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Abstract

This study presents a theoretical investigation of the rank-
based multiple classifier decision problem for closed-set
pattern identification. The problem of combining the de-
cisions of more than one classifiers with raw outputs in
the form of candidate class rankingsis considered and for-
mulated as a general discrete optimization problem with
an objective function based on the total probability of cor-
rect decision. This formulation uses certain performance
statisticsabout thejoint behavior of the ensemble of classi-
fiers, which need to be estimated from the cross-validation
data. An initial approach leads to an integer (binary)
programming problem with a simple and global optimum
solution but of prohibitive dimensionality. Therefore, we
present a partitioning formalism under which this dimen-
sionality can bereduced by incorporating our prior knowl-
edge about the problem domain and the structure of the
training data. It is also shown that the formalism can ef-
fectively explain a number of successfully used combina-
tion approachesin the literature.

1. Introduction

The last decade has witnessed extensive research on the
problem of combining the classification data supplied by
a multitude of classifiers with the aim of improving the
performance of the overall system. Contributions have
been made or some form of classifier combination system
have been attempted, among others within the fields of ma-
chine printed word/character recognition [15], handwritten
character recognition [29, 16, 3, 23, 26, 18, 17], speaker
recognition, [11, 6, 10, 22], face identification [1, 8], text
to phoneme translation [28], remote sensing [4, 5], mili-
tary target recognition [9] and biomedical image process-
ing [19]. The neural networks community has also been ac-
tive on this subject [27, 3, 21, 28, 2, 20, 13]. The diversity
of the fields where encouraging results have been reported

show that the methods of combining multiple classifiers
is of considerable interest in many diverse applications of
pattern recognition.

Xu and his colleagues have categorized multiple classifier
combination systems with respect to the type of raw out-
put information from each classifier, resulting in three such
categories [29]. These are categories where the classifier
outputs are single class labels (Type 1), rankings of a sub-
set of candidate classes from highest to lowest “likelihood”
(Type 2) and complete set of measurement values for the
candidate classes leading to such rankings (Type 3). When
a single classifier is considered, a final class label (the iden-
tified class) is obviously the only desired output. However,
for combining multiple classifier outputs, only this abstract
level may lead to a loss of valuable information. It should
be advantageous to use classifier output forms with more
information. Ho has shown [14] that rank-based combi-
nation is a good compromise which avoids output incom-
patibility and scaling problems while preserving valuable
information about classifier behavior for imperfect classi-
fiers in the raw classifier outputs. Despite the fact that there
have been good theoretical attempts to analyze Type 1 and
Type 3 systems, there have been few attempts to analyze
rank-based combination systems. In [15, 14], Ho proposes,
without attempting an in-depth theoretical analysis, to gen-
eralize the Borda Count method by linearly weighting the
individual classifiers while Al-Ghoneim and Kumar pro-
poses in [2], a method to train individual classifiers ex-
ploiting the knowledge that they will be involved in com-
bination.

A good survey of existing rank-based combination meth-
ods is presented by Ho [15] where a number of new meth-
ods are also introduced. Among the two groups of methods
discussed, the class set reordering methods are suitable for
applications where a final unique class decision is required
which is the case for our discussion. Methods belonging
to this category are the Highest Rank method, the Borda
Count method and the Logistic Regression method. The
first two of these methods are simple methods which do not



use any classifier behavior observation while the last one
introduced by Ho attempts to generalize the Borda Count
method by linearly weighting the classifiers, incorporat-
ing the classifier behavior observation into the combination
process.

The present study considers the rank-based multiple clas-
sifier decision problem and attempts a theoretical formula-
tion treating this problem as one of discrete optimization.
It will be shown that two of the rank-based combination
methods discussed by Ho are special cases within this uni-
fying formulation.

