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ABSTRACT

A UNIFYING THEORY FOR RANK-BASED MULTIPLE CLASSIFIER

SYSTEMS, WITH APPLICATIONS IN SPEAKER IDENTIFICATION AND

SPEECH RECOGNITION

Saranl�, Af�sar

Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. M�ubeccel Demirekler

January 2000, 154 pages

This thesis presents a theoretical investigation of the rank-based multiple classi�er

decision combination problem and develop a uni�ed framework to understand a

variety of such systems.

The rank-based combination is formulated as a discrete optimization problem

with the total probability of correct decision as the objective function to be

maximized. This formulation introduces a set of classi�er observation statistics

to be estimated by observing the classi�ers operate on a cross-validation test

set. The resulting binary programming problem is shown to have a simple global

iii



optimum solution but requiring prohibitive number of observation statistics. To

reduce this dimensionality, a method based on observation space partitioning is

developed. By this formalism the number of observation statistics can be reduced

to levels feasible to estimate from the available cross-validation test data. Speci�c

partitionings can be de�ned when reasonable assumptions or prior knowledge

about the classi�ers are incorporated into the problem. Also, certain speci�c

partitionings e�ectively lead to the Highest Rank, Borda Count and Logistic

Regression methods from the literature and establish the links between Type 1

and Type 2 systems.

The concepts of independence and complementariness of combined rank-based

classi�ers are investigated using basic concepts from Information Theory and mea-

sures on independence and complementariness are developed. The Dominance

condition is developed as an indicator of performance improvement through com-

bination. Independence of classi�ers is shown to have no direct role in classi�er

complementariness.

Finally the potential of the theory and practical issues in implementation are

comparatively illustrated by applying the theory and the existing methods in two

real-life pattern recognition problems from speech processing with encouraging

results.

Keywords: Statistical Multiple Classi�er Systems, Rank-Based Decision Combi-

nation Fusion, Classi�er Observation Space, Event-Space Partitioning, Pattern

Recognition, Independence, Complementariness, Speaker Identi�cation, Speech

Recognition
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�OZ

SIRALAMA TEMELL_I C�O�GUL SINIFLAYICILI S_ISTEMLER _IC� _IN

B�UT�UNLES�T_IR_IC_I B_IR KURAM VE OTOMAT_IK KONUS�MACI VE

KONUS�MA TANIMA UYGULAMALARI

Saranl�, Af�sar

Doktora, Elektrik ve Elektronik M�uhendisli�gi B�ol�um�u

Tez Y�oneticisi: Prof. Dr. M�ubeccel Demirekler

S�ubat 2000, 154 sayfa

Bu �cal��smada, s�ralama temelli �co�gul s�n�
ay�c�l� sistemlerde karar t�umle�stirme

probleminin kuramsal bir incelemesi sunulmakta ve bu t�ur sistemlerin pek �co�gu-

nun anla�s�labilmesi i�cin b�ut�unle�stirici bir kuram geli�stirilmektedir.

S�ralama temelli karar t�umle�stirme, eny�ukseklenecek ama�c fonksyonunun top-

lam do�gru s�n�
ama olas�l��g� oldu�gu bir kesikli eniyileme problemi olarak formule

edilmektedir. Bu formulasyon, s�n�
ay�c�lar�n bir �capraz-ge�cerleme veri gurubu

�uzerinde i�slerken g�ozlemlenmesi ile elde edilmesi gereken bir gurup s�n�
ay�c� g�oz-

lem istatistikleri ortaya koymaktad�r. Ortaya �c�kan ikili programlama problemi-
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nin basit ve k�uresel bir �c�oz�um�u olmakla birlikte bunun engelleyici derecede �cok

g�ozlem istatisti�gi gerektirdi�gi g�osterilmektedir. Bu y�uksek boyutsall��g� daralta-

bilmek i�cin, g�ozlem uzay� guruplamaya dayal� bir y�ontem geli�stirilmektedir. Bu

kuramsal yakla�s�m alt�nda g�ozlem istatistiklerinin say�s�, eldeki �capraz-ge�cerleme

veri seti ile kestirilebilecek makul say�lara indirgenebilmektedir. S�n�
ay�c�lar

hakk�ndaki �onceden varolan bilgiler ve makul varsay�mlar probleme kayna�st�r�-

larak belli guruplamalar elde edilebilmektedir. Ayr�ca, baz� �ozel guruplamalar,

literat�urde yer alan En Y�uksek S�ra, Borda Say�m ve Logaritmasal Geri Al�m

y�ontemlerini vermekte, ayr�ca Tip 1 ve Tip 2 sistemler aras�ndaki ili�skiyi ortaya

koymaktad�r.

