown in Fig. 2.2 for two
values of m, 0 < m < 1. It is clear from solution (2.14) that the level f = f,
describes the peak of the wave and [ = f; the trough (since 0<cn’ < 1
and f; < f,), and so ¥(f, — f3) could be regarded as the amplitude of the

Fig. 2.2 One period of the cnoidal wave, for m= 0.6, 0.9. The linear wave,

m = (), is included for comparison. All three waves have been normalised so

that the amplitudes, and wave lengths, are the same. Note that we have plotted
—fso as to present the conventional wave of elevation as m— [.

-~ wavelength ——88 —




wave. The wave length can also be determined as
2K(my2/(f, — f3)}'2,

remembering that ¢n?(rjm) has a period 2K(m), not 4K(m). Finally the
shape of the wave is governed by the value of the parameter m, as Fig.
2.2 demonstrates. Of course we have all along been describing a travelling-
wilve solution with & = v — ¢1, and by comparing cquations (2.3) and (2.13)
we see that the speed of propagationis ¢ = — 2(f, + f, + f;). Thus solution
{2.14) represents a strongly nonlinear wave: the speed, shape and wave
length (or period) all depend on the amplitude of the wave in a quite
complicated way. Any particular cnoidal wave will be completely determin-
ed if the peak, trough and wave length are prescribed, for these will fix
f1.f> and f5. (Note that for the water-wave problem, f, and f, are
measured relative to the undisturbed level of the water: see the derivation
of the KdV equation in §1.2.) Cnoidal waves can sometimes be observed
in rivers, although often with slowly varying amplitude and period as in
the case of the train of waves behind a weak bore (the so-called undular
bore).

Finally, there are two points of some mathematical interest which should
not be ignored. We have seen that the dependence on the amplitude is
quite involved, but we anticipate some significant and instructive simpli-
fication if we let the amplitude tend to zero (i.e. the ‘linear’ limit, which
corresponds to m—0). On the other hand, the ‘most nonlinear’ limit of
m—1 should also be informative: as m—1 we should recover the

solitary-wave solution. These two limits are now examined in a little
detail.

*2.5 Limiting behaviours of the cnoidal wave

First we let the amplitude tend to zero: let 3(f, — f3) =a. and then
m=2a/(f, — f3) so that m >0 as a — 0. Now, we have

cn{vim)—cost as m—0,
and therefore
[~ fy—=2acos® [(£~ &) {(f, = f3)/2)'%] (2.15)
as a—0. The speed of propagation also takes a limiting form,
c—= =2(f,+2f,) as a—0.

The solution (2.15) can be expressed more conveniently if we introduce

k={2f, - f3)}'? and fr=/i-a



wo Llull vuiatnt

=1, —acosikix 1 &)t OW as a0,
which is a linear wave of amplitude a oscillating abouat the mean level
f = f,. Furthermore, we can sec that
w=ke= —2k(f,+2f)

= — k(k*+6f,)+ O)

— —6kf,— k3 as a—0,
which 1s just the dispersion relation for the equation

u, — 6_f2 U+ U, = 0.
This, in turn, can be obtained by linearising the original KdV equation (2.2)

about u=f, (ie. set u— f,+u jui«1). In other words. the limiting
behaviour of the cnoidal wave (as m — 0) generates a linear wave with the
correct dispersion relation.

The solitary-wave Lhmit requires the two simple zeros at /= f,.f, to
coalesce to form a double zero (i.e. Fig. 2.1(c)—>(h)). To accomplish this

we let f,— f (at fixed f3). and this implies that m — | . Again, recalling
that

cn(rim) — sech rr asm— 1"~
we obtain )
= fi =y = fy)sech? [(E = &) 1S, — f3)2)" 2]
where { =x—ct withe— —=2(2f, + f3)as [, — f,. Now weset f,  fy=1a
the amplitude of the wave, and hence
f—f, —Yaseeh? 3aV3(X —ar - &y)) (2.16)

where X = x 4 6/, is a coordinate moving at a speed consistent with the
ambient level f = f,. (Of course, we could always choose f, = 0: this merely
readjusts the undisturbed level below the solitary wave.) Solution (2.16)

agrees with the solution (2.5) (where for ¢ read a). obtained by transforming
the original KdV equation (2.2) under

u—fi+u, (x,) = (x4 6f,1.1).

Thus the limit m— 1~ recovers the classical KdV solitary wave, as we
might expect.

2.6 Other solutions of the KdV equation

The solutions of the KdV equation described in the foregoing sections do
not exhaust the possibilities. Other fairly simple types of solution also



exist, some of which have already been touched on in the exercises at the

end of Chap. 1. The two particular alternatives of interest to us here are
the similarity solutions and the rational solutions.

Similanty solutions are encountered in elementary studies of partial
differential cquations, being a standard procedure for reducing them to
ordinary differential equations. Thus. for example, if u(x, 1) satisfies a given
equation then we may seek a solution of the form

u(x, ty=1"f(n) where n = x1"

and m,n are to be chosen so that f(n) satisfies an ordinary differential
equation. Often both m and n are uniquely determined, but sometimes
these may nvolve a free parameter so that we can set m = 0, for example.
and thereby generate what is usually the simplest solution in this class.
For example, the nonlinear equation

u 4+ uu, =0
has the solution u(x,t)=t"f(xt")f m+n=—1 and
mf —(+mnf + ff =0
The choice m =0 then yields /" =0 so that [ = constant, or f =#. Thus
u(x,1) = x/t is a similarity solution of the nonlinear wave equation.
Similarly, the model dispersive equation
U+ U, =0
has the solution u(x. )= f(xt ' *), on having again chosen m = 0, where
—inf+f"=0

which can be solved in terms of Airy functions (cf. Q1.10). If we combine
these two examples in the form

u,— 6uu, +u,, =0
we have the KdV equation which can be solved by substituting
u(x,t)=— (307 f(n), n=x/(30)'%.
(See Q1.13. Note that here both m and n are fixed, and that they can be
determined by requiring that [ and » are invanant under a group of

transformations which leaves the KdV equation invariant. The numerical
factors are purely for convenience.) The equation for f(y) is then

I+ 6f =/ =2/=0
which can be reduced to a Painlevé equation (again see Q1.13) with a

solution describing a wave profile which decays as 7 — + oo, and oscillates
as n— — oc. The appearance of a Painlevé equation (for which each



mivvauiv sluguidlity 1 d polel see Lnap. / and Ince, 1927) 15 not by chance.
It is currently thought that there is a direct correspondence between the
occurrence of a Painlevé equation for a given partial dificrential equation,
and the existence of an ‘inverse scattering transform’ (and therelore soliton
solutions) for that equation.

Finally we take a brieflook at rational solutions, that 15, solutions which
are rational functions of the independent variables. These are usually more
difficult to find directly, unless we have some idea of their form (or can
at least assume that they take some appropriate form). As it happens we
have already met a rational solution: u(x,t) = x/t is a rational solution of

U, + uu, =0,
as well as being a similarity solution. (We could seck this one by assuming
that u is separable; clearly a very special choiee.) The KAV equation
o~ Ouu, +u =0

also has a simple rational solution. Let us assume that u = u(x) only, and
that u.u/,u” -0 as |x| — o, then

—6uu' +u" =0
which can be integrated twice to yield

(') = 2u’.

This can be solved immediately to give

u(x, 1) = 2/x2.

which is chosen to be singular at x = 0. This is essentially the solution (2.7)
for the case of a triple zero. The next solution in a hierarchy of ‘rational
solitons’ for the KdV equation is

u(x, 1) = 6x(x3 — 24t)/(x> + 12ty
(see Q1.12). All these KdV rational solutions turn out to be singular, but
for some of the other ‘exactly integrable’ equations this is not the case -
they prove to be practical and useful solutions. There is, nevertheless, a
connecting theme: all the rational solutions can be obtained by examining
corresponding solitary-wave or soliton solutions in an appropriate limit.

This 1dea goes a bit beyond the aims of this text, and the method is left
for the reader to explore in Q2.17.

Further reading

2.1 For travelling waves, ete., see Whitham (1974).

2.2 For more on solitary waves see Whitham (1974). and Stoker (1957) specifically for the
relevance to water waves.



237 For properties of elliptic functions and integrals, see Abramowitz & Stegun (1964,
24 ¢ Chaps. 16 & 17). For more detailed information, and lists of integrals, see Byrd &
257 Tuedman (1971). The historical development of the elliptic functions also makes

mteresting readmg: see Kline (1972) and Bell (1937). For the shape of cnoidal waves,
see Wiegel (1960).

26 lora detatled discussion of both the réle of the Painlevé transcendents, and rational

solitons, see Ablowits & Sepur (1981, Chap. 3). The Painlevé equations are discussed
comprehensively i Ince (1927)

Exercises
Q2.1 Tmd the travelling-wave solutions, in the form u(x. 1) = f(x — ct), for each

of the following equations:
() Burgers equation
U+ Ul = 1y,
with u -0 as x— 4+ x and u—uy>0)as x—» — o
(m Modified KdV equation or mKdV eguation
u + 6utu, +u,,, =0, with u,u, —0as |x|— x;
(i) A generalised KdV equation
u +(n+ D+ 2u"u, + =0,

where n=1.2,..., with i u,  —0as |x|— «;
(iv) An elasiic-medium equation

Ly = Uy + Uy + Uigrns with w1 Uy, —0as x| - «.

l®)
et
to

In Q2.1 (iif). with the sign of the nonlinear term now negative, show thai
solitary-wave solutions exist only if n is odd.

(Zabusky. 1967)
*Q2.3 Nonlineor Schridimger equation. Consider the equation

i, + 1, + ujul? =0,

and seek « travelling-wave solution in the form

O + nt)

u=re ,
where r(x —c¢t) and 0(x —ct) are real functions, and ¢ and n are real

constants, Show that
0=+ A/S) and () = —2F(S),
with S=r? and F(§)=5>—-2(n—1c?)S? + BS + A, where 4 and B are
arbitrary (real) constants of integration,
Examine the nature of the zeros of the cubic F. and hence (briefly)

discuss the occurrence and properties of periodic solutions for u. In
particular show that there exist solitary-wave solutions of the forin

i
3CIX =t~

ux, t) = ae"
for all a2 =2~ 1c?)>0.

r
sech jo(x = ¢1)' "2}



1s a rational solution of the equation

U+ uu + #(u,,)=0
provided that a and b are related to . What are these relations?
{Davis & Acrivos, 1967; Benjamin, 1967; Ono, 1975)
Q2.14 Nonlinear Schridinger equation. Verily that the equation
i, +u +ujul? =0

has the rational-cum-oscillatory solution

u(x, ty=e"{1 —4(1 + 2i)/(1 + 2x? + 4t%)}.
(Peregrine, 1983)
*Q2.15 Breather. Transform the modified KdV equation

u 4+ 6w, + oy =10

XXX

Into

(1 + "N D+ Pe) + 6P (P7 ~ ) =0

where u=v,, ¢ =tan(}r) and r -0 as | x| - .
Hence, or otherwise, verify that

-

é <Isin(kx+mt+a)>
u(x,t)= -2 —arctan{ ———
cx kcosh(lx + nt + b)

1s a solution if
m = k(k* — 31 and n=I3k* — 1),
with a and b arbitrary constants,

[This oscillatory-pulse soliton is called a breather or bion]
Q2.16 The Ma solitary wave. Verify that the nonlinear Schrédinger equation

W+ U +ululP =0
has solutions of the form
u(x,t) = aexp(ia*t){ 1 + 2m(mcos 0 + insin )/ f},

for all real a and m, where n®=1+m?0=2mna’t and f(x,t)=
ncosh (maﬁx) + cos b,

(Ma, 1979; Peregrine, 1983)
Q2.17 A singular solution. Show that
u(x, 1) = 2k* cosech? {k(x — 4k?1)}
1s a singular solution of the KdV equation
U = 6uux + Usxx = 0.
Now let k—0 (at fixed x,t) and hence obtain the rational soliton
u(x, t)=2/x%

Further, show that the singular solution can be obtained from the



Q218

Q2.19

Q2.20

Q221

classical solitary-wave solution,

u(x, ty = —2k? sech? {k(x — 4k?t) -- x}
by setting exp (2x4)= —1.
(Ablowitz & Segur, 1981)
The Gardner equation. You are given a mixed KdV-mKdV equation,
namely
u, — 6u, + ., = 128uu,

for some constant 8. To seek waves of permanent form, assume that
u(x, t) = f (&), where £ = x — ct, and deduce that

.
Ry

where F(f)=48f*+ 3 +3cf? + Af + Bfor arbitrary constants 4, B and
¢. By a geometrical argument, or otherwise, show that periodic solutions
may exist for all 8; that if § > 0 then either a solitary wave or a kink (i.e.

a topological soliton) may exist; that if 4 <0 then a solitary wave may
exist but not a kink.

[Cf. equation (5.11}.]
Sine—-Gordon equation. Verify that

o(x.ty=4arctan[Cexp {(x — 2)/(1 — i?)'1?}]

is a solution of the sine-Gordon equation

Prx — G =siN QP
(written in laboratory coordinates}), for arbitrary real constants C and 4
(14 < 1)
[A solution for which ¢ increases by 2 is often called a kink, and one
which decreases by 2n an antikink.}
Breather for the sine~Gordon equation. Verify that

3 (1 -2 sin {A{t — to)} >
P(x, )= 4arctan( T o (1= 7 (e~ X))

is a solution of the sine-Gordon equation (see Q2.19), where x,,t, and
A (0 <|A] < 1) are arbitrary real constants.

[This solution does not propagate, and is therefore a stationary soliton;
see §8.1.]
A moving breather. Show that if x'=y(x — vt} and ¢ = y(t — vx) where
y=1/1-v}?and —1<v<1, then

’¢ o'p o' 3¢

axz At axr ot

Deduce that the sine-Gordon equation is invariant under this transforma-
tion.



Q2.23

Q224

Hence, or otherwise, show that the sine-Gordon equation has the
solution

(L—=i5r- SIVAPAL e 1)) \
Plx, 1) =4arctzm< ] ' s :
/ cosh (b =25 3 =1 — x))
for arbitrary rcal constants x,,, to, vand A (with — 1 <, < and J #0)
[The transformation used here is the special Lorentz transformation

with speed of light unity. This solution is a moving breather; cf. Q2.20
and see §8.1.]

A kink -antikink solution. Verify that

Zeosh {x/(1 — 23"
¢(x,1) =4arctan -

sinh {Ag/(1 — 23" 2) )
where 0 <] <1, is an exact solution of the sine—-Gordon equation (see
Q2.19). Interpret the solution as the interaction of 2 kink and an antikink
by examining the asymptotic behaviour of ¢ as t— + o0,

[A sketch of the solutions is useful: note that ¢ 15 an even function of

x, but an odd function of 1, and that it is instantaneously a constant
at t = 0: see §8.1.]

Two-dimensional Korteweg—de Vries equation. Show that the 2D KdV
equation

(U, —buu, + u..), + 3u”. =0
{(sometimes also called the Kadomtser—Petviashvili equation) has the
solitary-wave solution

u(x,1)= —3k*sech? {1 (kx + Iy — wr))
where w = k¥ + 3i%/k.
(Kadomtsev & Petviashvili, 1970; Freeman, 1980.)

Another 2D KdV equation. Show that the equation

(u, — buu, + u, ), ~ 3u,, =0
has the rational solution

(x,1) 4(,’2}’2_1\/24_”72)
Uu(x,t)= —q4— T T T,
. 2+X2+p‘2)2

>

(p~y
where X =x +p~ '~ 3p%r and p is a real constant.
[Note that y—iy gives the 2DKdV equation of Q2.23, and that this

rational solution is therefore singular for that equation; see Kadomtsev &
Petviashvili (1970), Freeman (1980,§8.1).]
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The scattering and inverse scattering problems

3.1 Preamble

The first and most important task that we shall undertake in this text is
the solution of the general imitial-value problem for the KdV equation.

(This will be followed m Chap. 6 by a discussion of similar equations.)
The amn, therefore, is to solve

1, - 6uu, + 1, =0, —w<x<o, >0,

for u(x, 1), with u(x,0) given. We anticipate that u(x,0) will have to satisfy
some conditions in order that u(x, 1) exists, but hope that the conditions
will be fairly weak. It will turn out (Chap. 4) that the method of solution
requires a connection to be madc between u(x, t) and a scattering problem,
in fact the classical scattering problem of quantum mechanics. [t is this
idea which is at the heart of the so-called inverse scattering transform.
Once this connection has been made it is then a matter of recalling the
relevant information from the linear scattering and inverse scattering
theories. To this end we digress in this chapter in order to present the
results that we shall require later. We shall, however, discuss primarily
the features relevant to soliton theory. Thus we shall emphasise the
mathematical aspects, and only mention the quantum mechanical inter-
pretation in passing. The development will revolve around the Sturm-
Liouville problem on the whole line for the bounded function (x; 1), where
Yoo+ (A —upp =0, —C<x< W, (3.1
given a real potential function u(x). Of course, this is just the time-
independent Schrodinger equation in one dimension, and the eigenvalue
problem defined by equation (3.1), for the parameter 4, is then the scattering
problem of quantum mechanics. On the other hand, the scattering data,
i.e. the form of Y(x;4) as x — + oo, can determine uniquely the potential
u(x) which gave rise to these data; this is the inverse scattering problem.
(There is good reason to use the symbol u for the potential in equation
(3.1), as well as for the solution of the KdV equation, as we shall see later.
At this stage we observe that they are different: one is u(x) and the other



1s u(x,t).) We shall now examine the direct and inverse scattering problems
in detail.

3.2 The scattering problem

In order that appropriate solutions exist to the equation
l/’xx + ()' - u)l/I = 0’

we shall require that u(x) be integrable, i.e.

J lu(x)|dx < oc.

— o

In fact, u(x) must decay sufficiently rapidly at infinity so that the Faddeev
condition (Faddeev, 1958),

J‘“ (1 + [xD]u(x)|dx < =, (3.2)

-

is also satisfied. We shall not explain how these conditions arise because
they involve subtle points of analysis that occur in the various existence
theorems, and so are umimportant in the practical solution of problems.
We shall, however, assume that they do hold and since we shall exhibit
certain solutions explicitly the problem of existence is (more-or-less)
avoided (and, as it happens, condition (3.2) is more stringent than we
usually require). We shall further assume - for most problems - that u(x)
is infinitely differentiable, which is also not a necessary condition.
(Potentials which are square wells or delta functions, for example, are
commonly met at an undergraduate level))

The spectrum of eigenvalues, 4, is generally made up of two types
corresponding to 4> 0 and A <0 (and note that 2 =0 does not occur if
u(x) # 0 for some x). Similarly there are two types of eigenfunction which
can be easily characterised: since u —0 as x — + oo then

l//xx ~ = )"llly

and so for all A>0 (the continuous spectrum) the eigenfunction i is
(asymptotically) a linear combination of exp (+iA'/?x). If 2 <0, however,
i will involve exponential growth or decay terms (or both). Let us consider
the (real) solution which decays as x - — oo,

l/I(X) ~ ae(ox)uzx’
for some constant «; in general this solution will incorporate both the
exponential terms at + oo,

W(x) ~ el PV e (TR as X — + oo,



where f and vy are also constants. However, this solution is not bounded
as x— + oo unless f=0: the values of 2 for which =0 constitute
the discrete spectrum of eigenvalues. Thus these eigenfunctions decay
cxponentially as x — + oo: those corresponding to A > 0 obviously oscillate
at infinity. For a given u(x) there may be no discrete spectrum at all (as
happens if 120, — o0 < x < 00). Even if there is a discrete spectrum, the
continuous cigenfunctions’ may take a particularly simple form as can
happen for special u(x) <0, —oc < x < 0. Tt should be mentioned also
that, if u(x) <0 for all x and u— 0 sufficiently rapidly at infinity, there is
a finite number of discrete eigenvalues. Rather than given formal proofs
of the above statements we shall show how they arise, via examples, later.
We shall not be concerned with degenerate eigenvalues i.e. those for which
there is more than one eigenfunction.

Let us now say something about the nature of the eigenfunctions for

gencral x. From the original Sturm-Liouville equation, (3.1), we can see
by direct integration that

(V.15 = Ja(u — A dx. (3.3)

b
Thus, on taking the limit as b —a we sce that . is continuous at every
x = a if the integral in equation (3.3) approaches zero in this limit. This 1s
usually the case (and, of course, may be so even for discontinuous 1), but
if, for example, u is a delta function centred between a and b then more
care is required in the calculation (see example (i) later). Similarly, we can
first integrate equation (3.1) from ¢ to x, and then from b to a to give

[¥1h = (a— b)) + Ja{r(u — W dx} dx,

b <

and so ¢ 1s continuous everywhere for all functions u of interest, which
includes the delta function. In other words, we shall be discussing
eigenfunctions ¢ which are bounded and continuous, and usually at least
once differentiable.

Functions which are bounded and decay exponentially at infinity are

integrable in a number of senses. Thus for the discrete cigenfunctions we
can say that

J‘ l¥|dx < o0 and J |W|2d.x=J Y2 dx < oo,

—x —

e 4]

" We shall use this short-hand to denote the eigenfunctions associated with the continuous
spectrum, and similarly for the discrete spectrum.



woviv us sULULU 1CSULL LIEdNS thdl yi(Xx) (which here 1S real) 1s ‘square
integrable’. The eigenfunctions associated with the continuous spectrum,
however, are not square integrable (the corresponding integral is infinite)
even though the s are bounded.

We are now in a position to introduce the most convenient representa-
tion and notation for the solutions relevant to our purpose. l4rst, for the
discrete spectrum, we define «, = (- 4)'/? for cach of the discrete cigen-
values (n=1,2,...,N) and we shall order the eigenvalues according to

the convention x, <k, < -+ <ky. The bounded solution will then be
characterised by its behaviour at + oo by writing

Wu(x) ~ ¢, exp(—K,x) as x> + 7, (3.4)
where the subscript n denotes the nth eigenfunction. The reul constant ¢,

is fixed by normalising the cigenfunction, via the square-integrability, so
that

J’ Yo dx=1. (3.5)

(Another choice would be to define the solution so that ¢, ~ exp (— k,x)
as x > + oo — the Jost solutions — but (3.5) is more usually adopted in this
context.) For the continuous spectrum we write VCZz k and define the

solution which is a special (linear) combination of the two oscillatory
behaviours at infinity, -

YOGk ~< (3.6)

- e~ Hx 4 peikx as x— + =,
ae as x o — o,

Just as with ¢, above, the two complex constants a(k), b(k) can be
determined uniquely from a given u(x). (Again, alternatives would be
Y ~e** as x - + oo, the Jost solutions for the continuous spectrum, which
are useful in discussing the analytic properties of these eigenfunctions: see
§3.3)

If we now consider two different discrete eigenfunctions (for the same
u, of course) then

:_(Kr% +u)l//n=0 and :;l_(Krzrl+u)l//m:0’
(on reverting to primes to denote derivatives) and so
'’ " d
(Kr% - Kr?;l)l//nl//m = l//m :l - l//nl//m = a W(‘/’m’ l//n)a (37)

where we define W(x, f)=aff’ — fa’ as the Wronskian of x and §B.
Integration of equation (3.7) now yields

[W(lllmv l//n)](foc = (Kr% - KY%I) J— l//nl//m dX,



and since ,,, ¥, -0 as x - + o0 we obtain

Jm Y W,dx=0 (m #n) (3.8)

1c. the functions ¥,,.¢, are orthogonal. Furthermore, the continuous
cigenfunction W is also orthogonal to every discrete cigenfunction, ¥,
(sece Q3.2). (The discrete and continuous eigenfunctions together form a
complete set, so that any square-integrable function can be represented as
a lincar combination of all the ,s, plus an integral of ¥ over all k.)

Equation (3.7) shows that, if 8 and ¢ are two solutions of equation (3.1)
with the same value of 4 = k? (>0), then

d

d W(.¢)=0 and so W(6, ¢) = constant.
X

If. morcover, ¢ is proportional to 6, then W(6,$)=0 for all x. On the
other hand, if we introduce ¢ (the continuous eigenfunction) and J* (its

complex conjugate), then W(l/;,l/;*) may be evaluated at both + 0 (on
using conditions (3.6)) to yield

W (. J*) = 2ikaa* = 2ik (1 — bb¥),
or

lal> +1b> =1. (3.9)

There is not much more that we can expect to learn without prescribing
the particular form of u(x). Once this is done, however, we can use standard
techniques to solve the resulting second-order ordinary differential equa-
tion for ys(x). Before we explore these ideas further — and clarify some of
the points made earlier - by examining two examples, we shall briefly
relate these details to the quantum scattering problem. The discrete
eigenfunctions are, of course, the bound states (sometimes called ‘stationary’
states). The eigenfunction ), associated with the continuous spectrum, is
interpreted as an incident wave of unit amplitude from + oo (e ~**), together
with a reflected wave (be™) to + oo and a transmitted wave (ae™ ™) to

Fig. 3.1 Sketch representing the scattering by a potential.
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the transmussion and reflection coefficients, respectively. The Wronskian
relation, (3.9), also has a meaning: it is a statement of thc conservation of
energy in the scattering. Many other details can be extracted, and they
are of considerable interest in quantum mcchanics, but are not relevant
to our discussion.

We conclude this section with an analysis of two particular choices for
u(x): a delta function and a sech? function. The first of these gives a classical
problem in quantum scattering theory, and the second plays an important
role in our study of the KdV equation. We shall demonstrate how the
eigenvalues and eigenfunctions can be determined for them both, and we

shall also take the opportunity to explain what governs the number of
discrete eigenvalues.

Example (i): the delta function
In this case we choosc

u(xy= —Uqyd(x) (3.10)
where U, is a constant, and §(x) is Dirac’s delta function. Before we can
present the results we must first determine the nature of the solution at

x =0. The first integral, (3.3), of the Sturm~Liouville equation, from —¢
to +g, is

[V, + f "4 Ugb(0 (0 dx = 0

s

and so as 6 =0,

[¥]= —Uq(0), (3.11)
where [ ] denotes the change in ', provided ¢ is continuous at x =0. A
second integration confirms that (x) is indeed continuous everywhere
but, as we have just seen, it is not differentiable at x = 0.
For the discrete spectrum we set k, = (—A)!/%, and write

" (x):{ocnexp(—rcnx), x>0

B, exp (x,x), x <0, (3:12)

since u=0 if x#0; ¢, is then continuous if «,=f,. This solution is
normalised by

0 @
j af exp (2x,x)dx +I af exp(—2x,x)dx =1

- 0

and so a, = (x,)'/? if we choose «,> 0. Finally, the discontinuity in ¢/,



given by equation (3.11), requires that
(ol = — K2~ K02, = —Uga,
and so «,=3U,. Hence there is only one eigenvalue (i, = —1U3;
ny=5U,), and then only if U,>0; if Uy<O0 there is none since
o, = (k)% = (Uy/2)"? must be real.
The continuous eigenfunction (for k = 4!/?) can be written down from
conditions (3.6} directly as

- e 4 bk)e™, x>0
l/I(X: 1\) = —ikx
a(kye ", x <0
which is continuous at x =0 provided a=1+b. The discontinuity in
' at x =0 is accommodated if

[§1= —ik + bik — (—ika)= — Uq(1 + b)

(3.13)

or

bik) = — Uo/(U, + 2ik). (3.14)
In this example the continuous spectrum always exists, but the discrete
spectrum exists only if U, >0 (and then it has only one member). Note
further that the pole (in the upper half-plane) of b(k) (and also of a(k))
corresponds to the discrete eigenvalue if k is extended into the complex
plane ie. at k=1U /2, 4= ~LUZ. This is a quite general result (sec §3.3)
and enables all the discrete eigenvalues to be determined from the
eigenfunction for the continuous spectrum.
It might be thought that a more natural example to introduce thesc
ideas would be the rectangular-well potential

U,, O<x <l
= 315
() {0, x<0, x>1, ( i

where U, is a constant. This choice does have the advantage that both i/
and y’ are continuous evervwhere (and in particular at x = 0. 1). However
it turns out that the details are considerably more involved than for the

delta function. The problem arising from the potential (3.15) is left as an
exercise: see Q3.4,

Example (ii). the sech?® function
The choice
u(x) = — U, sech? x, (3.16)

where U, is a constant, will be useful in our discussion of the KdV equation,
it is also a problem we can solve explicitly for ¢ (by using the hyper-
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" + (A4 Ugysech? x)y =0, (3.17)

which is conveniently transformed by the substitution T = tanh x (so that
—1<T<lfor —oo<x<w) Thus

d d
=sech’x-—=(1-T?%
sech” x ( )dT

dx dr—
and so
d d . 5
(1— Tl)ﬁ{(l -T2 a%}—{— {A—i— UJl—-T )}l// =0
or

d ,.dy i -
ﬁ{(l—T ﬁ}+<Uo+“_7,2)>w~o, (3.18)

which is the associated Legendre equation.

Let us first suppose that U, = N(N + 1), where N is a positive integer,
and consider the discrete spectrum. (Morc general U, will be mentioned
later.) If 1 = —K? (<0), then the only bounded solutions for Te[ —1,1]
occur whenk,=n,n=1,2,..., N, and these solutions are proportional to
the associated Legendre functions, PR(T), where

n

d
P'k(T)=(—1)"(1~T2)"/2dﬁT~,.P~(T) and  P\(T)

1 d¥ .
AT

(3.19)
P,(T) being the Legendre polynomial of degree N. (The proportionality
constant is chosen to satisfy the normalisation condition for the discrete
eigenfunctions, (3.5)) So, for example, if N = 2 we have the eigenfunctions

W ,(x) oc P} (tanh x) = —3 tanh x sech x
and

t5(x) oc P (tanh x) = 3sech? x,
since P,(T)=1(3T? - 1). If , and y, are normalised, we obtain

1/2

3\12 3
Yi(x) = <§> tanh x sech x; Wo(x)= 5 sech? x. (3.20)

The corresponding eigenvalues are then 4, = — 1,4, = —4(k; = 1,1, = 2).
Let us next consider the continuous spectrum, 4 = k? (> 0): the solution

of equation (3.18) which behaves like conditions (3.6) as x —» — co can be
written as

Y(x;k) = a(k)2*(sech x)"*F(a, b;&:3(1 + T)), (3.21)



where d=4—~1tk+Uo+HM2, b=L—-ik—-(Uy+HY? and é=1—ik.
F(a b, & z) is the hypergeometric function, for which z—0* corresponds
tox— —,and z— 17 to x— + oo, where z = 3(1 + T). Itis a fairly simple
exercise to confirm that

Ylx: k) ~ a(k)e ™ as X — — o0,

and we obtain

Jx k)~ al"(ﬁ)l"(a_i — 0, ) W) (R

ikx

]_,(d)r(b) me as x ¢ + oC.
Comparing this with conditions (3.6) we therefore require that

. T(@re) _ak)T(@N(E—a—b)
W= rara+rog M =T are-n 0 0P

which completely determines the scattering coefficients (see Q3.10).

From equations (3.22) we can derive two important and interesting
results. The first of these, that there are certain U, for which h(k)= 0 for
all k, is perhaps surprising. In terms of the scattering process this implies
that all the incident wave is transmitted, and so these potentials are termed
reflectionless. To see how this arises we need a standard identity relating
gamma functions,

I'G -G+ z)=mn/cosnz,
and hence observe that
]"(c"—&)]"(c‘~l~))=F{%—(UO—{—i)”l}]‘{%—{—(UO+};)1"2} =m/cos {mUq+4)""*].
Consequently b(k) =0 for all k if
(Ug+HY2=N+1 Le. Ug=N(N + 1),

where N is a positive integer; thus the discrete eigenfunctions described
by the associated Legendre functions belong to the class of reflectionless
potentials.

The second result is concerned with the number of discrete eigenvalues
for general U,. Although we may examine the original equation, (3.18),
directly, it is far simpler to make use of the poles (in the upper half-plane)
of a(k) and b(k). These two coefficients have poles where I'(@) or I'(h) are

undefined, and in the upper half-plane these occur where b= —m
(m=0,1..)), or

k=i{(Ug+H"?—(m+Hl.
Thus there is a finite number of discrete eigenvalues (for finite U ) if

Uo+H2>1 ie. Uy>0;
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is easily confirmed, for now k=iN-—-m)=in, n=12....N) The
total number of eigenvalues, for general U,, is obviously given by
[(Ug+H'* =37+ 1, where [ ] here denotes the integral part. Note,
however, that if {(Uy +1)' 2 — 1} is integral then the + 1 is omitted. (The
eigenfunctions corresponding to

Km=(Ug+3)! 2~ (m+)=p
are the associated Legendre functions P¥T), where v is a root of
viv+ Y=Uy)

In conclusion, this example has introduced the reflectionless potentials
and reinforced the general conditions which must pertain for the existence
of discrete eigenvalues. In particular, if Uy > 0, a finite nuniber of such
eigenvalues will arise and their values can be determined: if U, <. 0, only
the continuous spectrum is present. (When U, < 0, the corresponding
eigenfunctions are given by solution (3.21) since this solution is valid for
all real U, .} It 1s also evident {rom this example that some knowledge and

skill in the solution of second-order ordinary differential equations are
assets in solving scattering problems!

*3.3 The inverse scattering problem

Eigenvalue problems of the type discussed in the previous section were
fairly well understood by about 1850, but it was not until 1951 that the
inverse problem was solved. In physical terms the problem is essentially
one of finding the shape (or perhaps mass distribution) of an object which
is mechanically vibrated, from a knowledge of all the sounds that it makes,
1e. from the energy or amplitude at each frequency. In our terms, for
example, given b(k} can we find u(x)? This is not so straightforward as the
scattering problem (and it might even seem an impossible task!), but we
shall give a reasonably complete picture of the theory without going into
alot of detail. All the information relevant to the ultimate aim of developing
a solution of the KdV equation will, however, be presented. As with the
scattering theory, the interested reader may pursue those points which are
beyond the scope of this text. This and the next section are rather technical
and so, at a first reading, you are recommended to skip directly to Chap. 4.

In order to motivate the initial phase of the calculation let us first
consider the classical wave equation for ¢(x, z),

Grx — 2. =0. (3.23)

Assuggested in §1.1, this can be solved in many different ways; the method



we adopt here is the use of the Fourier transform. If we write

P(x, ::)=~1—J‘OO P(x; kye "% dk (3.24)
2n

-

then

W(x; k) =J ) o(x, z)e** dz (3.25)

is the Fourier transform of ¢(x,z). Hence we can easily see, upon the
substitution of (3.24) into equation (3.23), that y(x; k) must satisfy

oo+ k2 =0. (3.26)

Thus the cigenfunction equation, (3.26), is the Fourier transform of the
wave equation, (3.23). Further, let us suppose that we are interested in
finding a solution of equation (3.26) for which y ~ e** as x —» + oo. This
can be accomplished if we choose

P(x, 2y = 8(x — z) + K(x,z),

where K(x, z) = 0if - < x, and K(x, z) is a solution of equation (3.23), for then

o

Yix; k) = e + J K(x,z)e** dz. (3.27)

X

Now, our aim is to solve the inverse scattering problem for the equation

Yux + (k% —ulp = 0.
with 2 =k? (ie. for the continuous spectrum) and where u(x) is given.
This Sturm-Liouville equation is similar to equation (3.26) and is, very
importantly, linear in . Moreover, we are seeking solutions for which
¥ ~€e** as x —» + oc (which describes the Jost solutions for real k). We
consider, first, potentials for which there is no discrete spectrum. To
proceed, therefore, we may seek a solution of the Sturm-Liouville equation
which takes the form (3.27) for some K(x,z). We can anticipate that the
equation for K(x,z) is a wave equation with an additional term (perhaps
uK?), although the connection with u is not clear at present.
If the solution is assumed to be

]

W (k) = e 4 f K(x,z)e**dz, (3.28)
x

where the subscript + denotes a solution satisfying conditions as x —» + o,

then a direct calculation shows that

; dk . . =
l//+xx:e'kx< — k2 _?—ﬂcK — Kx>+J K, e* dz
X

X

where K(x) = K(x, x), the subscripts denote partial derivatives and d/dx



18 a total derivative r.e. dK/dx = K, + K_, where the circumflex over the
partial derivative indicates evaluation on z =x. Also, ¥, itsell can bc
conveniently written as

; iK K. N N
l//+ :elkx<l + "k ”k2~>"‘ kiJX K::C'A" dZ.

after integration by parts twice, provided both K(x,z) and K.(x,z)—0 as
z— + oo for fixed x. The Sturm-Liouville equation now becomes

0=+ k*—up.

ikx dR * N ~thT
= —¢ “+2El¥ + (Ko — K., —u(x)K)e* dz

X

which is satisfied if

K. —K..—ux)K=0 (z>x) (3.29)
and

u(x)= —2—= —2{K(x,x) + K.(x,x}}, (3.30)
X
which together with the conditions

K(x,z), K. (x,2)—0 asz— +w (3.31)

defines the problem for K(x,:). Thus, given u(x), K(x,z) is a real-valued
function which satisfies a.wave equation (equation (3.29) where x or z
plays the réle of time), with data given on both z = x (from equation
(3.30)) and as z— + oc. Since z = x is one of the characteristic lines of
equation (3.29), this constitutes a Goursat problem. It 1s well-known that
the solution exists and is unique (see e.g. Garabedian, 1964), and indeed
K(x,z) can be completely determined using Riemann’s method (but this
will profit us little here).

At this stage it is apparent that we are still developing the direct
scattering problem since we are viewing K(x, z) as a function to be found
if u(x) is specified. The crucial point now is that we can investigate the
possibility of inverting equation (3.28) (or something like it) to obtain
K(x,z) from a known ¢ ,(x; k), and hence use equation (3.30) to find u(x).
This procedure is adllowable because we have just shown that K exists.
Before we pursue this line, a small matter of consistency is worth noting:
it is clear from equations (3.29)—(3.31) that K is independent of k, and hence
inversion of equation (3.28) is meaningful in the sense of transforms. Of
course, this merely confirms the interpretation that v, (x; k) 1s the Fourier
transform with respect to z of 8(x — z) + K(x, z).

The eigenfunction for the continuous spectrum is i (which is to satisfy



conditions (3.6) at infinity as well as equation (3.1)) and we can construct
Y from the function y, by writing

=YX + bk , (3.32)
which gives the correct behaviour as x — + o0, (We could equally well
develop the above argument {for x— —co by suitably altering equation
(3.28), and using the behaviour as x— — oo from conditions (3.6); both
approaches give the same result.) From equation (3.32), and the solution
(3.28) for y, , we obtain

o o

K(x.z)e " dz + b(k)J K(x,z)e* d:z

-

//(’( 1\) |kx+b(k)cikx+J
siee K(v, 2) — 0 for - < x. Upon re-arranging this cquation to give

x

J K(x.z)e “‘:d:=|/7-c”""‘~b(k)e”"‘——b(k)J K(x,z)e*=dz,

-

we can invert both sides to yield

K(.\',Z) ’sz jl// (x; 1\ Tk b(k)eikx

- b(k)J K(x.y)e*r d_\}e”‘: dk. (3.33)

where y replaces z as the variable for the inner integration. Note that we
have here the symmetry relations:

Y(x; k) :J K(x,zye**dz; Yix; —k)= J , K(x,z)e *dz

— -

and

1 _ . |
K(x,z)= 27[J l//(’(, k)e*lk: dk = 217[ J l//(’(, o k)enk: dk.