2. Problem Formulation and the Objective
Function

We consider a closed-set pattern identification problem
where patterns may come from £ different classes 5, j =
1,2,---, P which we refer as the candidate classes. We
assume there are @ classifiers X;,i = 1,2,---,Q in-
volved in the classification process. Furthermore, = de-
notes a pattern, causing all classifiers to generate candi-
date class rankings. These rankings are transformed into
a rank score matrix form R whose elements are positive
integer rank scores r;; with the highest score assigned to
the highest ranking class. We define two random variables
with values being indexes on an ordered set § of candidate
classes: s, denotes the true source class index, d denotes
the final decision of the system. The pattern » processed
by all classifiers results in a rank score matrix R. which
is the only input for final classification. Suppose that the
ultimate objective function in classifier combination is to
achieve the maximum rate of correct identification. Al-
though other objective functions can also be defined, we
will focus on this one for closed-set pattern recognition.
The total probability of correct decision can be expressed
as P{y = 1} where the random variable y is a binary val-
ued indicator of the correct decision. The problem of find-
ing the best rank-based multiple classifier decision process
becomes one of maximizing P{y = 1} which is our objec-
tive function. This objective function is not very useful in
this form and should be transformed in a form which con-
tains free parameters for optimization as well as statistics
about the classifier behavior. Expanding into a sum over
source class and rank score matrix indexes and using the
Bayes rule, the objective function becomes
Vi et PAd=dls, = j.r=n}P{s, = jr=n}.
1)
Since the decision process to be found by definition uses
only the rank score matrix, it is a deterministic function of
r. Thismeans we have P{d = j|s, = j,r=n} = P{d =
J|r = n} which transforms (1) into

S SN Pld=jlr=n)Pls, = jr=n). O

In this form of the objective function, the first term P{d =
Jlr = n} is directly linked with the decision process we
are seeking. For a given deterministic decision process,
these conditional terms are uniquely determined and are
binary valued with values of “0” and “1”. The second joint
probability term P{s, = j,r = n} on the other hand is
independent of the decision process and models the joint
behavior of the ensemble of classifiers. Noting that it can
also be expressed as P{r = nl|s, = j}P{s, = j} itcan
be seen that this set of joint probabilities can be estimated
if the classifiers are operated on cross-validation data with
known class labels. Denoting the decision terms as our
optimization variables 4;, and assuming that the classi-
fier observation statisticshave been properly estimated, the
problem becomes

P N

ma bjnPis, =J,r=n} o. 3
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However, this is not an unconstrained optimization prob-
lem. Since the decision process can select only a single
class label as the final decision for a given rank score ma-
trix, our optimization variables are constrained by the set
of constraints

Y bip=1 for n=12--N. (4)

j=1

3. Optimum Solution and the Cur se of Dimen-
sionality

The above constrained optimization problem seems to be
a complex one. However, the set of constraints enable
a simple global optimum solution. If the expansion in
(3) is visualized as P lines and N columns with a term
binP{s, = j,r = n} at each row/column intersection,
one can see that each column must have only one nonzero
b;, variable. Since all the estimated coefficients are non-
negative, the global maximum can be achieved by selecting
in each column the b;,, multiplying the maximum coeffi-
cientas “1” and all remaining variables as “0”.

Once a set of values is determined for the b;,, variables,
they correspond to a global optimum decision process.
Consider an unknown pattern « processed by all the classi-
fiers, leading to the rank score matrix R.. Once R. is known,
so is the index value n for ». Among the P variables
b;n corresponding to this » value, the one being nonzero
leads to the final classification by also determining the in-
dex value j for s,. The achieved global optimum deci-
sion may not be unique for the cases where at least one
column in the aforementioned visualization contains more
than one estimated coefficient which is maximum within
the column. For these cases, the overall system is unable
to discriminate among the indicated classes.



We have shown that an optimum solution is possible if we
had the classifier observation statistics P{s, = j,r = n}
estimated properly. This is the case for infinite data. Un-
fortunately, the number of such statistics is P(P!)“ which
is prohibitively large even for small problems. Since such
estimates should be done with limited data, a formalism of
reducing the number of statistics to estimate is required. In
the next sections, we will present such a formalism based
on partitioning the observation space.