C�al��smada ayr�ca, t�umle�stirilen s�n�
ay�c�lar aras�ndaki ili�skisizlik ve tamam-

lay�c�l�k kavramlar�, Bilgi Kuram�'ndan temel prensipler kullan�larak incelen-

mekte ve bunlar �uzerine �ol�c�utler geli�stirilmektedir. T�umle�stirme ile ba�sar�m

artt�r�m� i�cin belirleyici olan H�ukmetme S�art� geli�stirilmektedir. S�n�
ay�c�lar�n

ili�skisizli�ginin, tamamlay�c�l�kta do�grudan bir rol oynamad��g� ortaya konmaktad�r.

Son olarak, kuram�n potansiyeli ve ger�cekleme ile ilgili konular, kuram�n ve

varolan y�ontemlerin kar�s�la�st�rmal� olarak, konu�sma i�sleme alan�ndan iki ger�cek�ci

probleme uygulanmas� ile ele al�nmakta ve ba�sar�l� sonu�clar g�ozlenmektedir.

Anahtar Kelimeler: _Istatistiksel C�o�gul S�n�
ay�c�l� Sistemler, S�ralama-Taban-

l� Karar T�umle�stirme, S�n�
ay�c� G�ozlem Uzay�, Olay Uzay� Guruplama, �Or�un-

t�u Tan�ma, _Ili�skisizlik, Tamamlay�c�l�k, Konu�smac� Tan�ma, Knu�sma Tan�ma
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CHAPTER I

Introduction

In recent years, it has been observed in pattern recognition literature that there

exist many alternative classi�cation and feature extraction methods often using

di�erent algorithms, leading to classi�er systems with comparable pattern clas-

si�cation performances. However, the performance of each method within such

a system is critically dependent on the task domain and controlled operating

conditions. Most methods fail when subjected to di�erent tasks or di�erent op-

erating conditions. Therefore, there is no best classi�er system for a wide variety

of operating conditions even within a single task domain.

Until recently, limitations in computational capacity allowed only one classi�er

to operate within a system, tuned for speci�c operating conditions. This severely

limits the robustness of such systems. However, the advance in VLSI technology

and the accompanied increase in computational capacity now permit the use of a

a set of classi�ers in a cooperative way to build more robust pattern recognition

systems.
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In recent studies, this trend is re
ected in a number of disciplines and it is

shown with promising evidence that more than one complementary classi�ers

may be used in parallel as a multiple classi�er system to tackle the performance

and robustness di�culties encountered by a single classi�er.

A critical need for such an approach is a decision combination method which

combines the outputs of suitable individual classi�ers in a cooperative way to

integrate their strengths while somehow avoiding their weaknesses.

An important group of multiple classi�er systems can be called as Rank-Based

Systems. For this group of systems, individual classi�er outputs are the rank-

ings(orderings) of the candidate class labels. This thesis addresses this group and

analyses several existing systems with an attempt to develop a unifying theory

to understand the behavior of all rank-based multiple classi�er systems. The de-

veloped theory is then used to analyze the independence and complementariness

between individual classi�ers involved in the multiple classi�er system as a means

of understanding the potential performance improvement possible with combina-

tion and selecting a suitable set of classi�ers to be used. The introduced theory is

then applied in two di�erent pattern recognition problems from speech process-

ing to demonstrate the applicability of the theory to propose better performing

rank-based multiple classi�er decision combination methods.

I.1 De�nitions

A classi�er is a system which takes a feature or a sequence of features from a

pattern and makes a decision about the membership of the pattern in a prede�ned

set of classes of such patterns. For example, in a speaker identi�cation task, each
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pattern class is a single speaker and membership of a speech pattern to a class

means that the pattern was generated by a speci�c speaker. The decision of the

classi�er is considered to be correct if the decision is the same as the class known

to generate the pattern.

Each classi�er implements a feature extraction method which derives from a

pattern, a descriptor or feature for that pattern. This is often a numerical vector

or a sequence of vectors. As an example, in the case of speech processing, features

can be derived from the speech signal by spectral analysis of the sampled speech

waveform or as the parameters of a linear mathematical model of the speech

production process [1].

During classi�er operation, features extracted from a pattern are matched

against representativemodels of the features making up each candidate class. We

call this matching process similarity scoring during which the similarity of the

unknown pattern to each class model is measured.