It 1s now convenient to define a function F by

1 (= .
F(x)= 5 J b(kye™* dk, (3.34)

which is an integral along the real k-axis (where b(k) is an entire function
in the absence of any discrete eigenvalues). From equations (3.33) and

(3.34), after interchanging the order of integration in the double integral,
we obtain

o

1 [* -
K(X’Z):ﬁj (f —e ™e* dk — F(x 4 z) — J K(x, y)F(y + z)dy.

—ar

(3.35)



1ne nrstntegral (on the right-hand side) can be evaluated by introducing
the contour, C, in the upper-half of the k-plane comprised of a semicircular
arc of radius R and the real line segment [~ R, R7}; see Fig. 3.2. The
eigenfunction ¢y has no poles in the upper half-planc and (e | —1 as
|k| = oo (since it can be shown that |al—1 in this limit; sce Q3.10).
Furthermore, on writing the integrand as

(e — e, (3.36)
it is clear that this decays exponentially as R — co on the arc since £(k) > 0
there, and z > x. From Cauchy’s theorem, the integral of expression (3.36)

around C is zero and the contribution along the semicircular arc clearly
tends to zero as R — co. Hence

and so we obtain

o0

K(x,z)+F(x+z)+J. K(x, y)F(y + z)dy =0, z>x>—ow, (337

x

called the Gel fand—Levitan equation, or more usually when written in
this form the Marchenko equation for K(x,z), given the function F(x).
Equation (3.37) is a linear Fredholm integral equation which can be solved
in closed form for suitable F, and for which existence and uniqueness of
K (already impled by equations (3.29)-(3.31)) can be confirmed by
constructing the Neumann-expansion solution (see §3.4). We shall discuss
the Marchenko equation, and its method of solution, more fully in the
next section. The potential function, u(x), is then obtained from equation
(3.30).

To complete this analysis we must examine the unresolved problem of

Fig. 3.2 The contour C in the complex k-plane.




the discrete spectrum. It is fairly easy to confirm that if the discrete spectrum
exists then the formulation of equation (3.35) is unaltered, with k now a
complex parameter (although F(x) given by equation (3.34) is still an
integral along the real axis, of course). The difference arises in the evaluation
of the integral containing y/, because the expression (3.36) will now have
polesin the upper half-plane corresponding to the poles of a(k). We evaluate
this integral by using the contour given in Fig. 3.2 and ensuring that R

1s large enough to enclose all the poles. It then follows immediately from
Cauchy’s residue theorem that

2 N
J (f — e *e*dk=2m Y R,, (3.38)
-y n=1

where R, 15 the residue of e’ at k = ik, (on noting that €**~® has no
poles). In order to obtain R, we shall need to introduce the other Jost
solution, and derive some identities involving Wronskians.

We define the solution

X

W_(x;ky=¢e ‘”‘"—i—J L(x,z)e " *dz, (3.39)

for some appropriate L(x, z) (whose existence is equivalent to that of K(x, z):
see Q3.11) so that y _(x;k) ~e™** as x » — oc. Thus we can write

-~

Y= a(kp - =% + bk, (3.40)

and so

Yo =a 'yt +ba M., (341)
which is an important identity since both v, and s _ are defined at k = ix,,.
In fact, from definitions (3.28) and (3.39) we see that we have Jost solutions
WL Ux;iKk,) ~exp(— K,Xx) as x — + o0; i _(x;1k,) ~exp(k,x) as x > — x for
the discrete eigenfunctions. In particular we may therefore write

l//n(x) = Cnl// +(x; iKn) = dnl/I ‘(x; iKn)’ (342)
where d, is some (real) constant at present unknown, and ¢, is the

normalisation constant; see equations (3.4) and (3.5). (Note that, with

k =ik,, the integrals in both equations (3.28) and (3.39) now become
essentially Laplace transforms.)

The Wronskian W( ., )is a constant (see equation (3.7) et seq.) which
can be evaluated by letting x — + oo (and on using equation (3.41)), to yield
Wy -, ,)=2ika " (3.43)

(This result may be used to prove that a”' has zeros at k =ik, for
n=12,...,N (see Q3.12), and hence a(k) has poles at these points.) The
derivative of equation (3.43) with respect to k (if it is assumed that ¢,
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W _i )+ W - ¢ ) = 2ia™ ! — 2ik(d/a’) (3.44)

where ¢’ = da/dk (and equation (3.44) can now be invoked to show that
a(k) has only simple poles; see Q3.12). Furthermore, from the original

Sturm-Liouville equdtion we can see, upon differentiating with respect to
k, that

W+ 2k + (k7 — ulf, =0
which, when multiplied by ¢, can be combined with
Vil s + (K2~ ulf =0
to yield

l//xxl//k - l//l//xxk = 2"‘//2

or

W p) = 2ka./,2 dx. (3.45)

In this last result, let us choose ¢ =, , set k = ik, and take the integral
from — oo to + oc so that

[~ 2k

Wi W) - Wy (w+k,w+)=2ian Yl dx="5

— oo n

" (3.46)

since . (x;ix,) = W,/c, and y, is normalised. The notation W7 indicates

evaluation at + oo, and at k = ix,,. Evaluating equation (3.44) as x - — oo,
and with k = ix,, yields

Wo o dp-fe) + Wile o /dn, o) = 2x,(a'[a),, (3.47)
where equations (3.42) have been incorporated, and ( ), again denotes
evaluation at k = ik,,. Combining equations (3.46) and (3.47), we eliminate
W, (Y4, ¥, (Whose value is unknown) to give

d2 2i 2d
W W) = 3 We W)= "5 ==, (49

'l n
where we note that W(¢, l//) = — W(y, ¢), and also W(ag, By) = afW(, )
if a, B are constants. The left-hand side of equation (3.48) may be evaluated
directly from definitions (3.28) and (3.39) as zero, and so

(@/a®), = i(duc) ™. (3.49)
The determination of the residues of i ei** (see equation (3.38)) is now
reduced to a straightforward exercise if we employ the above results. From



equations (3.41) and (3.42) we are able to write

l/;eikz — a(k)l// _(X; k)eikz — %al//... eikz’

n

and only a(k) has any poles. The required residue at k =1k, is therefore

R, -'=%l//+()(; ic,) exp (— k,2) x {residue of a(k)}

n

and since a(k) has only simple poles we obtain
residue of a(k) (at k = ix,) = —(a?/a),

and so, from equation (3.49),
Rn = lC:l/I +(X; iKn) €Xp ( - an)'
Note that the value of d, is not required. From equation (3.28) we
immediately have an expression for . (x;ik,), and so
J (l/;_efikx)eikz dz

N @
=2 )Y ¢ exp(-rc,,z){exp(~rc,,x)+J
n=1

x

K(x,y)exp(—xK,)) dy}

where the integration variable on the right is chosen as y to avoid any
confusion. If this expression is now used in equation (3.35), we recover the
same Marchenko equation

o0

K(x,2)+ F(x +2)+ J K(x, y)F(y + 2)dy =0 (3.50)

x

provided that we redefine F by

o0

F(X)= i c2 exp(~rc,,X)+2LnJ b(k)ei** dk, (3.51)

= o0

which in turn recovers expression (3.34) if there is no discrete spectrum
(le.c,=0,n=1,...,N).

This completes the formulation of the inverse scattering problem, and
in any future applications we shall just quote equations (3.50), (3.51). These
demonstrate that, given the scattering data comprised of the reflection
coefficient b(k), the discrete eigenvalues, — k2, and the corresponding
normalisation constants, ¢,, then u(x) can be completely determined from
K(x,z). This final stage, which requires the solution of the Marchenko

equation, will now be examined briefly in conjunction with two illustrative
examples.



*3.4 The solution of the Marchenko equation
The Marchenko equation,

o

K(x,z) + F(,\‘—i—:)—i—J K(x,y)F(y +z)dy =0, (3.52)

x

as we have already mentioned, is a Fredholm integral equation. This is
clear if we write the equation as

o

K(x,z)+ F(x +2) + J K(x,y)F(y + z)dy = 0.

with K(x,z) =0 for z < x; note that x plays the réle of a parameter here.
One direct — but formal - method of solving cquation (3.52) for gencral
F(x) makes use of an iterative procedure. First. let us define

g —F(x + ) I>x
K‘(x’“)_{ 0 s<x

and

Kyx,2)=- Fix +z)— J K, (x, F(y + z)dy

o

Kix.2)= - Flx+z2)— J KL(x. v)F(y + o)dy.

and so on. If K,(x,z)— K(x,z) pointwise as n— oc then the existence
of the solution is confirmed. The infinite expansion so obtained is the
Neumann series, and this constitutes a formal solution of the integral
equation (3.52). However, it is unlikely that this construction will yield
any simple closed-form solutions (which would obviously be of far more
use to us). Of course, F might have a sufficiently simple form for a solution
to be derived directly by the use of elementary techniques: see example (i)
below.

It so happens that an important special case will arise in our discussion
of the KdV equation which reduces equation (3.52) to a standard problem.
Let us suppose that F(x + z) is a separable function, so that

where N is finite. The Marchenko equation can therefore be written as

N

K(x,z)+ Z X0Zy2)+ ) Z..(Z)J‘ ‘K(x, WX, dy=0

n=1 n=1
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from which it is clear that the solution must take the form

K(x.2)= Y L{)Z2)

n=1
Upon this substitution for K(x,z) we obtain, for n=1,2...., N,

I

N
L)+ X, (x)+ Y L,,,(x)J Z,. ()X () dy =0, (3.53)
m=1

x

which are N algebraic equations for the N unknown functions, L,(x). The
solution of this system is now straightforward, and at this stage it is left
as an cxercise for the reader. We shall, however, present a more detailed
discussion in the next chapter where the integral in equation (3.53) is
evaluated for the particular choice of F(x) which arises in the discussion
of the KdV equation. A simplified version of equation (3.53), with just two
unknown functions, will nevertheless be included as an example in this
scction.

We now examine the two illustrative examples which will clarify the

points mentioned above, and show in detail how the potential function is
determined.

Example (i). reflection coefficient with one pole
Here we take the scattering data as
b(ky = — BAP + k), P(x)~ ' 2e B as X — + oc,

where 8 > 0 is a constant. There is just one discrete eigenvalue, since > 0,
at k = if (so that xk, = B), with ¢, = #7'2. From the definition (3.51), for F,

we see that
] B ﬁ x eikX
F(X)=pe -2 | 4k
(X) = fe |k

The value of the integral is easily found: first consider the contour C as
given in Fig. 3.2 with R > f. Since .#(k) > 0 on the semicircular arc, the
value of the line integral on this part of C approaches zero as R — « if
X > 0. Thus by Cauchy’s residue theorem we obtain

x elkX
J [);;*:i*k:deZHC—ﬂx, X >0.

If X < 0, consider a similar contour in the lower half-plane; it immediately
follows, by Cauchy’s integral theorem, that

ES eik)(




1nus r{x) becomes simply
F(X)=pe "*H(~ X),
where H(x) is the Heaviside step function (H(x)=1 if x>0; H(x) =0 if
x < 0), and so from equation (3.52) we shall have
K(x,2)=0 for x +z>0.

However, if x 4+ z < 0, equation (3.52) now reads

-z

K(x,2) + fe™ P9 4 BJ K(x,y)e 707 9dy =0,

x

on remembering that F(y+2z)=0 if y+z>0. One way' to obtain the
solution of this equation is to integrate by parts to yield

K(x,z) 4+ e F=*2 4 K(x,x)e " #*+2 — K(x, - z)

' f K,(x,y)e 72 dy =0.

It is now clear that one solution of this equation is K(x,z)= — f8, and this
must be the required solution by virtue of uniqueness. Thus we have
K(x,z)= —BH(—x —2) and so K{x,x)= — BH(— 2x).

The required potential function is therefore
o .d
u(x) =2 H( - 2x) = — 2$3(x)
X

since H(— 2x) can be replaced by H( — x), H'(x) = é(x) and J(x) is an even
function. This recovers the potential function (3.10) used in example (i),
§3.2, if we set f=U,/2.

Example (ii): zero reflection coefficient

For this example, we shall suppose that we have two discrete eigenvalues
such that

Yi(x) ~cyexp(—r;x); Y2(X) ~ ¢ exp (K, x) as x — + o,

where x; # k, and b(k) =0 for all k. From definition (3.51) we therefore
obtain

F(X)=ciexp(—x,X)+ clexp(— K, X), (3.54)

* Another way is to differentiate with respect to z: this is left as an exercise.



and so the Marchenko equation, (3.52), becomes

K(x,z)+ ciexp{ —x,(x +2)} + clexp { — k,(x + 2)}

+ J r‘ K(x,y)ciexp{—x,(y+2)} +clexp| —Ky(y+2)}]dy=0.

(3.55)

The form of F(x + z), from equation (3.54), shows that F is separable and
therefore we set

K{x,z)= Ly(x)exp(—k,z) + L,(x)exp(— x,z).
From cquation (3.55) it follows that L,(x), L,(x) must satisfy

L+ ciexp(—x,x)

+ ('f[LlJ exp(—2x,y)dy + LlJ exp { —(x, +K2)y}dy]:0,

x

L, + ciexp(—K,x)

+c§[L1J exp { — (k; +K2)y}dy+L2J

x x

o0

exp(— 2sz)dy} =0,

or, upon evaluating the integrals,

2 L (kg + K
Lo+cZexp(— i) +c2 3 eI (it KX)o s
m=1 K.+ K,

forn=1,2.
This system is conveniently written as
AL+ B =0,

where L and B are column vectors with elements L, and B, = 2 exp (— k,x),
respectively, and A is the square matrix with elements

A =5 42 exp { —(x,, + x,)x}
mn mn m K + K
m n

£}

where 6, is the Kronecker delta. (This formalism, therefore, immediately
allows the extension to N discrete eigenvalues: see Chap. 4.) The solution

for L is

L=-—A"1B
and then K(x,x)= EYL, where E is the column vector with elements
E, =exp(~x,x). The important simplifying observation is to note that

d
— A= —chexp{—(k, + K,)x} = — B, I
dx

m-n



d
K= EmLm == EmAr—n—nl Bn = Ar;nl 1o
dx

when written in subscripted variables and using the summation convention.
However, expression (3.57) is more readily recognised in the form

. dA 1 di4; d
:t - :———~+:—-1
K(x,x) r(A dx> Al dx T dx ogiAl,
where { 4| denotes det 4, and so

Apm» (3.57)

2

d
u(x) = -Zd—x«Zlog | Al (3.58)
For the two discrete eigenvalues we started with, then

¢t 3 |
[A] = {1 +;€Xp(—2l{l.’()}{l +- > exp(~2fc2x)}
2K, 2

Ky

[NTNY

2
1$14

S exp i — 2Kk + Ky)x}) 3.59
(K, + 1) P 1 2 } ( )

Thus equation (3.58), with (3.59), 1s the required potential function. (To

check the form of this result, let us retain only one eigenvalue by setting

¢, =0. From equations (3.59) and (3.58) it is now straightforward to show
that

dryciexp (—2x,x)

c? 2
{1 +5’Zexp(—2klx)}

= — 2i¥sech? ()kK; x + xo)

u(x) = —

where exp(xo) = (2x,)/?/c,, which is one of the class of reflectionless
potentials; see example (i), §3.2.)

Further reading

3.2 The mathematical aspects related to second-order ordinary differential equations,
particularly Sturm=Liouville theory, can be found in Ince (1927). For further details
concerning quantum scattering theory see Landau & Lifshitz (1977), or any other
standard physics text.

3.3, The inverse scattering problem is discussed in Gel’ fand & Levitan (1951), Marchenko
(1955), Kay & Moses (1956). Information concerning the hypergeometric function, and
also the gamma function, is given in Abramowitz & Stegun (1964).

3.4 Further study of integral equations—a large subject -~ can be undertaken from any
standard text e.g. Courant & Hilbert (1953).



Other approaches to the formulation of the inverse scattering problem, with particular
reference to the KdV equation, may be found in Lamb (1980), Ablowitz & Segur (1981),
Calogero & Degasperis (1982), Dodd, Eilbeck, Gibbon & Morris (1982).

Q3.1

Q3.2

Q3.3

Q34

Q3.5

Q36

Q3.7

Exercises

let yy, v, be two solutions of the differential equation

¥+ plx)y + g(x)y = 0.

Define the Wronskian W, of y, and y,, and show that
W' + p(x)W =0.

Hence deduce that either W =0 for all x or W never vanishes (provided
x and p(x) remain finite).
Show that a continuous eigenfunction, , of equation (3.1), and any
discrete eigenfunction, ,, are orthogonal.
Find, if they exist, the eigenvalues and eigenfunctions of

Y’ (4= Uy =0,
where U, is any real constant.

Two classical scattering problems. Find the eigenvalues and eigenfunctions
of

in these two cases:

. {UO, 0<x<l,
{1 u(x)=
0, x <0, x>1,
where U, is any real constant.
*ii) u(x)= —Ugd(x) — U o(x — 1),
where U, and U, are positive constants, and show that there is only
one discrete eigenfunction if (U, + U}/ (U U ) > 1.
Another scattering problem. Find the eigenvalues and eigenfunctions of
Y+ {4 —ulx)}y =0,
if u(x) is the step potential

0, x<0
u(x)=
U, x>0,

where U, is a positive constant. Show, in particular, that there is a
continuous eigenfunction, no discrete eigenfunction, and an eigenfunction
which decays as x — + oo but is oscillatory in x <O.

Relate the scattering problem with the potential u(x)= — U, sech? fx, for
some positive constant f, to the problem discussed in example (i), §3.2.
A reflectionless potential. Find the discrete eigenfunctions for N = 3, where
u(x}= — N(N + 1} sech? x (see example (ii), §3.2).



3.3 dmall-perturbation scattering theory. If

Y+ (- ux)hy =0,

with u(x}= —¢f(x), such that 0 < |7 f(x)dx < oo, discuss both the conti-

nuous and discrete spectra as follows.
(iy Continuous spectrum: With 1 = k? and

. ae” ik X— — 0
Wix k)~

c~ikx+bcikx’ X— 4+ oo
deduce that

and

as ¢— 0 for fixed k.
(i} Discrete spectrum: Show that, if [* f(x)dx>0 and

yer, X— -
o~

S X — + 00,

then there is just one eigenfunction, and hence show that the correspond-
ing eigenvalue is

K=K1~%8J‘ S(x)ydx as e—0",

Show, however, that if ¢ >0~ then no discrete eigenvalue exists, If

|7 . f(x)dx = 0, show that the discrete eigenvalue becomes

-] @ 2
K1~‘%£2J‘ {J‘ f(x’)dx’} dx ase—0",

[Hints: for (i) use a straightforward asymptotic expansion; for (ii} use
multiple scales e.g. x, X = ex with y = A(X; e)exp {eg(x, X;e)}.]

(Landau & Lifshitz, 1977; Morse & Feshbach, 1953; Miles, 1978b; Drazin,
1963))

Q3.9 4 sech? potential. Verify the results (3.22), for a(k) and b(k)
fromexpression (3.21)
function.

Q3.10 The scattering coefficients. With u(x) = — Ugsech? x show, by using the
properties of the gamma function, that a(k) and b(k) (as given by equations
(3.22) and also obtained in Q3.9) satisfy the conditions
() lal> + > =1;

(i) a=1and b0 as k — 0.

, by working
, for i, and using the properties of the hypergeometric



Q3.11

Q3.12

Q3.13

Q3.14
Q3.15

Q3.16

Inverse scattering about — oo. Find the equation for L(x, z) if

x

Y_(x ky=e +J- Lix,z)e "= d:

is a solution of " + {4 — u(x)}y = 0; see equation (3.39). What boundary
conditions must L(x, z} satisfy?
Poles of the transmission coefficient.

(1) Use the identity (3.43) to prove that a™ ' has zeros at k = ix,,.
(1) Use the identity (3.44), et seq., to show that a(k) has simple poles at
k =1k,

Integral equations. Find the solutions of the integral equations

©

(@ K(x,z)+c“"“’+J‘ K{x,y)e t*2dy=0;

1

(m¢WH+u+j¢me®=Q

0

(i) K(x,z)—e %" _ j K(x,pe *ady=0;

n

(iv) dlx)=1+ J‘ d(y)sin(x + y)dy.
0
Neumann series. Now use a Neumann series to find the solution to Q3.13(i).

Inverse scattering. Reconstruct the potential function, u(x), for which the
reflection coefficient is

bk} = — B/(B + ik), p<0.
Inverse scattering with zero reflection coefficient. For the case of three
discrete eigenvalues, with b(k)= 0 for all , find an expression for | 4| (see
example (ii), §3.4) so that the potential function can be written as

2

u(x)= —2@log|A[.
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The initial-value problem for the
Korteweg—de Vries equation

4.1 Recapitulation

In the previous chapter we discussed the classical scattering problem for
the Sturm-Liouville operator, as well as the corresponding inverse
scattering problem. For the purposes of the development in this chapter,
where we shall describe the connection between inverse scattering and the
Korteweg—-de Vries equation, we need to note only the conclusions of
Chap. 3. We summarise those results here.

If u(x) is the potential function for the Sturm-Liouville equation

Yix + (2 —upp =0, - <x<oC, (4.1

where 4 is the eigenvalue, then u can be reconstructed from the scattering

data. These data are described by the behaviours of the eigenfunction, i,
in the form

A e 4 prk)e™* as x— +
yix: k)~ {a(k)e‘“‘" (4.2)

as x— — o,

for 4 >0, with k = A'? for the continuous spectrum, and

Ya(x) ~c exp(— K,x) asx— + o, (4.3)
for 2 <0, with k, =(—/7)'/? for each discrete eigenvalue (n=1,2,... N).
We then showed that
d
=-2-_K 4.
u(x) ix (x, x), (4.4

where K(x,z} is the solution of the Marchenko equation

PR

K(x,é)+F(x+z)+j K(x,»)F(y+z)dy=0 4.5

x

and F is defined by

o0

N
F(X)= Y ctexp(—x,X) +§%j b(k)e™X dk. (4.6)
n=1

-~ o

Hence the determination of u requires the solution of the linear integral



equation for K(x, z), an equation whose solution is amenable to standard
techniques (as outlined in §3.4).

4.2 Inverse scattering and the KdV equation
We first write the KdV equation in the convenient form (see equation (2.2))
u, — 6ut, + Uy, =0. 4.7
Then one simple way of showing a connection with the Sturm-Liouville
problem is to define a function v(x, t) such that
u=1v’+r,. (4.8)
(Equation (4.8) is called the Miura transformation.) Direct substitution of
(4.8) into equation (4.7) then yields
200, 4 Ty — 607 + 1) (207 + 140) + 60 4 20000 + T = 0,
which can be rearranged to give
<21‘ + ;)(r, — 6070, 4 144, = 0. (4.9)
X
Thus, if v is a solution of
l'l - 61‘21‘)( + l.xxx = 0 (4‘10)
(a modified KdV equation, sometimes called an mKdV equation: see Q2.1).
then equation (4.8) defines a solution of the KdV equation. (4.7). (Note
that a solution of equation (4.7) does not imply a solution of equation

(4.10) since equation (4.9) contains an additional operator.)
Now, we recognise equation (4.8) as a Riccati equation for r which
therefore may be linearised by the substitution
v=y (411
for some differentiable function y(x; ) # 0. The fact that time (f) occurs

only parametrically in equation (4.8) is accommodated in our notation
for Y by the use of the semicolon. Equation (4.8), upon the introduction

of (4.11), becomes
l//xx_udlzo 4.12)
which is almost the (time-independent) Sturm-Liouville equation for .

The connection is completed when we observe that the KdV equation is
Galilean invariant, that is

u(x, )= A+ u(x + 64t 1), — <A<,

leaves equation (4.7) unchanged for arbitrary (real) A. Since the x-
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dependence is unaltered under this transformation (and ¢ plays the rble

of a parameter) we may equally replace u by u — 4. The equation for
now becomes

l//xx + (’1 - M)ll/ =0, (4 1 3)
which is the Sturm-Liouville equation with potential u and eigenvalue .
Thus, if we are able to solve for s, we can then recover u from equations
(4.11) and (4.8). However, the procedure is far from straightforward since
equation (4.13) already involves the function u which we wish to determine.

The way to avoid this dilemma is to interpret the problem in terms of
scattering by the potential u,

Let u(x, ) be the solution of
u — 6uux + Usxx = 0,

with u(x, 0) = f(x) given: this defines the initial-value problem for the KdV

equation. Further, let us introduce the function  which satisfies the
equation

Yax + (4 —uly =0,

for some 4, and by virtue of the parametric dependence on t we must
allow A = A(r). The solution of the KdV equation can therefore be described
as follows. At t =0 we are given u(x,0) = f(x} and so (provided i exists)
we may solve the scattering problem for this potential, yielding expressions
for b(k), k, and ¢, (n=1,... N). If the time evolution of these scattering
data can be determined then we shall know the scattering data at any
later time. This information therefore allows us to solve the inverse
scattering problem and so reconstruct u(x, ) for t > 0. The procedure is
represented schematically in Fig. 4.1, where S(¢) denotes the scattering
data i.e. b(k;1), k,(t) and ¢,(t) (n=1,...,N).

It is clear that the success, or failure, of this approach now rests on
whether, or not, the time evolution of S can be determined. Furthermore,
it is to be hoped that the evolution is fairly straightforward so that

Fig. 4.1 Representation of the inverse scattering transform for the KdV

equation.
scattering
ux, 0) - S(0)
1
1 time
Kdv | evolution
|
1 inverse

- - S()
ulx. b scattering
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application of this technique does not prove too difficult. We shall
demonstrate in the next section how S(t) can be found and also show that
it takes a surprisingly simple form. However, before we start this, we note
the parallel between the scheme represented in Fig. 4.1 and the use of the
Fourier transform for the solution of linear partial differential equations.
Consider the example discussed in §1.1,

U+ Uy + Uyyy =0,

which is one linearisation of the KdV equation. If u(x,0) =f(x) then we
can write

f(x)= Jm A(k)yet dk

—~ 0

or

1 [ .
Ay =5 J Se ™ dx,

e 8

and A(k) is then analogous to the scattering data S(0). Further, if

u(x, 1) = [ A(kyeitx= o0 gk

v o X
where w = w(k), then
w(k)=k — k3,

and the term in w expresses the time evolution of the ‘scattering data’.
This procedure is shown schematically in Fig.4.2 where the Fourier

transform (F.T.), and its inverse, correspond to the scattering, and inverse
scattering processes, respectively.

4.3 Time evolution of the scattering data

The first — and probably most surprising — result concerns the constancy
of the discrete spectrum as u(x, ) evolves in time. (Remember that the

Fig. 4.2 Representation of the use of the Fourier transform for a linear partial
differential equation (pde).

u(x, 0 F.T. A k)

1
d | time
p e| evolution
1

' inverse
u(x, r) FT. A(k)e-iwdor




s emesaiv uvponuce uil Lolequires 4 = A(f), 1n general.) To show this,
we start with the Sturm—Liouville problem for (x;t) where

Ve + (A—ulp =0, — <X <0, (4.19)
and assume that this e:_guation may be differentiated with respect to x,
Wex — Uy + (A=, =0 (4.15)
and with respect to t,
Vet + (A4 — U + 14 —up, =0, (4.16)

where u(x, t) satisfies the KdV equation
u, — 6uu, + u,,,. =0. (4.17)

We shall make use of these results in what follows. Now, it is convenient
to define

RO, ty =, + up — 2(u + 24N, (4.18)
and then to construct the identity

ﬁ(‘/x(d/"R “YRY)= d’xx(d’; + Uy —2up, — 4)1//)()

- l//(l//xxr + “xxxll/ - 3uxl//xx - 2ull/xxx - 4)"¢/xxx)‘

Upon the elimination of .. and ¥, (using equations (4.15) and (4.16),
respectively) we obtain

0
ai);(l//XR - l//Rx) = l//xx(d/t - 2“‘//:( - 4/1//:() - l//(uxxxd/ - 4ux¢/xx)
=Yy, — A — 2y +u) + Y Qu+ A (U — A+ u)

which simplifies (on using equation (4.14)) to give
0
a—(l//xR — YR =32, — 1+ 6uu, — uy,,),
X
and since u satisfies the KdV equation, (4.17), we finally have
0 R,
(W R—=YR)= 4y (4.19)
Ox

This equation can now be treated separately, for A <0 and 4 > 0, in order

to obtain the time evolution of the scattering data. We shall deal, first,
with the discrete spectrum.

4.3.1 Discrete spectrum

Equation (4.19) is a general result and applies to any eigenfunction
and corresponding eigenvalue. Let us choose A= —«? and ¥ =,



(forn=1,2,... N}, and then integrate equation (4.19) over all x,

€O
[l//ann - l//anx]oEm = - (KIZI)IJ l//rzu dX,
-
where R, denotes R evaluated in terms of k, and ,. Since the eigenfunc-
tions, i, are normalised according to

j Vdv=1,

and ¥, - and so also R, - decay exponentially as |x|— oo, we obtain

(k7), =0 or K, = constant. (4.20)
Thus each discrete eigenvalue —«x? (n=1,2,... N} is a constant of the

motion: once the x,s have been determined for a given initial potential (i.e.
wave profile), they are fixed for all time.

If we return to equation (4.19), and introduce x, = constant, then an

integration with respect to x gives
ll/ann - ll/anx = gn([)» (421)
where g, (n=1,2,...,N) are arbitrary functions of t. However, both ,
and R, approach zero as |x|— ¢ and hence, for each n, g, =0 for all t.
Thus from equation (4.21), after a further integration, we obtain
R’I/d/ﬂ = h’l(t)’

where the h, (n = 1,2,...,N) are also arbitrary functions of ¢. If we multiply
this equation by 2, then we obtain

ll/n(ll/nt + uxd/n - 2u¢/nx + 4K,2|ll/"x) = hnll/r?

or
W)+ Wy — 25, + AW, = hai? (4.22)

where equation (4.14) has been used. Again we integrate over all x, and
note that the limits are independent of 1, to give

1d <, _ z,
sl |- pre)-n] e

Since ¥, is normalised (as we mentioned earlier) this equation implies that
h, =0 for each n and all ¢, and so

Rn = ll/nt + uxd/n - 2(“ - 2"‘3)1!/";( = 0, (423)
which can be regarded as a time-evolution equation for y,(x; ). Equation

(4.23) can now be used directly to find the time evolution of the
normalisation ‘constant’, ¢,(t). We know that

u—0 and Yalx; 1) ~ 1) eXp (— K,x) asx — + 0,



anu uud a>yUIPLOLIC DEnaviour used 1m equation (4.23) requires that

n

il 4x3c, =0 or () = c,(0)exp (drd1), (4.24)

where ¢,(0), n=1,2...,N, are the normalisation constants determined at
t=0.

4.3.2 Continuous spectrum

Essentially the same procedure can be adopted in this case, for which
A=k? (> 0). Since k may take any real value, we are at liberty to follow
the time evolution at k fixed. With this choice, and ¢ = (the continuous
eigenfunction), equation (4.19) is integrated once to give
U R —JR, = g(t:k)

where ¢ is a function of integration, and R denotes R evaluated in terms
of . For the continuous eigenfunction we have

Yix;t, k) ~ a(k; e ™% as x — — o

and so from the definition of R, (4.18), we see that

L}

" d .
R(x,t;k)~<df(;+4ik3a>c“"" asx —» — o

and therefore i
zﬁxﬁ—zﬁﬁx—@ as x— — oC.

Thus g(t; k) =0 for all ¢, and integrating once more (paralleling the case
for the discrete spectrum) we obtain

RN) = h(t; k) or R=hj, (4.25)

where h is another function of integration. If we now introduce the

asymptotic behaviour of iy and R, as x — — o0, then equation (4.25) requires
that

d .
a% + 4ik*a = ha. (4.26)
The corresponding behaviour as x — + o0 is
. db . . . .
R(x, t; k) ~ dTe"“‘ + dik3(e ™ — peit¥)
with §(x; 1, k) ~ e~ * 4 b(k; r)e™*, and so equation (4.25) implies that

db . : . , X
r e** + dik3(e ™ — be™*) = h(e T 4 be'k¥), (4.27)



Because e** and e ~'** are linearly independent functions, equation (4.27)
gives the two conditions

db
@ 4ik3b = hb: h(t; k) = 4ik? (4.28)
and so equation (4.26) becomes simply
da
—=0. 42
dr (4.29)

Hence. solving for ¢ and b, we obtain
a(k; t) = afk; O); b(k; 1) = b(k; 0)exp (8ik>1), for1 >0, (4.30)
which describe the time evolution of the scattering coefficients, although

only the reflection coefficient (b) actually varies with 1.

This completes the determination of the time evolution of the scattering
data, which we summarise in the form

K, = constant; c,(f) = c,(0)exp (4x]1)
and (4.31a.b,c)
b(k; 1)y = b(k; 0)exp (8ik>1).
Indeed, we see that the time dependence takes a particularly simple form
when u(x,1) evolves according to the KdV equation. (We might ask
whether, if u(x, f) were to evolve according to any other differential
equation, the scattering data would have as simple a time dependence.
We shall pursue this particular generalisation in Chaps. 5 and 6.)

4.4 Construction of the solution: summary

We now describe how the inverse scattering transform can be used to
construct the solution to the initial-value problem for the KdV equation.
In this section we shall summarise the results, and then in §§4.5 and 4.6
we discuss some specific examples.

We wish to solve the KdV equation

u, ~ 6buu, +u,,, =0, t>0, —w<x<oaw,

with u(x, 0) = f(x). It is assumed that fis a sufficiently well-behaved function
in order to ensure the existence of a solution of the KdV equation and
also of the Sturm-Liouville equation

Ve + (A —upf =0, — 0 <X < 0. (4.32)

The first stage is to set u(x,0) = f(x) and solve equation (4.32), at least to
the extent of determining the discrete spectrum, —«?, the normalisation



constants, ¢,(0), and the reflection coefficient, b(k;0). The time evolution
of these scattering data is then given by equations (4.31),

K, =constant; c,(t) = c,(Oyexp(dr’t)y  b(k:t) = b(k; 0)exp (8ik™1).
The function F, defined by equation (4.6) and required for the Marchenko

equation, is written as

F(X;t =

n

Il

1 27

1 ! ) .
c20)exp (81}t —w, X} + J b{k; 0yexp (8ik3r + ik X ) dk.
Note that F also depends upon the parameter ¢.

The Marchenko equation, (4.5), for K(x,z:¢), is therefore

K(x,z;t) + F(x + =ity + J K(x,vs00F(y + -:03dy =0

(although the dependence on ¢ here is often suppressed). Finally, the
solution of the KdV equation can be expressed as

-

ux,ty=—2 f— IQ(A\'. 1) and K(x.t)= K{(x, x, 1),
‘x

where we have used equation (4.4) and again made the time dependence
explicit.

This completes the presentation of the method for solving the KdV
equation. It is clear, however, that we shall still be involved in two stages
which could prove technically difficult, namely solving both the Sturm-—
Liouville equation for the given u(x. 0} = f(x), and the Marchenko equation.
Nevertheless, it should be emphasised that this technique has reduced the
solving of a nonlinear partial differential equation to that of solving two
linear problems (a second order ordinary differential equation, and an
ordinary integral equation).

4.5 Reflectionless potentials

The inverse scattering transform method is best exemplified by choosing
the initial profile, u(x, 0), to be a sech? function — and in particular one of
those which corresponds to a reflectionless potential (i.e. b(k)= 0 for all
k). In this section we shall describe three such examples: first, the
solitary-wave solution (sometimes called the single-soliton solution), then
the two-soliton solution and finally the N-soliton solution, Although the
solitary wave is already known to be an exact solution of the KdV equation
(see§1.2), it is possible to obtain this solution by posing a suitable
initial-value problem without the assumption that the solution takes the



form of a steady progressing wave. This first example then affords a simple
introduction to the application of the technique.

Example (i). solitary wave
The initial profile is taken to be
u(x,0)= — 2sech?x (4.33)
and so the Sturm Liouville equation, at t =0, becomes
Voo + (4 + 2sech? x)y = 0.

From example (i1) in §3.2, we see that

d dys
F(TRRTASY (R,

where T = tanh x, and then the only bounded solution for 4 = — x* (<0)
occurs 1f x = r, = 1. The corresponding discrete eigenfunction is

¥ (x) > Pi(tanh x) = — sech x,

J sech? xdx =2

i &

and since

the normalised eigenfunction becomes
W (x)=2"12sechx.
(The sign of ¥, 1s irrelevant.) The asymptotic behaviour of this solution
yields
Wi(x)~21 2" as x— +
so that ¢,(0)=2"?, and then equation (4.31b} gives
c (f) =212,
This information is sufficient for the reconstruction of u(x, t} since we have

chosen an initial profile for which b(k) =0 for all k (see §3.2,example (ii)).
Now, from §4.4, we obtain

F(X;ry=2e¥" ¥

which incorporates only one term from the summation, the contribution
from the integral being zero. The Marchenko equation is therefore

K(x.z:0) + 2e8" ‘“"’+2J K(x, y;0)e® 70" 9dy =0,

which implies
K(x,z;ty=L(x,t)e”
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L +2e¥ %4 2Le8‘j e"2dy=0,

This can be solved directly to yield
_ 2e8t-—x

1 + e8t—21

a 2e8t-—2x
uen= 2?(??‘")
8e2x~ 8t

(1+e¥ %)
= — 2sech?(x — 4r), (4.34)

Lix,t)=

and then

which is the solitary wave of amplitude —2 and speed of propagation 4
(cf. equation (2.16) with a = 4).