4. Partitioned Observation Space (POS) Ap-
proach

Consider the objective function in (3). The problem do-
main is composed of two main parts, the first one being
the space spanned by the free variables b;,, and called the
Problem Parameter Space while the second one being the
space spanned by the estimated statistics P{s, = j,r =
n} about the joint behavior of the classifiers, called the
Classifier Observation Space. The statistics are called the
Classifier Observation Statistics. For well behaving clas-
sifiers, the cross-validation samples tend to be clustered in
the classifier observation space. Hence there will be no
data for certain statistics while enough data will exist for
some other statistics. A feasible idea is to partition the ob-
servation space such that generated partitions have enough
cross-validation data for estimation. Such a partitioning
may be done by incorporating our prior knowledge about
the problem space or by using the actual distribution of the
cross-validation data or in a hybrid manner. A formalism
for exploiting these ideas follows.

We first define an augmented event space F composed of
the compound events (s, = j;r = n). These are the most
basic events, i.e., the event atoms in F. Each such atom
specifies the occurrence of the event “The source class for
the pattern 2 was S; and the set of classifiers generated
the rank score matrix R,,”. This event space is finite with
cardinality P(P!)Q. Now assume that a mapping WV parti-
tions this event space into disjoint sets of event atoms. The
name will denote both the partitioning and the mapping re-
sulting from the partitioning. Assume that the partitioning
W results in Myy partitions Wy, W, - - -, Wy, which are
disjoint and with their union being the event space . The
partitioning results in a new event space where the new ba-
sic events are the partitions. Hence W effectively defines a
new random variable

QW:SXRH{1,2,~~,MW}. (5)

whose values are indexes on an ordered set Gy =
{Wy, Wa, -+, W, } and where § is the set of possible
source classes while R is the set of possible rank score
matrixes.

To incorporate the partitioning process into the objective
function of (2) we observe that the random variable g, isa

deterministic mapping from the values of s, and r. There-
fore, the double sum can also be written by introducing the
new random variable as

Yiei Yoy PAd= .5, = jr=mn,g,, = W(j,n)}

(6)
which, by successively using the Bayes rule and the fact
that the decision should be based on the rank score matrix
only, may be put into the final form

25:1 ZnN:1 P{d=jlr=n}

Pls, = j,r=nlg,, =W, n)}P{g,, =W(, n)}(~7)
The first and last set of terms inside this expansion have
the usual meanings of decision variables and observation
statistics as in the previous expansion. However this time
the observable events for modeling the joint classifier be-
havior in the observation space are the partitions 1¥/,,,. This
is a coarser resolution where the actual rank score matrixes
are hidden behind observable partitions. The newly intro-
duced set of terms in the middle of the expansion is a set of
transition terms between the coarser resolution of the par-
titions and the finer resolution of the original event atoms.
Clearly, the first terms are to be used as the optimization
variables and the last terms will be estimated from the
cross-validation data. Since a deliberate decision is made
to keep the observation resolution at the coarser partition
level, there is by definition no data left to determine the
transition terms. In fact, due to this decision, one is igno-
rant about this finer detail. The transition terms allow us
to formally introduce our ignorance within the Bayesian
formalism, by assuming a uniform distribution within the
partition, for the individual elements forming any such par-
tition 1//,,,. This takes the form

P{s, =j,r=nlg, =m

0, if
—IVVlmI’ if

where |WW,,,| is the cardinality of the partition W,,,. Hence
the only unknowns remaining within the expansion are the
decision variables.