The multiple classi�er system is composed of a set of classi�ers followed by a

decision combiner. The decisions of individual classi�ers are input to a decision

combiner implementing a particular decision combination method. The decision

combiner generates a single combined class membership decision, which is the

overall multiple classi�er system output. This decision is expected to be more

reliable than any individual classi�er decision in the system.

The type of outputs by the individual classi�ers may assume di�erent levels

of information. The information is said to be rank-level if the similarity scoring

procedure within each classi�er is used to rank the candidate classes with respect

to their similarities to the test pattern and use this ranking as the output in-
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formation. Systems using rank-level information are called rank-based multiple

classi�er systems. These are the focus of the present research and represent an

important class of multiple classi�er systems.

I.2 Motivation

With the increasingly common observation of complementary behavior between

di�erent classi�er systems and the accompanied increase in the popularity of mul-

tiple classi�er systems in the pattern recognition literature, a solid understanding

of their behavior becomes increasingly important and interesting.

Fundamental questions such as \How to �nd an optimal combinationmethod?",

\When is it productive to combine a set of classi�ers?", \Which classi�ers supply

redundant information?", \What is the e�ect of classi�er independence on combi-

nation performance?", \Which task domains are suitable for a multiple classi�er

system?" need to be answered. A unifying theory is needed both to attempt

answering these questions as well as to establish the relations between seemingly

di�erent decision combination methods.

I.3 Research Goals

The primary goal of this research is to develop a theory for rank-based multiple

classi�er systems which would unify the existing rank-based decision combination

methods and to provide a framework where a family of better performing methods

can be proposed.

A secondary goal is to investigate the applicability of rank-based multiple

classi�er systems in speech recognition and attempt to use the proposed theory

4



in developing a successful system to solve illustrative pattern recognition problems

from speech processing.

Several issues arised during the development of the thesis which necessitated to

be addressed: (i) the evaluation of a number of rank-based decision combination

methods for the speech processing tasks considered, (ii) the development of a

theory which would explain these existing methods while providing an open-end

for the development for alternative methods, (iii) the use of the developed theory

to explore the links between rank-based systems and multiple classi�er systems

using other levels of output information from classi�ers and �nally (iv) the use

of the developed theory for the exploration of the concepts of independence and

complementariness among the set of classi�ers involved and to develop measures

on the potential performance improvement achievable through combination.

I.3.1 Assessment of Existing Rank-Based Systems

The thesis especially focuses on three methods from the literature: The Highest

Rank, the Borda Count and the Logistic Regression Methods. The �rst two

methods are rules derived from group decision theory, simple but frequently used.

The last method is a statistical generalization of the Borda Count method based

on linear classi�er weighting [2]. These have been successfully used in optical

character recognition but we show that their performance is not satisfactory for

the two problems considered from speech processing.
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I.3.2 Development of a Unifying Theory

In an attempt to understand the behavior of these existing methods, the thesis

takes a new approach to the rank-based multiple classi�er decision making prob-

lem and propose the Partitioned Observation Space (POS) Theory of Rank-Based

decision combination. This theory is based on interpreting decision combination

as a problem from discrete optimization and focuses on methods of formally reduc-

ing the problem dimensionality through appropriate partionings of the classi�er

behavior observation space. The theory uni�es the existing methods discussed

as special cases of a common framework, hence providing an open way for the

development of alternative methods.

I.3.3 Assessment of Independence and Complementariness

Whether or not the joint operation of a set of classi�ers will improve classi-

�cation performance is an important question and depends on how much the

information provided by individual classi�ers are complementing each other. The

thesis proposes a framework where the POS theory is used in conjunction with

the information theory to understand the concepts of classi�er independence and

complementariness and try to relate the concepts with the overall performance

gain.

I.3.4 Alternative Decision Combination Methods

Finally, the thesis proposes two more general statistical rank-based decision com-

bination methods based on the POS theory. The performance of these two meth-

ods are assessed in two pattern recognition problems from speech processing,
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brie
y described in Section I.4.

I.4 Experimental Framework

The performance of the rank-based multiple classi�er decision methods from the

literature as well as the applicability of the unifying POS theory developed is

assessed in two real life problems from speech processing. These two problems

are brie
y introduced in the following sections.

I.4.1 The Closed-Set Text-Independent Speaker Identi�cation Task

Speaker identi�cation is a well studied pattern recognition task domain [3, 4, 5]

and several di�erent feature extraction and modeling/similarity scoring methods

have been proposed in the literature with varying performances. The speaker

identi�cation task in general can be summarized as follows. The speech collected

from known or labelled (sometimes called client) speakers are used to build models

characterizing each of these speakers. For this purpose, properly sampled speech

signal from each speaker is passed from a preprocessing or feature extraction stage

where the speech pattern is compressed into a sequence of descriptive feature

vectors. During operation, speech sample from an unknown identity speaker is

passed from the same preprocessing stage and the feature vectors are matched

against each of the speaker models by a similarity scoring procedure. The label

of the model which is the most similar to the given feature vectors identi�es the

speaker.