Example (ii). two-soliton solution

In this example we make full use of the scattering problem described in
example (ii) of §3.2 (which the reader is advised to consult). Thus we
consider the problem for which the initial profile is

" u(x.0)= — 6sech?x (4.35)
so that the Sturm-Liouville equation, at t =0, becomes

Wy + (A4 6sech?x)y =0

or

d , Ay A

el _ . 6 =0

dT{(l T )dT}Jr( o T2>‘/’
where T = tanh x. This equation has bounded solutions, for 1 = — k2 (< 0)
if kK, =1 o0r k, =2, of the form

Yi(x)= /<—;—> tanhxsechx; yY,(x)= —\?sech2 X

both of which have been made to satisfy the normalisation condition. The
asymptotic behaviours of these solutions are

w,(x)~\/€e"‘; Ya(xy~2./3e7 ¥ as X — + oo
so that

0= /6 c20)=2/3;



and then
c‘(t)z\/ge‘“; c,(1)=2./3e3*,

As inexample (i) above, the choice of initial profile ensures that b(k) =0
for all k and so b(k;1) =0 for all t. The function F then becomes

F(X,I) — 6e8t-—X + 12e64t—2X

(since there are two terms in the series), and the Marchenko equation is
therefore

K(X, z I) + 668t~(x+z) + 12e64t-—2(x+z)
+ J K(x, y;1) {63 7072 4 1204720491 4y = (),
(This 1s a particular version of equation (3.55).) It is clear that the solution
for K must take the form
K(x,z;ty=L,(x,0)e "+ L,(x,1)e ™ *

since F is a separable function (see §3.4). Collecting the coefficients of e =
and ¢ %%, we obtain the pair of equations

L, +6e% ™+ 6e8‘<L1 J e 2dy+ LZJ

x x

o x€L

e‘3ydy> =0;

o X

L2+12e6‘““2"+12e6“‘<L1J e‘3"dy+L2J

X

e“‘ydy> =0,

for the functions L, and L,. Upon the evaluation of the definite integrals,
these two equations become

x

L, 46e¥ 4 3L,e8 7 2* 4 2L,e¥ 73" =0,
Lo+ 126572 4 4L 8% 73 4 3], e84 74 = (,
which are easily solved to yield
L, (x,1)=6("*" % —e8"™%)/D;, Ly(x,1)= —12(e®* ™2 +e72'"*)/D
where D(x, 1) = 1 4 3817 2% 4 3641 74x | g72176x
The solution of the KdV equation can now be expressed as

.}

u(x,0) = — 2a=(Lye™* + Lye™ )
X

— 125(’;{(e8r‘2x + e72r—6x — 2664[_4x)/D},

which can be simplified (after a little manipulation) to give

(x.1) i 3 + 4 cosh(2x — 81) + cosh (4x — 641)
ux, )= - 12 ,
’ {3 cosh (x — 281) + cosh (3x — 361)}?

(4.36)
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an exercise.)

Here we digress to describe some properties of the solution, and to
explain why it is a ‘two-soliton’ solution. To do this we shall present
both numerical results- obtained directly from solution (4.36), and some
asymptotic results valid as t— + co. Since the solution is valid for all
positive and negative 1, we may examine the development of the profile
both before and after the formation of the initial profile, (4.35), specified
at 1 =0. The wave profile, plotted as a function of x at five different times,
is shown in Fig. 4.3. (Note that we have chosen to plot - u rather than
u; this allows a direct comparison to be made with the application of the
KdV equation to water waves that was described in §1.3)

The solution depicts two waves (which are almost solitary) where the
taller one catches the shorter, coalesces to form a single wave our initial
profile at 1 =0 - and then reappears to the right and moves away from

Fig. 43 The two-soliton solution with u(x, 0)= ~6sech? x (see (¢)); (a) t = —0.5;
(b)yt=—0.1;(d) t =0.1; (¢} t = 0.5. Note that —u is plotted against x.
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the shorter one as 1 increases. This interaction might seem, at first sight,
to be a purely linear process but this is not so. A more careful examination
of the plots shows that the taller wave has moved forward. and the
shortcr one backward, relative to the positions they would have reached
if the interaction was indecd linear. This important observation is seen
particularly clearly in Fig. 4.4 where the paths of the wave crests are
represented in the (x.7)-planc. In fact it is the appearance of phase shifts
which 15 the hallmark of this type of nonlinear interaction. Each well-
defined solitary-like wave which occurs as r — + ., and which interacts
in this special way. is called a soliton: we have therefore described the
two-soliton solution.

The character of this solution is also made evident by examining the
asymptotic bechaviour of wlx.r) as r — + so. For example, if we introduce

&= x 161 then solution (4.36) can be expressed as

e 12 3 + 4cosh (2 + 241) + cosh (4¢)
uv =1 3cosh (& — 121) + cosh (3& + 121)}?

which can be expanded as 1— + o, at ¢ fixed. This asymptotic limit
ensures that we follow the development of the wave which moves at a

Fig. 4.4 The paths of the two wave crests, before and after the interaction,

The region where the dominant interaction occurs is inside the circle. The

dotted lines show the paths of the wave crests if linear superposition were to
apply.
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spuLu 1V (HE BUCH A One exists). We thus obtain
u(x, 1)~ — 8sech?(2¢ T 1log3) ast— +oc, E=x-—161,
and a similar procedure can be adopted for the wave which moves at the
speed 4: let y = x — 41, then
u(x, 1)~ — 2sech?(n + 1log3) ast— +

at # fixed. In fact these two asymptotic wave forms can be combined to

produce a uniformly valid solution, since the error terms are exponentially
small, where

u(x,1)~ — 8sech?(2& Tilog3)— 2sech?(n +31log3) ast{— + oo,
(4.37)

The solution is therefore comprised of two solitary waves at infinity, with
the phase shifts now expliait. From solution (4.37) we see that the taller
wave moves forward by an amount x = !log3, and the shorter moves
back by x =log3. Finally, in view of the discussion in §4.6, it should be
noted that the solution here contains no other component (such as, for
example, an oscillatory dispersive wave).

Example (iii). N-soliron solution

The method that we have used in example (ii) above can be generalised
by introducing the matrix formulation given in example (ii) of §3.4. The
initial profile is now taken to be
u(x,0) = — N(N + 1)sech?x,
so that we have N discrete eigenvalues and no continuous spectrum
(i.e. b(ky=0 for all k). The discrete ecigenvalues are A= — x> where
k=k,=n, for n=1,2,...,N, and the discrete eigenfunctions take the
asymptotic form
Y, (x)~c,e”"™ as x — + oo.

If we use the associated Legendre functions described in equations (3.19),
we have

W, (x) oc PR (tanh x)
(and ¢,(0) can be determined from the normalisation condition), and then
e, (1) = c,(0) exp (4n°1).

The function F in the Marchenko equation is therefore
N

F(X;n)= Y c2(0)exp (8n31 — nX),

n=1



and so

N
K(x,zt)+ Y c2(0yexp {8n*1 —n(x +z)}

n=1

z

+J MK(x,y;I) c2(0yexp {8n*1 — n(y +z)}dy = 0.
x n=1

The solution for K must now take the form
N
K(x,zzny= 3 Lyx,ne ™,

n=1
and if we follow example (i) in §3.4 then the integral equation is repiaced
by the algebraic system

AL+ B =0,

where L. and B are column vectors with elements L, and B, =
c2(0)exp(8n®r — nx), respectively. The N x N matrix 4 has the elements
cml0)

n

A

mn = 5mn

exp {8m?1 — (m + n)x},

and so from equation (3.58) we can write the solution as
~2

¢ .
M(X,I)z - 25;10g‘/1|

As in the previous example, the asymptotic form of the solution can be
determined. Thus, if £, = x — 4x21=x —4n?1and 1 — + =« at &, fixed, the
behaviour of u is

u(x,1) ~ — 2n*sech? {n(x — 4n*1) ¥ x,}
where the phase, x,, is given by

n—m sgn(n—m)

N
exp(2x,) =[],

m=1}
m¥n

b

n+m

forn=1,2,...,N. Also, the N-soliton form is evident from the uniformly
valid solution

N
u(x,1)~ —2 Y n?sech? {n(x — 4n*) ¥ x,} ast— + o,
n=1

Thus the asymptotic solution represents separate solitons, ordered
according to their speeds: as 1 — 4+ oo the tallest (and therefore fastest)
soliton is at the front followed by progressively shorter solitons behind.
All N solitons interact at ¢ =0 to form the single sech? pulse which was
specified as the initial profile at that instant. Some plots of the three-soliton



g o 1Ue inree-sonton  solution  with u(x,0)= - 12sech?x (see (a));
(b} t =0.05, (¢) 1 = 0.2. Note that — i is plotted against x.
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solution (N = 3: u(x,0) = — 12sech? x) are given in Fig. 4.5, where the
emerging solitons are of amplitudes 18, 8 and 2.

4.6 Description of the solution when b(k) # 0

So far we have restricted our discussion to reflectionless initial profiles,
but it is clear that a more general choice of u(x,0) will give rise to a
non-zero b(k). Unfortunately, when b(k) #0, it is not possible to solve the
Marchenko equation for K in closed form. We must content ourselves
with a description of the solution based on numerical or asymptotic
analyses, or preferably both. In this section we shall give a brief outline
of the problem associated with the choice u{x,0) = ~ U,d(x) (see example
(1) in §§3.2 and 3.4), and also we shall present numerical solutions with
u(x,0) = — U, sech?x, for two values of U, which do nor take the form

N(N + 1) where N is a positive integer.
Example (iy. delta-function initial profile
In this example we choose

u(x,0) = — Uyd(x),

where U, is a constant (which we shall assume for the moment is positive),
and dé(x} is Dirac’s delta function. From §3.2 we know that there is a single
discrete eigenvalue 2 = — k3, where x; =4U, (U, > 0), and

W ilx) = v/;; exp (¥ Kyx), x 20,
(see equation (3.12), et seq.). The continuous spectrum exists, with
blky= — Uy (U, + 2ik).
(see cquation (3.14)). and so we have the time evolution of the scattering
data as
; — U, exp(8ik®)
ci{t) =/ K exp(4rin) and bk;t)y = ﬁ——
The function F can therefore be expressed as
Uy [ exp(8ik®r+ikX)
F(X:)=« 8t —r, X)— 2| —/———
( s ) hlexp( Ki hl ) 2 J_OO UO+2ik
but now the Marchenko equation for K cannot be solved completely.

However, it is clear that the solution for u will incorporate the single
soliton associated with the discrete eigenvalue k, = 1U,; that is

dk, (4.38)

u(x, 1) ~ —$Ugsech? {Uy(x — U31 — x,)} (4.39)
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exp 2k, x;) = ¢}(0)/2x, or x;=-Ug'log2.

In other words, the asymptotic solution (4.39) is generated by the
contribution to F from the first term in expression (4.38); the integral term
is zero where solution (4.39) is valid.

The réle of the integral in F can be examined by considering the limit
ast— + oo for x < 0; in this region of (x, r)-space the soliton is exponentially
small. Although the calculation is beyond the scope of this text, we note
that the integral term in expression (4.38) may be written as

—Uq [ exp {i(X3/1)'2(BA + 4}
‘27[-00 Uo(t/X)'72 + 2i4

where k = A(X/r)!/2. This transformation indicates that the solution should
be conveniently expressed in terms of the similarity variable X!/, and
1,as { — + co. This is the case: the solution turns out to be an oscillatory
dispersive wave which propagates to the left with an amplitude which
decays like 1~'* as 1— + co. (The relationship of this wave to the
oscillatory part of the Airy function is seen to be quite close, particularly

when it is noted that, since the wave is of vanishingly small amplitude, it
must satisfy

U+ Uy =0,

approximately: see equations (1.4) and (1.8).) The solution is sketched in

Fig. 4.6 where again we have plotted — u in order to represent a soliton
of elevation.

Fig. 4.6 The delta-function initial profile (see(a)). The solution at a later time
is sketched in (b). Note that —u is plotted against x.

(a) —u

(b) —u




Finally, 1t the delta tunction 1s of positive amplitude (i.e. if U, <0) then
no discrete eigenvalue exists (see §3.2, example (i)). There is no soliton,
and thus only the dispersive-wave component arises in the solution for
1 >0: the delta function collapses, and develops into a dispersive wave
train. Since this solution corresponds to an initial wave-profile with a
negative amplitude in the context of water waves, the result agrees with
Russell’s observations (see §1.2, and example (iii) below).

Example (ii). a negative sech? initial profile

This example, and the next one, will be described solely in terms of some
numerical results obtained by integrating the KdV equation itself. (For
numecrical methods see Chap. 7.) Here we choose

u(x,0) = — 4sech?x,
and from §3.2, cxample (i1}, we have that the total number of discrete
eigenvalues 1s

[(Uy+ %)1"2 —11+1,
where [ ] denotes the integral part. Thus, with U, =4, we shall have
two discrete eigenvalues and therefore a solution with two solitons. But,
since U, = 4 can not be expressed as N(N + 1), for integral N, the solution
will also include a dispersive-wave component. This solution is depicted
in Fig. 4.7 at three different times; the appearance of two solitons is shown

in the last graph. More generally, it can be shown (Segur, 1973) that an
upper bound on the number of solitons, N, is given by

N<1+%j |x]{1 4 sgnu(x,0)}u(x,0)dx.

Example (iii). a positive sech?® initial profile

Whenever u(x,0) > 0 the solution of the KdV equation will develop without
the emergence of a soliton. The initial pulse will collapse and degenerate
into a wave train which disperses into x <0. In this example we take

u(x,0) = sech? x,

and the corresponding solution is given in Fig. 4.8. The relationship to
the Airy function is particularly striking in the final graph which, upon
turning the graph upside down (i.e. with v against — x), closely resembles
the Ai function (see Abramowitz & Stegun, 1964).

We conclude this chapter by returning to the question of how to define
a soliton. (The reader will remember that, in §1.3, we attempted to describe
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phenomena.) Now that we have shown the connection between the KdV
equation and a scattering problem, we present a less vague definition. In
particular, since the solitons (as described in §1.3) are associated with the
constant discrete eigenvalues of the system ~ indeed there is a one-to-one
correspondence between them - we might propose the following definition:

Fig. 4.7 Solution with two solitons and a dispersive wave, where u(x,0) =
— 4sech? x (see (a)): (b) 1 =04 (¢} 1 = 1.0. Note that — u 1s plotted against x.
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A soliton is that component of the solution of a nonlinear evolution
equation which depends only upon one constant discrete eigenvalue (of
the underlying scattering problem) as 1 — + oc.

One interesting aspect of this proposal is that it clarifies what is meant
by the ‘identity’ of the soliton (see §1.3): it is that property which maintains
the constancy of the discrete eigenvalues. Indeed, we can use the value of
the appropriate discrete eigenvalue itself as the identifier. However, we
can see that the permanent and localised natures of the wave at infinity

g 48 Solution with dispersive wave only, where u(x,0) = sech? x (see (a));
(hy 1 O1.()1=0.5. Note that — u is plotted against x.
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generalisations of the inverse scattering method will be introduced, the

reader may test the usefulness of our definition for the solutions of other
evolution equations.

Further reading

Other accounts of the connection between the KdV equation and inverse scattering are by
Miura (1976); Ablowitz & Segur (1981, Chap. 2); Dodd, Eilbeck, Gibbon & Morris, (1982,

Chap. 3); Newell (1985, Chap. 1). The long-time behaviour of the solutions is discussed by
Ablowitz & Segur (1981, §1.7).

Much of this work on the KdV equation was initiated by the publication of the semimal
papers of Gardner, Greene, Kruskal & Miura (1967.1974).

Exercises
*Q4.1 Alternative derivation.
(i) Show that, if K(x,z) satisfies the Marchenko equation

.

K(x,z2)+ F(x,z2) +j lK(x,y)F(y,z)dyzO,

x

where F is a soluticn of

Feou—F, ;=0

xx zz ’

then
K, —K,,—uK =0, (H
where u(x)= — 2(d/dx)K(x,x) and K, K,-»0 as z— + oc.
(i) Now suppose that F = F(x, z;1) and K = K(x, z; 1), with
F!+4(Fxxx+Fzzz)=0w

and show that

K.+ 4K o+ K,..)— 3u K — 6uk = 0. )
(iii) Use (1) and (2) to show that
é A
Ki+{—+— | K=3ulK,+K,)=0
ix  (z
and hence that
U, — 6uu, +u,, =0
*Q4.2 Concentric KdV equation.
(i) Show that, if K(x,z;1) satisfies the Marchenko equation

x

K{x,z20) + F(x.z:0) + j K(x, mt)F(y, z; }dy =0,

x
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Q4.5

Q4.6

Q4.7

where F is a solution of the pair of equations

Fxx—F"zm(x—Z)Fw
M, = F+ Fope + Fopp=xF 4+ 2F,
then
u
u!+A~6uux+uxxxmow
2t
where
2 ¢ X
ulx,t)= ~ —— K(X, Xt with X = .
(12)“" ( ) (121)‘3

(i) Henee show that a solution for F is

x
F(x,z;t)= J‘ Syt A Al(x + yAi(y + 2)dy,

where f is an arbitrary function and Ai is the Airy function.
Two-soliton solution of the KdV equation. Obtain a solution for F(x, z:1) (see
Q4.1 which depends upon x + z (but not x — z since this would become
trivial on z = x), and which is exponential in both x + z and ¢ (cf. examples
(i) and (ii), §4.5).

Hence write down a solution for F which is the sum of two exponential
terms, and construct the two-soliton solution of the KdV equation.
Some nitial-value problems. Use the inverse scattering transform to find
the solution of the KdV equation

U, — 6uu, + Uy, =0
which satisfies u(x,0) = f(x). — 0 < x < x, where
(iy f(x)= —$sech?(3x);
(i) f(x)= — 12sech? x;

e —Vior —1l<x<l,
(i) Sx)= 0 otherwise

where V >0 is a constant.

[Case (iii) is too difficult to solve explicitly, so just give a qualitative
description of the solution for various V]
The character of two-soliton solutions. Show that a special case of the two-
soliton solution obtained m Q4.3 gives a sech? pulse at = 0 (see example
(i1), §4.5). Show also that, for suitably defined x, the pulse at r =0 may have
either one or two local maxima.

[You will find 1t convenient to define x so that a symmetric profile
occurs at t =0.]

(Lax, 1968)
Three-soliton solution. Find the asymptotic form of the three-soliton
solution {see Q4.4, (ii}) as t — £ o0, and hence determine the phase shifts.
Connection with Fourier transforms. Consider the imitial-value problem



Q4.8

*Q4.9

*Q4.10

wr e AU Y equation, with u(x,U) = af (x), — oo < x < c0. Use the inverse
scattering transform to show that, as x—0, the first approximation to the
solution for u corresponds to the solution obtained by using the Fourier
transform to solve the linear problem

U+ Vs, =0 v(x, 0) = af (x), — o <Xx < 0.

‘Centre of mass’ of a solution. Show that, if u satisfies the KdV equation,
then

d oa
~J‘ xu dx = constant, (N
de

provided u —0 (sufficiently rapidly) as | x| — oc. Interpret this result as the
conservation of linear momentum of a linear mass distribution with density
u. Show that (1) is consistent with the phase shifts associated with the
two-soliton solution (see example (ii), §4.5).

Eigenfunction expansion (i). Assume that u is a reflectionless potential, so

that b(k) =0 for all k. From example (iii), §4.5, we know that, for the
N-soliton solution, we may write

N
K(x.zzty=3 L,(x, 1)e "™
n=1
Deduce that L, is a solution of the Sturm-Liouville equation with
A= — k2, K, =n, and hence (or otherwise) show that

Ln(x. [) = - Cn([)l//n(x; [),
where , is the discrete eigenfunction (normalised according to equation
(3.5)).
Show also that

N
u(x, 1)=2 Y c () {¢ndx; 0y — k0, (x;0) } exp (— x,x),

n=1

and by using the equation satisfied by L, (and therefore by i), deduce that

N
ux, )= —4 Y xpix;1).
n=1

Hence show that, if u(x,0) is a reflectionless potential and u satisfies the
KdV equation, then w(x,7) <0 for all t>0 and for all x.
Eigenfunction expansion (if). Describe the form that u(x, t) takes, in terms

of the squared eigenfunctions. i u(x, 0)is no longer a reflectionless potential
(see Q4.9).
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Further properties of the Korteweg—de Vries equation

In this chapter we shall examine four important aspects of the KdV
cquation, and euch one will enable us to introduce corresponding
propertics of other evolution equations. We shall present the ideas,
therefore, primarily as they are relevant to the KdV equation; then, by
usc of examples and exercises, other applications will be touched upon
afterwards. In this way we shall discuss: the infinity of conservation laws;
the Lax formulation (in terms of operators), the Hirota bilinear form (which
is particularly uscful for the construction of soliton solutions); and the
Bicklund transformation between different solutions of the same equation.

Furthermore, we shall mention a few connections between these ideas.
Thus we shall relate — albeit briefly - the infinity of conservation laws to
a Hamiltonian structure which, in turn. is associated with a hierarchy of
KdV equations. It will also be shown that the bilinear form generates a
different hierarchy (but one which takes a simple form in terms of bilinear
operators). Finally, we shall indicate how the bilinear form itself implies
the Backlund transformation for the KdV equation.

It can not be emphasised enough that all the ideas developed in this
chapter are generally applicable to a vast range of evolution equations
which are integrable by the inverse scattering transform.

5.1 Conservation laws

5.1.1 Introduction

Conservation laws are a common feature of mathematical physics, where
they describe the conservation of fundamental physical quantities. Let us
consider, as an example, the familiar problem of one-dimensional gas-
dynamics. If p(x,t) is the density of the gas, and u(x,t) the component

of velocity in the x-direction, then the well-known equation of mass
conservation is



Lruw e us suppuSE Lial pu — constant as | x| — oo (and therefore there is
an ambient state). Then, if p and (pu), are integrable for xe(— o0, o0), we

obtain
d x -
=a—t(J_mde>= —[pu]Z, =0

J p dx = constant. (5.1

and so

Equation (5.1) represents the conservation of total mass in the system,

however p evolves in time. This simple idea can be generalised in the
following manner.

First, an equation of the form

oT X

0, (5.2)

a | x

where usually neither T (the density) nor X (the flux) involve derivatives
with respect to ¢, is called a conservation law. In particular, if we are to
apply these ideas to an evolution equation for u(x,t), then T and X may
depend upon x, t, u, u,, U,,....but not u,. Now if both T and X, are
integrable on (— o, ), so that

X — constant as |x| - o0,

then equation (5.2) can be integrated to yield

c%(j T dx> =0 or J T dx = constant. (5.3)

e 4] - oo

The integral of T, over all x, is therefore usually called a constant of the
motion (if we interpret ¢ as a time-like variable).

The evolution equation of interest to us here is the KdV equation
u, — 6ut, + g, =0, (5.4)
which is already in conservation form with
T=u and X =u,, —3u’. (5.5)
Thus if T and X, are integrable, and u satisfies equation (5.4), then

f udx = constant, (5.6)

)
and we can see that this condition must therefore apply to all the solutions

discussed 1n §§4.5 and 4.6 (where u— 0 asx— + o). Note, however, that
equation (5.6) does not hold for all solutions of the KdV equation: if u(x, t)



is a periodic solution (see §2.4), then the analogue of condition (5.6) is the
integral over just one period of the wave.

Now the KdV equation has another simple conservation law, which
becomes clear if we multiply equation (5.4) by u to give

0
E(% ul) + a(uuxx - %uﬁ - 2“3) =0.

Thus

J u* dx = constant (5.7)

-®
for all solutions, u, of the KdV equation, which vanish fast enough at
infinity.

That both u and u? are conserved densities for the motion, which evolves
according to the KdV equation, is to be expected. From §1.2 we know
that the KdV cquation describes a certain class of water waves, in
particular, we have shown that u is proportional to the depth of water
(relative to the ambient level) which, in turn, is also proportional to the
velocity component in the x-direction. (Remember that the foregoing
statements apply only in a shallow-water approximation.) Thus equation
(5.6) describes the conservation of mass, and equation (5.7) the conservation
of (horizontal) momentum, for the water waves. This immediately suggests
that there should be a corresponding conserved density which can be
associated with the energy of the water waves. To confirm this we construct
= +duf

ot
by adding 3u? x (KdV) to u, x (3/dx)(KdV). This gives
3“2(14, - 6uux + uxxx) + ux(uxr - 61’& - 6uuxx + uxxxx) =0

which can be rewritten as

>

0
5;(“3 + %ujzc) + a(—. %u4 + 3u2uxx - 6uui F Uplpxx ~ %u:zc.x) =0.

Since this i1s also a conservation law, we have a third constant of the
motion, as we anticipated,

J (u® + $u?)dx = constant. (5.8)

- ao
At this stage one might be forgiven for believing that no further
conservation laws exist. We have, after all, obtained the three standard
conserved quantities which describe a one-dimensional physical system
under the action of conservative forces: the conservation of mass.
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Gardner & Kruskal (1968) found eight more conservation laws for the
KdV equation! The next two, for example, have the conserved densities
T, = 5u* + 10uu? + u,,
Ts =210’ + 105uu? + 2luu?, + v,
where it is obviously convenient to number them so that T, =u, T, = u?,
Ty =u> +u?. (One of the eight - a different type ~ is discussed in Q5.2))
Now eleven conservation laws are more than we can reasonably expect
in general, and once the three physically important ones have been
exceeded you may wonder whether there is no limit. In other words, is

eleven merely symptomatic of an infinity of conservation laws? It is this
which we shall now investigate.

*5.1.2 An infinity of conservation laws
In the paper cited above, where the higher conservation laws were first
described, an important extension was introduced; we shall follow a similar
path here. First, we recall the Miura transformation, equation (4.8),
u=1v?+u,, (5.9
which led to the connection between the KdV equation for u and the

Sturm-Liouville problem for . It is now, however, convenient to work
with w, rather than v, where

v=Lte7 4 ew
and ¢ is an arbitrary real parameter. The Miura transformation becomes
u=Jte i+ w+etw+ew,

and, since we can always shift u by an arbitrary constant (the Galilean
invariance), we may just as well write

u=w+ew, +e*w? (5.10)

the Gardner transformation. (We note that w exists since v does: see §4.2.)
The Gardner transformation is now used in the KdV equation, so that

Uy — UL+ gy =W, + W, + 285 wW, — 6(W + ew_ + 2w (W + Ewy, + 262 ww,)

+ WXXX + swxxxx + 282(wa)xx
0
- (1 +es—+ 2£2w> {w, — 6w + Ewhw, + w, . ).
x

Hence u, given by equation (5.10), is a solution of the KdV equation if w
is a solution of

w, — 6w+ e2wHw, + w_ . =0, (5.11)



but of course not necessarily vice versa (cf. equation (4.10)). It is clear that
if we set ¢ = 0 then (5.11) becomes the KdV equation and, correspondingly,
the Gardner transformation reduces to u = w. Now equation (5.11), for all
g, is already in conservation form

d 0 3
E(W) + a(wn ~3w? = 22w =0,
and so
J wdx = constant. (5.12)

In order to generate conservation laws for the KdV equation, we take
advantage of the arbitrary parameter ¢. Since w—u as ¢ - 0, we choose
to represent w by an asymptotic expansion in &,

wix. ) ~ Y ewylx.t) as £ 0, (5.13)
n=0

(There is no requirement, therefore, that the expansion for w be convergent
for some ¢.) If we treat the constant in equation (5.12) similarly as a power
series in ¢, then, by writing w as its asymptotic expansion, we obtain

J w,dx = constant (5.14)

-

for each n=0, 1, 2,.... Finally we use the asymptotic expansion, (5.13),
in the Gardner transformation, (5.10), and equate coeflicients of ¢" for each
n=20,1,2, ... (where u is not a function of ¢). Thus from

@ @ 0 2
Y &w,~u—g Y, S"W,,x—£2<z s"w,,> ,
n=0 n

n=0 =0
it is a simple exercise to see that

— _ _ . _ 2 __ 2.
Wo = U W, = —Wq, = — U, Wy= — W, — W5 =1, —u’;

2 .
Wiy = — Wy, — 2wow, = — (U, — U°), + 2uu,; (5.15)
Wa= ~ W3, — 2Wow, — W1

= - {2uux - (uxx - uz)x}x - 2u(uxx - u2) - uJZCs

and so on. In particular we note that w, and w, are exact differentials
(in x) and so the corresponding integrals, (5.14), will give us no useful
information. (We assume, of course, that u is sufficiently well-behaved to
ensure that each w, is integrable on (— o0, ©0).) On the other hand, the
integrals which are generated by w,, w, and w, become our first three
integrals (5.6), (5.7) and (5.8), respectively.

The results derived so far suggest that w, is an exact differential if n is
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it would seem that if n is even then w, does produce a non-trivial constant
of the motion. In order to confirm this view we must show that every w,,

n odd, is an exact differential, and that, for n even, w, is never an exact
differential.

One of the neatest ways to achieve this is to separate the even and odd
terms by associating them with the real and imaginary parts, respectively,
of a new w. First, let us replace ¢ by a purely imaginary parameter ig
(ie.e—ic) and then, for real u (independent of ¢), w=W is now a

complex-valued function. Thus we have an alternative form of the Gardner
transformation (5.10),

u=W+ieW, — 2 W2, (5.16)

with W =« +iff where o« and f are real functions. Transformation (5.16)
can therefore be written as

u=o—cf, —Xa? — B+ i(f + eo, — 26%af), (5.17)
and so we must have
B+ e, ~26%aff =0 (5.18)
and
a=u+ef, + e — B3, (5.19)
It is convenient to write”
a~A, + A, g~ B, + B,, ase—0,

where ( ), denotes an asymptotic expansion in even powers of ¢, and ( ),
is correspondingly in odd powers. If we collect all the even-power terms
in equation (5.18), and all the odd-power terms in equation (5.19), then

B(1 —2e*A,) ~ — &(A,), + 26°A,B,
and (5.20)
A1 —2e%4,) ~ &(B,), — 2¢*B.B,,
respectively, to all orders in e. Since these equations imply that
Bc ~ ~8(A0)X~ *gz(Be)xxa as 8_‘)03

we see (byiteration) that B, = 4, = 0, an exact solution of equations (5.20).
Thus « ~ 4, (even only) and § ~ B, (odd only) which is consistent with the
result obtained by formally replacing ¢ by i¢ in the asymptotic expansion
(5.13). However, we now observe that equation (5.18) can be rewritten as

10
_ Y L 9,2
B= —en /(1 —2¢%a) %03 (log|1—2¢&al) (5.21)

X



and so fis an exact differential to all orders 1n & the odd terms w,,w,,
do not generate conservation laws.

Furthermore, the first iterate for « (from equation (5.19)) is

() =u,
corresponding to the term in ¢° Thereafter the iterates will, in general,
involve terms from both ¢ff, and £28% which perforce must always include
derivatives of u (see(5.21)), together with a contribution from the term
&2, This latter term will generate, at each iteration, terms which do not

involve any derivatives (together with other terms which do). These specific
polynomial terms are obtained by the iteration

() =t + &2 (- 12, m=12 ..., (), = u,

and so we have the sequence: u, u + £2u?, u+ e2(u+ e*u?)?,.... In other
words, for every ¢, there will be a term proportional to u""! and such
terms are evidently not exact differentials. Thus there will be an infinity
of conservation laws, each density of which is characterised by the inclusion

of atermn u"*! (forn=0,1,2,...). (If we use our notation T,, then each
T, includes a term u"; see §5.1.1.)

*5.1.3 Of Lagrangians and Hamiltonians

Before we leave the conservation laws, it is worth finally — but very
briefly - noting some deeper results. It is well-known that conservation
laws for many systems arise from variational principles that are invariant
under transformations which belong to a continuous group. For example,
translations (in both x and 1), Galilean invariance and rotations are such
transformations. A conservation law then follows from the application of
Noether's theorem to the Lagrangian function (or density).

Although a detailed study of Noether’s theorem is beyond the scope of
this text, 1t might be useful to digress here and give a brief outline of the
essential idea. Noether considered the invariance of the action integral (the
integral of the Lagrangian function over some time interval) to a
group of infinitesimal transformations. For example, let us consider the
Lagrangian #(q;.q;), where g(t) for i=1,2,...,n are the generalised
coordinates, so that the action integral is

t2
A= J L(g;»4q;) dt.

1
(Note that ¥ does not depend explicitly upon t.) Now & is invariant to
the transformation ¢ —t + 1, where t 1s an arbitrary constant, and the
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ta+r

A- Z(q;,4,)dr.

i+t
The Euler-Lagrange equations are thus unaltered by this transformation
since t appears only in the limits.
Noether’s approach was to regard t = 1(t), where t is now an in-

finitesimal, and such that (t,) = 1(f,) = 0. Since §;— §;/(1 + 1) ~ g1 — 1)
as t— 0, we obtain

. 0L,
Lq;,d)— L. d) — (Zl 5{;‘1.’)7

(retaining the first order in 1), and then the action integral transforms as

2 t2 n
A_’J ZL(q;,4,)dt —J ( Z Pidi — J/’>r‘d1,
31 ty i=1

to the same order in 1, where p, = ¢.%/7q; is the generalised momentum,
(Remember that dr — (1 + 7)dt.) This transformed variational problem now
has an additional degrec of frecdom by virtue of 7, and the corresponding
Euler-Lagrange equation is

d n
- Gi~ L =0
dt(,;p‘q‘ >

or
n
Y pd; — & = constant,
i=1

which is the equation for the conservation of energy.
For the KdV equation

u, —6uu, + u,, =0

we set u = ¢, so that

Get~ 60B s+ Brexe =0, (5.22)

It is then easy to confirm that the Lagrangian
F=3¢.b~ 2~ 592,

generates this alternative form of the KdV equation, (5.22), as the
corresponding Euler—Lagrange equation. Now, the invariance of .% under
translations of ¢, x and ¢, together with application of Noether’s theorem,
reproduces the three conservation laws of mass, momentum and energy,
respectively. (Since & is also invariant under a Galilean transformation,
Noether’s theorem in this case gives the conservation law discussed in

Q5.2)



Furthermore, the third conserved density (namely energy) for the KdV

equation can be used directly in a Hamiltonian formulation of this equation
by writing

where d/0u is the rariational (or Frécher) derivative (see Q5.8). Indeed, by
virtue of the infinity of conserved densities, the KdV equation corresponds
to an infinite Hamiltonian system. The interpretation of an evolution
equation (which can be solved by the inverse scattering transform) as a
Hamiltonian system has, in recent years, become an important aspect of
this work. (Relerences to the above material will be found in the section
on Turther reading” at the end of this chapter.)

5.2 Lax formulation and its KdV hierarchy

We asked, at the end of §4.3, if the KdV equation was the only equation
with all the special propertics we have described here. For example. if
u(x. 1) satisfies any other evolution equation. will the time evolution of the
scattering data be as simple? One very important aspect, which goes a
long way to answer this question. was developed by Lax in 1968, This
work — perhaps even more than that on conservation laws introduces
far deeper and more fundamental ideas than we have met hitherto. It will
soon become clear that. indced, other equations with similar propertics

do exist: the KdV equation does not stand alone in this class of evolution
equations.

5.2.1 Description of the method: operators

The argument developed by Lax requires the use of a little functional
analysis, notably the ideas of inner product and self-adjoint operators in
a Hilbert space. We shall remind the reader of the various points as we
need them. This initial phase of the work is presented without reference
to the KdV equation: the application to the KdV equation will be given
in the next section.

First, suppose that we wish to solve the initial-value problem for u,
where u(x, t) satisfics some nonlinear evolution equation of the form

u, = N(u), (5.23)
with u(x,0) = f(x). We assume that ueY for all ¢, and that N:Y - Y is
some nonlinear operator which is independent of ¢ but may involve x or
derivatives with respect to x, where Y is some appropriate function space.
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of x, vamshmg as x— 4 o0. Also N need not be a partial differential
operator, although such a choice is possible, and so equation (5.23) could

be the KdV equation with
N(u) =6uu, — u,,,, —00 <X <0

Next, we suppose that the evolution equation, (5.23), can be exnressed
in the form

L,=ML~LM (5.24)

where L and M are some linear operators in x, which operate on elements
of a Hilbert space, H, and which may depend upon u(x, t). (By L, we mean
the derivative with respect to the parameter ¢ as it appears explicirly in
the operator L; for example, if

2

¢
L=——5+uxt)then L, =y
Ox

The Hilbert space, H, is a space with an inner product, (¢, ), which is

complete; we assume that L is self-adjoint, so that (L¢, ) = (¢, Ly) for all
¢, yeH.

Now we introduce the eigenvalue (or spectral) equation, for yeH,
Ly = Ay forr>0and —x <x< o, (5.29)
where 4 = A(f). Differentiating with respect to ¢, we see that
Ly + Ly, = Ay + 4y,
which becomes, upon the use of equation (5.24),
Arl// =(L - 't)l/’r +(ML ~ LM)‘//
L - Ay, + Miy — LMy
=(L - Ay, — My). (5.26)
The inner product of y with this equation gives
W, ¥)4 = (Y, (L — 1)y, — My))
=((L— .y, —My)

since L — 4 is self-adjoint, and so

(W, )4, = (0,4, — My) =0

or
A,=0.
Thus each eigenvalue of the operator L is a constant.
From equation (5.26), with 4, = 0, we obtain

(L= A —My) =



so that y, — My is an eigenfunction of the operator L with eigenvalue 4.
Hence

Y, — My oy,
and we can always redefine M with the addition of the product of the

identity operator and an appropriate function of ¢, this will not alter

equation (5.24) (which is a representation of equation (5.23)). Thus we
have the time-evolution equation for W,

W, =My, for > 0. (5.27)
In other words we have the following theorem:

1f the cvolution cquation

u,— N(u)=0
can be cxpressed as the Lax equation
L,+LM-ML=L,+[L,M]=0, {5.28)

where [L,M] = LM — ML is the commutator of the operators L and
M, and if

Ly = A,
then 4, =0 and ¢ evolves according to equation (5.27).
Of course we recognise the choice
al
Tt
and M is presumably associated with the operator appearing in the
definition of R (see equations (4.1), (4.18), (4.23) and (4.25)); the connection

with the KdV equation seems tenable, but clearly some further investi-
gation is necessary in order to fill in the details.

L=

uﬁ

5.2.2 The Lax KdV hievarchy

The problem we shall address here is the obvious one: how to choose the
operators L and M, which satisfy the conditions laid down in the previous
section. For our present purpose, it is convenient to restrict the discussion

somewhat. We shall consider only that spectral equation which is given
by the Schrddinger operator, i.e.

L=—rg+u (5.29)

so that Liy = Ay becomes the Sturm-Liouville equation. (Of course, the

L given in (5.29) is self-adjoint.) With L chosen, the problem becomes one
of determining M only.
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be anti- (or ‘skew’) symmetric so that (Mg, ) = (¢, My) for all ¢, yeH;

a natural choice is therefore to construct M from a suitable linear

combination of odd derivatives in x. (This is quite easy to see: consider
. o

the inner product (¢,4) = [~ _ ¢y dx, then

o0 an oc a’l
N = 2 T I e LA

if M =¢7"/6x" for n odd and ¢, ¢,,.... ¢, Y,--- >0as x— + ov.) Further,
M is required to have enough freedom in any unknown constants or
functions to enable the operator L, + [L,M] to be chosen so that it is

of degree zero, ie. a multiplicative operator. The simplest choice is
obviously

M=¢. . (5.30)

where we shall take ¢ to be a constant, and then

a2 é a 0?
[L, M]—c( ("2 u>a?ca;( 6x2+u> — CU,,

which is automatically a multiplicative operator! Thus
L+ [LM]=u —cu

and so the one-dimensional wave equation

x>

u,—cu, =0 (5.31)
has an associated spectral problem with eigenvalues which are constants
of the motion. This is not very useful since we can solve the initial-value
problem for equation (5.31) using direct methods. (Note that if we set
¢ =c(x,t) in the above, then L, + [L,M] is of degree zero only if ¢ = c(t);
this is left as an exercise.)