With this new expansion, a controlled tool to selectively
decrease resolution on the observation and modeling of the
classifier ensemble behavior is introduced. By the selec-
tion of the partitioning, it is possible to reduce the number
of partitions, hence the events of the observation space by
arbitrary orders of magnitude. Specifically, for the above
expansion we have My statistics to estimate. For limited
cross-validation data, a reduction in the number of statis-
tics to estimate corresponds to an increase in the number of
observations about each individual statistic, hence to an in-
crease in the reliability of the estimate. It is well known in

} =
¢ W, (8)



pattern recognition literature that the reliability of the es-
timates is crucial to the generalization performance, hence
to the identification performance of the system. Therefore,
it is better to use a minimum number reliably estimated
parameters instead of a larger number of unreliable ones
[28, 12]. Although we have mentioned that the number
of observable events can be arbitrarily reduced, this should
be done by considering the amount of cross-validation data
available. The new optimal solution based on observation
statistics derived from a partitioning is sub-optimal as com-
pared with the one based on the original statistics. There-
fore, the nature of the partitioning is crucial for the use-
fulness of the resulting solution. The objective should be
to maintain the maximum observation resolution which is
reasonable for the fixed amount of data available, and not
a finer one. It is also illogical to use a very coarse reso-
lution while enough data for a finer one is available since,
being unable to model the collective behavior of the set
of classifiers properly will increase the deviation from the
global optimum.

Clearly, the number of statistics to be estimated is reduced
to My, a number necessarily lower than the original car-
dinality. However, the double summation making up the
objective function still has the original number of terms.
Fortunately, even with this huge number of terms in the
expansion, the optimum solution discussed previously may
be converted into an algorithmic form so that only a small
number of computations is necessary for making the op-
timum decision based on the estimated statistics. This al-
gorithmic form can be summarized as follows: For each
pattern, process it by all classifiers and generate the rank
score matrix R.. Only for this specific R, compute exactly
P multiplier coefficients (the product of the last two terms
in of the expansion in (7). l.e., one coefficient is computed
for each candidate class. The final step is to decide on the
class with the maximum coefficient. A total of at most P
multiplications is involved. Note that the determination of
the transition terms is only possible if the partitioning is
based on a rule which can be easily applied when the rank
score matrix is given.

5. A Sensible Partitioning: First Two Ranks

The partitioning used to decrease the number of statistics
is often task dependent and a partitioning rule should be
formulated for each application and even for each cross-
validation data set. Often one may have prior insight
into the task and classifiers involved before the observa-
tion statistics are collected. This may be incorporated into
the solution by means of a partitioning of the observation
space. The point will be illustrated with an example we
call first two ranks based partitioning.

This partitioning is based on a general observation about
the behavior of the classifiers. Assume it is intuitively
expected that the resolution below the topmost two ranks
(largest two rank scores) isunreliable. This is a reasonable
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expectation, for example for distance classifiers, since the
separation between class models becomes less significant
as the models become more and more separated from the
pattern being classified in the feature space. Hence noisy
features have greater chance to affect the lower rankings.
Based on this expectation, we decide not to discriminate
among the ranks lower than the second and group them
to represent the last rank. The resulting new score assign-
ment (hence partitioning) can be expressed as a simple rule
given by

L Tij—P—|—3, if 7“2']'>P—3,
"= 0, if ri; <P—3

If an illustrative example of P = 4 classes and () = 2 clas-
sifiers is considered, there are a total of Myy = 576 parti-
tions which are illustrated in Table 1. The first column is
the set of event atoms inside a partition, the second column
is a label for that partition and the last one is the partition
random variable. Two shortcut notations are used for com-
pactness of the example: Each row illustrates 4 partitions
each corresponding to a particular subscript j of S; and
the corresponding value of ¢_. . The contents of each par-
tition consisting of 4 rank score matrixes are illustrated by
a don't care notation (i.e., elements denoted by the symbol
x can take any allowable combination). Also the actual
class names and rank score matrixes are used instead of
the random variable names for clarity. There are a total
of 576 resulting partitions (hence observation statistics) as
compared to the original event space containing 2304 event
atoms.