Closed-set identi�cation means that the decision of the classi�er should be

one of the class labels and that a decision such as undecided is not possible.
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Text-independence on the other hand denotes the fact that there is no constraint

on the textual content of the speech utterances used both for model training

and recognition stages. Speaker identi�cation still remains as a challenging task

for researchers, especially for real life problems where there is strong mismatch

between training and testing conditions. Such an example is the identi�cation

task over the international telephone channels considered for the present study.

Here, each speech utterance is recorded over a di�erent long-distance telephone

connection and at a di�erent time.

Three di�erent classi�ers, consisting of three di�erent feature extraction meth-

ods combined with the vector quantization(VQ) modeling based on the Binary-

Splitting LBG algorithm are considered to assess the e�ectiveness of the multiple

classi�er methods for this task.

I.4.2 The Turkish BDEV Discrimination Task

A second test bed for the thesis is selected again from speech processing. This

is the task of discrimination among four highly confusable words, namely the

Turkish names of the four letters \B", \D", \E" and \V". These words are di�cult

to discriminate because the distinguishing sounds are very short in duration and

are embedded in uninformative, strong vocalic parts and background noise. The

task has been used by Lang as a test bed for the time-delayed neural network

architecture for speech recognition [6].

The BDEV discrimination task considered is very similar in nature to the pro-

cess depicted in Figure VI.1. There are 4 class models, one for each letter-word.

Each model is trained and tested with isolated utterances of the corresponding

8



letter-word recorded from 5 di�erent speakers. The same individual classi�ers are

used to assess the decision combination methods on this task.

I.5 The Outline of the Dissertation

The thesis begins in Chapter II by a survey of multiple classi�er systems in pat-

tern recognition literature and focuses on the rank-based systems research. The

main theoretical results of the thesis are covered on two consecutive chapters. The

development of a uni�ed theory for this class of systems is introduced in Chapter

III. Chapter IV elaborates on the independence and complementariness proper-

ties of the set of classi�ers used within a multiple classi�er system and develops a

number of results concerning their e�ects on combination performance. Chapter

V introduces the individual classi�ers used for the experiments. Chapters VI

and VII presents and discusses the experimental results on the speaker identi�-

cation and BDEV discrimination tasks respectively. The thesis is concluded in

Chapter VIII by a summary of the key results and discussions on future research

directions.

9



CHAPTER II

Multiple-Classi�er Systems

Multiple classi�er systems in general have been the focus of interest, especially

in the last decade, and an interesting body of research have been reported. This

Chapter presentes a review of this body of research.

A logical block diagram of a typical multiple classi�er system is given in

Figure II.1. Here, the decision outputs of individual classi�ers are fed into a

decision combiner which provides the system's overall decision. The decision

combination method implemented by the decision combiner may either be based

on heuristic rules re
ecting our prior knowledge and assumptions on the joint

classi�er behavior or on a more sophisticated statistical behavior model derived

from the past observations of the system.

A summary of the underlying motivations for the recent interest in such sys-

tems is given �rst. Then a possible subdivision of multiple classi�er systems is

presented. The multiple classi�er systems literature is reviewed and the methods

are related to this subdivision of systems without restricting the survey to rank-
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Figure II.1: The multiple classi�er system. The individual classi�ers operate on
the same pattern and provide raw decision outputs. These individual outputs

are then used by a decision combiner to arrive at the system's overall decision.
The decision combination method implemented by the decision combiner may
be based on some heuristic rules or on an optimal statistical model of classi�er
behavior.

based systems. This helps to understand the place of rank-based system while

facilitating the discussion of the thesis on the links between some of these sys-

tems. Finally the Chapter focuses on rank-based systems research in particular

as the main focus of the present thesis and reviews the existing approaches.

II.1 Multiple Classi�er Systems in the Literature

II.1.1 Motivations

In many pattern recognition �elds-including among others, speaker identi�ca-

tion, speech recognition, optical character recognition and handwritten charac-

ter recognition-it has recently been observed that there exist various feature ex-
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traction and modeling/similarity scoring methods with comparable identi�cation

performances. Multiple classi�er systems are motivated by the wide availabil-

ity of such diversity of methods in almost all pattern recognition task domains.