The next level of complexity is to choose M so that it involves, at most,

a third-order differential operator,
a3 6 0

M= - +U—+—-U+A4, 5.32

T e T T ©-32)

where « 1s a constant, U = U(x,t) and A4 = A(x,t). (We could just as well
write

3 0

M= —a—+ B(x,t)—

a@x:‘ + Blx, )Bx

but the pattern evident in (5.32) is useful in the later discussion.) It then

+ C(x,1),



follows, after an elementary calculation, that

[LM] = 0ty — Usiy = A — 2u,U + (3tty, — 4U,, = 24, )2

xx

X
62
+ (3ou, — 4U")W’
which is a multiplicative operator if
U =3uu and A=A

Thus the Lax equation, (5.28). becomes
u, + %““xxx - %auux = 07

which is our conventional KdV equation if x = 4. The operator M, defined
by cquation (5.32), 1s therefore
o3 0
M= — 45? -+ 3ua
and so the time-evolution equation for y is
W= — W r + 30+ 300)), + AY.

This equation can be recast, on using the Sturm-Liouville equation

l//xx + (/" - u)l// = 0,

0
+3—u+ A()
cx

as

W= 4Ay — ), + 3w, + Juy), + AY
=2u + 2, —up + A

which, for 4 =0, is the time-evolution equation, (4.23), for the discrete
eigenfunctions; with A = 4ik® we have the corresponding equation for the
continuous eigenfunction (see equation (4.25) with equation (4.28)).

The KdV equation has appeared as the second example within the
framework of the Lax formulation, on having chosen L to be the
Schrodinger operator. It 1s however —as we noted earlier - the first
non-trivial case. The procedure adopted above can now be extended to
higher-order nonlinear evolution equations. A little trial and error (or
experience with commutators) shows that an appropriate choice for M is

aln-H n aval aZm—l

M= =g +m;(u'"ax2'"" T oxn U'">+A .

where o is a constant, U, = U,,(x,t) and 4 = A(r). (We note that A(r) plays
no role in the resulting evolution equation, and « is introduced purely for
convenience.) The requirement that [L,M] is to be a multiplicative
operator imposes n conditions on the n unknown functions U,,. The case




s Gmareamiue tasv an wr wuauun (BEC cyquation (3.32)), and tor n =2 1t
can be shown that the evolution equation is

u, + 30u?u, — 20u, Uy, — 10U, 4 Ui, =0, (5.34)

a fifth-order KdV equation. We have now presented the first three evolution

equations in the KdV 'hierarchy, every one of which can be solved by the
inverse scattering transform method described in Chap. 4.

We next introduce an important connection with the Hamiltonian

formulation that was mentioned in §5.1.3. The equations in the KdV
hierarchy can also be obtained from

ou 0 (0T,
S AL, ~3.4,...
F ax(5u>’ TSR

where §/6u is the variational derivative, k( # 0) is an arbitrary real constant
and the T,s are given in §5.1.1. Thus T, generates the KdV equation (as
we have already seen), T, gives equation (5.34) and so on (see Q5.15). The
constant k can be removed by replacing ¢ by kt, an elementary rescaling of 1.

Clearly, there is an infinity of evolution equations in this hierarchy.
Furthermore, the number of equations generated by the Lax formalism
could be extended in two obvious ways. First, we could investigate other
spectral equations by choosing alternative forms for L. Second, there is
no requirement that L and M should be restricted to the class of scalar
operators; L and M could be matrix operators. This final point turns out

to be a particularly powerful idea; we shall discuss the matrix approach
in the next chapter.

5.3 Hirota’s method: the bilinear form

In the previous chapter we discussed the N-soliton solution of the
KdV equation (see example (i), §4.5). We found, in particular, that
this solution could be expressed in the form

2

0
u= —Zailogf, (5.35)

where f(x,t) is the determinant of the appropriate matrix. It is thence
possible to discuss the solution, u, of the KdV equation by transforming
the dependent variable u to f, although this might produce an even more
complicated problem. Hirota, starting in 1971, followed this approach in
a sequence of papers which dealt not only with the KdV equation but
also with many other nonlinear evolution equations. He found that, under
a suitable transformation (analogous to (5.35)), an evolution equation



could eventually be reduced to a bilinear form, a version of the original
equation which requires the introduction of a novel differential operator.

We shall describe the general method in the context of the KdV equation,
and then derive its two-soliton solution.

5.3.1 The bilinear operator

First we construct the equation for f(x, t), using the transformation (5.35).
where u(x, 1) satisfies the KdV equation

w,— Obuu, +u, . =0,

with [ /,..-—=0 as x>+ o or x— — . (This decay condition is

equivalent to that imposed at infinity for the soliton solutions, although
an extension of the bilinear method allows periodic solutions also to be
obtained:; sce Matsuno (1984, §2.2.3).) Substitution for u into the KdV

equation yiclds. after a little manipulation and one integration in x, the
cquation for f

I = Fifi [aan = 4 fana+ 335 =0, (5.36)
where the condition at + oc or — o¢ has been used. (It is usually simpler
to first set u = w,, integrate once with w,,w_,--- -0 as x— + o, and then
introduce w = — 2f,/ f which is essentially the Hopf-Cole transformation:
see Q35.18.) The problem now is how to solve equation (5.36), an equation
which appears a little more difficult than the original KdV cquation!
However, a related question — how best to express this new equation which
is solely quadratic in f — allows us to make some headway.

Hirota introduced the bilinear operator, D{"D%(a-b), defined as

prorah = (2 - SV (L Y e nbier)

b= —--=— ——— ] a(x ;

N e A A
=t

for non-negative integers m and n. To see how this works, let us consider
the case of m=n=1 for which

o aN& @ (e e
(5 ar'><$ et b= (a‘t g b b

=a.b—ab, —a.b,+ab,,.
When this is evaluated on x' = x,t' =t we obtain

(5.37)

Der(a'b) = axrb + abxr - arbx = axbra

and if we choose a=b for all x,t, then

Dth(a.a) = 2(aaxr - axat)’ (538)



cesmers hv v v wUpalua WL LIE LWO UMe-aernvanve terms appearing in
equation (5.36).

(The bilinear operator has a simple analogue in elementary differen-
tiation theory: if we consider

¢ 8
—+— la(x,)b(x',t')=a,b + ab,.,
Ox  0Ox

then on x' = x,t =t we obtain

¢ i L 4

,T‘+ A a(x,t)b(x t ) :T(ab)

ax x N

=t
Generalising this result, we find that
6 (:; m (’\, (‘: n “mtn
- —+ — ] alx,nb{x. 1) = ab),
((7{ o cx o 0x (”I’"Px"( )

x'=x
P

the standard derivative of a product.)

As an example with a higher derivative, let us find D#¥(a*b), 1. take
=0 and n = 4. In this case we have

o 4
(Fi —757) alx, Hb(x'.t')

Araxh — b by + 6a,, b . —da b +ab

Ay Oyrxx x'xxxte

If we now evaluate on x'= x,t' =, and again make the special choice
a = b for all x,t, we obtain

Di(a a)= 2(aa,,,, — 4a,a,,, + 3a’.). (5.39)

We can see immediately that, if we compare equations (5.38) and (5.39)
with equation (5.36), then the equation for f can be expressed as

D.(D,+D3)(f f)=0, (5.40)
the bilinear form of the KdV equation. (Note here that if we interpret D,
and D, as 6/0t and 8/0x, respectively, then D, + D2 becomes the linearised
operatorin the KdV equation, obtained by letting u — 0.) Now this compact
equation looks deceptively simple, but it must be remembered that D
represents a rather unconventional differential operator. We shall discuss
the method of solution of this equation in the next section.

Before we leave these introductory ideas, let us briefly indicate two
generalisations. First, provided solutions exist to some bilinear equations,
we could generate evolution equations by starting from appropriate
bilinear forms. For example, looking at equation (5.40), we might suggest



the equation

(D, +D3)(f f)= (5.41)

(together with the transformation (5.35)) as the next equation in a KdV
hierarchy. (The connection with KdV equations is clear: equation (5.41)
must give rise to a term u, and also a term u,,,.,, together with some mix
of nonlinear terms.) In fact equations (5.41) and (5.35) yield

W+ 457 u, — 15u u, — 15uu . 4+ u

L xvxx = 0. (5.42)
the Sawada Kotera equation (Sawada & Kotera. 1974), which is to be
compared with equation (5.34). Now we have a surprise: these two
Iifth-order KAV cquations, (5.34) and (5.42), are not equivalent, i.e. there
is no scaling transformation which takes one into the other (see (Q5.19).
Thus we can construct rwo KdV hierarchies, both of which contain the
classical KdV equation as one of their members, and it turns out that
cach member in both hierarchies can be solved by the inverse scattering
transform.

The second generalisation is the more difficult, and yet it is the more
natural one to explore. That is, given an evolution equation, how can it
be expressed in bilinear form (assuming such a form exists)? We shall
mention three examples (and leave a few others. and the details, as exercises
at the end of the chapter). An equation which describes one-dimensional
weakly nonlinear dispersive water waves, for waves propagating in both

directions, is
Uy — Upr + 3(u2)xx T Hxxxx = 0, (5.43)
the Boussinesq equation (Hirota, 1973b). (A suitable approximation enabies

the KdV equation to be derived from this equation, if the wave motion

is restricted to be unidirectional.) Equation (5.43) has the bilinear form
(see QQ5.21)

(D7 =D =D3)(f f)=0, (5.44)
where u and [ are related by the usual transformation

2

0
u(x,t) = —chilogf. (5.45)

Again, we note the correspondence between equation (5.44) and the
linearised version of equation (5.43).

It is clear that the transformation (5.45) might not be the appropriate

one to choose for certain evolution equations. Consider u(x,t) which
satisfies the Benjamin—Ono equation

u, + duu, + H(u,) =0, (5.46)
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L wiy, 1)
%’(w):—ff: why dy
T —x Y —X

(see Ql.14 and QI.15). If we introduce the transformation

1]

1 0
u(x,t) = Ea—log (f*/ ), (5.47)

where f(x,t) is a complex-valued function, and the asterisk denotes the
complex conjugate, then the bilinear form of equation (5.46) turns out to be

(D, -D)(f* f)=0; (5.48)
see Q5.22.

Finally, let us return to the fifth-order KdV cquation. (5.34), which is
a member of the ‘Lax hierarchy’. This equation does have a bilinearisation,
but in this case a pair of bilinear equations is necessary. If u and [ are
related by the standard transformation, (5.45), and if we introduce an
auxiliary independent variable, t say, then the bilinear form of

u, + 30u?u, — 20u u, — 10uu, . + i, =0

5 513 3 f)=
{D,(D,+ D3)- DD, + D) }( ff)—o} (5.49)

D.(D,+D3)(f f)=
see Q5.27 for the details.

5.3.2 The solution of the bilincar equation

We now turn to the problem of how to solve bilinear equations. In
particular, we shall discuss the KdV bilinear form,

D,(D, +D3)(ff)=0, (5.50)
although the method we shall describe is generally applicable. The method
requires the use of some properties of the bilinear operator; these will be

introduced below, but the relevant derivations are left as exercises at the
end of the chapter.

Our starting point is the solitary-wave solution of the KdV equation
u(x,t) = — 2sech? (x — 4)

(see equation (4.34)), which can be written as

a e8t 2x 62 B
M(X, [) = 4’a—x(m> = — 2ﬁlog(l +e8 Zx).



Thus the solitary wave, of amplitude —2, is represented by the choice
flx,=1+e¥" 2 (5.51)

First we confirm that f, as given by (5.51), is a solution of the bilinear
equation, (5.50). We note that
d%a
DD (a 1)=—=D,D,(la),

arox

and
DD {exp(0,)-exp (1)} =(w, — )"k, — k) exp(8, + 6,)
where 0, = k;x — w,t + 2; (see Q5.20). Thus, with f given by (5.51), we have
B(ff): B(ll) +B(1,e8t—2x)+ B(e8t—2x,1)+ B(e8t-2x,e8t—2>()
where B is any bilinear operator, and so we obtain
D, (D, + D)(f- f) = = 326% 72 4 2 = 2 ™2 =0
/. from (5.51), is indced a solution of equation (5.50).

The solitary-wave solution, expressed by equation (5.51), is now
generalised to accommodate the N-soliton solution. This is most easily
accomplished by the introduction of an arbitrary parameter ¢, together
with the assumption that f may be expanded in integral powers of ¢. (It
will turn out that the series we generate will terminate after a finite number
of terms, and so ¢ may be assigned arbitrarily.) Let us write

F=14 Y hix0, (5.52)

and substitute directly into the bilinear equation (5.50). If we collect like
powers of &, we obtain

B(1-1) +eB(f, 1 + 1'f1)+82B(f2'1 +f1'f1+ Lfoy+ -

+s'B( Y f,_,,,-fm>+-~-:0 (5.53)
m=0
where f, =1 and the bilinear operator here 1is
B=D,D,+D3.
Now B(1:1)=0, and each coefficient of ¢"(r = 1,2,...) must be zero so that

B(fi-1+1:f,)=0,
and so on. This equation for f, reduces to

a &
(a‘ﬁ@)f!:‘)»

since B(a'b + ¢'d)=B(a'b) + B(c'd), provided f,,, f,x,-- =0 as x— + oo
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Df;=0 with ng—i—(i. (5.54)
ot ox?
The next two equations in this sequence can then be expressed as
2Df, = —B(fif) and  2Df3=—B(fi'fo+ [ f1) (559
It is easily checked that, if f, =exp(6,) where 6, = k;x — k}t 4+ «; with k;
and «; arbitrary constants, then
Df, = 0 and, further, that f, satisfies Df, = 0.

Hence we may choose f,=0, n=2,3,..., for all x,t, and the resulting
form of f(x,t) recovers the solitary wave. Furthermore, since the series
(5.52) terminates after n=1, we may set & = 1 without loss of generality.

(We see that f, already incorporates an arbitrary constant phase shift by
virtue of «;.)

The equation for f,, (5.54), is linear and so we may add any number of
exponential terms: let us suppose that
fi=exp(8,) + exp(b,) (5.56)

where 6, is defined above. As before, Df, =0, but now we obtain from
the first of equations (5.55)

2Df, = “B(fl'_fl)
= —B{exp(#,)-exp(8,)} — B{exp(8,)-exp(8,)}
— Bfexp(6;)-exp(0,)} — Blexp(6,)-exp(0,)}

and the only non-zero terms are those involving both 6, and 4,; thus we
find that

2Df, = = 2{(k, — ky)(w, — wy) + (ky, — ky)* exp (B, + 6,), (5.57)

where w; = k?. This equation (5.57), for f,(x,t), has a particular integral
of the form

fr=Ayexp (0, + 0,), (5.58)

and direct substitution yields

_ kl_kZ 2
A2s<k1+k2).

The second of equations (5.55) now becomes

2Dfy =~ A;Blexp (8, ) exp(6; +0,)} — A,B{exp(, + 0, )-exp(6,))}
— A;B{exp(0,)-exp (6, + 0,)} — A, B{exp(6, + 0,)-exp(0,)}



which can be written as
2D fy = —2A4,{(—~ k)3 +(— kz)“} exp (20, + 0,)

—2A,{(— kK +(—k)*lexp(20,+ 0,)
=0.

So this time, for f, given by equation (5.56) and f, defined by (5.58), we
may choose f,=0,n=3.4,...,forall x and r, and then with ¢ = | we have
another exact solution

k, —k,\?
f=1+cxp(0) +exp(0,)+| —-—2) exp(0, +0,); (5.59)
ky + ks,

this generates the general two-soliton solution of the KdV equation
(cf. Q4.3).
The method of solution described above can be extended by writing

fi= Z exp(f,). (5.60)

=1
1t can then be shown that the series (5.52) terminates after the term f;
the series generates the N-soliton solution. The construction of this
solution, although fairly straightforward, is tedious and will not be pursued
here. However, the form of f for the three-soliton solution is set as an
exercise (see Q5.29). The solution expressed in this way, like the two-soliton
solution written explicitly in equation (5.59), represents a nonlinear super-

position principle for the construction of the N-soliton solution of the KdV
equation.

5.4 Backlund transformations

Bicklund transformations were developed in the 1880s for use in the
related theories of differential geometry and differential equations. They
arose as a generalisation of contact transformations, i.e. transformations
that take surfaces with a common tangent at a point in one space into
surfaces, in another space, which also have a common tangent at the
corresponding point. One of the earliest Biacklund transformations was
for the sine~Gordon equation, sometimes called the SG equation,

u, =sinu,

an equation originally arising in differential geometry to describe surfaces
with a constant negative Gaussian curvature (Enneper, 1870). The sine-
Gordon equation, so named as a pun on Klein—-Gordon, can also be
solved by the inverse scattering transform (see Chap. 6). Indeed, there



wuuww sceir 10 DE a close relationship between the inverse scattering
transform (IST) and a Bicklund transformation (BT): every evolution
equation solvable by IST has a corresponding BT.

In this section we shall describe the general character of the Bidcklund

transformation, with examples, and then apply the idea specifically to the
KdV equation.

5.4.1 Introductory ideas

Suppose that we have two uncoupled partial differential equations, in two
independent variables x and ¢, for the two functions u and v; the two
equations are expressed as

P(u)=0 and Qr)=0, (5.61)
where P and Q are two operators, which are in general nonhnear. Let
R; =0 be a pair of relations,

Ri(u,v,u v, u,v,,...;x,t)=0, i=1,2, (5.62)
between the two functions u and v. Then'R; = O1s a Backlund transformation
if it is integrable for v when P(u) =0 and if the resulting v is a solution of
Q(v) =0, and vice versa. If P = Q, so that u and v satisfy the same equation,
then R;=0 is called an auto-Bdicklund transformation. Of course, this
approach to the solution of the equations P(u) = 0 and Q(r) = 0 is normally

only useful if the relations R, =0 are, in some sense, simpler than the
original equations (5.61).

One of the simplest auto-Backiund transformations is the pair (written
with y rather than f)

U, =10, U, = —v,,
the Cauchy-Riemann relations for Laplace’s equation
Upy + Uy, =0, Uyx + 0y, = 0.

Thus, if v(x, y) = xy (a simple solution of Laplace’s equation), then u(x, y)
can be determined from

U, =x and u,= —y,

and so u(x, y) = $(x*> — y*) is another solution of Laplace’s equation.

Another fairly simple application arises in connection with Liouville’s
equation, which we shall write as

T (5.63)
First we introduce an auxiliary dependent vaniable, v, which satisfies

Ve =0. (5.64)



Now let us consider the pair of first-order equations

U+ v = ﬁe““ v)/2 and U, —v,=./2e“"2  (5.65)
and cross-differentiate to obtain
Uy + U= "/:(ut - Ut)e(u_ W2 = e
V2

and (5.66)

Upe — Upe = —= (U, + v )e® 2 =e",
NE

1t 1s immediately clear that the two equations (5.66) imply equations (5.63)
and (5.64), thus the pair of equations (5.65) constitute a Biackiund
transformation for Liouville’s equation and the equation v,, = 0. Now this
latter equation is easily solved and so, from the Backiund transformation
(5.65), we can generate the general solution of Liouville’s equation; this is
left as an exercise (see Q5.31).

Finally, in this introduction, let us return to the sine-Gordon equation
written in characteristic form

U, =sinu, (5.67)
which might reasonably be regarded as the forerunner of equations with
a Backlund transformation (although the form we shall discuss here 1s
probably due to Bianchi). Consider the pair of equations

- 1
Y+ o), —asin| 2= ): Lu—o)y=-sin “20). (5.68)
2 a 2

where a (#0) is an arbitrary real constant. Again, we form the cross-
derivatives

3(u+v) —g(u—v) cos 2=} = sin urv o i

2 xt'_z 1 p) - p) )

+vy . fu—v u+vy
=sin| —— Joos|{ —5— ),

Uy, =SINU and Uy =SINn0v (5.70)

(5.69)

thus we see that

(by adding and subtracting, respectively, the equations (5.69)). Since both
u and v satisfy the sine-Gordon equation, equations (5.68) are an
auto-Biacklund transformation for equation (5.67).

To see how we can use this transformation, let us adopt a manoeuvre
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that the sine-Gordon equation, (5.67), has the zero solution, u(x, t) = 0, for

all xand . We can now use this trivial solution to generate a non-trivial one.

Let us choose v =0, then the Béacklund transformation, (5.68), becomes
u, = 2asin ($u) and u, = (2/a) sin (3u),

and these two equations may be integrated to give

“ du
2ax=J sn Q) =2logltanful + f(1)

and
2t/a = 2log!|tan +u| + g(x),

respectively, where f and g are arbitrary functions. Thus, for consistency,
we must have

tan (fu) = Cexp (ax + t/a)
or
u(x,t) = 4arctan {C exp (ax + t/a)}, (5.71)

where C is an arbitrary constant. Since both u and v are solutions of the
sine-Gordon equation, we have obtained a new solution given by (5.71);
in fact equation (5.71) describes the solitary-wave solution of the sine-
Gordon equation (see Chap. 6 and Q2.19).

5.4.2 Bdicklund transformation for the KdV equation

We have already introduced the Miura transformation (4.8),

u=uv’+u, (5.72)
and shown that, if v is a solution of the modified KdV equation
v, — 6020, + U,y =0, (5.73)
then u is a solution of the KdV equation
u, — buu, + u,,, =0. (5.74)
Since we can eliminate higher derivatives from equation (5.73) by use of
equation (5.72), we may regard equations (5.72) and (5.73) as a Biacklund

transformation for the KdV equation. However, a more convenient

transformation was developed by Wahlquist & Estabrook (1973), which
we shall now describe.

First, we recall that the KdV equation is Galilean invariant and so we
could work with u — A rather than u; this we choose to do. Thus we write

U=2A+0v+uv, (5.75)



where A is a real parameter, and then the modified KdV equation becomes
U, — 60 + Ao+ by, =0 (5.76)

so that equations (5.76) and (5.75) imply the original KdV equation, (5.74),
for u. Further, we see that if v is a solution of equation (5.76) then so is
- v; this suggests that we introduce two functions, u, and u,, defined by

u, =i+0’ +u, u, =4 +0?—uv,,

for given v and 4. These two equations imply that

u, — U, =20, and Uy +uy =2(1 +v?) (5.77)
At this stage it 1s convenient to introduce the additional transformation

ow
U= (i=1,2), (5.78)

0x

so that equations (5.77) become
Wy — w, =20 (5.79)

and

(Wy + wy)e =24+ 3w, —w,)% (5.80)

respectively. (Note that equation (5.79) is obtained by one integration in
x, but the resulting arbitrary function in r can always be absorbed into
the definition of w; without altering u;.) Equation (5.80) constitutes part
of the Béicklund transformation for w, and w, which, in turn, generate

solutions of the KdV equation via equation (5.78). Finally, equation (5.76)
can be written as

(wy = wa), = 3wl = wio) + (W) = W) =0, (5.81)

by using equations (5.77)—(5.79). This equations (5.80) and (5.81) (with
(5.78)) constitute the auto-Bicklund transformation for the KdV equation,
where equation (5.80) describes the ‘x’ part of the transformation and
equation (5.81) the ‘¢’ part.

To give an example of the use of equations (5.80) and (5.81) we shall
employ the same procedure as for the sine—Gordon equation (described
in §5.4.1). Thus we start from the zero solution: let w,(x,t) =0 for all x
and 1; then equation (5.80) becomes

Wyx= 24+ dwi, (5.82)
which can be integrated directly to yield
w,(x, )= — 2ictanh {kx + f(1)} (5.83)

where A= —k? (< 0) and f is an arbitrary function. The dependence on
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t 1s obtained from equation (5.81), which becomes

Wi = 3w 4+ W e = 0. (5.84)
Now, from equation (5.82), we obtain
Wixex = a(wlwlx) = W%x + Wiwlx
and so equation (5.84) can be written as
Wlt - 2W1x(wlx - %‘N%) = ()
or
Wy, + 4P w, =0, (5.85)

if equation (5.82) is used again. Since equation (5.85) has the general
solution

wi(x, ) =g(x — 4x? t),

for the arbitrary function g then, for consistency with equation (5.83), we
have

fly= =3t —xx,,

where x, is an arbitrary constant. Thus the Backlund transformation yields
the solution

wy(x,1) = — 2k tanh {k(x — xo, — 4k?1)} (5.86)
and so, from equation (5.78), we obtain

u,(x, 1) = — 2x% sech? {k(x — x, — 4 1)},
the solitary-wave solution of the KdV equation. (Note that solution (5.83)
is valid if |w, | < 2«, but if |w,| > 2x then

wi(x, 1) = — 2k coth {x(x — xo — 4K?1)}, (5.87)
a singular solution.)

5.4.3 The KdV Bicklund transformation: an algebraic relation

We have seen how the Biacklund transformation can be used to obtain
the solitary-wave solution of the KdV equation; this procedure could be
continued by choosing w, to be the solution given by equation (5.86), and
so on. In this way we can derive progressively more complicated solutions
of the KdV equation. However, there is an irritating aspect to all this:
every new solution requires two integrations, one in x and one in t. We
shall now describe an elegant method for obtaining solutions of the KdV
equation without recourse to any further integration (that is, other than
the one already performed in §5.4.2).
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First, it 1s convenient to relabel the solutions, w;, introduced above. Let
us suppose that we generate two solutions, w, and w,, from the Bécklund
transformation, by using the same given solution (w,, say) but two different

values of 4 (4, and 4,,say). Thus, in particular, we can write equation (5.80)
in the two forms

(wy +wo), =24, + %(Wx - WO)Z
and (5.88)

(Wp + Wo)e = 24, + L(w, —wp)?

Now wc construct another solution, w,,, from w, and 4,, and similarly
a solution w,, from w, and 1, so that

(W4 w,), =24, + 5w, — Wx)z
and (5.89)
(Way + Wa), = 24, + F(way — w22,
Before we proceed we need an important result from the theory
of Biacklund transformations. Bianchi’s theorem of permutability
(Eisenhart, 1909) states that, if w,, and w,, are defined as above, then

Wiy =Wy, (5.90)
(The theorem is represented diagrammatically in Fig. 5.1.) This theorem
is widely applicable and is particularly useful in the generation of
multisoliton solutions of evolution equations, as we shall now see.

We subtract the difference of equations (5.88) from the difference of
equations (5.89), and use equation (5.90), so as to produce zero on the left

Fig. 5.1 A diagrammatic representation of Bianchi’s theorem of permutability.
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hand side of the resulting equation

0= 47, = 4)) + 3 {(wy2 = wi)2 = (wyy —wy)” —(wy — we) + (wy — wg)*}.
Again we use equation (5.90), and solve for w,, (= w,,), to give
4(iy— 4
wm:wo—.( Snkic)y (591)
W, — W,
which describes w,, in simple algebraic terms. Thus it is now possible to
construct solutions of the KdV equation in a remarkably straightforward
manner, although the process is not entirely labour-free. We observe that
equation (5.91) constitutes a nonlinear superposition principle for the
generation of solutions of the KdV equation (cf. equation (5.59)).
As an example of the use of equation (591), let us take w,=0,
w, = —2tanh(x — 4t) and w, = — 4coth(2x — 32¢t), so that /4, and 4, are
— 1 and -4, respectively; thus we obtain

wyo(x, 1) = — 6/{2coth (2x — 32t) — tanh (x — 41)}.
The corresponding solution of the KdV equation is obtained from
Uy, = Cw,,,/Cx, so that
4 cosech? (2x — 321) 4+ sech? (x — 41)
{2 coth (2x — 32t) — tanh (x — 41)}?
4 cosh? (x — 4t)+sinh? (2x — 321)

{2 cosh (2x — 32t)cosh (x —4t)— sinh (x —4¢) sinh (2x — 320)}?

3 4 4cosh(2x — 8t) 4 cosh (4x — 64¢)

{3cosh (x — 28t) + cosh (3x — 361)}*°

up(x, )= —

which is the two-soliton solution (see equation (4.36)). It is interesting to
note that this non-singular solution of the KdV equation requires a

combination of both a non-singular and a singular solution in equation
(5.91).

*5.4.4 Bicklund transformations and the bilinear form
The bilinear form of the KdV equation, for f(x,1), is
D.(D, + D)(ff)=0, (592)

where
2

a a2
(see§5.3.1). We shall now use the KdV equation as an example to

demonstrate how the Bicklund transformation can be recovered directly
from the bilinear form. In keeping with the notion of a Bicklund

u(x,t) = logf
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transformation, let us introduce two functions, f, and f,, both of which
are solutions of equation (5.92), so that

D,(D, + D})(f,+f1)=0
and

DD, +D)(f2f2)=0.
Further, let us construct the equation

fIDUD, +DR)(f2 f2) = f3DAD, + D(f,:f1) =0, (5.93)
from which it 1s clear that. if f, satisfies equation (5.92) then so does f5,
and vice versa. Hence equation (5.93) must constitute an auto-Bécklund
transformation for the KAV equation. In order to write this transformation
in the more conventional form (with an ‘x’ part and a ‘t’ part) we must
introduce a paramecter 4. To this end we add

64D (A-B) — 6AD (4" B) (5.94)
to equation (5.93), where we choose
A=DJfi f>) and B=ffs,
so that the expression (5.94) can be written as
= 6AD.L{Df>f )} (f1./2)] + 6ADL(f1 o) (Dol f1f2)} -
Equation (5.93) now becomes .
FIDAD, + D)(f 2 f2) — 64D [{D /2 1)} (f1/2)]
—f3DAD, + DA(f1f1) + 6ADL(f f2) {DAf1 f2)}1=0,
and on using the identities given in Q5.36 this becomes, after some
manipulation,
2D,[{(D, = 34D+ D)(f2:f )} (f1./2)]
+ 6D, [{(DI + A)(f>:f)}-{Duf1:f2)}1=0. (5.95)
(The details in the derivation of this latter equation are left as an exercise.)

It 1s evident that equation (5.95) 1s satisfied if

(D, —3AD, + D})(f,f,) =0 (5.96)
and

(DZ + A(f2f1)=0; (597)
it is this pair of equations which corresponds to the Bécklund trans-
formation described in §5.4.2. (The important point about this — apparently
arbitrary — separation of equation (5.95) is that the ‘x’ part is chosen to
be analogous to the Sturm-Liouville equation as u — 0. If we interpret D,
as d/0x then the bilinear operator in equation (5.97) corresponds to
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(0%/0x* + A): see §5.2.1 and §4.2.) The connection with the Wahlquist &

Estabrook (1973) representation is now obtained in a fairly straightforward
manner.

First, we note that equation (5.97) can be written in the form

flexx+f2f1xx'-2f1xf2x+’1f1f2:0 (598)
(see §5.3.1). If we introduce

w=—2Clogfi= —2fulfi  (=12)
Ox

then equation (5.98) becomes, after a division by if, f5,
(Wy +wy)e =244+ 5(w, —wy)%, (5.99)

which is equation (5.80): the ‘x’ part of the Backlund transformation.
Presumably, therefore, equation (5.96) is the ‘" part of the transformation,
and to confirm this we next write the equation as

flel—foll—3A(f1f2x—f2flx)+f1f2xxx—3f1xf2xx + 3f2xf1xth2f1xxx:0’

by using the properties of the bilinear operator. If we now divide by f, f5.
differentiate once with respect to x and then introduce w;, we obtain

- %(WZ - Wl)t + %A(WZ - Wl)x + %(Wl - WZ)xxx
=3 {wy = W)W, + W)+ E{ (W, — W)’} =0

Finally, if we eliminate 4 by substituting from equation (5.99), the resulting
equation can be simplified to

(W, —wy), — 3wl —w3) + (W, — W), =0

which is equation (5.81) — the ‘" part of the Bicklund transformation.

Further reading

5.1 The role of conservation laws, and the Lagrangian and Hamiltonian forms, in inverse
scattering theory, are discussed by: Ablowitz & Segur (1981,§1.6); Calogero & Degasperis

(1982, Chap. 5 and A.23). An introduction to Noether’s theorem is given by Gel'fand &
Fomin (1963,8§37, 38).

5.2 The Lax approach is described in Lax (1968), Calogero & Degasperis (1982, A.20).
5.3 Hirota’s bilinear method is developed in detail in Matsuno (1984).

5.4 Bicklund transformations are described in Rogers & Shadwick (1982); Lamb
(1980, Chap. 8).

Exercises
Q5.1 Burgers equation. Show that, if u(x,1) is a solution of

U + Uy, = VU, —w<x<ow,

where v is a (positive) constant, then u is a conserved density.
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Q5.5

Q5.6
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KdV equation. Show that xu + 3tu? is a conserved density for the KdV
equation,
u,— 6uu, + U, =0.
Modified KdV equation. Find three conservation laws for the modified
KdV cquation
U~ 6uru, + gy, =0, —o<x <o,
which involve u, u? and u*, respectively.
Regularised long-wave equation. The RLW equation can be written as
U, — Ul — Uy, =0, — 0 <x<w.

Show that u, u? + u2 and u® are conserved densities. Note that X is here
allowed to incorporate derivatives of u with respect to t.

[There are no other non-trivial independent conserved densities for the
RLW equation: see Olver (1979). The RLW equation, sometimes called
the Peregrine equation or the BBM equation, is discussed in Peregrine
(1966) and Benjamin, Bona & Mahony (1972).]

Nonlinear Schridinger equation. Show that, if u(x,t) is a solution of the
NLS equation
i, + Uy, +vulu|* =0, — 0 <x <0,

where v is a constant, then

J lul? dx, J (wu,—u¥)dx  and J (el — dvlul¥)dx

—

are constants of the motion. (The * denotes the complex conjugate.)

Benjamin—-Ono equation. Show that, if u(x, t) is a solution of the Benjamin—
Ono equation,

U, + ut, + AH(u,) =0, — o0 < X < o0,

where # is the Hilbert transform (see Q2.13), then

¢ 9] 9] d 9]

J udx, J u?dx, J (W =3u A ()} dx and H;J‘ xudx
are independent of time.
Sine-Gordon equation. Given the sine-~Gordon equation in the form
¢ =sing,

verify the following conservation laws:

(3¢ — (1 —cos¢), =0 and (1—cos ¢),— (5¢2). =0,

(3¢F — D2 + (¢ cos ¢), =0,

(é(bg - %¢i¢§x + %d’gd)xxx + %d)fxx)r +{(%¢:—%¢§x) cos d)}x: 0.
(Lamb, 1971)
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Q5.8

*Q5.9

Further properties of the KdV equation

Fréchet derivative. The Fréchet (or variational) derivative, 6F/bu, of the
operator F{u}, is defined by

®  §F A e

v—dx = lim— Flu + cv)dx
- 6“ -0 UE - @

for all continuous v. Show that, f F(u)=f(u,u, u,,..), then 5F/du

corresponds to the Euler-~Lagrange operator, i.e.

SF ¢f déof dF of

ou  ou dxCfu, dx?du,
Hence verify that

cu 0

= u + hug) f
ct Cx
is the KdV equation.
Conserved densities and the scattering problem. Consider the classical
scattering problem

Vo + (K2 —wf =0, —% <X < X,
with
(k) ~ e ™ 4 b(kyeits as x - + x,
for a given function u(x). Introduce h(x; k) such that
U(x: k)= alkje ~*xth

for all real x and k, where a is the transmission coefficient, and deduce that

By — 2ikh +h2 —u=0.
Now assume that

h(x; k) ~ i (2ik) " "g,(x) ask —» w0

n=1

and determine

g1=—u g2 =—1u 93 = =g+ 17,
and, in general, that

n—2

d
gn=—— n— + Gn—m—-1> n=3,4,....
dxg 1 mgl Im 1

Further show that, if k is now complex valued with JF(k)> 0, then

—loga~ ¥ (2ik)‘"J‘ gadx)dx as k|- oc.

n=1 -

If u is a solution of the KdV equation, deduce that jfx g,dx is a constant
of the motion foreachn=1,2,....

[The asymptotic technique adopted here is the well-known WKBJ
method; see Miura, Gardner & Kruskal (1968).]
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Q5.10 N-soliton solution. Assume that u(x,t) evolves, according to the KdV

Q5.1

Qs.12

Q5.13

Qs.14

equation, into an N-soliton solution from a given initial profile, u(x,0).
Consider the profile at t =0, and the solution as t — oo, and hence show
how the conserved quantities can be used to determine the amplitudes of
the resulting solitons. Use the first two conservation laws, and then the
first three, to verify your method for the two-soliton and three-soliton
solutions, respectively.
(Berezin & Karpman, 1967)

Unitarily equivalent operators. Let L be a linear operator which acts on
a Hilbert space H, and which depends on a parameter ¢. Define the adjoint,
U, of a linear operator U on H, so that the inner product (u, Uv) = (Ou, v)
for all u, veH. Show that, if L(z) is unitarily equivalent to L(0), i.e. if

U)L(t)U(t) = L(0) and U)U@) =1,

where I is the identity operator, then L(z) has the same eigenvalues as L(0).

Assuming that such an operator U does exist, show that there exists
an operator M on H such that

U, =MU where M= — M.
Hence deduce that, if L is self-adjoint, then

L +[L,M]=0.
(Lax, 1968) )
Matrix Lax equation. Show that, if L(t) and M(t) are n x n complex-valued
matrices such that
L +[L,M]=0,

where L is Hermitian and A(t) is a real eigenvalue of L, then A is constant.
An ordinary differential system. Cast the system

dx dy
—=9» = —gx,

dt Y dt
where ¢g(x,y,t) is a given continuous function, into the equivalent form

L +[L,M]=0,

finding L as some symmetric, and M as some antisymmetric, real matrix
whose elements depend upon x, y and ¢ (see Q5.12). Show that the
eigenvalues of L are constant and hence deduce the (otherwise obvious)
result that x? + y? is constant for each solution of the system.
Two-dimensional KdV equation. Show that the equation

(ut - 6uux + uxxx)x + 3uyy =0
can be obtained by choosing -

L & g M 4 3 6 0 3 3 ) d
=—— = —4— +6u_—+3u, + .
oxt  dy " ox? dx O
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Q5.15

Q5.16

Q5.17

Qs5.18

Q5.19

Further properties of the KdV equation

[Dryuma, 1974; this equation describes a class of waves with almost
one-dimensional propagation (Johnson, 1980). This equation was intro-
duced in Kadomtsev & Petviashvili (1970). A review of soliton interactions
in two dimensions is given by Freeman (1980).]