6. Special Cases as Specific Partitionings

In this section the theory will be linked with a number of
existing rank-based multiple classifier decision techniques.
It will be shown that they are special cases of the presented
theory.



6.1. The Highest Rank M ethod

The Highest Rank method discussed in [15] is a simple
technique of rank-based combination. Since it does not
use any model of observed classifier behavior, it is not op-
timal in the general case. The procedure can be described
verbally as “For each source class, select the highest of the
rank scores assigned by all classifiers for that class as a new
score. These new scores constitute a max score vector. The
class with the maximum max score is selected.” The status
of this method with respect to the presented theory can be
summarized as follows [24]:

Fact 1 Asa predefined decision process, the Highest Rank
method coincides with a specific fixed set of values for the
problem variables b;,,. The cases where the Highest Rank
method is unable to make a decision because of more than
one maximum in the sum score matrix correspond to more
than one fixed sets of b;,, values.

Fact 2 The Highest Rank method does not make use of any
observation on classifier ensemble behavior and hence is
not in general optimum for the combination of non-ideal
classifiers.

The equivalence relation between the optimum solution re-
sulting from the objective function expansion with respect
to the partitioning 1/ and the Highest Rank solution can be
stated as a theorem whose proof is given elsewhere [24].

Theorem 1 The Highest Rank method and the optimum
solutionto the classifier combination problem coincidesin
the context of maximizing the probability of correct deci-
sion expressed asin (7) only for a set of classifier observa-
tion statistics P{g,,, = W(j, n)} which satisfy a fixed set
of constraints.

Table 2 illustrates by means of an example for P = 3
source classes and ¢ = 2 classifiers that the mapping gen-
erating the max score vector for the Highest Rank Method
is a partitioning of the observation space. For this case,
we let each max score vector to correspond to a partition.
There are hence My, = 42 such partitions. A number
of illustrative partitions are given in the Table. The same
shortcut notation as in the First Two Ranks case except the
don’t care notation is again used here.

6.2. The Borda Count Method

This is yet another popular rank-based multiple classifier
decision method. It is a slightly generalized majority vot-
ing technique from Group Decision Theory [15, 7]. Since
it is simple to implement, it has been used as a popular
rank-based technique. The Borda Count method uses the
full rank score matrix R such that rank scores for each
class are summed up across different classifiers. There-
fore a sum score is obtained for each candidate class. The
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decision is made by choosing the candidate class having
the maximum sum score. We consider a partitioning W
which is illustrated in Table 3 for an example case of
P = 3 classes and Q = 2 classifiers. Again the usual
notation is used. In this partitioning, there are a total of
My, = BT partitions as compared with the original cardi-
nality P x N = 108. The arguments of Fact 1 and 2 and
Theorem 1 also hold for the Borda Count method estab-
lishing its links with the introduced theory. As discussed
in [25], itis also possible to show that the Logistic Regres-
sion method introduced first by Ho can be explained as a
special case of the POS theory.

7. Conclusions

We have considered the closed-set pattern classification
problem and attempted to formulate the rank-based mul-
tiple classifier decision problem as a general binary integer
programming problem. The optimization has been based
on maximizing the total probability of correct decision and
has led to an objective function expansion including de-
cision related terms as well as statistics which can be esti-
mated from joint classifier behavior on the cross-validation



data. Although the existence of a global optimum solution
is shown, the dimensionality of the problem necessitated
techniques of reducing the number of statistics to be es-
timated. We have proposed the partitioning approach as
a controlled tool to selectively achieve dimensionality re-
duction and provided an illustrative example. The full im-
plications of different partitionings are yet to be explored.
However, we have shown that a number of such partition-
ings establish the relations of the presented theory with
some popular rank-based multiple classifier decision meth-
ods. We believe that the theory presented is a promising di-
rection for understanding the rank-based multiple classifier
decision systems as well as to establish the links between
Type 1 and Type 3 systems.
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