Interestingly, none of these methods can be claimed to be the best one at all

operating conditions. The performance of each one is often maximized within

certain controlled operating conditions speci�c to that method. It has been also

often observed that when one method fails, another succeeds, e�ectively showing

a complementary behavior.

These observations, supplemented by the recent increase in the digital com-

putation capacity at a declining price, increases the attractiveness of the multiple

classi�er systems. It now becomes feasible to consider a proper subset of the

available classi�ers as building blocks for robust real-life classi�cation systems.

The aforementioned motivations are justi�ed by a frenzy of activity in pattern

recognition literature following some early contributions [7, 8]. Many attempts

have been made to build multiple classi�er systems in various pattern recognition

�elds. These include, among others, machine printed word/character recognition

[2], handwritten character recognition [9, 10, 11, 12, 13, 14, 15, 16], speaker recog-

nition, [17, 18, 19, 20], face identi�cation [21, 22], text-to-phoneme translation

[23], remote sensing and geographical data processing [24, 25], military target

recognition [26] and biomedical image processing [27, 28]. The neural networks

community has also been active on this subject [29, 30, 12, 31, 23, 32, 33, 34, 13].

Indeed, the idea of combining multiple sources of evidence for decision making has

been a topic of extensive research within the arti�cial intelligence literature for a

long time. Two main approaches which still form the backbone of the methods
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found in pattern recognition literature are the Bayesian Approach [35, 36] and

the Dempster-Shafer Approach [37, 38]. The diversity of the �elds in which the

problem has been considered and encouraging results which have been reported

show that multiple classi�er decision systems are of considerable interest to a

large number of pattern recognition �elds.

II.1.2 Types of Classi�ers

In [9], Xu et.al. propose an interesting taxonomy of multiple classi�er decision

systems with respect to the level of information available at the outputs of the

individual classi�ers.

A typical classi�er is illustrated in Figure II.2. Here, the feature extraction

stage is illustrated as an integral part of the classi�er since most classi�ers have

their own speci�c feature extraction methods. Often, only the feature extraction

method is the distinguishing factor between classi�ers. The classi�er internally

produces two di�erent levels of information from which it �nally derives a single

class decision as its output. Most of the widely used classi�ers in a variety of

disciplines with the exception of some others (e.g., a pure syntactic classi�er

[9]), have this general form of operation. If such intermediate information is

made available by individual classi�ers, then they may be used as the input to a

decision combiner in order to reach a collective decision.

According to [9], Type 1 systems are de�ned as multiple classi�er systems

where only the �nal decision from each classi�er is available for combination.

Type 3 systems require that all the similarity measures between the unknown

pattern and the models be available for combination. Finally Type 2 systems
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Figure II.2: Operation of a typical classi�er. Most classi�ers use a feature ex-
traction method to transform the patterns into descriptive features and then use

a similarity scoring method to match these features to a set of models for known
classes. The similarity scores are ranked from highest to lowest similarity and the
class model with the highest similarity score is identi�ed.

constitute an intermediate level where the ranking of the candidate models ac-

cording to similarity to the unknown input is transformed into discrete scores and

used for combination. These di�erent information levels are illustrated in Figure

II.2.

As will be discussed and laid out in the present study, the clear distinction

between Type 2 and Type 3 systems is perhaps not so important. These type

of combination systems can be shown to constitute the two extreme cases of a

unifying treatment. Although the thesis preserves the distinction between Type

2 and Type 3 systems, it will be shown that Type 3 systems are in fact a special

case of rank-based systems.
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II.1.3 Systems Based on Final Decisions: Type 1

Followed by the taxonomy of classi�ers, in [9], Xu et.al. brie
y discuss Type

3 multiple classi�er systems. They analyze the so called Averaged Bayes Clas-

si�er and some of its versions and show that these can be generalized to other

types of classi�ers (such as the distance classi�ers) as long as the similarity scores

can be transformed into probabilities. They concentrate on the study of Type 1

systems, claiming that this group is the most general since all classi�ers can at

least supply information at this level. In this category, they discuss voting meth-

ods and develop a general expression which can describe most voting method

variants. They then move into statistical methods and treat the decision combi-

nation problem under the Bayesian formalism. However, the development of the

combination formulas rely entirely on the independence assumption between in-

dividual classi�ers. This assumption may sometimes be unrealistic and therefore,

its e�ects in multiple classi�er systems are tried to be clari�ed by the present

thesis in Chapter IV. They �nally use the Dempster-Shafer theory of evidence

[37, 38], which has been �rst considered in [39] for the same task, and propose

an e�cient computational model for its use. The experimental results on tasks

from unconstrained handwritten numerals show performance gain for all types of

combination methods with the best performance being from the statistical com-

bination methods. However, they note the fact that all methods are based on

the independence assumption and that the experiments re
ect only the gain on

a speci�c task. Furthermore, they ask the question which re
ects one motivation

for the present thesis, i.e., whether it is possible or not to generalize the presented
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approaches for dependent classi�ers? The unifying theory in Chapter III does

not involve an independence assumption and in addition, the e�ects of such an

assumption under the developed theory are investigated in Chapter IV.