Hamiltonian form. Show that the equation

B 26"u _ ¢ ((3T4>
ét du
(see Q5.8), where 7, is given in §5.1.1, is the fifth-order KdV equation,
(5.34). Also find the next equation i1 the KdV hicrarchy which 1s obtained
by replacing T, by Ts.
Klein—Gordon equation. Using the Lagrangian density

=5yl = (V) = V),
deduce the nonlinear Klein-Gordon equation
l//tt - Vzl// + V’('\I/) =0
by requiring that the integral | ¢ dxdr is stationary with respect to small
variations in .
Find the Hamiltonian .# =y, 0% /0y, — ¥. Deduce that the total
‘energy’, [ # dx, can be written as

FWE+ (V)P + Vg ldx
Sine—~Gordon equation. Use the Lagrangian density given in Q5.16, with
V'(y) = siny and V chosen as the one-dimensional operator ¢ ¢ x. to obtain
the sine-Gordon cquation written in laboratory coordinates,
l//,\x - l//u = $in '/J
Burgers equation. Show that the solution of the Burgers equation

U + Ui, = Vit
where v is a positive constant, can be reduced to the solution of the heat-
conduction equation by use of the trunsformaton

[t
u(x, r)y=A-- logi(x.t)
ax

for a suitable choice of the constant 4. Hence show how to solve the
Burgers equation.

[This equation has been used to model turbulent flow in a channel
(Burgers, 1948), and also the structure of a shock wave (Lighthill. 1956).
The transformation is sometimes attributed to Hopf and Cole: see Forsyth
(1906, p. 101), Hopf (1950), Cole (1951).]

Fifth-order KdV equations. Introduce the transformation

U— au, x— fx, t—yt,

where 2, f# and 7 are real constants, into one of the fifth-order equations,
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(5.34) or (5.42), and deduce that it can not be transformed into the other.
Bilinear operator Prove the following identities, where D*D’(a-b) is the
bilinear operator defined by equation (5.37):

(i) D,D(a'1)=D,D(1-a)= ¢%a/oxét;

(11) D7(a b)=(— 1)"D7(b-a), and hence D(a-a) =0 for m odd;
(iti) D"D%a b)= D.Da-b),
(iv) DD} {exp(0;)-exp(0,)} = (w, — w,)"(k; — k,)" exp(0; + 0,)  where
0;=kx—wt, 1=1,2;

(v) D{a'b)=01il acch.
Boussinesq equation. Show that the bilinear form of the equation

1v

2 —_
Uy = Ugr + 3(“ )xx = Ugxxx = 0

(D! = D: - DY)(ff)=
where u(x,t) = —2(5%/0x?)log .
Benjamin—-Ono equation. Show that the bilinear form of the equation
u +4uu, + Hlu,,)=0,
where # is the Hilbert transform (sec Q2.13), 15
(iD,~ D)/ *)=0,
where u(x,1) = Li(¢/éx)log(f*/f) and * denotes the complex conjugate.

[You may assume that [(x,t)=]]Y l{x—— x,t)}, where #(x,) >0 for
l<n<N]

Concentric KdV equation. Show that the bilinear form of the equation

u
U +——6uu, +u, =0
2t

<D D, +D“+—> )=
where

22

0 0 0
u(x,t) = — 2§ logf and a(a-b) = a{a(x, b(x',t')}

on x'=x,t=t.

Two-dimensional KdV equation. Show that the bilinear form of the
equation

(u—buu, +u..) +3u,=0

(DD, + D¢ +3D)(ff) =
where u= —2(0%/0x?)log /. "

Sine—Gordon equation. Show that the bilinear form of the equation

Gix— P =sind
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Q5.28

Q5.30
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is the pair
(D: = Df =~ 1)(f9)=0
(D = DA)(ff~gg)=0,
where ¢ = 4 arctan (g/f).

Nonlinear envelope equation. Show that the bilinear form of the equation
W+ 3 12 4 B W + O] = 0,
where 2, f5, 7 and é are real constants such that aff = 9, is the pair
(D, + D2 +yDi)g+f) = 0.
YD f) = agg*,
where = ¢g/f. f is real and an asterisk denotes the complex conjugate.
(Hirota, 1973a)
Fifth-order KdV equation (Lax hierarchy). Introduce an auxiliary in-
dependent variable, 1, such that
u,— 6uu, +u, ., =0,

and hence show that the bilinear form of the equation

U+ 30u?u, — 20u, 1, — 10Ut + =0
is given by the pair
(DD, + D3) = $DAD. + D)} (f/) =0,
DD, +D)(f-f) =0,
where u= —2(3%/¢x?)log /.
Solitary-wave solutions. Obtain the solitary-wave solutions of the equa-

tions given in Q5.21-Q5.27 by seeking simple soluttons of the correspond-
ing bilinear form.

[In the case of Q5.27, t appears in the arbitrary phase shift in the
exponent; the exponent is linear in x, t and .]
Three-soliton solution. Obtain the solution for f(x, t) which represents the

three-soliton solution of the KdV equation, where fsatisfies the bilinear
form

D.(D, + D3)(f/)=0.
Two-dimensional KdV equation: two-soliton solution. Use the bilinear form
(Q5.24) of the 2D KdV equation,
(ur - 6uux + uxxx)x + 3uvy = 07

to obtain the two-soliton solution as
f=1+E +E,+A,EE,,

where E; =exp(0,), 0;=k,x + iy — wit + o, w; =k} + 3} /k;, for i=1, 2
and A, is suitably chosen.

Discuss the behaviour of the solution, u, for 6, fixed, as 8, - + o and
for 0, fixed, as 0, —» + oo.
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Liouville's equation. By using the Bicklund transformation for Liouville’s

equation, and the equation v, = 0 (see §5.4.1), obtain the general solution
of Liouville’s equation.

Burgers equation. Use the Backlund transformation
vy = — ut/2v, U= (U2 = 2vu Ju/4v
to show that
U + U, = Vi, and Uy = VU,
Sine Gordon equation. Use the Backlund transformation for the sine—

Gordon equation (see equations (5.68)) to show that four solutions
u, (i=1,.... 4) are related by

Uy —u, a; + a, Uy — Uy
tan = tan .
4 a,—a, 4

where a,, a, are non-zero constants.

Sine~-Gordon equation: soliton solutions. Use the relation given in Q5.33
to obtain a soliton solution of the sine-Gordon equation (for example,
by choosing u; = 0 and u, and u, different solitary-wave solutions).
KdV equation. Use the algebraic form of the Backlund transformation to
obtain the three-soliton solution of the KdV equation.
Some exchange formulae. Verify these identities for the bilinear operator:
(i) ggD.Dff) ~fDig g9) = 2D.[{D(f9)}(f9)]
(i) ggDi(ff) —[Dig g)=2D.[{DAS9)}(f9)];
(ill) ggDISS)—fDHg ¢)=2D,[{D3(f9)}(f9)]
+6D,[{Dfg)} {Dilgf)}]

= 2DI[{D,f'9)} (fo)T;
(iv) D{D,{f4)} {Ddg)}]=0.
Boussinesq equation. Show, from the bilinear form, that a Bicklund
transformation for the equation

Uy — Uer + 3(u2)xx T Ugxxx = 0
(D, + aD3)(f,f,) =0
@DD, + D, + D)(f1f2) =0,
where u(x, 1) = — 2(¢?/0x?)]logf and a? = —3; see Q5.21.

[The term Af, f,, for arbitrary A, may be inserted on the right-hand

side of the second equation in the Bicklund transformation to give a more
general transformation.]

Sawada—Kotera equation. Show, from the bilinear form, that a Backlund
transformation for the equation

e+ 45uu, — 15uu,, ~ 15uu, ;4 u ., =0
is

Dg(f; fz) = ’lfxfz
(D, ~ #AD3 = 3D)(f+f2) =0,
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where 4 is an arbitrary constant and u(x, 1) = — 2(5%/6x?) log f;seeequation
(5.41).

An NLS equation. Verify that an auto-Bicklund transformation for the
NLS equation
i +ug +2ulu)>=0
is the pair
Upt 0= (U —0)(42% —|u+ v}, (M
U+ 0= i, — 0 ) B2 —lu + o)) 2 4 Viu+ o) (u+o)+ lu—22), ()
where both u and v satisfy the equation. Henee obtain the solitary-wave

solution of this NLS equation (cf. Q2.3) by choosing v =0 for all x, t.
(Konno & Wadati, 1975)

A modified KdV equation. Let u= w,, and define the operators
Pu)=u, + 6u’u, +u,; QW)= w, + 2w +w__,.
Show that P(u)= {Q(w)},.
Use the Bicklund transformation

Wae= — W + 2ksin(w, — wy)

W= = Wy~ 2k{{uy, — uy,) cos(w, — wy) + (Ui — ud)sin(w, — wi)l
for u=u;, w=w, (i=1,2), where k is an arbitrary constant, to show that
Q(w;)=0 and so P(u;)=0.

If w, =0, for all x and ¢, show that
wlX,t)= £ 2arctan [exp {2k(x — x, — 4k?1)}],
where x, is another arbitrary constant.
Now, given w,, k, and k,, introduce the functions w,, w,, w,, and w5,
such that
(wy + wo), = 2k sin(w; — wy); Wy + wo), = 2k, sin (w; — wy);
Wiy +w)e=2k,sin(w;, —w)); Wy + wy), = 2k sin (wy; — w,).

Use the theorem of permutability (ie.w;, = w,,) to deduce that

((kl +ky)
Wi, = W, + 2arctan TR
1

—k3)
(Wadati, 1974; Lamb, 1980, p. 257)

tand(w, — wl)>.
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*More general inverse methods

In Chap. 4 we discussed the inverse scattering transform for the KdVv
equation in detail. Now this novel procedure would be even more useful
if it could be extended or generalised to accommodate other equations.
Indeed, we have already hinted that this is possible. In this chapter we
shall describe two approaches to this generalisation, but which are quite
closely related.

In 1972(1971 in Russian), Zakharov & Shabat (ZS) published the inverse
scattering transform for the nonlinear Schrédinger (NLS) equation,

i, +u,, +ulu>=0.
Shortly thereafter they extended the technique to other equations (Shabat,
1973, Zakharov & Shabat, 1974). This extension, which we shall call the
ZS scheme, cssentially takes the Lax method and recasts it in a matrix
form (see Q5.12 and Q5.13), leading directly to a matrix Marchenko
cquation.

At about the same time, a group at Clarkson College (in Potsdam, New
York State) were developing an equivalent scheme which generalises the
method that we have described here for the KdV equation (and which is
close to the early work of Zakharov & Shabat). This culminated in the
paper by Ablowitz, Kaup, Newell & Segur (AKNS), published in 1974,
which immediately enabled the inverse scattering transform to be applied
to many evolution equations. The AKNS scheme starts from a generalisa-
tion of the Sturm-Liouville equation by regarding it as a pair of first order
equations. (This is usually referred to as a 2 x 2 eigenvalue problem.)

Both the AKNS and ZS schemes are applicable to the KdV and NLS
equations as well as, for example, to the modified KdV (mKdV) and
sine—Gordon (SG) equations. (In particular we shall describe, later in this
chapter, some properties of both the NLS and*SG equations.) It is no
surprise that the two schemes overlap, but the important distinction is
that the AKNS scheme is couched in terms of scattering theory whereas
the ZS scheme (in its final form) is expressed solely in terms of operators.
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We shall describe the main ingredients in the AKNS scheme, although we

shall stop short of presenting all the technical details. We shall also outline
the ZS scheme and briefly mention how the two are related.

6.1 The AKNS scheme

6.1.1 The 2 x 2 cigenvalue problem

We begin this discussion by introducing the pair of cquations

Wie= — 1Sy, gy, 6.1
Yoo =104, + 1y, (6.2)
1€
—i 4 dfcx —d .
= = -1 6.3:
v ( r i§>l/” > ( r —a/ax>‘/’ iy, (63a.0)

Y

2
r(x) - not necessarily real — are potentials and ( is the eigenvalue. It is now
straightforward to demonstrate the connection between the pair of
equations (6.1) and (6.2), and our original Sturm-Liouville equation. First,
the differential of equation (6.2) with respect to x is

Woxx = W+ 1y + 1y,

{provided r, exists). Then, using equations (6.1) and (6.2), we obtain

l/’Zxx: icl//bc + rx‘/’l + r(, 1&//1 + ql/’l)
=lox+ (re — )W o — iK)/r + g,

where  is the two-vector ( ) The (bounded) functions ¢(x) and

or
r P L
l/’Zxx - ll//bc - <qr - 141 - SZ> l/’z =0.
r r
The special choice r = — 1 now gives the Sturm-Liouville equation for 5,

Yo + (4 g, =0;

see equation (3.1) with A={? and u= —q. Thus the system, given by
equations (6.3), recovers the scattering equation required for the solution
of the KdV equation. It should be noted, however, that the choice r = — 1
turns out to be a degenerate case since hereafter, for all other evolution
equations, we assume that both ¢(x) and r(x) decay sufficiently rapidly as
{x|— co. This ensures the existence of y for xe(— oo, c0).

We now introduce four solutions of equations (6.3), which are defined
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by their asymptotic behaviours at infinity

l//+(x;C)~e“"<(l)>; l/;+(X;C)~e“"((,)>, asx—>+ oo (6.4)

and

. ~ (0
lj/,(x;C)~c‘“"((l)>; l//-(x;C)~e""<_l>, as x— —oo. (6.5

Thesce solutions are written more compactly, in matrix notation, as

%_(llfu l/iH); \y_:<l//1' l/g-)_ (6.6)
l//2+ I//2+ l/’Z* l/IZ—

These are lincarly dependent, and may be connected via the scattering
matrix, S(¢), by

b
W —¥.,S  where S:<a A). (6.7)
b —a
The scattering coefficients a,b,d and b are functions of {, and the two-
vectors ¢, ¢, , - and y_ are, according to equation (6.7), related by

bo=ap, +bf. Jo=by, —ad,. (6.8)
(It should be noted that the scattering coefficients here do not correspond
directly with those introduced for the solution of the KdV equation; see
equation (3.6). The correspondence requires, for example, a” ' —a and
ba~!' > h.) The problem described by equation (6.3), with (6.4), (6.5) and
(6.7), is the 2 x 2 eigenvalue problem.

The solution of the pair of first order equations, (6.1) and (6.2), can
always be represented by an integral over an appropriate kernel (cf.
equation (3.28)). Thus we assume that the solution for ¥, can be expressed
as

o0

P (0 ="Po(x 0+ J K(x, y)¥o(y; O)dy (6.9)

X

where K is an appropriate 2 x 2 matrix with elements K,; (i, j = 1,2), and

—i{x 0
\Po(x;C)=(e 0 e‘4’=>’ (6.10)

which describes the behaviours given in (6.4), so that ¥, - ¥ as x - + o0,
(It is obvious that we can obtain ¥ _ from equation (6.7), once ¥, has
been determined.) We note that equation (6.9) defines ¥, in terms of a
kernel, K, which is not a function of the eigenvalue, {. That such a kernel
exists will now be demonstrated,
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In order to find the equations satisfied by the elements of K, it is
necessary to ensure that the two columns of ¥, are indeed solutions of
cquation (6.3a or b). This is most easily accomplished by operating on

equation (6.9) with
&/0x ~q
r —9/ex )
Immediately, from equations (6.3b) and (6.9), we see that

iV, = ~i§(\l’O+J K\Pod_y>, (6.11)

\

{where we have suppressed the arguments, for simplicity). The first term
on the right in equation (6.9) also gives

0/6x —q T .
< r —8//(7)()\}}0:( r LYoo= —1iKWo+ QY¥,, (6.12)

__ig

r

. . (0 . . .
where @ s the matrix ( g) Finally, we operate on the integral in

equation (6.9); this gives

Clex —d r Kie ™ Kipe™ g (6.13)
r —cféx ) ) \Kye ™ Kye™
We can now find, for example, the first element (i=j=1) in the
representation of expression (6.13): this is

a | * i
aj Ku(x,y)e""dy“q(X)J Kyi(x y)e™ ™ dy

x

20 A

Ky e ¥dy— ‘J(X)J‘ K, e*dy,

X

= — K“(X,x)e_igx—i-J

X

if Ky ,(x,y)—0as y— oo; and similar expressions are obtained for the other

three elements. Collecting these together, we see that the matrix (6.13)
becomes

x

TK(x, x)¥, — fj K. Wody+ QJ K¥,dy

X

and so operating on equation (6.9) transforms it into

—iC<\P0+J K‘Pody>= —(iCI—fK)\l’O—fJ KW, dy

x x

+ Q(\PO + Jx K\Pody>, 6.14)

\ x

. . . - —-1 0
where I i1s the unit matrix, and [ :< 0 1). (Observe that 2= 1)
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To cast equation (6.14) into its most useful form we note that, if
K(x,y)—0 as y— w0, then

—iCJ K‘YOdy:K(x,x)‘l’of+J K, dy,

X

after an integration by parts. Thus equation (6.14) can be rewritten as
TK(x, x)¥ o(x; &) — K(x, )P o(x; O + O(x)Wo(x; )

- J TR (6, ) oy: 0) + K36, Y o1 O — Q00K (x, )W o(; ()} dy = 0

X

which is satisfied if K(x, y) is a solution of

IK,+ K, - QK =0, (6.15)
and
fK(x,x) — Kix, x)f+ Q(x)=0. (6.16)

(Note that K¥,I = KI'¥,,.) From equation (6.15) we obtain the set of four
scalar equations, '

K11x+K11y"qK21:0; K22x+KZZy_rK12:0; (617)
Kiax— Ky, — 4Ky, =0 Kyix— Ky, —rKy; =0,
and from equation (6.16) the conditions
Kya(x, x) = = 34(x); Kyi(x, x) = —3r(x). (6.18)

{These equations are a generalisation of those used for the KdV equation:
see equations (3.29) and (3.30), and Q4.1.) It is clear that K(x, y) is not a
function of the eigenvalue ({) and, furthermore, it is now possible to show
that the solution for K exists and is unique. In other words the integral
representation, (6.9), is defined.

As in the discussion for the KdV equation, once the potentials ¢ and r
are given, the scattering problem may be solved (at least in principle) and
the scattering matrix determined. On the other hand, in the context of
solving evolution equations, we know that the procedure involves solving
the inverse problem. This 2 x 2 problem is no exception: that is, given the
scattering matrix S({), we shall need to know how to reconstruct the
potentials ¢g(x) and r(x). It is this aspect which we shall now examine,

6.1.2 The inverse scattering problem

The first stage in this development involves rewriting equations (6.8) as

¥ =—v.T (6.19)

@—:(ii:.ﬁz ‘gi”/g) and T(C):(hl/a [i/dl)

where
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From equation (6.9) we now substitute for ¥, into equation (6.19) to give

@_:(WO+J K\Pody>T, (6.20)

X

where again we have suppressed the arguments. In order to derive an
integral equation for K, given T({), it is convenient to post-multiply
equation (6.20) by n~* Wy(z: (), for z> x, and then integrate along an
appropriate contour in the complex {-plane from - > +10 to + x +10.
This contour is indented into the upper half-plane for terms involving ¢,
and into the lower half-planc for ¢~ we shall call these contours C,
and C_, respectively. (We shall write more about them later.) Thus
equation (6.20) becomes

1 1 . o ¥ o L e e -0Od
ZJC‘P—(X, (Wo(z:0)dl = o JC Wo(x: T oz 0 dE

+1_J { K(x, )¥o(y: ) dY}T(C)\Po(Z; ) di,
2n Je U)x
(6.21)
where the two contours are represented by C. to allow the equation to be
written in a compact form. (This is analogous to equation (3.33).)
The term involving the double integral in equation (6.21) is expressed,
by changing the order of integration, as

1 o0
I J K(XsY){J ‘Po(y;C)T(C)‘Po(Z;C)dC}dy-
n c

Further, we note that
E_  (bja)Ex
\}j . . —
O(Xa C)T(C)\Po(za C) <(b/a)E+ _ Et b}

where E, =¢e*“*" and an asterisk denotes the complex conjugate. It is
now convenient to define

1 b(e) . . 1 by _.
f(X)=§;J %e“‘dc; f(X):-J_ (C)e"v‘dg, (6.22)

c.da 2n aT(Z)
where C, goes above all the zeros of a({) in the upper half-plane, and C_
below all those of d({) in the lower half-plane. Since we also have

1 J et 0 d{ = §(z — x),
2n ¢

where § is the Dirac delta function, we see that

~

1 . e _[0E=X) fx+2)
chw)c, OTE oz 0) dC _<f(x+z) —5(z_x)>'
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Thus equation (6.21) becomes

1 *

sz“" (: OWolz: ) = Flx +2) — <x,z)f+J K(x.y)E(y + 2)dy,
C

~ (6.23)
~ 0
for z - x, where the matrix F :< f).
/0
Finally, by analogy with the argument given in §3 3, it can be shown
that, with (', and C_ as dcfined earlier,

J P _(x;QWolz0)dl =0,
.

and so equation (6.23) becomes

F(x +2)— K(x,o)I + J K(x,y)F(y + z)dy = 0.

X

This is the matrix Marchenko equation for K(x,z) which can be written in
the more conventional form

X

K(x,z)+ F(x +z) + J K(x,))F(y+ z)dy =0, (6.24)

N . 0 —f
where F = —FI, ic. F:<f g), cf. equation (3.37) for the KdV

problem. The solution of this system of cquations yields K(x,z) and then
the potentials are given by

g(x) = — 2K | 5(x, x); rx)= —2K,,(x,x); (6.25)
see cquations (6.18).

In deriving the Marchenko equation in Chap. 3, we found it convenient
to deal separately with the discrete and the continuous spectra. For the
2 x 2 eigenvalue problem discussed here, the two corresponding contri-
butions are already implied by the definitions (6.22) of f and f. To see this,
let us suppose that a({) has N simple zeros at { ={,, n=1,2,...,N, in the
upper half-plane. An application of Cauchy’s residue theorem to the closed
contour comprising C, and the real axis gives

1 [™ bk
f(Xy= 27[.][‘ . ;k;exp(lkX)dk—l Z c exp (if,X), (6.26)

where ¢, = b/(da/d{) evaluated at { ={,. The integral here is now along

the real axis only. (Alternatively, we can find ¢, from equations (6.8)
evaluated at { ={(,, so that

Yio =b, for i=12
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This allows the determination of b({,) directly, a useful manoeuvre if b({} = 0
for all { #{,.) Similarly, if &) has M simple zerosat{ =(,,,m=1,2,....M,
in the lower half-plane, then

o O

]‘(X):L LM (—ikX)dk +i i enexp(—il,X), (627)
27[ (k) p m p m 3 *

. =
where ¢,, = b/(da/dt) at { = {,,. By analogy with the classical Schrodinger
scattering problem, the zeros of a(() are called the discrete eigenvalues, the
¢, are the normalisation constants and b/a is the reflection coefficient. Thus,
if b/a = Ofor all real {, the scattering is produced by a reflectionless potential.
Corresponding interpretations for the lower half-plane are usually redun-
dant since we are normally concerned with problems where there is a
relation between ¢ and r, eg. r= —q or r=g* In such problems a
symmetry exists between a and 4, ¢, and ¢,,, and so on; some of these
points are discussed in §6.1.5 and also in the exercises at the end of the

chapter.
6.1.3 An example: v = — q,q= A sech Ax

In order to clarify some of the ideas involved in the 2 x 2 eigenvalue
problem, and its inverse, we shall describe this simple example. First, we
supposc that the scattering problem is defined with r= — g (which will
turn out to be relevant to the solution of the modified KdV equation
(sec Q6.7) and the sine-Gordon equation (see§6.1.5(b)).) In particular we
choosc the potential

q(x) = Asech ix,

where 4 is a positive constant. We therefore require the solution of

oox  —q N, .
(_q e V=Y (6.28)

(see cquation (6.3b)), for which it is convenient to write iy = E¢p where

E=c** and ¢ is the two-vector <¢1>. After substitution into equation

2
(6.28) it follows that

0/0x  —q _ .
(-q —6/6x>¢__2lwi’ (6.29)

. " 0\. )
where 8, :<%> f E=¢e¢*% and 0_ =<¢ ) if E=¢ 1%
2

The solution of equation (6.29), with g(x)= 21 sech Ax, is surprisingly
straightforward: in the case when E = e** suppose that ¢, = 4 sech ix
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where A is an arbitrary constant, and then
¢, = — AAsech? Ax.
Thus
¢, = — Atanh Ax + B,
where B is a sccond arbitrary constant and, since
¢ 1x— Apysech ix = —2i{¢,,

we rcquire that B =2i{ A/4. Hence one solution of equation (6.28) is

Y= ée“" As
! 20— it )’

where s(x) = sech Ax and t(x) = tanh Ax. Now, since s —>0 as x » + o0, we
may choose A in one of two ways: (i) if ¥, ~e" as x— + oo then
A — A)/A = 1; (1) ify , ~ — e as x> — oo then AQ2I{ + 4)/A = — 1. Thus
we have obtained the pair of solutions

- i~ A8 - —eix is
W*:zx—z<mc~zJ’ W':2x+z<mc—m>’ (6:30)

(see equations (6.4) and (6.5)). Similarly, if we let ¢, = 4 sech ix when
E=e¢ " with 6_, we find the pair of solutions

e D4 A e 2+ A
l/’*_2ic+/1< As )’ W'_zz-i< As ) (6.31)

The four solutions given in (6.30) and (6.31) are connected, via the

scattering matrix S({), according to equations (6.7) and (6.8). Thus, for
example,

(.i'“" 2iCN+ At _ a.e'i;’c 20+ At N .be“’c . As 632)
21— A AS 210+ A As 210 — A\ 21 — At

for all x, which is possible only if

=2t and b() =0 (ifa  0). (6.33)
A0 —4
Similarly, we can show that
20 -4 ~ )
G(0) = = d b({)y=0 (if 4 # 0), 6.34
0=y o O=0Gfa£0, (634
so that in this case, where r = — g and g(x) = 4 sech Ax, we find that @ = a*

and the potential is reflectionless (i.e. b = b=0 for all real {). Furthermore,
we observe that a({) has one zero in the upper half-plane, at { = $i4 (4 > 0),
and then d({) has one zero in the lower half-plane at { = — $i4. (Similar
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results hold for 4 < 0, although the corresponding forms of equations (6.30)
and (6.31) now differ slightly.) With 4 > 0 then b() = 0 for all { # }i4, but

b(3i4) # 0. This is easily demonstrated by considering equation (6.32) for
{ =1id with a =0, so that

where by = b({,), ¢, = }i/. This equation holds for all x only if b, — — 1.
and so
b({) =0, $# i bii) = — 1.

Similarly, we can show that 1;(-§i/'.) =—1.

Now let us turn to the inverse problem and, as an exercise, reconstruct
the two potentials discussed above. This requires that we start from the
appropriate scattering data:

o 2ACH A . .
a(g) = 2N 0 a() = a*(Q),
b({)= 0. # 114 b(3il)= —1,

BO=0.0# —3i%  b—4in=—1,
for 2> 0. Thus we can determine the normalisation constants, c, (n=1)
and ¢, (m=1) (see equations (6.26) and (6.27)), as

ey =(—=1)JQ2i/{-2A = —i4 ¢y =(=1/(2i/24) = i4,
and hence

f(X)=f(X) = — de~ 22,

From equation (6.24), because the matrix F is antisymmetric, we obtain
the two (scalar) integral equations

K“(x,z)-—/lj Ky,(x, yle 202124y — (6.35)

x

and

AeTHTIT LK H(x,7) + /ZJ Kix,ye *92dy =0,  (6.36)
with K,, = K, and K,, = — K, ,; this latter identity implies that r= —¢
(sce cquations (6.25)). Equation (6.35) implies that

Kyi(x, x) = L{x)e™*/?
where

L(x)= 4 Jm K | ,(x, y)e 212 dy. (6.37)

X
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Now from equation (6.36) we obtain
K y(x,z) = —je Mx¥aM2 )tL(x)e‘*z/ZJ e dy

= — {Je” P 4 Lix)e *je™ 2, (6.38)

and so equation (6.37) can be written as

L(x):~/'.2c“*"/2J e'”dy—/lL(x)e'“J e " Mdy

X X

=—{2e*? 4+ L(x)}e'“x.
Thus

/‘te—BAx/Z
L= =1

and hence equation (6.38) yields

Ki(x,x)= —/if(e”™ +e*)
or
g(x)= — 2K 4(x, x) = Asech Ax.
We have therefore reconstructed the two potentials — remembering that
r= —q— from the given scattering data,
This concludes the discussion of the direct and inverse scattering

problems in a 2 x 2 system, We now analyse how these ideas are relevant
to the solution of certain evolution equations.

6.1.4 Time evolution of the scattering data

So far the potentials, g and r, have been functions only of x. The aim now
is to consider the consequences of allowing both ¢ and r to depend upon
a parameter ¢, i.€. to let them evolve in time. Thus the eigenvectors, y, must

now also be functions of £  =(x;7). In the AKNS scheme, the time
evolution of s is to be given by

(cf.equations(6.3)), where A(x,t;{) is a 2 x 2 matrix with elements A;
(i,j=1,2) and for which { is not a function of ¢. (This latter assumption
is the time invariance of the eigenvalues, already proved in the case of the
KdV equation.) Thus y(x; t) must satisfy the pair of equations

Y, =AY and Y= Ry, (6.39a, b)
where R = ( - q> and d{/dr=0.
r i

It is clear that, given R, A4 is not an arbitrary matrix. The elements of
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A must satisfy certain compatibility conditions in order to ensure that the
cross-derivative i, exists. Thus we see that

l//xl = Rl[?// + R[j/l = (Rl + RA)l//
and
Yo =AW + A, = (A + ARW,
and so, becausc ¢, =V,
A, — R, +[A.R]=0,
where [4, R] = AR — RA as before. This matrix cquation is equivalent to
the four equations
Ay +ra, —qAy =0
Ay +2iCA = g+ 4(A — Ay} =0;
Ary e = 25A —r — 1A — A3)=0;
Ay —(rdy; —qAy,)=0.
We sce immediately from the first and fourth equations that these two are
consistent only if 4,, = — A, (to within a shift by the addition of an

arbitrary function of ¢, which turns out to be irrclevant). Thus we shall
work hereafter with the equations

A+ rA;—qA4,, =0 (6.40a)
Apax +2I0A 2 — g+ 2qA;, =0 (6.40b)
Ay x—20A5 —r,—2rd, =0, (6.40¢)

The problem now is one of solving equations (6.40) in order to determine
those A,y, Ay, and A4, for which equations (6.39) are compatible. It turns
out (see §6.1.5) that this calculation itself is only possible if a further
compatibility condition is satisfied: this then yiclds those ecvolution
cquations (for g and r) which can be solved by the AKNS scheme. However,
it is unnecessary at this stage to proceed further with the analysis of
cquations (6.40) in order to find the time evolution of the scattering data.

We shall restrict further discussion to the case

Ay =), A0, Ay =0 as [x|— x, (641)
which is consistent with both g and r tending to zero as |x!— oc. The aim
is to determine how a, b, 4 and b develop in time, ¢, if yy evolves according
to equations (6.39), under the constraint of equations (6.40) and (6.41).
Now the eigenfunctions introduced by definitions (6.6), and which satisfy
the asymptotic conditions (6.4) and (6.5), can no longer be used to describe
the time-dependent solutions. (Presumably there will be a time dependence
superimposed on the asymptotic bchaviours as x — + oc.) The way forward
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is as follows. The time-evolution equation, (6.39a), becomes

oolo e

which has the asymptotic solution

S sal 0
l//(x;t)~(e0 _a,>f(x) as x| = w0,

€

where f(x)is an arbitrary two-vector. We now introduce matrices ® , and
@ | defined as for equations (6.6), and which also satisfy conditions (6.4)
and (6.5), respectively. Thus we can now express two solutions of the pair
of equations (6.39) as

at 0
=0, FE and W=0_E whereEz(eo _a,>,
e

with O =d,S (6.42)
(sce equation (6.7)).

In order that ® _E be a solution of equation (6.39a), we obtain by direct
substitution

O_E+®_E =AD_E, (6.43)

and it 15 casily shown that E,= — [ E where = <_é ?) On
post-multiplication by E ™!, equation (6.43) gives

O_,=AD_ 4+ ad_]. (6.44)
If we now differentiate equation (6.42) with respect to ¢ to give

® =0, 5+0,5,
and then usc equation (6.44), wc obtain

AD_+o®_[=®, S+ d,S,.
This and equation (6.42) yield
AD, S+ a®, SI=D, S+ d,S,. (6.45)

Finally, we evaluate equation (6.45) as x — + oo where

e’ 0 a 0
(I>+~< 0 ei;x> and A—»(O —oc>;

we also see that ®,,—0 as x— + o0, and so equ"ci’tion (6.45) gives

(Y A P (A G B (I
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{Note that the asymptotic behaviour of @, has been cancelled throughout
this equation.) Thus we obtain

a,=0, d, =0, b,= — 2ab, b, = 2ub;
or
a=a(l), a=4a(0), (6.46)
Bl =hoQle > and  BGN=b()e’  forallr,  (647)
where b= by({), and b= 50(5“), at t=0.

The time evolution of the scattering data has been determined, and it
is as simple as that already derived for the KdV equation (see §4.3). In
fact, not only are ¢ and 4 independent of ¢ but this in turn implies that
their zeros do not change. Thus we have maintained consistency with the
original assumption of d{/dt = 0: the discrete eigenvalues are constants of
the motion. It can also be shown that an infinity of conserved quantities
exists (see Q6.5).

The procedure for solving evolution equations now parallels that for
the KdV equation. Given initial profiles for the two potentials (gandr),
the scattering data (a.d, by, bo) are determined. Provided () is known
(see below), we can therefore obtain b({; t) and 1;(§; t), and hence reconstruct
the potentials at any later time. The only information we lack now is a

description of the class of evolution equations (for ¢ and r) which can be
solved by the AKNS scheme.

6.1.5 The evolution equations for q and v
At this point we return to equations (6.40),

Ape+rd,—gA,, =0
A+ 204, —q,+2gA4,, =0 (6.48a,b,¢)

Ay —2i0Ay, —r,—2rd; =0,

with the corresponding behaviours (6.41) at infinity
Ay =), Ay, -0, A, —0 as {x|l— oo, (6.49)
and examine their solution, Although an operator method is available for
the construction of the most general evolution equations (see §6.1.5(c) below),
we shall adopt an alternative approach here. Indeed, this approach is more
straightforward and is often more useful in deriving specific evolution
equations. We proceed by exploiting the fact that equations (6.48) involve
the parameter {, and are valid for all {. Thus we could, for example, express

the matrix A(x,f;{) as a polynomial in { and substitute into equations
(6.48). Upon setting the coefficients of the various powers of { to
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zero ~ remembering that g and r are not functions of { — we are able to
determine not only A, but also the equations for g and r.

6.1.5(a) Quadratic in {

One of the simplest cases to investigate is when A 1s a quadratic polynomial
in {; let us write

A= — Ay =g+ 2, S+ %,0% Aylzz:lgo+/31§+ﬁ2§2;} (6.50)
Ay :})0+})1C+}’2Q

where a,. fi; and y; (j=0,1,2) are functions of x and t. From equation
(6.48a) the cocfficients of " (n =0,1, 2) give

a+rf;—qy;=0, j=0,1,2, (6.51a,b,¢)
and from equation (6.48b) the coefficients of (" (n=0,...,3) yield
B,=0, (6.52a)
with
Bin+ 218, 4+ 29%,=0 (j=12), (6.52b,¢)
and
Pox—q,+ 2gay = 0. (6.52d)
Similarly, from equation (6.48c), we obtain
v, =0, (6.53a)
Vi 2ip — 2re;=0 (Jj=12), (6.53b,¢c)
Yox — F— 2ro, = 0. (6.53d)

(We note that this gives eleven equations relating the nine unknowns
a;, B;,7;; thus we may anticipate that ¢ and r are not arbitrary functions.)
Now from equation (6.51¢), with the use of equations (6.52a) and (6.53a),

we see that a, = 4,(1). Here &, and 4, are arbitrary functions. Also, from
equations (6.52c) and (6.53c) we obtain

, = iq4, and vy =ird,,

respectively, and then equation (6.51b) gives o; = d,(t). Thus we are left
with equations (6.51a), (6.52b,d) and (6.53b,d) which become

Aox +Bo—q10=0, (6.54a)
4,9, + 2if, + 294, =0, (6.54b)
Box—q:+2q2,=0, - (6.54¢)
18,r, — 2iyg — 2rd, =0, (6.54d)

Yox — It — 2rog =0, (6.54¢)



142 More general inverse methods

respectively. Equations (6.54b,d) immediately give
fo=1iq8, — 33,4, and Yo =irdy 4+ 38,1,
respectively, and so equation (6.54a) becomes
Oox = 385 (qr), or %o =34,qr + 4o,

wherce d(¢) is an arbitrary function. Finally, equations (6.54c,e) can be
written as

q,=14,q, — 33,4 + 4,rq* + 24,4, (6.55u)

re= 18y 4 2ayr — dogrt + 24,1, (6.55b)
respectively, which constitute the most general evolution equations for ¢
and r if the matrix 4 is quadratic in { (where d,(1), j=0,1,2, may be
arbitrarily assigned).

A particularly instructive case is afforded by the choice &, = 4, =0 and

&, = 2i, for then equations (6.55) become

g, — 4. — 24lgl* =0, (6.56)
with r = — ¢*; thus g satisfies one form of the NLS equation. The matrix
A now has the clements

Ay = — Ay = —ilg)? + 207 A= —1q, = 243

Ayr = — 143 + 24,

and so we obscrve that if ¢ —»0 as | x| — ¢ then
Ay —2i0%, A, -0, Az -0 as [ x| — oo,

and hence x() = 2i{? (see equation (6.41)). (The choice r=g* gives
ide — ¢., + 2¢1q|* = 0 which, it turns out, does not have any soliton solution
for which |¢| =0 as | x] — x; see Q6.8)

6.1.5(b) Polynomial in { "

Another important case ariscs if we choose the matrix 4 to be a polynomial
in inverse powers of ¢ (which makes this a degenerate problem); in fact the
simplest such choice, 4oc (™!, proves useful. Let us write
Ay == Ay =1(x, 1/ Ay =mix, 0)/G Ay =n(x,0)/L,
and then the coefficients of {® and {™*, from equations (6.48), give
. +rm—yn=0;
2im=gq,; m, + 2ql=0;

2in= —r; n,—2rl=
Thus

2, = —(gr): 4= —4ily; ra = —4ilr;
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and one special case is obtained by setting

I=lticosu, m=n=tisinuy,
provided g = — r = — fu, where u(x, t) satisfies
U, =sinu, (6.57)
the sine Gordon (SG) cquation. We can see that
1
'411H4v and Ay, —0, Ay =0,
6

as u—0, and so x() = i/(4¢).
6.1.5(c) General function of {

In conclusion we now quolte the gencral form of the coupled evolution
equations. The details are given in Ablowitz & Segur (1981, §1.5). It can
be shown, via an orthogonality condition, that the matrix A(x, t;{) exists
only if g(x,t) and r(x, t) satisfy

~ 0 con (T
{— Ia—i— 20((1,[)}(‘1)— 0, (6.58)

where 4,, - 2({) as x| > oc (see equation (6.41)), and ¥ is the operator

-0 0 * —
(72NN i (r ) J dx<q r). (6.59)
ox 0 q/), q —r

(Note that the integral here operates on all functions to the right in

equation (6.58).) Furthermore, equation (6.59) gives
0
Fo~sl—, as x — + «w,
Ox
and so equation (6.58) reads

-0 (r 0 r
(i 2)() e

which is a pair of uncoupled linear equations. Thus for example, if we take
the solution of the linear equation for r as

r=gitkx—on, (6.60)
where w = w(k) and o = «({), then

iw(k) = 2a(k/2) Le. a(l) = $1w(20). (6.61)

(This follows when we note that with a({) = 2", then

'Aa T o
a(%115;>=a0(%1) I P
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and 2= [, the unit matrix. If both r and ¢ are proportional to ¢**

that(r>:e"‘"(i>.then
q q
o l'f(?’ r o llfa eikx f ( l)nknfn F
14— = { 5 — =9 — 5 Y s
2ox N\g 2 ox q o0 2 q

and equations (6.61) follow for the component r.)