In [10], Huang and Suen propose a method of joint statistical modeling of

the space of classi�er �nal decisions. This method which is called the behavior

knowledge space method is shown to outperform the Bayesian and Dempster-

Shafer approaches which both rely on the independence assumption. It is argued

that the focus of attention may be shifted from designing one best classi�er to

designing lower performing but complementary behaving classi�ers to maximize

combined performance and that a representative data set is essential to bene�t

from the method since the model is statistical. The method presented in [10] is

for Type 1 classi�ers and can be shown to be a special case of the formulation in

the present thesis.

Woods et.al., propose a rather di�erent approach. Instead of operating more

than one classi�ers in parallel, they propose dynamically selecting which indi-

vidual classi�er's decision should be the collective decision [40]. In this approach

called as dynamic classi�er selection with local accuracy, whenever individual clas-

si�ers disagree, a k-nearest neighbors based local accuracy is computed for each

classi�er and the decision of the one with the highest local accuracy is selected.

The local accuracy is computed either as the percentage of correctly classi�ed

training patterns(overall local accuracy) or, assuming that a test sample is as-

signed to class Sj, as the percentage of correctly labelled samples that have been

assigned to class Sj (local class accuracy).

The idea of building a system by combining the results of a large number
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of very simple classi�ers which can do little better than random guessing, is

�rst studied by Kleinberg under the title stochastic discrimination [41] and later

applied to pattern recognition problems by Ho and Kleinberg [42]. In a later study

by Ji and Ma [43], this idea is applied to combine weak perceptron classi�ers with

a simple majority voting technique with the aim of improving the space-time

complexity as opposed to designing and using a single very complex classi�er.

These suggest that decision combination approaches are also very promising for

building complex pattern classi�ers from collections of simple, even automatically

generated classi�ers.

II.1.4 Systems Based on Continuous Similarity Scores: Type 3

Although Xu et.al., claim that they are not general enough, Type 3 systems

seems to be of general interest for a variety of pattern recognition applications

and especially within the neural networks research community. In such systems,

the continuous similarity scores which are often class posterior probabilities are

processed by the decision combiner to arrive at a �nal class decision.

In [44], Wolpert discusses the dynamics of the generalization process and

later in [23], proposes a layered neural network architecture scheme called stacked

generalization with the aim of modeling and correcting the generalization errors

made by the individual classi�ers. Cross-validation data generation techniques

such as the leave-one-out method [45] are used to build a second stage neural

network which would map the continuous outputs of the �rst stage networks to the

�nal continuous output. The method is applied to text-to-phoneme translation

task. One problemwith this approach is that the correctivemapping is done solely
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in a data induced manner and does not allow one to integrate prior knowledge

and assumptions about classi�er behavior into the corrective mapping.

In [13], Rogova extends the use of Dempster-Shafer theory for the combination

of Type 1 classi�ers to neural networks applications with Type 3 classi�ers. They

argue that complementariness among classi�ers is an important issue re
ected

by experiments and combination of the outputs for di�erent feature extraction

methods may give better performance than the combination of the outputs for

di�erent similarity scoring methods.

Tumer and Ghosh [29, 46] discuss that given in�nite training data, neural

network outputs approximate the Bayesian decision boundaries by means of ap-

proximating the class posterior probabilities to arbitrary precision. Therefore

they claim that such classi�ers achieve similar performances for a given classi�ca-

tion task. However, they also argue that �nite data and factors such as di�erent

network initializations and noise, cause a neural network classi�er to loose its

generalization performance by a deviation from the optimal Bayesian decision

boundary. They consider linear and order-statistics combiners where a number

of Type 3 network outputs are mapped into a single real valued output either by

averaging or by order-statistics and analyze the change in the deviation(error)

from the Bayesian decision boundary. They demonstrate that the error variance

diminishes during such a combination operation. They also conclude that cor-

relation among the outputs of individual classi�ers have a negative e�ect on the

improvement achievable through a combination process. Also, in [47], they use

the concepts to estimate the Bayesian error rate from the outputs of a set of

classi�ers.
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Similar considerations form the basis of a previous work by Perrone and

Cooper [31]. In their work, a linear combiner with network output averaging

is considered within the context of neural networks for regression analysis. The

methods introduced are termed as ensemble methods. It is argued that the mean

squared error in the approximation is reduced by such a combination. They also

consider the generalized ensemble method as the weighted averaging of individ-

ual network outputs and propose an optimal weight selection method. Another

interesting discussion is on cross-validation data generation methods which the

present thesis make use of for the training of the decision combiner. Neural net-

work output independence is again one major assumption during the development

of the work presented.