Thus a({) is related very simply to the dispersion function, am(k), of the
underlying lincar equation; a corresponding result is obtained for ¢. Of
course, it is the choice of 2(J) which now determines the evolution cquations
for ¢ and r from equation (6.58). We must note. however, that this choice
extends only to the linear problem and that the nonlinear system described

by equation (6.58) is then completely prescribed. For example, if we take
the linear equation

, SO

F, 4+ ey =0
for which w(k)= k2. equation (6.58) then becomes

{— f§i+i(2i$)2}(r>=o.
Cct q

This can be simplified, after a little calculation, to give

- ¢ ¢*foxt  —2r? r
i =0,
{ Y +( — g a%aﬂ)}(q)

which with r = — ¢g* is the NLS equation, (6.56).

6.2 The ZS scheme

6.2.1 The integral operators

Zakharov & Shabat (1974), as we have already mentioned, generalised the
Lax method. We shall see the connection with the work of Lax soon, but first
we introduce three integral operators. Let F(x,z) and K _(x,z} be N x N
matrices where

K. (x,z)=0 if z < x, (6.62a)
and

K _(x,z)=0 if z> x, (6.62b)
and let (x) be an N-vector. (We have chosen a notation similar to that
used earlier, although a direct correspondence is not implied at this stage.)
The integral operators J and J, on y are defined by

— 00

Je(yp) = Jw F(x, zW(z)dz (6.63)
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for all integrable ¥, and similarly
I, ()= J K, (x,z2)y(z)dz, (6.64)
so that

- XL

J, = J d:K . (x.2) and J_ :J dzK _(x,z).

We now suppose that J, and J, are related by the operator identity

U+I ) +T)=1+7_, (6.65)

where we assume that [ +J . is invertible so that
T+ Jp=(I+J ) U+,

Le. the operator I +J, is factorisable. (I, as usual, is the unit matrix.)
The identity (6.65). on i, can be written as

J K, (x,z0(z)dz + J F(x. ) w(z)d:

X - r

+J ‘K+(x,:)(J‘ F(:,y)dz(y)dy)d:zf K_(x. oz} dz, (6.66)

and if we choose to operate in - > x then the right-hand side is zero.
Furthcrmore. the double integral may be expressed as

J J K (x, y)F(y,2)(o)dy dz,

X

where the *dummy’ variables have been relabelled by interchanging y and
=. Thus equation (6.66) becomes

J {K+(x,z) + F(x,z) + J K (%, )F(y,2) dy}d/(z)dz =0,

- X X

(note the use here of equation (6.62a)) for all y(z). Therefore

Ki(x,2)+ F(x,2)+ J K., (x,»yF(y,z)dy =0, 6.67)
for z> x. Equation (6.67) is the matrix Marchenko equation for K , (x, z);

cf. equation (6.24). Similarly, if we consider = < x in equation (6.66), it can
be shown (sec Q6.10) that

K_(x,2)y=F(x,2)+ J K . (x, ) F(y:o)dy, (6.68)
which defines K_ in terms of K , and F. At this stage we have not restricted
the choice of F, and this we will next do.



146 More general inverse methods

6.2.2 The differential operators

In common with our previous analyses, we extend the definitions of the
matrices F and K _, and the vector ¢, so that they all may now depend
upon auxiliary variables, e.g. t, y. We shall describe the evolution of F and
K, (in t,y), and hence relate them to certain evolution equations by
introducing appropriate (linear) differential operators. We define the
N x N matrix differential operator A, on y(x; t, v} which has only constant
coefficients and which commutes with the integral opcrator J,., i.c.

[Ag Jpl=AJdp—=JAp=0. (6.69)
(Note that in the term J;A,, A, operates on y{x;t,y) first and then this

1s evaluated on x =z for the application of the operator J,.) Further, we

introduce an associated differential operator, A, which is defined by the
operator identity

AT +I =T +7 )4, (6.70)
(It can be shown that equation (6.70) also holds if J, is replaced by J_;

see Q6.11.) The operator A, is sometimes referred to as ‘undressed’, and
A as the ‘dressed’ operator.

Before the general development, we shall consider an example which
will illuminate the meaning of equations (6.69) and (6.70). Let

o ot
AO:I (X'&*E(—Z*

where « is a constant scalar, and I is the N x N unit matrix. Thus equation
(6.69), when operated on y(x; ), becomes

AT
(“E_aXZM_w (x,z;00(z; 1) dz

* ¢ o
——J F(x,z,t)(oca——gz—z>d/(z,t)dz=0. (6.71)

— o

After integration by parts, it follows that

r qudz=r Foodz,

for all bounded continuously twice differentiable y provided , , — 0 as
lz| - 0. Hence equation (6.71) can be written as

J (oF = Foo+ F W dz=0,

and therefore equation (6.69) is an operator identity only if F(x, z; t) satisfies

«F, + F,,—F, =0. (6.72)
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The associated operator A is now obtained from

A{d/(x; )+ Jl K. (x,z;00(z; 1) dz}

X
X

62

K . (x,z t)(oc%—— —)1//(2; t)ydz. (6.73)

= dl//, - l//)w\ + J\ azz

X

Again, we integrate by parts to find

J“ K, ..dz= IZ+IIIX+K+:1//+J

x

oo

K,z dz,

where K, = K, (x,x:1), and we assume that K., K,,—0as z— 4+ 0. It
IS now convenient 1o set A = Ay + A, so that equation (6.73) becomes

Ax(wJLKupdz) +aJL<K+,w+K+w,)dz+wiK+

X

X

+K+wx+1€+xw—f K. .¥dz

X

¢

=°‘J K+w,dz+K+wx—1€+zw—J K, ..¢dz

X X

or

d N €L X
(Al+2dK+>¢/+A1J\ K+l//dZ+J\ (aK+1—K+xx+K+zz)l//dz=0
X

since dK, /dx= K, +K,.. the total derivative in x. Hence if this
equation is valid for all continuous i, then
d . . .
Axin= = 2K, == 2R +K..) (6.74)
X
(so that A, 1s of degree zero), and K, (x, z; t) satisfies
oK, +K..—K, . +AK,=0. (6.75)
(Equations(6.72),(6.74)and (6.75) should be compared with those discussed
in Q4.1)
We now return to the main development and describe a further

important step in the ZS scheme. This is to introduce two pairs of operators
A, and A. A typical choice is

A = 12— M, AP = IpL L
0 at 0 0 ay 0>

and (6.76)

8 8
A = 0L M: A =135 4L,
"G Pay ™
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where «and ff are constants, and M, Ly, M and L are differential operators
in x only. Consistent with our notation, M, and L, are comprised of
constant coefficients only and so A§’, AP’ commute. Furthermore, both
Ay and A are to commute with the same operator Jy so that

[ADJ,]=0 and [AP, 1] =0. (6.77)

The operators A are defined according to equation (6.70). with the sume
J+9

AT+ T Y=+ J )AL, i=1.2 (6.78)
At this point it is instructive to examine the operator
P=AMAII + T, )= APAY +T ) (6.79)

which, upon the use of equation (6.78) twice, gives
P= A"+ AP — AP + T AL
=+ )APAR — (I +1 )APAY
= +J )AL AP].
However, A}’ and A}’ are chosen so that they commute with one another
(see Q6.12); hence P = 0. Thus we obtain
P=[A", AP)(I4+],)=0
and, since I + J _ is invertible (an earlier assumption which can be checked
1n specific cases), we have
[A1), A =0, (6.80)

re. A commutes with A®. If we now introduce the choice given in
equations (6.76), equation (6.80) becomes

¢ ¢ ¢ (¢
lo——M —4+L)—(If—~+L |l Iz- —M |=0.
(e )(orgy )= (g o)
which simplifies to

JL oM
2 + f— +[L,M]=0. (6.81)
ot ay

This 1s a generalisation of Lax’s equation (5.28) to two auxiliary variables;
the Lax equation is recovered if $=0 and x= 1. Equation (6.81} is the
system of nonlinear evolution equations which can be solved by the ZS
scheme.

The procedure for solving equation (6.81) is now described. The variable
coefficients which arise in the ‘dressed’ operators, L and M, constitute the
functions which satisfy the system of evolution equations. These functions
are known in terms of K, (cf. equation (6.74)), where K _ is a solution of
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the linear integral equation, (6,67). This equation requires F, and F is
supplied by the solution of a pair of equations (cf. cquation (6.72)), a pair
since both cquations (6.77) are to be satisfied. Note that the eigenvalue
does not appear explicitly at any stage in the ZS scheme.

The correspondence between the AKNS scheme and the ZS scheme is
now clear. In the first place they both incorporate the same form of matrix
Murchenko equation (cf. equations (6.24) and (6,67)), although the AKNS
scheme 1s a 2 x 2 system whereas the ZS 1s N x N, However, the definitions
of the two 17 functions differ significantly (see equations (6,22) and (6.77)),
In fuct, the definition of F in the ZS scheme, via the linear partial differential
cquations implied by equations (6.77), is often more useful in practice. In
the second place the time evolution of F is particularly simple in both
schemes (from equations (6.46) and (6.47), and one of the pair (6.77)), but
the representations of the evolution equations which can be solved do
differ somewhat (cf. equations (6.58) and (6.81})),

To conclude this discussion of the ZS scheme we shall present some
examples which show how various standard evolution equations can be
obtained. In §6.3 we shall then describe two simple solutions obtained by
employing the schemes described here.

6.2.3 Scalar operators

The simplest choice for the pair of operators AL’ and AP is to let them
be scalars. With this restriction we shall examine two examples, the first
of which recovers the classical KdV equation,

6.2.3(a) The KdV equation

In this casc we set

) & 0?
(1) (2) = .
Ay —52+46x5 and AP = e

(see equations (6.76) with a=1, M= —40%/0x* f=0 and L,=
— 0%/0x*%), and write
82

o+
ax?
so that from equations (6.74) and (6.75) we obtain

AP = L= u(x, t)
d
u(x,t)= — ZaK,,(_x, X; t) where K, ,, — K., +uK, =0, (6.82)

(since A, is replaced here by u). Similarly, we see that [A{,J ] = 0 implies

Frx— F..= 0, (683)
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since « =0 in equation (6.72). The identity [A{",J;] =0 gives
FirdlF +F..)=0 (6.84)

3

obtained by following the analysis which leads to equations (6.72); this is
left as an exercise (see Q6.13). Finally, we have

0
AV = e M
ot
where we write M=M,+ M, and M, = —4¢%/x?, so that cquation

(6.78) on  becomes

0 o? = * dJ 03
—M‘d/+(8t+48x3M‘>L I\A//dz:L K+(a—t+4az3>¢/dz.

This simplifies to give

X 63 X ©
_Mlll/+J\ K+,ll/dZ+4FJ\ K+ll/dZ—M1J K+[l/d2
X

x x x

=4J\ K+d’z:zdz7

which in turn becomes

“ * d?K, dK .
“Mi{ ¥+ | Koydz)+| K. ydz—d 5 +—"2+K, v
. dx dx

x

dK -~ - *
—“4(2 d = +K+x>¢/x_4K+l//xx+4J\ K+xxxll/dz
X

x

O

= —412+¢xx+412+z¢x-412m¢—4j K...vdz, (6.85)

x

after expanding the term in @*/0x* and integrating by parts on the term
in ¥,.,. (Remember that K, = K _(x, x;1).) Now suppose that

0
M, =4 A(x, t)a— + 4B(x, 1), (6.86)
X
then equation (6.85) can be written as

d?K, dR,, -~ _ N dK,
— 4 —— x — _ —
(dxz g TR Rt B— AR, =43

"

X

+ J (K, +4K, +4K,,,.—4BK , — 44K, Wdz=0.

X

Thus we choose

A= -3 =3y (6.87)
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and
L . dK,, dK
B=AR, +K . R, -5+ S8«
o TR * dx dx?
R . . . 5 " d?K
:;(K+xg—K+zz)+K+z:—K+xx—(K+xx+K+xz)—vd)?t

if we use equations (6.87) and (6.82). Hence

342K,
B:—E dxz

and so

';3

‘ d
an=C +483 6u -~ Ju,.

The resulting cvolution equation obtained from equation (6.81), with

az
=1, f=0, L= e u
and
3
M= - a 3+6ua‘+3ux,
1S
o* a3
u,+( -axz+u>( 03+6ua +3u>
o3 0 02
“(“48x3+6u&x+3ux>( a—2+u>=0,
or

- buu, +u_,, =0,

our usual form of the KdV cquation.
6.2.3(by The two-dimensional KdV equation

This example is a straightforward extension of the choice required for the

KdV equation; it involves the addition of a second auxiliary variable, y.
Thus we choosc

0 o3 0 02
AP = 14, and AP = T
o =5 T n & e
with
AP = AP fulx, t,y) .
and

0
A = A — 6u— — 3u, + w(x, 1, y).
0x
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If we follow the development given in §6.2.3(a) we find that
F,+4(F  +F..)=0

and
Fy+Fzz—Fxx=0’
with
u, - buu, +u, , —w,=0,
where

w, = = 3u,.

The latter two cquations can be written, upon the elimination of w, as
(u, = 6uu, + Uyyy), + 3u, =0,

namely the 2D KdV (or Kadomtsev—Petviashvili) equation (see Q5.14,
Q6.14).

6.2.4 Matrix operators

Since the operators A}’ and AY’ may be matrices, we anticipate that a
wide class of evolution equations can be found. In this section we shall

give two examples which show how the ZS scheme works for matrix
operators.

6.2.4(a) The nonlinear Schridinger equation

We start by considering

J ? I 0\ ¢
AW = [ jgg— — — A(Z): .
0 ('“at 6x2> and 0 (0 m> éx’

where I, m and « are real constants, and [ is the 2 x 2 unit matrix. From
equation (6.74) we see that

0 0*
1) ;
A I('“at 6x2> Ul

where U = — 2dK , /dx, and from (6.78) we obtain

I 0 ~ o0 @€X
(4 0) (o &ew [ ko) oo e

X

_(1 0 e (PO, o
=0 z//x+L Ao m>‘/’= : (6.88)

where we have written A® = AP + V(x, ). On integrating by parts in the
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last term, equation (6.88) becomes

I 0\ . ~ (1 0
b6 el g
R e g
. 0 m 0 m x

and so we choose

S (A 0 B
o o) TRy )T

. A B
where K | ~< . D>' Thus K, (x,z;t) must satisfy

C
(l O>K+X+K+z(1 0>+VK+=0
0 m 0 m
and if this equation is evaluated on z = x we find, for e» "1 ple. that
lA, = —(I-m)BC and mD, = (- "1«

The equations for F(x,z; ), from equations (6.77), are

! 0 I 0
(0 nz)FX+Fz(O m>:0

and ioF, + F.~F, =0.
An equation for u(x,t) can be obtained if we let B= « .ind ¢ 4 u*
(u* is the complex conjugate), so that BC = + |u|? whic! vives
) 2 T(— 2 , \
A =il - o FU=mul e )
ot éx? +u* (=1 1,
and

I 0\o 0 u
@ - -
A (0 m>6x +d m)(q'-u* 0>'

The Lax equation, (6.81), with & —ix and =0, therefof becomes

(0 Lo o
P i o) o mfa TG .
& (T = mlull u,
{Iﬁ+2< T u} i(l‘m)lulz/’{')
o F(=m)ul?/l Uy
—{IWH( +ut + (I — m)|u|2 )/ )

I 0\ ¢ 0 u
X{(O m>5;+(l—m)(‘{-u* 0>}=0 (6.89)
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which, after expanding the operators, implies that
. 2
il — myu, + (I + mju,, + l—(l—— my(l? — m*u|u|*= 0. (6.90)
m

This is a nonlinear Schrodinger equation, with coefficients which depend
on the arbitrary constants [, m and «. (Two elements in the matrix equation
(6.89) are identically zero, one gives equation (6.90) and the fourth is the

complex conjugate of equation (6.90).)
6.2.4(b) The sine—Gordon equation

This example exploits the matrix formulation more fully by using 4 x 4
matrices. Let us define

¢ (=1 0\0o I oo
AW [ - A2 = —, (691
0 “aﬁ( 0 1>ax and U (0 0>5x (€0

. . o ~ (0 =1
where [ 1s the unit matrix (either 4 x4 or 2x 2), [ = ) 0 and o

is a real constant. (The zeros appearing in the definitions (6.91) represent
2 x 2 zero matrices, so that we have partitioned the operators into four

2 x 2 matrices.) We may now obtain A'Y and A'* from a single calculation:
let

0 0
Ay=Too— —
0 Iocat—i—IOax

so that I, can be chosen as the matrix used in A or, with o =0, as that
in AY. Now we write

A=Ay 4+ Wix, 1)

so that equation (6.78), operating on i, becomes

AO(¢+ JwK+z//dz> + w(w + rK+¢dz>=Aow+r K. (Ag¥)dz

x x

ar K+,¢,dz+10<—12+¢/ + JwK”l//dz) + w<¢+r1<+./,dz>

:J K+10¢/zdz=—1€+10¢/—J

or

oz

K..Ippdz,

provided that K ,(x, z; 1} >0 as z > + oo. (Remember that K,=K Hx =
K .(x, x; ).} This equation is satisfied if

W+ [K,.,1,]=0, (6.92)
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where K ,(x,z:1) is a solution of

oK+ 1K, + K, J,+ WK, =0, (6.93)
Thus if
A = A+ W50
then equation (6.92) yields

w1 0\/A B A B\/—-1 0
Lo 1) C D C D 0 I
B 0 -2B
\2¢ o )
A B . .
where K | = (C D>' Similarly, if

then

_([I,A] 1B
‘(—C‘T 0)'

The evolution equation (6.81), with § =0, is therefore

{4 i m b Eew

which can be simplified to read

(1,41 IB ~[I[,A] IB [BC,N [I,A1B\ _
“(—CT 0>,+( —CT 0>x+2(é[1~,2] 0 )‘O' (6.94)

We now choose

- _i 0 w _ ,
[,A]——:1 w 0/ W = w(x, 1),

— o 1 [ei? 0
I Z—CI:v:‘_‘ 0 e“iu/z ° uzu(x,t).

« ~ A ~ - b
(These require B= —[vand C=vl, since [* = —I,andA=<jb a—iw/4>

and

for arbitrary a and b.) Equation (6.94) therefore yields

i1/ 0 0 0 w =
Y VG = .95
4(%[ 6x>(w 0>+2[1,v] 0 (6.95)
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and

1 [ weiv'? 0
> [—— . = (), 6.96
(alr+vx) 8( 0 ﬂwe—m/2> ( )

since the equations for B and — CT are identical: both give rise to equation
(6.96). Equation (6.95) now becomes

O N0 Y L naf(© VY=o
YT a \w o) TN o)
which implies that

aw, — w, +sinu =0,

and equation (6.96) gives
au, + U, =w.

Thus, upon the elimination of w, u is a solution of

u, — otu, =sinu; (6.97)
this is the sine—Gordon (SG) equation written 1n laboratory coordinates.
Alternatively, if we introduce the characteristic coordinates

E=tx—ra). n=hx+1a) (6.98)
then equation (6.97) becomes

Ug, = SINU; (6.99)
cf. equation (5.67).

A B . .
The equations for K | = , derived from equation (6.93), are
a C D

a(A B> +<—A »B) +<——A B) +2(—1§c ~1§D>:0

C D), ¢ D), \-C DJ, Ca CB
(6.100)

and

ia 1B AT 0 [[,AJA+vC [I,A1B+vD
<0 0>x+(CT 0>z+< oA oB )»0 (6.101)
both for z > x. Equation (6.101) would seem to imply that B =0, for z > x,
which in turn makes it impossible to generate solutions of the SG equation.
However B # 0 if the four-vector, v, on which equation (6.101) operates
is not comprised of four linearly independent components. Indeed, it can
be shown that the SG problem is degenerate (cf.§6.1.5(b)) in that, if

(¥
W'(m)
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where , ¥, are two-vectors, then ,; and , are linearly dependent.
(This property is discussed in Q6.15.) The construction of solutions of the

SG equation, using the ZS scheme, is therefore far from straightforward
even though the equations for F,

TOF+FTO*O

0 o/ * "=\o o) 7

-1 0 ‘—1 0
F F =0
“‘+< 0 1> "*FZ( 0 1> ’

look unremarkable.

6.3 Two examples

We end with an outline of how to construct solutions of the NLS
and sine-Gordon equations. Usually the most convenient method is
to work with the ZS scheme, thus avoiding any specific calculations of
the scattering data. However, the difficulties associated with the SG
problem (mentioned above) suggest that we should use the AKNS scheme
in this case. We shall therefore take the opportunity to give one example
of each scheme: first the NLS equation using the ZS scheme, and second
the sine-Gordon equation using the AKNS scheme. We shall describe the
solitary-wave solutions of these equations, but we shall also mention the
generalisations necessary to produce the N-soliton solutions.

Example (i). the nonlinear Schrédinger equation

The nonlinear Schrodinger equation, (6.90), is
2
(! — myu, + (I + myu, + r(l —m)(? - mPulul*=0  (6.102)
m

which we shall simplify by making a suitable choice of I, m and « (see later)
so as to enable us to solve

w4 u  +ulul>=0; (6.103)
this is the equation discussed in Q2.3. From §6.2.4(a) we have the equations
for F{x,z;t} as

10 I 0
F,+F =0, 6.104
(0 m> ot Z(O m) (6.104)

and

iF, + F.,— Fo =0. (6.105)
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If we write

then equation (6.104) shows that
r=rimx —lz;1) and s=§(Ix - mz;1),
and from equation (6.105) it is clear that there is a simplc cxponential

solution with

rx, z;t) = roexp {p(mx — Iz) + ip*(I* — m*)tja} (6.106)
and

s(x, z; 1) = sgexp {a(Ix — mz) + ic*(m? — 1)t/a}, (6.107)
where ry, 54, p and ¢ are arbitrary constants.
The equation for K, (x,z;t) is the Marchenko equation

v

K (504 F(x, z; 1) + -[ K, (6 y0)F(y, z;0dy=0

x

{see equation (6.67)) where we write
K. = a b
*\e d
a b 0 r *fa b\/0 r
(0 2+ o) (A0 Horme

(upon the suppression of the arguments of the functions). Thus, we obtain
the scalar integral equations

to give

oo

a(x,z;t) + .[ b(x, y; )sq exp {o(ly — mz) + ic*(m* — *)tja} dy =0

x

and

b(x,z;1) + roexp {p(mx — lz) + ip*(I* — m*)t/a}

+ J a(x, y; 1)roexp {p(my —Iz) + ip*(I* — m*)t/a} dy =0,

with two similar equations for ¢(x, z; 1) and d(x, z;t). It now follows that
a(x, z;t) = e~ ™ L{x, 1), b(x,z;t) = e P=M(x, 1)

and thus the above two integral equations become

o

L+ SOMJ exp {l(g — p)y + ie*(m* — *)t/a} dy =0

x
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and
M +roexp {pmx + ip*(I* — m?)t/a}
+r(,LJ exp {m(p — o)y + ip*(I1* = m*)tja} dy = 0.

The integrals in these equations are defined provided

Ao —p); <0 and R{m(p —0)} <O,
and so I and m must be of opposite sign. Let us choose, for example,
[=2, m= -1 and a=1,

so that equation (6.102), with the lower sign, becomes
i, 4+ u,  +ujul?=0. (6.108)
Hence, provided #(g — p) < 0, we obtain the solution for M,

roexp(— px + 9ip2)

M(x,t)=-—— _ .
(x,1) $rosolp — o) 2exp {3(a — pYx — 3i(p + o))} — 1
and then
b(x,x;t) = roexp { —3p(x - 3ipt)}

-. 6.10
Srosolp —0) 2exp Mo — o)~ 3ip v oy — 17 @1

From §6.2.4(a) we note that the solution of equation (6.108) is therefore
u(x, t) = b(x, x; 1),
which is more conveniently expressed by choosing
$rosolp—o0) r=—1,

with p=k+14, 6 = —k +1i4 for k> 0. The solution given in equation
(6.109) now simplifies to become

bix,x:1) = — Iroexp { — 3idx + 9i(k? — A2)r} sech (3kx + 18kAr)

with

rOSO = e 8k2.
Finally, the corresponding analysis for the two functions ¢(x, z;t) and
d(x,z;t), and the requirement that c(x, x;t)= — u*(x,t) (see$6.2.4(a))

implies that s, = —rqandsor, = £ 2\/k If we compare equations (6.103)
and (6.108) we see that a solution of equation (6. 103) is 3b(x, x;t); let us
therefore introduce

a=3/2k and ¢ = —6A
A solution to our original NLS equation, (6.103), which represents the
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solitary wave, is thus

u(x,ty= +a exp[i{g(x —ch+ nt}:l sech {a(x — ct)/\/i}

where n = 4(a’ + 3¢?). This is the solution already given in Q2.3 (where
there is no restriction that a > 0).

The generalisation of this method of solution to the construction of the
N-soliton solution is immediate: the solutions given in equations (6.106)
and (6.107) are replaced by sums of exponential terms of this type, ¢.g.

N
Mx.zity= ) rexp | pmx —Iz) +ip2l? = m?ya):
n-1

see Q6.16.
Example (ii). the sine - Gordon equation
The sine-Gordon (SG) equation written in the form

u,, = sinu (6.110)
(see equations (6.97) and (6.99)) can be solved by using the AKNS scheme

described in §6.1. Let us first summarise the details of this method as it
applies to the SG equation.

The eigenvector, y, satisfies
_1/A B —il ¢
w,~g(3 _A>w, wf(”q ac>‘”’

A=%icosu, B =1lisinuy,

see equations (6.39) and §6.1.5(b). Then

where

g= —3u; (6.111)

qix, 1y = — 2K ,,(x, x; 1) (6.112)
where

@

K“(x,z;t)ﬁ-J~ Kyt f(v+z0dy=0 (6.113)

x

and

o0

Klz(x,z;t)—f(x+z;t)—_[ Knynf(y+zndy=0 (6.114)

x

(see equations (6.35) and (6.36)) with

— @

1 (= byk) X .
f(X: t):ﬂ_[ ﬁlanp{l(kX - 3t/k) dk —1';1 caexp {i(X = 31/0) )

(6.115)
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see equations (6.26), (6.46) and (6.47). (Remember that

A i
Ay =~ —— asu—0
¢ 4
for the SG cquation: see §6.1.5(b).) Here bo(k) and a(k) are the appropriate
scattering data, and ¢,, n=1,...,N, are the normalisation constants at

cach discrete cigenvalue, { =, all at ¢ = 0; see equations (6.7) and (6.26).
The solitary-wave solution of the SG equation can be obtained by
choosing
q(x,0) = Asech (Ax + p);
this example was discussed in §6.1.3, although here we have allowed an
arbitrary phase shift (). From §6.1.3 we find that
0= A0+ 4
R T
and

by($) =0, {#Lids bolbid) = — ¢ #

so that there is only one discrete eigenvalue (at { = {; =i, A > 0). Thus
cy= —iie™H
and then from equation (6.115) we obtain
F(Xit) = — de ™ GX/2+tivw,

The pair of coupled integral equations, (6.113) and (6.114), now become

K — Ae““*”“J K io(x,y;0e770+92dy =0 (6.116)

X
and

o«
K12 4+ Je Wt Ax+z)/2 +;{CA(“+”“J K”(X,y;t)eAMy”)/zdy::O,

which imply
K%, z;0) = L(x, t)e ™ */2,
Hence
K12 + {ACA(u+r/A+/lx/2)+ Le‘(u+r/,i+,ix)}eA/1z,f2 :0
and so from equation (6.166) we obtain

L+()'e—i»x/2+ Le—ftx)eAZ(u+r/},)A},x,: 0
Thus

)e—Z(u+r//1)73Ax/2

Lix,t)=

- 1 + e—2(u+r/1+lx)
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which gives
Je~wtii) - Ax+z)2

Kixzt)= — [ + e 2+ta+ix)”

and then from equations (6.111) and (6.112) we have
4;.eA(u+Ax+r/A)

Ux, 1) = - | e 2wtixtyn

This equation is integrated once to give
u(x,t)= —4arctan(ctt 14,
if u—0 as x — — o, which 1s conveniently written as
u(x,1) = darctan (ce** *14), (6.117)

where ¢ = —e*. This is the solitary-wave solution of the sine-Gordon
equation (6.110), for arbitrary constants ¢ and 2 # 0 (see equation (5.71)).
(Although our derivation has been for 4 > 0, solution (6.117) is also valid
for 4 <0 essentially because f= f: see §6.1.3). The solution with £ > 0 is
usually called a ‘kink’, and with A < 0 it is an ‘antikink’; see §8.1.

The generalisation to N-solitons is most easily accomplished by
expressing f(X: ) as a sum of exponential terms of the type used above, i.c.

N
f(X;n= =% Aexp{—GAX+1/A+u)}

n=1

see exercise Q6.17.

Further reading

6.1 The AKNS scheme is described extensively in Ablowitz & Segur (1981) and Lamb (1980).
6.2 The ZS scheme is described in the paper by Zakharov & Shabat (1974) and also in
Appendix 3 of Novikov, Manakov, Pitavskii & Zakharov (1984). Elements from both

schemes are presented together in Dodd, Eilbeck, Gibbon & Morris (1982, Chap. 6),
and Newell (1985, §3(c)).

Exercises

Q6.1 Symmetries of the eigenfunctions.

50\ . . :
(i) Show that,if r= + g is real and yy = (llfx( E)> is a solution of the pair
Y2(x; )
of equations (6.1) and (6.2), then so is

. l//z(x?‘”C) >
w"(iwx;%) '

(if) Show that,if r = + g*, where the asterisk denotes the complex conjugate
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¥i(x0)
¥2(x; )

is a solution as above, then so is

Awﬂﬁﬂ>
v _(itﬂ‘(x;é*) '

Q6.2 Wronskian relations. Show that, if (l//1> and (d)‘) are two solutions of
2 2

and t//=(

™

the pair of equations (6.1) and (6.2), then

0
;W(t//,¢)=0,
X
where
W(l//’d’): iy — Vo0,

Hence deduce that
W p)=1 and W)= —
where l//+,l/;+,l//A and l/l are defined by equations (6.4) and (6.5).
Also show that
W J.)
and obtain similar expressions for Wy _ t//+ W( t// ¥, )and W(II;A,[/;+)

Finally, by considering the form of W(y_, iy _) as x — + o, obtain the
law of energy conservation in the form

ad + bb = 1.

Q6.3 Symmetries of the scattering data. Use the results of Q6.1 and Q6.2 to show
that, if r = + ¢ (real), then

<u71+ x;o>=<rwz+(x; ~c>>
and V2 (x0) Vi =0)
)>:<¢wz x~—§)>
:0) Y- (0 )
and hence deduce that

a0 =a(-1), by=Fb(-0.
Now obtain the corresponding results if r = + g*.

Q6.4 Symmetries of the Marchenko equation. Use the results of Q6.3 to show
that, if r = + ¢ (real), then

K; = +Ky; and Kz, =Ky,
where

K11+J K, fdy=0 iK12+f+J Ky fdy=0

x x

(see equation (6.24)).
Now obtain the corresponding results if r = + g*.
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Q6.5 Conserved quantities.
(1) Eliminate y, between the pair of equations

Y= —100y +q¥,; Yo =1l + 1y,
and then with the choice yy, =, _ let ¢y, = e "***% and obtain the

equation for 0(x; ¢, 1).
(i) Now, since 6 -0 as |{| - oc, assume that

0.6 I (X, 1)
(AX6,0)= ) —
,.:0(21&) !
and hence show that
Co= —4qr, Cy= —gry.

Cp n-1
Cnv1 =4 ; + CmCpn-m-1 (”21)
x =0

m

(iii) Deduce that

and hence show that
1

2iy

loga) =% ( [ ¢, (x, 1) dx
n=0 - x

and thus obtain the conserved quantities
X
J c(x, t)dx = constant. nz=0.

(Zakharov & Shabat, 1972)
Q6.6 Conserved quantities again. Use the results of Q6.5 to obtain the first three
conserved quantities in the two cases: (i) r= + ¢ (real), and (i) r= + q*
(see QS.5).
Q6.7 Modified KdV equation. Show that the choice
A= — Ay =c{0® +1grl - Jigr, - 41}
A 1 2(‘1» r, C) = C(lqcz - %qxc + %iqz r— %thxx)»
Ay =A,5(r.q, ),
(see §6.1.5), with r = + g and ¢ a suitably chosen constant, gives the mKdV
equations
G F 607G+ Grx = 0.
Q6.8 NLS equation. Show that the equation

ig + 4 —qlql*=0

{see Q2.4), has a solitary-wave solution for which Igi+0as ix| - 2.
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Q6.9 Sinh—Gordon equation. Show that the choice
i i
, A“:—A“:icoshu, A12=—A21=—I51nhu

| with ¢ = r = lu, (cf. §6.1.5(b)), gives
; u,, =sinhu.

QO6.10 Operator K- Deduce from equation (6.66) the identity

©

K_(x,2)=F(x,2) + J K (x,)F(y,z)dy.

QO.11 Operator identity. Show that, if
AT+ )= +T)A, and I+ )i+Jy=1+
where Ay and J, commute, then

A +T )= +J))A,.

Q6.12 Conunuting operators. Verify that thefollowing pairs of operators ¢

¢ N " ¢ M o

; () _ . 2) .

(1) AO)—“T_{'_ Z“n;“"ﬁ A‘O —BT_Q_ Z ﬁmq me
't n=1 7R [ At 0Xx

B
where %, %,, f and f,, are constant scalars;

. 1 0\/. ¢ @2 I 0\ ¢

(i) A = r——— |, AP = —,
0 1 dt Ox 0 m/jox

where 2,1 and m are constants;

0

(1 10 ¢ -1 0\ ¢ 2 i 0
(i) ALY = oq— + —, AP = ,
0 1/ ét \ 0 1/ix 0 0/)ox

where 2 is a constant.
Q6.13 KdV equation: operators. Show that, if

03
AV = — 44—
C o ax
then A} and J; commute provided

Fl + 4(FXXX + FZZZ) = 0:
see equation (6.84).
Q6.14 Two-dimensional KdV equation. If

0 a3 a0
A A(2
o=+ PYWEL 6= 2°
ct Ox dy" dx

and we write

AP = AP + u(x,1, y),
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show that

-~

I3
AV =AY — 6u— — 3u, + w(x, t, y).
0x
Hence deduce that

U, — buu, + Uy, —w, =0
with

w,= —3u,

which together give the 2D KdV (or Kadomtsev - Petviashvili) equation.
Q.6.15 Sine—Gordon equation.Write

-1 0 1
l//1,=R'l//1+i§( >l//1 Y, =AY,y
0 1 ¢

where R" and A’ and 2 x 2 matrices independent of { (see §6.1.5(b)) and
introduce the two-vector ¥, defined by

By =,

Hence obtain the two equations
Ly, + My =Ny, Ly, + My =Ny
for suitable 4 x 4 matrices L, L, M, M’ and N, N’ independent of J (where

_ : W
L,L/, N, N’ are constant matrices), operating on the four-vector i =( Y.

2
Q6.16 NLS equation: soliton solution. Obtain the two-soliton solution of the NLS
gquation
i, + Uy, +ulul? =0,
see §6.3, example (i).
Q6.17 Sine-Gordon equation: soliton solution. Obtain the two-soliton solution of
the SG equation
Uy, =sinu
m the form
iy + 4, \exp(0,) —exp(0
uix, 1) = darctan {(M 2 \exp(f,) p( 2)}’
Ar— 4y /) L+exp(0y +6,)
where 0, = A;x + t/A; + u;; see §6.3, example (ii).
Q6.18 Sinh-Gordon equation. Use the method of §6.3, example (ii), and Q6.9
to obtain the solitary-wave solution of the equation
u,, =sinhu.
Q6.19

Modified KdV equation. Obtain the two-soliton solution of the mKdV
equation

ul + 6u2ux + uXXX = 0;
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see Q6.7. Also write down the solitary-wave solution of this equation.
Q6.20 Modified KdV equation: breather solution. From the two-soliton solution
of the mKdV equation (see Q6.19), obtain the breather solution by choosing
the two cigenvalues to satisfy {, = — (¥.
Q6.21 Sine Gordon equation: breather solution. Let a; = a +if and choose a, =
at. and hence obtain the breather solution of the sine-Gordon equation
U, =Ssinu
from the two-soliton solution given in Q6.17.
Q06.22 Sme Gordon solution: asymptotic behaviour. Describe the behaviour of the
two-soliton solution of the sine-Gordon equation, given in Q6.17, as
t»— s fort=0;as1-+ .
[You may find it more convenient to work with u, rather than u itself.]
Q6.23 Kinks and antikinks. Take the two-soliton solution of the sine-Gordon
equation, given 1n Q6.17, and find the conditions necessary for
(i) a kink—kink interaction;
(i) a kink-antikink interaction.
Q6.24 Davey-Stewartson equations. Show that the choice

m c & 2 g (1 0\ @
A= o+ = | AG =1p—+i .
it O ay 0 —1/¢x

leads to

A“’=A‘o”—(¢ “’*)- A‘z’:A‘o“—i( y “’>,
v or) ~0* 0

where ¢ = ¢(x, y,1) and = y(x, y, 1).
Hence obtain the Lax equation for this system in the form of a pair of
equations

iy, = B, + (P — ¢*) B, +id, =il
[This system arises in the study of nearly monochromatic, nearly
one-dimensional wave packets on the surface of water: see Davey &

Stewartson (1974), Anker & Freeman (1978a).]
Q6.25 Boussinesq equation. Show that the choice

i 0 0? ¢3 a
A= T AP =
0 \/}az ax? T ox® ox
leads to
a
AV = A 4 u(x, t); AP = AP 614»6; —3u, + w(x, t).

Hence show that

il
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and then
Uy —Upp t 3(u2)xx —Uixxx = 0,

the Boussinesq equation; see Q5.21 and Hirota (1973b).
What pair of equations does F(x, t) satisfy for the above operators?
[This Boussinesq equation admits solutions which describe head-on
collisions between solitons.]
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*The Painlevé property, perturbations
and numerical methods

I'his chapter is devoted to three additional topics.