Another example is the study by Benediktsson and Swain [25] where two

groups of methods are discussed, within the framework of multi-source remote

sensing and geographical data processing. They are termed as consensus theoretic

methods. The so called linear opinion pool is in fact a linearly weighted version of

the averaged Bayes classi�er of [9] and the linear combiner of [29]. The logarithmic

opinion pool is a variant to overcome some of the weaknesses of the linear version

but relies again on the independence of the individual classi�er. They argue that

the selection of the weights for such combiners is an open problem where only

ad-hoc methods exist in the literature. Indeed, in their later study in [24], an

optimal weight computation scheme is proposed to form the system called the

parallel consensual neural network.

Kittler et.al. consider in [48] and [15], the product rule and the sum rule as

a means of classi�er combination and provide a sensitivity analysis with respect
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to estimation errors. Product rule assumes statistical independence among the

classi�ers while the sum rule assumes that the posterior probabilities do not

deviate much from the prior probabilities.

A comparison between the classi�er combination rules with probability aver-

aging and probability product with statistical independence assumption is given

by Tax et.al., [14]

II.1.5 Rank-Based Systems: Type 2

Although not all classi�ers can supply information additional to the �nal class

decisions, as discussed in the previous sections, a considerable number of them

can do so. Moreover, using such additional information which is often discarded

for the operation of a single classi�er is expected to be useful for classi�er deci-

sion combination [9, 2]. However, in some pattern recognition problems, Type

3 systems with continuous similarity scores as individual classi�er outputs may

su�er from incompatibility of their similarity scores for combination and this fact

may limit their usefulness [2].

Ranking of the classes with respect to an unknown pattern is an information

which can be derived from the full similarity scores and does not su�er from

such incompatibility problems. It is a useful intermediate level of information

in between the full similarity scores and the single class labels. The advantages

of using ranking information for classi�er combination is discussed in detail by

Ho [49] where a number of rank-based multiple classi�er systems are discussed

within the framework of machine printed character and visual word recognition.

Unfortunately, there are relatively few attempts to analyze and understand
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the rank-based systems in the literature. One major contributor is Ho et.al.,

[49, 2] but their attempt remains mostly experimental and does not attempt an

in-depth theoretical analysis of such systems.

In [49] and [2], Ho et.al. discuss a number of methods under two categories,

namely class set reduction and class set reordering. Since class set reduction

methods loose the ordering of the classes in the reduced set, they often lead

to plural decisions and therefore are not as useful as the reordering methods 1.

Reordering methods preserve the ordering and therefore a �nal decision can be

made on the resulting ranking. This property makes them of a more general

interest. By the reordering method, a better ranking of the candidate classes is

aimed.

One of the methods of rank-based multiple classi�er decision making under

this category is the Highest Rank method. Another one is the Borda Count

method, introduced by Black in the context of social decision making [50] and

discussed by Ho, within the framework of pattern recognition [49]. With an at-

tempt to generalize the Borda Count method so that the classi�ers can be treated

according to their contributions to the combination, Ho proposes a Logistic Re-

gression method which results in the optimal linear weighting of the classi�er

rank scores. These three methods are discussed in some detail in Section II.2 and

they are also subject to an experimental assessment in Chapters VII and VI.

Al-Ghoneim an Kumar [32] also contributes to this group of multiple classi�er

1 There exist more specialized applications such as in forensic science where it may be

interesting to reduce the the number of candidate classes for a recognition task to ease the task

of the human operator. For example, in a �ngerprint recognition task, to reduce the number of

potential criminals from the huge number in the criminal database to a potential few tens may

be of tremendous advantage for the human operator doing such a task manually.
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systems by proposing a new training algorithm for individual classi�ers. With

this, individual performances are maximized not only with respect to their �-

nal decision but also with respect to their �rst two higest ranks so that their

contribution to the rank-based decision combination method improves.