The equations we have discussed have been those for which the inverse
scattering transform is applicable. However, given any evolution equation,
it is natural to ask whether it can be solved by the inverse scattering
transform (IST); in other words, how do we decide if a given equation is
completely integrable? This question is still open but a promising conjecture
concerns the so-called Puainleré property. We shall describe how the
Painlevé equations arise, what they are and the conjecture itself.

If the evolution equation cannot be solved by the IST, but is close to
one which can be (by virtue of a small parameter), we may adopt the
following procedure. The IST method is formulated in the conventional
way but the time evolution of the scattering data now involves the small
parameter. This parameter can be used as the basis for generating an
asymptotic solution of the inverse scattering problem, and hence of the
original equation. We shall outline the development of this argument.

Finally, if neither of the above methods is applicable, or if a graphical
representation of the solution is required, then we may use a numerical
solution. Indeed, the original motivation for the IST came from a study
of numerical solutions of the KdV equation. We shall, in the final section
of this chapter, present some numerical methods suited to the solution of
the initial-value problem for evolution equations.

7.1 The Painlevé property

7.1.1 Painlevé equations

Solutions of ordinary differential equations may in¢orporate singularities
of one sort or another. So, for example, the solution might have a pole
or a branch point; note that we are thinking of solutions in the complex
plane. Now the singularities of the solutions of linear differential equations
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are always at points which are fixed, i.e. their positions are independent

of the arbitrary constants of integration. A simple example of this type is
the equation

dw
il =0
z dz +w N
which has the general solution
w(z) = ¢/z,

where ¢ is an arbitrary constant. This solution has a simple pole at z = 0,
for all ¢ #0,

Nonlinear ordinary differential equations, on the other hand, may have
solutions which have movable singularities, i.e. whose position does depend
on the arbitrary constants of integration. Thus, for example, the equation

dw )
i =0
dz W
has the general solution
1
w(z) = :
Z ZO

where z, is an arbitrary complex number; this solution has a simple pole
at the movable point z = z;,.

It is convenient to differentiate between poles and all other singularities
of an ordinary differential equation. A critical point is a singularity. i.c. u
point at which the solution is not analytic, which is nor a pole. Thus u
critical point might be a branch point or an essential singularnity: for
example, the equation

.
dz
has the general solution

w(z) =log(z —zo),
where z,, is an arbitrary constant. This solution therefore has a logarithmic
branch point at the movable point z = z,.
Now, we are concerned here only with those equations which do not
contain movable critical points. Such equations have long been of interest

to mathematicians. Indeed, in 1884, Fuchs (see Ince, 1927) showed that if
the first order equation

dw
Fr F(z,w), (7.1)
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where F is rational in w and analytic in z, does not contain any movable
critical points then

dw
= F(z, w) = u(z) + bz)w + c(2)w?, (1.2)

for some analytic functions g, b and ¢; this is a generalised Riccati equation.
At the turn of this century, Painlevé and Gambier extended these ideas
to equations of the second order,

d?w dw |
EZT: F<Z, W,E;>. (73)

They found that, similarly, if F is rational in w and dw/dz, and analytic
in z, then there are 50 different cases, Of these 50 equations, all but six
could be solved in finite terms of known functions, i.e, elementary functions
or elliptic functions; the other six equations have solutions which are

called Painlevé transcendents. They are usually labelled P-I to P-VI, the
first three being

d2

P-1: BZT = 6W2 + Z, (7.4)
d2

PIl S =zw+ 2w + (7.5)
dz
d? 1 N Tdw é

P-111: ‘: = du J e + (Wl + P+ 9w+, (7.6)
dz wldz zdz oz w

where «, ff, ; and o are arbitrary constants. These equations cannot be
reduced to simpler equations: they are irreducible. (A complete description
of these first and second order equations is given in Ince (1927, Chaps. 13
and 14))

7.1.2 The Painlevé conjecture

We now turn to the relation between evolution equations which can be
solved by the inverse scattering transform, and the Painlevé equations.
First, for convenience, we refer to the absence of movable critical points
for an ordinary differential equation as the Painlevé property. Thus the 50
equations mentioned in §7.1.1 are the only rational second order equations
which satisfy the Painlevé property. X

Before we discuss evolution equations in general, let us recall Q1.13,
This shows that the KdV equation

u,—6uu, +u,, =0
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has the similarity solution

u(x, t)= — (31" ¥*F(n), n=x(3t)" 7,
where

F"+(6F —n)F —-2F =0.
Then if F=AdV/dn~ V? (for some 4) it follows that

V' =nV 4+ 2V3, (7.7)

provided V decays exponentially as either 7 — + oc or n— — 0. We see
immediately that the equation for V(z) is the P-II equation with « = 0.
Thus, the KdV equation can be reduced to an associated ordinary
differential equation which has the Painlevé property, This, and numerous
similar results, have suggested the Painlevé conjecture, first formulated by
Ablowitz, Ramani & Segur (1978; also 1980a,b) and also studied by
McLeod & Olver (1983). This can be expressed as:

A nonlinear partial differential equation is solvable by the inverse
scattering transform if, and only if, every ordinary differential equation
derived from it (by exact reduction) satisfies the Painlevé property.

Such an ordinary differential equation may result, for example, from a
search for a wave of permanent form or for a similarity solution. Also, it
may require a further transformation of variables to put it into a standard
Painlevé form. This is no more than a conjecture: its proof, or disproof,
is still awaited. However, much evidence and many convincing arguments
have been given recently so that we may regard the conjecture as a practical
test for the existence of an inverse scattering transform. (The Painlevé
property has also been related directly to the evolution equations; see
Weiss, Tabor & Carnevale, 1983.)

Reductions of the KdV, modified KdV, concentric KdV and NLS
equations have already been met: see Q1.13, 2.9, 2.10, 2.11, respectively.
Other examples will be found in the exercises at the end of this chapter.

7.1.3 Linearisation of the Painlevé equations

The relation between the inverse scattering transform and the Painlevé
equations now leads us to a novel result. Since the evolution equations
can be linearised via the Marchenko integral equation, and a special
reduction of an evolution equation is expected to be a Painlevé equation,
we should be able to linearise the Painlevé equation itself. In the case of
the equations P-I to P-VI this may be a surprise: they can not be solved
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in terms of any known functions, indeed they define new functions (the
Painlevé transcendents mentioned above).

Furthermore, solutions of the various evolution equations we have
discussed are related by Bécklund transformations. Thus we anticipate
that solutions of, for example, the P-1 to P-VI equations are related in
the same way, This particular property has been exploited by Airault
{1979) to obtain rational solutions of certain equations of the types P-II,
P-111, P-1V and P-V,

We end these comments by showing how a particular Painlevé equation

(P-11. 1.e. equation (7.5)) can be linearised. From Q4.2 we know that the
coneentric KdV equation,

“ + ;‘[ + 6utt, + Uy, =0 (7.8)
has the solution
2 é 7
) = -5, — K(X, X1, 9
Hee ! (120)*3 ¢X ( : 72

where X = x/(12¢)*® and K(x, z;1) is the solution of

Kx,z;t) + F(x,z; 1) + j

X

K(x,y; OF(y,z;t)dy = 0. (7.10)
The function F satisfies the pair of equations
Fxx_Fzz;_(x'_Z)F)

3tF,~F+F,  +F,,=xF, +:F,,
which has the solution

F(x,z;t) = IL F(st3)Ai(x + 5)Ai(z + 5)ds, (7.11)

— oo
where f is an arbitrary function — possibly a generalised function —and
Ai is the Airy function,

Furthermore, if we follow the derivation given in Q2.10, we can show
that equation (7.8) has a similarity solution

1 x
u(X,l)z—(12[)2/3g<(12[)1/3>’ (7.12)
where the equation for the function g can be expressed in the form
d* 3 1/3
a)—ﬁ—Xv——Zv =0, X =x/(126)"°, (7.13)

if g=20v% and g —0 as X — + oo. (Remember that the inverse scattering
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transform method requires potential functions, u, which decay sufficiently
rapidly at infinity.) Equation (7.13) is the P-II equation with « =0 (see
equation (7.5)). If we compare solutions (7.9) and (7.12), we see that they
will be the same solution if we are able to choose K(X, X t) to be a function
only of X. This requires that F is not a function of ¢, and from equation
(7.11)it follows that this is indeed possible. The relevant solution is obtained
by setting f(s) = kH(s), where H is Heaviside’s step function and k is an
arbitrary constant. From equation (7.11) we therefore obtain

o

F(x,z;0)= kf Ai(x + s)Ai(z + s)ds, (7.14)
0

so that there is no t-dependence. Equation (7.10) now gives

0

ux,s)+kAi(x+s)+kjwux,p)f Ai(p + 9)Ai(g + s5)dgdp =0 (7.15)
0

X

where

K(x,z;1) :I L(x,s)Al(z + s)ds. (7.16)
0
It is clear from equations (7.16), (7.9) and (7.12) that
d o]
(X)= —-2+— i ) ds; .1
v3(X) ax L L(X,5)Ai(X + s)ds; (7.17)

in other words, equations (7.15) and (7.17) constitute a linearisation of the
Painlevé equation, (7.13). The constant k enables a one-parameter family
of solutions to be generated, although the Neumann expansion obtained
from equation (7.15) is convergent only if 0 < k <%, Finally, it turns out

that the solution, v(X), can be expressed in terms of L in another way: it
can be shown that

2 1/2
oX) = i<;> L(X,0).

(The appearance of i here is not particularly significant: the transformation
v —iv merely changes the sign of the v® term in equation (7.13).) Further
details concerning the linearisation of the Painlevé equations can be found
in Ablowitz & Segur (1977), Johnson (1979) and Fokas & Ablowitz (1981).

7.2 Perturbation theory

The reconstruction of a function, u(x, t), by the inverse scattering transform
method is feasible when the discrete eigenvalues are constant and the
scattering coefficients evolve in an elementary way. Nevertheless, the same
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procedure can be adopted even when the equation is not exactly integrable.
If the terms which make a given equation non-integrable are all associated
with a small parameter, ¢ say, then the derivation given in Chap. 4 can
still be exploited. Now, however, the time evolution of the scattering data
will depend on ¢ and it can therefore be described asymptotically as ¢ — 0.
We shall outline this argument for the perturbed KdV equation

u, — Oun, + Uy = eq(x, t; ), (7.18)

where ¢ may depend on x and ¢ via u(x, ) itself, and g —0 as | x| — co.
Indeed, there s a classical problem of this type where

qlx, t; &) = y(t; e)u(x, 1),

which describes the propagation of long waves in water of variable depth
(Johnson, 1973).

The development follows closely that given in Chap. 4. Thus, from §4.3,
for the time evolution of the scattering data, we have

¢ ]
a(l//xR - l//Rx) = lllz(/“t — U + 6uux - uxxx)

where
R=y,+up—2u+ 240y,

Upon the use of equation (7.18) we obtain

)
o VxR —YR) = (4 — eq) (7.19)

and so, if the discrete spectrumis A = — x2 ( <0)withy =y, (n=1,2,...,N),
then

(k2), + ¢ f " y2qdx =0, (7.20)

Hence
K, = 0(¢) as 60,

at least for t = O(1), and consequently the discrete eigenvalues will evolve
slowly in t. It is convenient to write

A= —(K3), = ey, (7.21)
so that equation (7.19) becomes, for the discrete sﬁectrum,

%(WHXRH - l//anx) = El/I,?((l),l - q)



176 Painlevé property, perturbations, numerical methods

or
YusxRo = YR = &3, — q).
If we now use the Sturm—Liouville equation for ,,,
Ynex — (K7 + u), =0,
the equation for R,(x,!:¢) can be written as
Ry — (ki + )R, = elg — w ). (7.22)

Correspondingly, for the continuous speetrum A= k? (>0), equation
(7.19) gives

l/;Jani - l/;Rxx = —gql/;z

if we follow the evolution at fixed k. Thus the equation for R becomes

Iix.\‘ + (kz - U)Ié = [Iql/;‘ (723)
It is convenient to express R as
R = A(k) +er, (7.24)

where A(k) is to be determined; this term is included to accommodate the
contribution from the homogeneous equation to the solution for R. We
choose A(k) to be independent of & The asymptotic behaviours of ¥ and
R, as x— & 7, are given in §4.3 as

Plx;t Kk e) ~ e 7 4 peitx) R(x, t;k.e) ~ (b, — 4ik3h)ei* + 4ik3 ¢~

as X —» +

Yix:t, k,e) ~ ae ik, R(x.1; k,¢) ~ (¢, + dik3a)e ™+, as X — — 7,
and to be consistent we must have

Hx, ko)~ ate ™ 4 el as x — + 1,

where the signs are ordered vertically. These asymptotic behaviours must
satisfy equation (7.24), and so

at =" =0, A(k) = 4ik3, for all k,
which then give
a; =g, b, — 8ik*b =¢f *. (7.25)

Note that these equations agree with the theory of §4.3 if we set e =0, The
functions 2~ and * are obtained by solving

Fax + (k2 — w)f = qif, (7.26)
as we shall indicate below.

The asymptotic behaviour of the normalised discrete eigenfunction, s, 1s

Yt €) ~ ¢, exp(—Kk,x) as x— + 0, (7.27)
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and so equation (7.22) has a solution such that

R (x,t;€) ~ a, exp (— 1, x) + fpxexp(—k,x) as x— 4+ oo, (7.28)
The term in f3, is necessary since the asymptotic forcing term, exp(— «,Xx),
in the differential equation, is also an asymptotic solution of the homo-

gencous cquation for R,. Upon the substitution of the behaviours (7.27)
and (7.28) into equation (7.22) we obtain

2k, B, = ew,Cp, : (7.29)
since both uand g vanish at + oc. These same behaviours and the definition
of R yield

o, €Xp (— K,X) + Bpx exp (— K,X)
~ € €XP (= K X) — CuituX eXp (— K,X) — dic3c, exp (— K,X)

from which we obtain

B, = — Cpkn (7.30)
and

c, — e, =x,. (7.31)
Equations (7.29) and (7.30) are equivalent. In the absence of a perturbation
term then ¢ =0 and %, = fi, =0, and so equation (7.31) recovers the result
given in §4.3; equation (7.29) is identically satisfied.

The procedure for solving this perturbation problem can be easily
described, although the details may prove laborious in specific cases. Let
us suppose that we have a solution of the KdV equation (i.e. equation
(7.18) with £ = 0), which we wish to perturb for small &. This solution will
therefore be the first term of an asymptotic expansion as ¢ —0, but it may
also itself evolve on some suitable long scale. For this solution we find
the corresponding eigenfunctions, , and , which are then used in
equations (7.20), (7.22) and (7.26). The solutions of these equations enable
Ku(t; €), bk;t,e) and c,(t;¢) to be determined to leading order in the
perturbation. Upon reconstructing u(x, t;¢) we shall obtain the leading
order perturbation to the basic solution. This process may be continued,
in principle, by successively iterating on the preceding solution.

7.2.1 Perturbation theory: an example
In order to illustrate how this iteration scheme is implemented in practice,
we shall outline the construction of the solution lor the case
q(x, t; &) = y(t)ulx, 1), (7.32)
and with the basic solution taken to be a solitary wave | he solitary-wave



178 Painlevé property, perturbations, numerical methods

solution is
u(x,t) = — 21> sech?(1¢),

where & = x — 4/%t, for some positive constant I. We therefore express the
leading term of the asymptotic solution as

u ~ ug(x,t;e) = — 2I% sech? (I&) (7.33)
where
v dXO 2
&= x— xq(t;¢), A =41 + 0(¢) and =1 0).

(This choice of solution allows for any ‘slow’ evolution on a suitably long
timescale.) It is supposed that the initial value of I is given as [(0;¢) = Iy,
which is not a function of &.

The continuous eigenfunction associated with solution (7.33) is

Dolx; 1, k,6) = (W)em { —1k(€ + x0)},

so that

(k+1)
(k—il)
This expression for the transmission coefficient, @, confirms that we have
a discrete eigenvalue at k =1l (/ > 0). Furthermore, we see that we require
(k + o)
(k—1ily)

to be consistent with the initial data.

The first approximation to 7 (see equation (7.24)) is obtained by solving
cquation (7.26) in the form

alk;t, e) — and b(k;t,e)—0 as £¢—0,

a(k;0,¢) =

and b(k;0,8) =0,

A

2 A T
Foxx + (k™ — tg)fo = yuolo,
where # ~ Fy as ¢ -0, and
R Ba ek as x - + oo
Fo ~

—ikx

o € as X — — oo.

The solution for #, (obtained by the variation of parameters, for example)
yields

2iyl(3K2 + I2) ‘
BT (ST B& = — 3ymexp (2ikx,) cosech (nk/l).

Ag =

(The details are rather complicated, even though it turns out that the
complete solution need not be constructed in order to derive the asymptotic
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behaviours.) From equation (7.25) we therefore obtain
2cipl(3k* + I?)
a = — W + 0(8) (734)

and
b~ 8ik*b = — %ﬁyn exp (2ikx,) cosech (mk/l) + o(¢) ase—0.  (7.35)
The relevant solution for the discrete spectrum is far more straight-

forward. The normalised discrete eigenfunction associated with the single
eigenvalue [ is

(31" sech (12),
see §4.5, example (i), and Q3.6. Thus we write
Wi~ Wi =(50)*sech (l¢) as ¢ —0,

and since

wy, = J‘ l//fqu’

(see equations (7.20), (7.21)), we obtain

W~ — yl:‘f sech® {I(x ~ xo)} dx

=4

Thus the discrete eigenvalue evolves such that

I,=%eyl + o(e), (7.36)
which, together with

cy(te)~ (B2, (7.37)
gives us sufficient information to begin the reconstruction of the solution
of the perturbed KdV equation. Notice that, to this order at least, it is
not necessary to solve for R, ; the conditions given in equations (7.29) and
(7.31) therefore determine the coefficients in equation (7.28) in terms of I(z; &).

The problem now has become one of obtaining the asymptotic solution,
as ¢ —0, of the equations (7.34), (7.35) and (7.36); their solution constitutes
the scattering data (although a is not used in the inverse scattering
transform). We shall not pursue the details further, but a few comments

must be made in conclusion. The discrete eigenvalue, from equation (7.36),
becomes

I(t; &) ~ [yexp {%bJ‘ y(z’)dz’} as ¢ —0 at fixed
0
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since 1(0; ¢) = I,. So if, for example, y(t) > Ofor ¢ > 0, we anticipate difficulties

as t — oo: the asymptotic solution may not be uniformly valid. Indeed, if
we write

atk:1.6) = (ﬁ—tij)(l +&d) (7.38)

then equations (7.34) and (7.36) show that

a, ~ 3ipl'k as §—0, (7.39)
so that the expansion implied by cquation (7.38) will certainly not be
uniformly valid if there exists lim, ., ed # 0. Furthermore, the behaviour
given in (7.39) indicates that there is also a non-uniformity as k — 0. It is
therefore necessary to examine the whole solution described here for the
case of small k. (We have throughout tacitly assumed that k is fixed as
¢—0, and the solutions do turn out to be uniformly valid as k — c0.) These
difficulties, and other points of interest, are discussed by, for example,

Kaup & Newell (1978), Karpman & Maslov (1978), Knickerbocker &
Newell (1980), Candler & Johnson (1981).

7.3 Numerical methods

This section is a brief introduction to numerical methods of solving
nonlinear evolution equations which admit solitary-wave, soliton and
such like solutions. Numerical calculation of solutions and their graphical
presentation are informative and instructive. Indeed, it was the numerical
experiments of Zabusky & Kruskal (1965) which initiated the development
of the concept of the soliton (sce §1.3) and the theory of the inverse
scattering transform. Later, numerical calculations were used to indicate
whether nonlinear wave solutions behave like solitons. In recent research
the scattering transform and its analysis have been much more important
than numerical methods. However, many nonlinear evolution equations
do not have soliton solutions, and nonlinear equations with two or three
spatial coordinates are little understood, so numerical results have still
much to reveal

After the development of numerical analysis, computers and graphics
in the last twenty years, the calculation of soliton solutions has become
easier. Nowadays such calculations provide suitable projects for under-
graduate students. So here we shall discuss a few numerical methods
suitable for some of the evolution equations with one space coordinate
which we have met, and give references for further details. This will be an
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introductory manual to enable the reader to write programs and compute
solutions for a project or research,

Nonlinear equations can be expressed in the form (5.23), namely
u, = N(u), (7.40)

where u may be a scalar or a vector field, and N is a nonlinear operator
involving the spatial derivatives only. Also initial conditions and boundary
conditions must be prescribed in order to determine uniquely the solution
u (at least in principle). For computation, we must take finite boundaries,
albeit distant ones; for a single spatial coordinate, x say, we may take
them at x =0, 2m without loss of generality, by translation and scaling of
the coordinate if necessary. Then the initial condition is the prescription
of u(x,0) for 0 <x<2n It is sometimes convenient to use periodic
boundary conditions or to move the boundaries in order to track a soliton
as it progresses.

We seek to approximate the exact solution u(x, ) for t >0, 0<x < 2n
by calculating the solution d(x, t) of some numerical scheme. We require
the error #i(x, t) — u(x, t) to be small, and ideally to converge uniformly to
zero as a space step, h say, and a time step, k say, tend to zero. Little is
known theoretically about the convergence of i to u or about the stability
of schemes for nonlinear equations, but much is known for equations
linearised about some constant solution. Implicit schemes are often
unconditionally stable. For linearised stability of an explicit scheme there
is usually a condition giving an upper bound on the time step, the bound
increasing as the space step does. Experience suggests that the stability
criterion for the linearised scheme is a good guide to the corresponding
criterion for the nonlinear scheme.

If exact conservation relations are known analytically for equation (7.40)
then they give useful tests of the accuracy of a numerical solution. Also
the numerical scheme may be devised to ensure that an important
conserved quantity, mass or momentum, for example, is conserved to a
high order of accuracy, with a truncation error which is either zero or small.

In any event, there are many good methods to solve an equation of the
form (7.40), each with its own merits and its own advocates. We shall give
the gist of a few good methods. To do this it helps to note that they belong
essentially to one of two classes: spectral methods and finite-difference
methods. With a spectral method the solution is approximated by some
finite linear combination of a suitable set of functions, each one of which
satisfies the boundary conditions. With a finite-difference method the
derivatives in equation (7.40) are approximated by some differences to
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give a difference equation instead of a differential equation to be solved.
Aftcr describing the methods we shall use them to solve the familiar
nonlincar evolution equations (see Chap. 8).

7.3.1 Spectral methods

Choosing {¢,} as any convenient complcte set of functions which satisfy
the spatial boundary conditions, we may expand any solution as

u(x, )= Y w0000,
i

»

and hence seck to approximate the solution by

»
gx,0)= Y u 1, (x) (7.41)
p=1

for a given ‘large’ integer P. There is some freedom in the choice of the
basis {¢,}, but it is often useful to choose it as a set of trigonometric
functions because the fast Fourier transform 1s an efficient and widely
available algorithm. However, the basis could be chosen as a sct of finite
clements such as splines or other piecewise polynomials. In any event, the
residual error may be defined by

rlx. ) =d(x, 1) — N(i(x.1)) for 0 < x<2n (7.42)
P du
= 3 g P - N@.
p=1 Of

The cocfficients u, may be chosen in various ways in order to make r
small, for example by Galerkin’s method or by collocation. By Galerkin’s
method we impose the conditions that

2n
j rx, 1) (x)dx =0 forg=1,2,...,P. (7.43)

0
Thercfore

d du
Z apq _d_P = nq(a)’ (744)
p=t1 t

where

2n n
a,, :f ¢ (x)d(x)dx and n(i1) :J‘Z N(@@,(x)dx.

0

The method is more properly called pseudospectral than spectral if we use
numerical integration rather than spectral analysis to evaluate n, in terms
of the coefficients u,, of the expansion (7.41). If the basis is orthogonal then
we may normalise it so that a,, = d,,, the Kronecker delta, and equations
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(7.44) become the system of ordinary differential equations,

du, _
dr

n{0) forg=12,...,P, (7.45)

where n, is a function of the wu,. If the basis is not orthogonal then we
may invert the P x P symmetric matrix with elcment a,, in its pth
row and ¢th column once and for all to derive a system of equations
ol the form (745). So we may integratc the system by a standard
method, for example Runge- Kutta, to find the coefficients u (1) for t >0

and p=1,2,..., P, substitute into the approximate solution (7.41) and
hence evaluate g(x. 1).

7.3.2 Finite-difference methods

In a finite-differcnce method we specify the solution u(x,f) numerically
only at the discrete points x =mh and t=nk for m=0,1,...,M and
n=0,1,..., where h=2n/M, say. is the space step and k the time step,
and then devise a scheme (o calculate 1, as an approximation to u{mh, nk)
for small h and k. Thus, using various truncated Taylor expansions to
approximate the derivatives of u, we may approximate cquation (7.40} by
a difference equation. Some commonly used difference cquations are of
the forms

uptt=ul 4+ KNyt (forward-Euler scheme), (7.464a)
uh 't — = kNl (backward-Euler scheme). (7.46b)
Wt =l 2kNL ) (leap-frog scheme), (7.46¢)

and
up "t =y = kN + Ny(un" ')} (Crank—Nicolson scheme), (7.46d)

where N, (1) is some suitable approximation to N(u) at x = mh, t = nk which
may involve uy, u,,_,, Uy ,...inorder to represent the spatial derivatives
of u. The forward-Euler and leap-frog schemes are explicit, giving the
solution at the (n + 1)th time step explicitly in terms of the solution at
earlier time steps, but the backward-Euler and Crank-Nicolson schemes
are implicit. Also equation (7.46a) is used for odd values of m 4+ n and
(7.46b) for even values in the hopscotch scheme. Sometimes uf,* ' is replaced
by S(ui*! +utth) in order that equation (7.46b) becomes linear in the
‘unknowns’ u%*! for m=10,1,...,M and hence easily rendered explicit.
If the error for a scheme is

U, — u(mh, nk) = O(h" + k%) as h k-0

then the scheme is said to be of order ¢ in space and t in time. The forward-
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and backward-Euler schemes are of first, and the leap-frog and Crank—
Nicolson schemes of second, order in time. The Crank—Nicolson scheme
is, morcover, unconditionally stable for the usual simple linear discrete
forms of N,.

An implicit scheme requires all the difference equations at one time step
to be solved in order to advance to the next step. There arc various
algebraic methods to do this efficiently. The computational timc lost in
this way may, however, be offset by the implicit scheme’s being more stable
than an explicit one, so that a longer time step may be uscd.

7.3.3 Long-wave equations

For our first application of numerical methods we take the KdV equation.
Zabusky & Kruskal (1965) originally solved it by using a leap-frog scheme.
They approximated the equation,

u, +uu,+u,,, =0, (7.47)
by
U D= up D KR (Ut (U — )
— kh (U, — 2, 4+ 2u0 — U5 (7.48)

This scheme conserves ‘mass’, so that Y-t is independent of n. Their
choice of the average i(uf,,, +ul +ul_,) to approximatc u in the
nonlincar term uu, was made to conserve the ‘energy’ to second order,
giving

l M-1 l M-1

5 Yoy =2 Y (un =0k as k—0

m=0 2m=0

if u is periodic (or vanishes near the ends of the interval of integration).

Indced, the whole scheme is second-order in time. The lincarised stability
condition of the scheme is

k<h®/{4+ R U, (7.49)

where U is the constant solution about which there is linearisation (Greig

& Morris 1976), and which may be taken as the maximum magnitude of

u. Note that k = O(h?) as h — 0, so that small time steps and therefore quite

long computation times are required. Sanz-Serna (1982) has discussed the

scheme critically and showed how to modify it to conserve ‘energy’ exactly.
Greig & Morris (1976) used the hopscotch scheme for (7.47),

k 1
u'rln+1+'2z0'rln+l{ (%( n+1) )+h2H 52 n+1}

k 1 2 n
= Uy 2h (—(u ) )+pHx5xum}v (750)
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where the hopscotch switch is defined as

. 1 if m+niseven
"0 if m+nis odd
and the difference operators by

n

‘5,\llrr| = “'rln 12 u;:l -1/2 and qu'rln = u:l +1 u:‘n -1
lor all m, n. This scheme conserves energy to second order in time, and is
stable il
k<h/|2=hU|, (7.51)

a condition less stringent than (7.49), but nonetheless one for which
k = O(h”)as h— 0 and therefore one which requires quite long computation
times.

Fornberg & Whitham (1978) used a pseudospectral method, taking a
finite Fourier transform F of i with respect to x, where the approximate
solution i of the KdV equation (7.47) is defined at 2P points of the interval
0 < x < 2n and has period 2n. Thus they expanded

U(gh,ty=F~ 'u,
_ ! ; S for g=0,1,...,2P -1, (1.52
“(2P)12,;ZPHP(I)L orgq=0.1,..., , (7.52)
where only hall ol the contributions at p = + P are included in the sum,
h=mn P and
u(ty=Fi
| zks1 b (e TP (1.53)
== Lhe M .
P &, T
The fast Fourier transform is an efficient method to evaluate these series
when P is a power of two. Then u, is approximated by F~'(ipF#) and
U .., by F~Y(—ip*Fu). With a leap-frog scheme, this gives
i(x, (n + 1)k) — di(x, (n — 1)k) + 2ikaF =~ (pFii) — 2ikF ~{(p*Faa) =0,
where i and the inverse transforms are evaluated at x =gh and t = nk.
However, Fornberg & Whitham modified the last term, taking instead
a(x, (n + Dk) = di(x, (n — k) + 2ikaF =~ '(pFi) — 2iF 7' {sin(p*k)Fa} = 0.
(7.54)
These two schemes are equivalent for small time steps, because sin (p*k) =
pk + O(k*)as k — 0, but the modified scheme (7.54) represents the linearised
KdV equation, u, + u,,, =0, exactly and therefore improves the accuracy
for components of high wavenumbers p. The scheme requires three fast
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Fourier transforms per time step, and its linearised stability condition is
that

k< 3h32n2 (7.59)
A comparative study (Taha & Ablowitz 1984b) shows the scheme to be
faster than the finite-diffcrence schemes.

The method of Fornberg & Whitham is also suitable for other
‘long-wave' equations of the form

£
u, +wu, + J K(x — Sp(cnyds = 0.
where j is a positive integer and the hernel K ois determined by the
dispersion relation of the hncarised waves (¢f. QLIT4 QL15).
When Peregrine (1966) proposed the regularised long-wave cquation,
u,+ U4 U — U, =0,
to model an undular bore, he used the numerical scheme,

ot k
L= g =)+ (0 + ) o Hog,™ ! + ) =0
h- 2h

to integrate the equation. This scheme is only of first order accuracy in

time and sccond order in space. but is always linearly stable (Eilbeck &
McGuire 1975, p. 46).

Eilbeck & McGuire (1975) proposed and used the scheme

52 k
I — 2 = w4+ (1 + up)H iy, =0,
K h

which is of sccond order in both space and time. This seems to be morc
efficient, although it is a three-level scheme in time (involving n + 1,51 and
n— 1) and requires an equation with a tridiagonal matrix of coefficicnts
to be solved. The linearised stability condition is

k* <4+ h%/(1 + Uy,

and so is always satisfied for the small space and time steps required for
accuracy in practice. These and other finite-difference schemes are critcally
examined by Bona, Pritchard & Scott (1985). Ben-yu & Manoranjan (1985)
have solved the RLW equation by a pseudospectral method.

7.3.4 Nonlinear Klein—Gordon equations

Perring & Skyrme (1962) originally solved the sine~Gordon equation by
using a leap-frog scheme. They approximated the equation

Uy, — U, =Ssinu, (7.56)



Exercises 187
by using the finite-difference scheme,
n+ 1 1— 1 kz n 1 kz n 2. n
= -+ B2 (U F U ) +20 1 — 2 u, — k*sinuy,.  (7.57)
1~ 1

The theory ol lineaniscd stability shows that this scheme is stable for k < h,
and i practice it 1s very stable for k < 0.95h.

The sine Gordon is the most celebrated of the nonlinear Klein-Gordon
equations of the form,

Upy — uy = Flu). (7.58)
They all require similar numerical schemes, so a leap-frog scheme is again
suitable. Ablowitz, Kruskal & Ladik (1979) improved the stability of the
scheme of Perring & Skyrme, using the space average of S(u”, . | +u}, )
instead of u}, in F(u). and taking k = h, for three cxamples. This gives

n+1 n—1

wp' b= T 4w — BPF (G, ) (7.59)

This allows the calculations to be performed with only even or only odd
values of m + n. and so halves the computation time.

7.3.5 The nonlinear Schridinger equation

Taha & Ablowitz (1984a) give details of eight schemes to solve the NLS
equation, schemes spectral and finite-difference, implicit and explicit.
They compared the computing times taken by the schemes to solve
varions initial-value problems. The pseudospectral method of Fornberg &

Wihitham (1978) or a split-step Fourier method was fastest for each
problem

Further reading

7.1 The Painleve property 1s discussed by Ablowitz & Segur (1981, §3.7).
7.2 Further details of perturbation theory can be found in Ablowitz & Scgur (1981, §3.8);
Newell (1985, §3g).

7.3 Dodd. Eilbeck. Gibbon & Morris (1982, Chap. 10), have reviewed many numerical
methods to solve nonlincar evolution equations, and show many of their solutions.

Exercises
(The reader is advised to recapitulate the problems Q1.13, Q2.9 and Q2.10.)
Q7.1 Movable critical points. Find the general solutions of these equations and

hence decide if the solutions contain critical points, and if the points are
movable:
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dw
) 2(z— l)—"— w=0;

i ’dwd3w_3<d2w 2'
Wi \a )

dwdiw d7w>2
m ———=2{—1.
dz dz? dz?

7.2 Singular-point analysis. For each of the equations in Q7.1 assume that
g p 34 q

Q73

Q7

Q7.

Q7.

4

S

6

w(z) ~ Az —z,) as Z— 2z,
(or,if this fails, w(z) ~ A log(z — zy) as = > z)). where A, 2, and s are constants.
Hence decide if the solution has a critical point and if it is novable.
Now apply the same procedure to the P-1 equation,

d?w
——=6w?4z
d:?

Transformation to P-form. Show that these equations reduce to Painlevé
equations under the transformations given:

. d?¢ .

(1) F:()(Z"’(vb)z—(;b with ¢(Z):T‘2—Z+W(Z—7L);
i) 92379 3 : 13,013
() 9z &2 =(z=2)p +2¢ with ¢(z) = z' *w(z! 3).

Burgers equation. Show that the travelling-wave solution (se¢ Q2.1(1)) and
the similarity solution (see Q2.8) of the Burgers equation

U, + uu, = vu

xx>

where v is a constant, satisfy, after one integration, appropriate generalised
Riccati equations (see equation (7.2)).

Sine=Gordon equation. Seek a similarity solution of the sine Gordon
equation,

U, =siny,

in the form wu(x,t)= F(xt"), for suitable n, and hence show that the
transformation

w(z) = exp {iF(z)}
yields a Painlevé equation for w.
Nonlinear Schrodinger equation. Seek a solution of the NLS equation
t, + Uy + vulul? =0,
where v is a constant, in the form

u(x, 1) = F(x)e#

5
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where 4 is a real constant. Obtain the equation for F(x) and, assuming that

F is real, use the singular point analysis of Q7.2 to examine the local nature
of the solution.

A nonlinear Klein-Gordon equation. Seek a similarity solution of the
cquation

N

Uy, — U, =u",

Xxx
where N( > 1) 15 an mteger. in the form
u(x, 1) =t"F(xt")

for surtable values of m and n. Obtain the equation for F(z), and for the case

N =3 use the singular point analysis of Q7.2 to examine the local nature
of the solution.

Sinh Gordon equation. Use the approach adopted in Q7.5 to discuss the
equation
u,, =sinhu,
Two-dimensional KdV equation. Use the similarity form
u(x.t,y) = "F(xt? + 4y?r9),
for suitable n,p,q and 4, and construct the equation for F if u satisfies
(U — Oul + 1), + 3u, =0

see Q5.14 and §6.2.3(b). Integrate your equation for F(z) once and suppose
that F,F’,... —» 0 somewhere. Now multiply by F, integrate again, and show
that v satisfies the P-11 equation with F = »2.
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In this final chapter we shall first use the numerical methods described
§7.3, discussing a few case studies of sohtons and their interaction: this
will also illustrate some of the analytic results of earlier chapters. Then
we shall list briefly the major applications of the chief nonlinear evolution
cquations.

8.1 Some numerical solutions of nonlinear evolution equations
We begin by taking a final look at the two-soliton interaction for the KdV
equation. Hirota’s method (sce §5.3.2 and Q4.3) for the KdV cquation in
the form

u,— 6uu, +u, =0 (8.1)

gives the two-soliton solution

JRTE A+ R3E + 20 = KOPE Ex + k3K, PR E,

(l+b + Lk, +AE1)

u(x,t)y= —

(8.2)
where E;=cexp (0,), 0, =kx—k’t+a; (i=1,2) and 4, =(k,— k)2 /(k, +k,)?
This solution for k, =1, k, = V/E, o, =3, =0 is pictured in Fig. 8.1 in a
frame with respect to which the slower (shorter) soliton 18 at rest. The
re-assumption of the identities of the two solitary waves after their
interaction is vividly shown, and so are the phase shifts of the two waves.
It can be seen that the taller wave approaches the smaller wave and then,
at a short distance, the waves exchange roles: the smaller wave grows
taller, and the taller becomes smaller, before they separate. This solution
also illustrates the point of Q4.5: the two-soliton solution may have either
onc or two local maxima. In fact (Lax, 1968), if k3/k? >1(3 + VFS) then
the taller wave first absorbs, then re-emits the shorter wave, 1.e. the fast
wave appears to ‘pass through’ the slow wave, as shown in Fig. 4.3.
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Fig. 8 1 Perspective view of the two-soliton solution, (8.2). with k, =1 and

i
=" -
ky =2 where X = x—1.
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A solution of the NLS equation
W+t + tjul> =0 (8.3)

is shown in Fig. 8.2. Recall that a solitary-wave solution, given in Q2.3,
is a complex function; it describes a carrier wave with an amplitudc
modulation which behaves rather like a KdV solitary wave. The perspcctive
view given in Fig. 8.2 shows a solution which is close to that of the
interaction of two solitons. The solution has been found by numerical
integration of the equation, using a pseudospectral method, for the given

initial values of u(x,0), which are the linear superposition of two fairly
distinct solitons.

Fig. 8.3 The interaction of two kinks. A solution ¢(x,1) of the sine—Gordon
equation (8.4) is plotted versus x for{u) t =0, (b)) t = 5,(c) 1 = 10,{d) t = 15 and
(e) 1= 20. (The solution is close to the analytic solution
@(x,1) = darctan {Asinh (x,(1 — 1%)""})/cosh (211 — AH)'?)}
of Perring & Skyrme (1962) with 4 =1 after a time shift of 10.) The kinks
proceed with velocities +3 except when they interact.
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Next we shall show a few examples of solutions of the sine- Gordon
equation in the form

(bx,\ - (f)!l = Sin (b (84)
(i.c. in laboratory coordinates), which have been found by use of a leap-frog
scheme. But first note that the simplest soliton is a kink (see Q2.19), 1.e.
a solution (equivalent to (5.71)) for which

P(x, 1) = 4 arctan [exp { (x — A)/(1 = A%)}'2}] (8.5)
and ¢ increases monotonically from zero to 2z as x increases from — oC

to oo, when — 1 < A < 1. There also exist antikinks for which ¢ decreases
from 27 to zero as x increases from — oo to ~0. There arc similar kinks

Fig. 8.4 Theinteraction of a kink and an antikink. A solution ¢(x.1) of equation

(8.4)is plotted for (@) 1 =0, (b) t =75, (¢) t =15,(d) t = 22.5 and (¢) t = 30. The

kink advances with velocity 0.6 and the antikink with vclocity —0.5 except

when they interact, and the solution vanishes instantancously between ¢t =0

and 1 — 7.5 (This solution, after a Lorentz transformation. 1y essentially the
analytic solution given in Q 2.22))
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Fig. 8.5 A stationary breather. This is a sketch of the analytic solution of the
sinc—Gordon equation (8.4), given in Q2.20 with ¢, = x, =0, 2 = 0.2. for various
instants.

At =3@2, 9w/,

I 8.6 A moving breather ¢(v.1) versus v for (@) 1=0.1. th) 1 = 10 and
{¢) t=20. This 1s close to the analytic solution.

2

Gl = darctan[(1 - AY)' “sin {pA( — VX)) Acosh ] — A7) e — 1) ]

of equation (8.4), where = 1 (1-- 1) 2 for }=0.5 and » =0.2

¢
(«) ]
0 10
¢
(b
0 10
¢
(c) ‘
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and antikinks for which an integral multiple of 27 is added to ¢. With
this background we may illustrate Q623 and interpret Fig. 8.3, which
shows the interaction of two kinks, and Fig. 8.4 which shows the interaction
of a kink and an antikink. The character of the kinks and antikinks as
topological solitons can be scen clearly as well as their soliton properties
before and after their brief periods of strong interaction.

A stationary breather of the sine-Gordon equation (8.4) (see Q2.20) is
shown in Fig. 8.5 (equivalent to the breather of Q6.21) and a moving
breather (sec Q2.21) in Fig. 8.6. The two are related by a Lorentz trans-
formation of the frames of reference. With this in mind we may interpret
the interaction of a kink and a moving breather shown in Fig.8.7.
Although the solution is shown at only a few instants, the soliton
property of the strong interaction is clearly visible.

Finally we present two solutions associated with waves which propagate
in two spatial dimensions. The first (Fig. 8.8) shows a rational solution

Fig. 8.7 The interaction of a kink with velocity 3 and a breather with velocity
—3 and frequency 4 = 0.2. This shows ¢(x,1) versus x for (@) t =0, (b) t = 7.5,
()t =15,(d) t =225 and () t = 30.
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of the two-dimensional KdV equation

(u, —6uu, + 1, ), —3u,=0
(see QQ2.24). This solution is sometimes called the Zakharov—Manakov
(ZM) rational soliton. It propagates with unchanging form, and may
interact with other solutions of the equation to give various types of

N-soliton solution; see Freeman (1980). The second (Fig. 8.9) depicts a
resonant interaction (sce Q8.3) of the other 2D KdV cquation

(1, — 6uu, + 1)+ 3u,, =0,

The three ‘arms’ of this solution extend to infinity and the whole structure
constitutes a steadily progressing wave. This wave may interact with other
solitons and, indecd, with other resonant solutions (Anker & Freeman,
1978b; Freeman, 1980).

8.2 Applications of nonlinear evolution equations

We have related how Korteweg and de Vries discovered their equation
as a model of small amplitude waves on shallow water, and described

Fig. 8.8 Perspective view of a rational solution of the 2D KdV equation
(1, — 6u, + ), — u,, =0 with p=1 (see Q2.24), on plotting «(X. ) where
X=x+1-3u.
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many other applications of the KdV equation in §§1.2 and 1.4. The
applications are ubiquitous because the KdV equation is a canonical
equation to describe the amplitude of weakly nonlinear long waves in a
moving medium. This combination of the leading effects of weak non-
lincarity and weak dispersion of long waves is emphasised in Q1.14 as well
as §1.4.

For similar rcasons the Benjamin—-Ono equation describes some weakly
nonhlincar long internal gravity waves. The weak nonlinearity is of the
samc form as for water waves but the dispersion relation for long linear
waves differs, and so the KdV equation does not arise (see Q1.15).

Fig. 8.9 Perspective view of a resonant interaction with my =m, =1, n, =1,
n, = 2 (see Q8.3). The amplitudes of the three "arms’ far from the intersection
are —2, —8, —18.
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If, however, the leading approximation to the weak nonlinearity is of
higher order than quadratic then a modified KdV equation may arise.
Thus a modified KdV equation governs the modulation of the amplitude
A of many weakly nonlinear long waves for which the coefficient of 44,
happens to be zero. Early uses of the modified KdV equations were to
model phonons in an anharmonic (i.e. nonlincar) lattice (Zabusky, 1967)
and an Alfvén wave n a collisionless plasma (Kakutani & Ono, 1969).
However, the quadratic modified KdV equation has attracted attention
mostly because of its close mathematical relation to the KAV equation
(scc §84.2, 5.4.2).

The nonlincar Schrodinger equations similarly have diverse applications
because they are canonical cquations. There are essentially only two
different cquations after scaling transformations, namely

id + A+ AjAIP =0. (8.6a,b)

They are canonical equations because they govern the modulation of the
amplitude A of a weakly nonlinear wave packet in a moving medium (see
Q8.1). (An mmportant generalisation of this argument for a slightly
unstable wave gives the Ginzhury- Landau equation, namely

A +ad, =bA+cAiA?, (8.7)
for complex constants ¢ and b determined by the dispersion rclation of
lincar waves, and ¢ determined by the weakly nonlincar intcraction
(Stewartson & Stuart, 1971). However, the Ginzburg- Landau equation
arose originally in the theory of superconductivity.) The most important
applications of the NLS equation are to some phenomena ol nonlincar
optics. In this context we write of the self-focussing of the carvier wave
which leads to the envelope-soliton solution (Q2.3) of the NLS ' cquation
(8.6a) and the self-defocussing which leads to the dark-soliton solution
(Q2.4) of the NLS™ equation (8.6b). Other important applications are to
packets of water waves and plasma waves.

Klein (1927) and Gordon (1926) derived a relativistic equation for a
charged particle in an electromagnetic field, using the recently discovered
ideas of quantum theory. Their Klein—Gordon equation reduces to

2 2
MM (%) y=0 (8:8)

for the special case of a free particle in three dimensions. This later led to
the mathematical generalisation

1¢?
:2‘% SV V) =0 (8.9)



Applications of nonlinear evolution equations 199

for some differentiable potential function V; this is called a nonlinear
Klein-Gordon equation when V' is a nonlinear function. Of course, the
equation is invariant under the Lorentz transformation (Q2.21). In
particular, if V'(y)=siny and we restrict the equation to one spatial
dimension, then we get the sine- Gordon equation

1 .
L,z l//u - l//xx + Sin l// =0. (810)

This 1s n ‘laboratory” coordinates. With ‘characteristic’ coordinates
u=3x — ¢ty and ¢ = }(x + ct) it becomes

Yoo =sinY, (8.11)
and clearly an initial-value problem with one form of the equation is not
an initial-value problem with the other.

As we mentioned in §5.4, the sine—Gordon equation first arose last
century in the theory of differential geometry. It arises as a direct model
of physical phenomena also, and as another evolution equation for the
amplitude of various slowly varying waves. Frenkel & Kontorova (1939)
found that the sine-Gordon equation governs the propagation of a
dislocation in a crystal whose periodicity is represented by sin; Perring
& Skyrme (1962) posed it as a tentative model of an elementary particle;
and Coleman (1975) showed that it is an equivalent form of the Thirring
model. Again. 1t governs the propagation of magnetic flux in a long
Josephson-junction transmission line, where sin ¢ is the Josephson current
across an ansulator between two superconductors and the voltage is
proportional to  (¢f. Bhatnagar, 1979, p.39); this offers good examples of
the expernmental observation of soliton interactions. Gibbon, James &
Moroz (1979) showed that the sine Gordon equation governs the modula-
tion of a weakly unstable baroclinic wave packet in a two-layer fluid, and
thence similar wave packets in a2 moving medium.

Kadomtsev & Petviashvili (1970) showed that the equations

(u, — ﬁllll} + Mxxx)x i 3“.\'.\‘ = 0

govern slowly varying waves in dispersive media. The equation with the
upper sign (+) ariscs in the study of plasmas, and also in the modulation
of long weakly nonlincar water waves which propagate nearly in one-
dimension (i.c. nearly mn a vertical plane). The equation then has solutions
which describe the oblique interaction of solitons. ;Fhe equation with the
lower sign (- ) arises in acoustics. This equation has rational solutions,
whereas the cquation with the upper sign does not (sec Q2.24).
Research into the physical, earth and life sciences has led to the study
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of hundreds more nonlinear evolution equations. Of these equations only
a few score are known to have soliton solutions. We have had space
cnough to treat only a few of the equations and to cover a few more,
briefly, in the exercises. The recommendations for further reading, however,
will help readers who wish to follow up other equations and applications.

Yet onc other ficld of application deserves special mention. The
supcrficial similarity between the properties of solitons and of clementary
particles is striking. Solitons may propagate without change of form. A
soliton may be regarded as a local confinement of the energy of the wave
field. When two solitons collide, cach may come away with the same
character as it had before the collision. When a soliton meets an antisoliton,
both may be annihilated. Elementary particles share these properties. So,
if an appropriate system of nonlinear field equations admits soliton
solutions then these solitons may represent elementary particles and have
properties which may be confirmed by observations of particles. Quantum
field theories are decp and complicated, so rescarch into their solitary-wave
solutions, although intensc now, 1s at a much more primitive stage than
that into the simple soliton solutions of the KdV. NLS and sine-Gordon
cquations. In particular. the Yang -Mills ficld equations seem to be a
fruitful model unifying clectromagnetic and weak forees. They admit
solutions localised in space which represent very heavy clementary
particles. They also have solutions, called instantons. localised in time as
well as space; these are interpreted as quantum-mechanical transitions
between different states of a particle. In further reading on solitons as a
topic in the thcory of elementary particles you may note that particle
physicists define a soliton merely as a localised solution ol permanent
form, i.e. they omit our defining property (iii) at the ecnd of §1.3. Their
models are too complicated to enable an inverse scattering transform to
be devised at present, although some topological propertics of the solutions
are useful. A popular introduction to recent research into the field has
been written by Rebbi (1979), opening up fascinating vistas.

Further reading

8.2 Bhatnagar (1979, Chap. 2) lists may references about applications of nonlinear wave
equations. Ablowitz & Segur (1981, Chap. 4), describes diverse applications of many
equations in some detail. Craik (1985) derives several canonical amplitude equations
governing the weakly nonlinear interactions of waves, especially those in fluids and
plasmas.

Lec (1981). Rajaraman (1982) and Vainshtein, Zakharov, Novikov & Shifman (1982)
treat solitons and instantons in the theory of particle physics.
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Exercises

The modulation of @ ware packer. A real lincar partial differential equation
i given in the operational form
u, +if(—if¢/éxyu =0,
where /i an odd function. Show that wave solutions u(x, t) = #{e/**~ 9}
have the dispersion relation w = f(k).
Constder a wave packet described by uix, 1) = £{A(x,1) U(x,1)}, where
the amplitude A is a slowly varying complex function, and the ‘carrier wave’

U=e®™ ¥ hyg frequency Q=/(K) for a given wave number K #0.
Deduce that

WA+ IKA] +3(K)A.=0
approximately, if / has a Taylor series about K.
You are given further that the addition of some nonlinear terms to the
equation for u results, at leading order for small amplitudes A, in the

addition of a term proportional to | 4|24 to the modulation equation for
A. so weakly nonlinear wave packets are governed by the equation,

WA+ [(K)A S + 5 KA, + AP A=0.

Remove the term in A, by a Galilean transformation (noting that f'(K) is
the group velocity of the linear wave packet) and rescale x and 1 to show
that this cquation is equivalent to an NLS equation.

[The terniin | A2 A arises generally because it is the lcading approxima-
tion to the sell-interaction of a weakly nonlinear wave in a homogeneous
medium, homogeneity implying that wave propagation is invariant under
translation.]

A simple experimental model for the sine—Gordon equation. Obtain a length
(100 150 ¢m, say) of rubber band about 6 mm wide and 2 mm thick. Insert
carefully a set of similar pins with large heads into one side of the strip,
placing them centrally and uniformly about 3 mm apart. Clamp each end

of the strip so that the pins hang downwards as a row of simple pendulums,
as illustrated in Fig. 8.10.

Fig. 8.10 A sketch of a short stretch of the rubber band described in Q8.2.
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Q8.3

Q8.4

Epilogue

Using the equation

d?y
l——= —g¢gsin
di? gsiny
for the motion of a simple pendulum of length [ which makes angle ¥ with
the vertical, and the cquation

~2 N2
NG (p:(/ ¢/

¢

o2 ox?
for torsional waves along an clastic column, argue plausibly that the angle
of your pins is governed by a sine-Gordon equation.

Seek to develop kinks and kink interactions with your pins and rubber
strip (but do not let your expectations of a very good experimental model
of the sine-Gordon equation bring you disappointment).

(Scott, 1970, §§2.7,5.5)

A resonant interaction. Take the expression for f given in Q5.30, for the
2D KdV equation, and show that this generates a solution, u, even if 4, =0.
Examine the nature of this new solution by considering: 0, fixed, 0, - — x;
0, fixed, 0, » —oc; 03 =0, —0, fixed, U, > + .

Introduce a parametrisation of the dispersion relation kw, =k} + 312 in
the form

k,=m +n, [ =m?—n?, w; = 4(m? + n), i=1,2

Hence show that A,=0 if, for example, m,=m,. Write 0=
kix + I3y — @5+ 23 and show that, ifm, =m, ny=n,and my = —n, then
kiwy = k3 + 35.

[These definitions of w,, k5 and I (le. w3 =w, —w,, etc, and w;, k;, [;
satisfying the dispersion relation for i=1,2,3) are the conditions for a
resonant wave interaction. Miles, 1977; Freeman, 1980.]

The reduced Maxwell-Bloch equations. In the theory of nonlinear optics,
it has been found that an ultrashort pulse of light in a dielectric medium
of two-level atoms is governed by the system of equations,

E =5, s, =Eu+ ur, re= —Us and u, = — Es,

where E| s, u and r are functions of x and ¢, and p is a constant.

Show that when g = 0 this system has solutions such that u = cos ¢, where
E = ¢,, and deduce that ¢ satisfies a sine-Gordon equation.

Discuss the wave solutions of permanent form when y # 0. In particular,

seeking solitary waves for which E, r, s=0 and u— — 1 as x - + o, show
that

E(x,t) = asech [$a{x — 4t/(4u® + a?) + 6}]
gives a solution for all a and 6.
[Lamb, 1971; also Gibbon etal., (1973) used the method of inverse
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scattering to solve the initial-value problem for this system and to generate
multisoliton solutions.]

Vibrations of ¢ monatomic lattice. A crystal may be modelled by a lattice
of equal particles of mass m. The interaction of neighbouring particles is

represented by nonlinear springs. It is given that it follows from Newton’s
second law of motion that

"mn = 2/(“71) _f(un + 1) _f(un— 1)
forn--0, t 1, £2,. .,where u, is the displacement of the nth particle from
its position of equilibrium and f is the force function of the springs.
Lincarise this system for small u,, and show that there are travelling
waves of the form
u, = £exp(if), 0,=wt —pn

provided that

mw? = — 4sin? (1 p)f'(0) > 0.
For the Toda lattice or Toda chain, take the force function f(u)=
—d(1 —e™ ™) for some constants a,b > 0. To solve the system in this case,
define s, by §,=/(u,) and by the condition that s, =0 when u, =0, and
scek a solution of the form s, =g(0,). Deduce that

mw®  g"(0,)

b a +7ug’((),,)

=g(0, + p) + g(0, — p) — 2g(0,).

Show that there exist solitary-wave solutions of this differential-difference
equation having the form s, = mwb ™ tanh 0,, if mw? = absinh? p.

[Kittel, 1976, Chap. 4; Toda, 19674, b. It can be shown (i) by use of elliptic
functions that there are periodic nonlinear waves of permanent form,
analogous to cnoidal waves; (ii) that the solitary waves above interact like
solitons; and (iii) that the continuous limit of the discrete system is governed
by a partial differential equation of the form in Q2.1(iv).]

Modons. 1t is given that the motion of a thin layer of an incompressible
inviscid fluid on a rapidly rotating sphere is governed approximately by a
two-dimensional vorticity equation of the form

1
Se _h‘zwt +Bl//x + l//xg)'_ l//ycx:()’:

where ¥ is the stream function and { =+, is the relative vorticity.
Alocally Cartesian frame fixed to the sphere is used, with the x-axis pointing
eastwards and the y-axis northwards. The constant R is a certain length,
called the radius of deformation, and f is the value of the northward
derivative of the Coriolis parameter at the latitude where y =0.

Seeking a wave of permanent form, show that if y(x, y, 1) =g(x —ct,y)
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Q8.7

Epilogue

for some function g and constant velocity ¢, then

9ux + 9y —9/R* + By =Glg + cy)

for some differentiable function G of integration.

Show that if
2 2
g Jlkr/a) < q >r
3 A\t forr<a
glr,0h =acsin0 x k2J (k) kt/a
_ Kulgr/a)

Y forr > a

Ki(g)

where x =rcos0 and y =rsin0, 4, k and ¢ are positive constants, and J,
1s the Bessel function and K, the modified Bessel function, then

v 2 Jy(krfa)id (k) forr<a
Sr,) = —a" 'cqg’sinf x
K (qr/a)/K(q) forr>ua
Deduce that this gives a solution of the vorticity equation with
{Ble —(K* + ¢*)ja*} (g + cy forr<a
Glg + cy) = (Blc — (k* + ¢*)/a*} (g + c¥)
Blg + ¢y),c forr>a

if g=a(R™2 + )t

Verify that for this solution i, ¥, and { are continuous at r=a if k is
one of the (countable infinity of) roots of

Kolg) _ Ja(k)
aKilg)  kJitk)

[These localised vortices are called modons. They are generalisations of
well-known solutions for two-dimensional rotationzl flow (cf. Batchelor
1967, p. 535) which may be important in meteorology and oceanography.
They seem not to be solitons because numerical calculations indicate that
some do not retain their identities after interactions with one another. Stern,
1975; Larichev & Reznik, 1976; McWilliams & Zabusky, 1982.]

The Born-Infeld equation. Use the variational principle § | & dx dr = 0 with
the Lagrangian density & = (1 — u? + u2)!/? to deduce that

(1 — udyu,, + 2uupy, — (1 + ul)u, =0.

Show that u(x,1) =f(x + 1) gives two solutions for all twice differentiable
functions f.

[Born & Infeld (1934) proposed a three-dimensional form of the equation
to model a relativistic particle. See also Barbashov & Chernikov (1967).]
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The answer, if one is given, is designated by the prefix A: for example,
the answer to Q1.1 is A1.1. In some cases a hint to the solution is included.

Al2

Al3
Al4
AlS

Al6

Al7
AlS
Al9

Al1.10

Chapter 1
u(x,t) = f(x —ct) + g(x + ct).
x+ct
u(x, 1) =3 {p(x — ct) + p(x + ¢1)} + TJ qly)dy.
C x ot
q(x)= —cdp/dx.
Dispersion relation is w = k — k* — ik?.
First gives w = k — k*: second gives w = k/(1 + k?)so thatw = k — k* + O(k®)
as k-0 and w~ 1/k as k — oc.

Uo(X — /(1 + ugt), 0 (x—-0)/(1 +ut) <1

u(x, 1) =1 upl2 — x+ )/(1 — uyt), LK (x—1—=2u)/(1 —ugt) <2
0, otherwise.

See Fig. Al

u(x, 1) = cos {n(x — ut)}, u, = nsin {n(x —ut)}/[1 — nt sin {n(x —ut)}].
u(x, 1) = f{x~cu}, u,=f(A/{1 +c'(A) (1)}, where 1 =x — c(u) is cons:
tant on each characteristic.

u(x,[):J- F(k)e'™*~ndk, where w = —k* and f(x)zv[ F(kye™* dk

- @

1 o]
Remember that Ai(z) = TJ exp {itkz + 3k%)} dk.
n —

Fig. A.1 Sketch of AL6. (@) t =0, (b) t = 1/u,.
(@) b)
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u(x, 1) = —2x?sech? {k(x — 4x%) + A}, A arbitrary constant.

ALI3 A2=1.
Al.14 Usec=(gh)"*{1 — Lk*h? + o(k*h?)} as kh -0 (for ¢ > 0) and remember that

) I
-—J et dk = §(x).
2n) .,

1/(0 d /o 0
ALLS K(x)=¢yd(x) +7d7k _ ek dh
\ i

A2l

A22
A23
A2S

z ’

s
| K(x —Hu.di=cyu, + i)_c'()J (sgnh) F(kye™* dk, where
rl ’

v~ x

I e s
Flky= - uge ™ de
2n)_,

Chapter 2
M f1& =£ ‘l—tanh(4uOE+A)}-
(1) f(5)= + ! Zsech(c2E + A) for all ¢ 20;

(i) [ = SCLh (el 22 4+ ),

iv) f(&)= 10 +6(c? — D' 2 tanh [(e? — 1) 22+ A,
where A4 and f, are arbitrary constants.

Sketeh the graphs of (/)2 against .

Special solution obtained if 4 =B =0.
Unstable saddle point at /"= =0 if ¢ < —22, and an unstable node if
= —2x. At ["=0, f = | there is a saddle point.
A(l —e ™™, £=0
(&)= A/
HO= 0 A% ey £<0
u

where 2 =(c—1)' L, u=(c+ 1)} 2 (¢ > 1) and 4 is arbitrary. Solitary waves,
for which the solution is sinusoidal in the middle and exponential in the
tails, exist if — 1 < ¢ < [; periodic waves exist if ¢ < — 1.

2.7 (i) Compare the series in powers of m for both sides of the equation.

A28

m=n=—% —inf+3f7=/", finy= —2exp(—in*)f" exp(—iy*)dy.

A210 "+ 641" = 2f + 291 =0.
A2.11 Use u(x,t) =t~ Y2 f(xt~12); then f" —dinf)y +vf|f1? =0.
A2.12 Try u(x,t)= ¢ + f(x — o) and dcducc that

Y + e+ N*—3af =2 +L1c*. Hence (¢')? = (x — 6c?)g? — 4cg ~ 1

A2.13 Note that S#(f,,) = {#(f) ]}« Solution requires a= 1/c and b = 4c.
A2.15 First show that v, + 202 + v, = 0. Express ¢(x, t)= F(kx + mt +2)/ G(Ix + nt + p)

and take F" = —F, F2 +(F)?=13,G"=G. G* —(G)? = k?

A2.16 Try u(x,1)= aexp (1a2t)(1 + 4 + iB) where 4 = A(x,1), B = B(x, () are both

real.
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A2.24

A3.2

A33

A34

A3S5

A36
A3.7

A3.8
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Write ¢(x, t) = darctan { f(x)/g(t)}.
As for A2.20, but for a different choice of f and g- If F=tan(i¢) then

Fixcy~ +dexp {+ (x+ A0/(1 = 2)' 2} F dexp ! T (x — Any/(1 — A2)172)
as 1>+ w, and note that +ie’= +exp{0 + 1/(1 — 1%)"?} where 6 =
—2(l = AH 2 og 4.
One approach is to introduce X and then seek a solution
u(x,y. 1) = f(X% %)

Chapter 3

Form (1. — Ay — (L + «2W, =0 and integrate from x = — a0 to + 0,
where L= - d?/dx? + u.
Set p=4i—U,. There is a continuous eigenfunction if x>0 and none
otherwise.
() fAi=k?>0and I?=U,—-k>>0 then y(x) = 4e” + Be " for 0<x <1
etc., and continuity of i,y at x = 0,1 gives a(l T ik/l)e*’ = b(1 + ik/l)e* +
(1 Fik/he™™ If A=k> >0 and k* — U, = m* > 0, then as above with [ —im.
Ifk= \/UT% then as above with [ >0 and a(k) =e~*/(1 — Lik).
(i) If =k%2>0 then

a(k) = 2k* cos k/[ {2k? — k(U + U ) }e ¥ + iU U, sink]

iU, iU, . )
bk {12 e 2ikb g a-2ik
(k)= {2k < 2k >c }a ¢

If A= —x? <0 then

and

(ky — 3 Ug) (e, — 31U =:U,U,; exp(—2xk,).
Examine slope of y = f(x) = (x ~ 1 Uy)(x — U ) and

y=9)=3UoU e”* at x = 0.
Ifi=k*>0and ?=k*-U,>0 then
ae lkx x<0’
X
l//( ) { ~ilx + be ﬂx x> 0.

with a=21/(1 + k), b= (- k)l + k).
IfA=k*>0and m*= U, — k¥ >0 then
A_e"ikx g g el x<0
Yi(x)= -
Ce x>0

with 45 = LC(1 T imyk).
Let X = fix, A = A/B2 ug = U, /B2

=1 /35T — 1), Yy =1 J1587 Ty = | \/‘53 where § = sech x,
T—tanh X.
(1) Sety(x:k,e) ~WYo(x: k) + e, (x; k).
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(i) Set A(X;e) ~ Ag(X) + &4, (X), g(x, X;€) ~ golx, X) + &g ,(x, X} and
K = eR(g), K ~ Kq.
A3.10 (i) Use I'(z)[(1 —2) = n/sinnz.
(ii) Use Stirling’s formula, and sin n(1 — ik) =i sinh rk
A3 11 If L,L, -0 as z— — o then
L, — L, —ux)L=0, o<
and
u(x) = 2dL dx, where 1.(x)= Liv. ).
A312 () fk=ix, theny i, .
(i) L.hs. of equation (3.44) £ 0 when & =1k,
A313 () K(x,2)= —e 91+ 1o 2y
(i) Pp1x,2)= — Fxz
(ii1) K(x,2)= H(x + :) (see example (i), §3.4);
(iv) ¢p(x) =1+ (2cos x + msin x)/(1 — Ln?).
A314 Ky=0, K, =e "% K, = —e™ "] —le™ 29 etc.

A3.15 N.B. Only the continuous spectrum is present,

u(x) = —2f0(x).

3 3 3
AZL6 |Al=1+ Y E+ Y AEE+ Y AE,
1=1 =1 a=1
where E, = exp(—2wx) 26,0 A, = (x, — k)P (k; + w2 and < S denotes 4
chosen cyclically with respect to i.

Chapter 4

A4.1 Differentiate appropriately the Marchenko equation, and use ntegration
by parts as required. For (iii), introduce the derivatives of (1) into (2).
A42 (i) Write u(x, 1) = (121)"2"%g(X 1) to give

121, — 29 —4X gy — 6ggx + gxxx =0,
and then follow A4.1.
(1) Let F(x,z:1) = a(x, 1)b(z, 1) so that @ = Ai{x + A),b = Ai(z + A), where A is
an arbitrary constant.
A43 F(x,z;t) =exp { —k(x + z) + 8kt + o} = g(x, z;1,k, 2). If
Fix,z;0) = g(x,z; £, k,0) = g(x, z;1, |, f) then

uGe 1) = =20k + D2(e, +pe Yoy +eo = (5. — s ) Hen + pe.)?
where
<Z>i =<COSh>{(kil)x—4(k3i13)t} and  p=(k+ k=l (k).

sinh

(Emerging solitons are of amplitudes —2k?, —2/%)
Ad4 (i) ulx, )= —3Fsech? {3(x —9r)).
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A48

A49

A4.10

AS5.2
A53
AS55
A5.6

A5.10

AS5.11

A5.13
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(ii) Three-soliton solution (see example (iii), §4.5 and A3.16).

(iti) In general, b(k) #0. If V =0 there are 1 + [2\/17/7:] solitons; if V <0,
none I ${1+4V)"2 — 1} is integral then b(k) = 0 for all k.

See A4.3 with k> 1. Evaluate on 1 =0, and examine u near x =0. Two

maxima (peaks) if /3> k/l > 1; only one maximum 1fk/1>\/ N.B. Profile
is sech? il k=2, 1— 1.

Sce A3.7 and A3.16. Let 0, =8n — 2nx. Then u(x,1) ~ —2sech? (x — 4t) as
t > —oo and ulx, 1) ~ —2sech? (x + xo, — 4t) as t —» + oo for fixed 0, where
xg = —4log(A4,,45,). Similarly for 0,, 0, fixed.

If u = O(a) then K = O(2) and so F = O(x), x - 0.

Use the conserved density of Q5.2. The centre of mass has the x-coordinate
= xudx/[* _udx.

Formequation for L, from that for K, and differentiate it to obtain d2L,/dx>.
Examine behaviour as x — o0, Express L, in terms of y, in the equation

for L,, multiply by (4nys, — 2y;) and sum. Add this to 2y,u, expressed in
terms of i, and summed.

Similar to A4.9, to give

2' @« R N
u(x,t) = ~1J‘ kbik; 1y (x; k, ) dk — 4 % 2 (x;0).
n

- n=1

Chapter 5

(xu + 3tu?), = (1200 — 6tuu, + 3tu + 3xu? — xu,, + u),.
u,u?,u* + u? are conserved densities.

Remember that |u|? = uu*.

Note that #(u,) = { A (u)},. etc

N
u(x,t)~ — 3 kZsech?{k,(x — 4k — x,)} as t - oo, Let f(x) = u(x,0) then

n=1

,l - N
J- f(x)dx=J- ux,ydx=~-2% k,

-« n=1

and

J‘m {f(x)}zdx=J‘uO {ulx,1)} de- Zk etc.

- w® - ,.:1

Show that, if ¥, is an eigenvector of L(0) with eigenvalue Ao, then Uy,
is an eigenvector of L{r) with eigenvalue 4,. Show that M = u,0.

0 -1
Take L = (y x> and M:%g( >
X -y 1 0
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AS5.15 u, + 210uu; — 105u3 — 420uu, uy —
where u, = 0"u/0x".

AS5.18 Requires A= —2v.

A35.22 Show that, if w=log(f*/f), then

N 1 1 N 1 1
I
(i)
for

(f2=¢"){(DI =D/ = 1)(f-9)} = 2fg{(D} = D)(ff=g-g)} = 0.
AS5.26 Show that

42u,u; — 105u%uy — 2luuy — u; =0,

AS5.25 Show that

{(iD, + D3 +1yDR)(g /) }/S* + 3i{agg* — yDI(S )} (fg.— g £ *
+g{dgg* — BDUS )}/ = 0.
A5.27 Write D (D, + D)(ff)=0as ff,. = f.J. +f?F =0,
and differentiate to find F,, F,,. Form f2F_ + 3FD2(f-f) and D¢(f-f).
[Note that f*F =ff, —4f, f3+ 3/3, f,=d"f/ox"]
A5.28 (5.21) u= — 0% (logf)/ox?, f=1+¢® O=kx —wt +a w? =k +k*
(5.22) u=4idlog(f*/f)/ox = M{A%(x — AL+ x0)? + 1},
S=1x— At + X¢) + 1/4, 4 real (cf. Q2.13);

523) f=1+ k" ”3j AZ(y)dy where &= x/(120)"/* and k is an arbitrary
constant;

(524) f=1+¢€% 0= kx+1y wl + o, o=k>+ 31%/k;
(525 f=1,g=¢’ 0= {a(x+[)+(x+[)/a}+<x
(5.26) g =¢b f=14 (/29)(k + k*)" Zexp (6 + 6%),
0=kx + (iBk* — vk + A;
527) f=1+¢% O=kx— k>t — k¥t + a.
A5.29 f=1A| as given in A3.16.
A530 A, = {lky —k)(wy —w) + (ky —- ko)t + 30 — 12)2} .
{(kl + kZ)(wl + wZ) - (kl + k2)4 - 3([1 + [2) }
A5.31 vix,t)=/1(x) + g(t) and then

ulx, 1) = glt) = £ () + 2log [ — /2/{F(x) + G(1)}]
where F(x)= [Fe™ /@ dx, G(t)=['e?® d1.
AS5.33 The four solutions are related by the theorem of permutability (see Fig. 5.1)

with wo =u,, Wy =U,, Wy =Us, W, =U,, 4, =a,, 4, =a,. Form, and then
climinate, the terms (u; — u,),, (U — Uy);.

a, +a U, —u
A534 For example u,=4arctan { ! 2 tan< i \} with anv pair of
a,—a, 4 |/
solutions u,, uy, say tan (u,/4) = exp (4,), 0, = a,x + t/a, + o, (n = 2,3), giving
the two-kink solution.
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A5.35 Use equation (5.91), with w, =0, to obtain

3 3
W123={ Z )~in~(ijk)}/{ Z ﬂ.i(wj——wk)}
(a=1) =1

where (i=1) denotes ij,k taken cyclically. A three-soliton solution
is obtained with A, >4,>4;, w, and w, regular solutions, and w,
a singular solution. See Wahlquist & Estabrook (1973).

A5.37,538 If the bilinear equation is B(f-f)=0, then form f,f,B(f,f2)~
S2/32B(f;-/1)=0 and use appropriate exchange formulae.

A5.39 Form ¢(1)/dx =0 and d(1)/t — 8(2)/ox = 0.

Chapter 6
A6 W,y )= —b Wip_ y.)=a W j,)=b A
A63 Show  that  WW_.y)O)=WW_.¥.)(=0,  WE_ )=
Vi > <_+_w§ > (w) <¢ Wi
+Wi_, -0). Ifr=+ h =
W g =01 lifcn<w2' y .
and so Woy )= Wt J%), Wii_,§.) =+ Wyt yt), ie a=a*,

b= T b*.
A64 Ifr= tqthenf= Ffiifr=4¢*then f= F/* Ky =+ K¥;, K}, =K,
and Ky, +f+ [ Ky fdy =0, Ky + [0 K, fdy=0.
A6.6 Conserved densities are
() @2 dx + 4% die + 1g7q2 + 24%

() 1412, g*q, — gq¥. |4 > — Slql*.
A67 (= — 41

A6.8 Sce Q24: g om el a5 x| 5 0.
A6.10 Operate only in z < x.

- ~1
10 0=d o 00
A615 L=L= , M=1{-r 0 ), ~N={ 01
00

B 0 0 I

<0 A-13-1> <0 0>
M = LN = )
B 0 0 I

A6.18 u(x, ) =4 arctanh (e***14+3),
{E; + E; + AX(ETE,/4k] + E E3/4k3)}
A6.19 u(x,1)= I s ETRIN
(1 + Ef/Ak} + E3/4k3 + BE E, + A*EXE3/16k3k3)
where E;=exp(0,),0;,=k;x —k}t + «, A=(k;—ky)/tk, +k3) and
B =2/(k; 4+ k,) The solitary-wave solution is u =k, sech 8,.
— (u/A)sin ¢ tanh 0
A6.20 u= —4yscch0{cos¢ ﬂ(#/ _) ingtan }
1 + (u/A)?sin? ¢ sech? @
0=24x 4+ 8AMA* — 3u) + o, ¢ =2ux + 8u(34% — ) + .
A6.21 See Q2.21.

A6.22 Take,eg, 4, > —1,>0. The solution for u, represents the collision of two

~where {i=A+i0p,



Answers and hints

hump-shaped solitons: cf. KdV equation. (You may take 8, = &, = O without
loss of generality.)

A623 (1) Eg. 4, > — 4, >0, (ii) Eig 4, > 4, > 0. See §.1 for some nteractions 1n
a laboratory frame.

Chapter 7
A7 () w= A DY

(i) we Ajz )t B
mn w - Alogiz - ) + B.
A7.2 For the P-1 equation, wiz) ~(z — z4) 2>z - z,,.

A73 ) dPwidnt =6w? +,p=z-24;
(i) d*w/dn® = 2w + yw, p=2z'3.

ATS W' = (W) /w —w/z + L (w? —1)/z

A7.6 —AF + F'+vF|F|* =0, then F ~ A(x — X,) ™! as x > x,.

A7.7 If N =3, then 2F + 4zF' + (2> — 1)F" = F> where z = x/t (and m = — 1), and
s0 F~A(z—z,) 3 as z >z,

A78 Letu= F(z), z=xt, then zF" + F' = }(ef —e~F). Transform w = ef.

A7T9 n=-% p=-4,q9=—-4% A=, then

F¥ — 6FF" — }zF" —4F — 6(F)* =0

where z = xt ™% + (1/12)y*t"*3. If F =2 then ¢ = v* + (1/12)zr.

Chapter 8
A8.1 In linear theory, A(x, 1) =ei* Kn (w
rexpi{tk— K)x—(k— K)f (K}t + itk — K3/ (Kx) 1.
AB3 Ay =(m —my)(n, — n)/{(m; + ny)(m; + n)}.
AB4 —3(E) = §E* + 51 + A/c)E* + uBE/c + Djc where E = E(x — ¢t): for soli-
tary waves B=D=0, 4= — 1.
After linearisation mii, = f'(0)(2u, — 44+, — u,_,). For nonlinear equation,
$,=—bm " Ya+3$)(2s,—s,., —S,_;) and try 5, = A tanh§,.
AB.6 Vorticity equation becomes
g + cy, L —g/R* + By)/o(x,y) = 0; therefore { — g/R* + By = G(g + cy). Here
‘: = (rgr)r/r + gBB/rZ = (rgr)r/r - g/rlv
AB.7 Use Euler~Lagrange equation.

AB.S
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Stlent, colour, 3 min.

Latbeck, J. C.(F1977a). Boomerons. Silent, colour, 6 min.

Fatbeck, J Co(171977b). Zoomerons. Silent, colour, 6 min.

Talbeck, J. C(F1978). Two-dimensional Solitons. Silent, colour, 4 min.

Ealbeek, ). Co(F 1981 Non-luear Evolution Fquations. Sound, colour, 12 min. [17]

Filbeck, I C (B 1982) Kk Interactions ot the % Model Silent, colour, 6 min.

Pitbeck. J O & Tomdabl, S (119K

Stne Gordop Solitons Sound, colour,
(BN

I he above Bilms are also available on video Faguinies about ity o1 buving any

of these shoutd be made to Professor O Fatbeck, Department ol Matheniaties,
[tevior Watt University, Riccavton, Edmburgh B4 4AS UK

Zabushv. N 1 Kuuskal, Mo DL & Deem, G. S, (F1965). Formation. Propaquaton and
Interaction of Solitons { Numterical Solutions of Differential Equations Descrdhng
Waev Motions it Nonlinear Dispersive Media). Silent, b/w, 35nmum. [ 17|

The above film may be loaned from Bell Telephone Laboratories, Inc. Film
Library, Murray Hill, New Jersey 07971, U.S.A.
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