II.2 Rank-Based Multiple Classi�er Systems

In the previous section, an overview of the literature on multiple classi�er decision

systems is presented and the major contributions are summarized. Also, a brief

introduction is made to the rank-based multiple classi�er decision combination

methods which have been proposed in the literature. In this section, a more

detailed description of these rank-based methods will be provided.

Now consider a general classi�cation problem where an unknown pattern x is

to be classi�ed as a member of one of the P classes S1; S2; � � � ; SP . Moreover, sup-

pose this classi�cation is done in parallel by Q separate classi�ers X1;X2; : : : ;XQ,

relying on di�erent feature extraction methods and possibly by di�erent similar-

ity scoring methods. Each such classi�er Xk orders all the P known classes with

respect to their similarities to the unknown pattern x and transforms this order-

ing into a set of P integer scores, known as rank scores. This scoring process is

illustrated in Figure II.3. In this scoring, the score of a candidate class starts

from zero (when the class is at the bottom of the ranking) and increases up to

(P � 1) as the class approaches the top of the ranking.
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Figure II.3: The rank scoring process by a set of classi�ers. Each classi�er orders
the candidate classes according to the similarity to the unknown pattern. This

ordering is then transformed into integer rank scores which form a score vector
from each classi�er.

II.2.1 The Highest Rank Method

In this method, the rank scores which are assigned to a candidate class by all

classi�ers are transformed into a max-score for that class. For each candidate

class Sj , j = 1; 2; � � � ; P , the scores from all the classi�ers rj1; rj2; � � � ; rjQ are

considered and the maximum value from this set of scores is assigned as the max-

score of this class. These new scores for all candidate classes form the max-score

vector. The decision is made by selecting the class with the maximum max-score.

This process is illustrated in Figure II.4.

One problem with this method occurs when the number of candidate classes

is small. The computed max-scores may have score collision, i.e., more than one

class may have the same max-score. In this case, the method cannot provide a

unique decision and the collision should be resolved by random selection or by
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rj2 j1 j2 jQmax{r   ,r   , . . . , r   }

j=1,2, . . ., P
Decision  d=argmax{                                      }         

Figure II.4: The Highest Rank rank-based decision combination process. The
maximum of the rank scores given to a class by all classi�ers is assigned to the
entries of a new vector called themax-score vector. The class having the maximum

max-score entry is the �nal decision of the system.

some other methods. For the Borda Count method which will be described in

the following section, this problem is not so severe.

II.2.2 The Borda Count Method

For this second method of rank-based decision combination, the rank scores from

all classi�ers for a candidate class are added together to generate a sum-score for

that class. The sum-scores for all candidate classes form the sum-score vector.

The decision is made by selecting the class with the maximum sum-score. The

Borda Count decision combination process is illustrated in Figure II.5.

This method does not su�er from the score collision problem as severely as

the Highest Rank method since the number of possible sum scores is much higher.

Nevertheless whenever such a collision occurs, there is nothing the method can
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sum{r   ,r   , . . . , r   }

Figure II.5: The Borda Count rank-based decision combination process. The

sum of the rank scores given to a class by all classi�ers is computed and assigned
to the entries of a new vector called the sum-score vector. The class having the
maximum sum-score entry is the �nal decision of the system.

further do and the decision should again be done either by random selection or

by some other method, among the colliding classes.

Clearly, both of these methods treat all the classi�ers involved in the decision

combination process equally, without taking into account the di�erences in their

individual performances. It is often observed that these individual performances

may be considerably di�erent, rendering such uniform treatment illogical.

II.2.3 The Logistic Regression Method

This method is proposed by Ho [2] in an attempt to compensate for the non-

uniform performances of the classi�ers. This is a problem present in both the

Highest Rank and the Borda Count methods. It is mainly a generalization of

the Borda Count method by the introduction of optimal linear weights to the
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addition operation of the rank scores involved.

First a binary indicator variable YSj is de�ned. For a given pattern x, YSj = 1

if Sj is the correct class of that pattern and YSj = 0 if Sj is the wrong class.

Therefore, when an unknown pattern is given, the objective is to predict the

value of this binary variable for each class. This suggests that the problem can

be formulated as a function approximation task. Assume that rj = [rj1rj2:::rjQ]
T

represents the vector of rank scores for a particular class Sj generated by the

classi�ers X1;X2; :::;XQ respectively. Next, the term

�j(rj) = P (YSj = 1jrj); (II.1)

is de�ned as the probability of the class Sj to be the true class of the pattern x

given the set of rank scores rj resulting from the processing of the pattern x.

This probability is expected to increase monotonically as the rank scores from

individual classi�ers assigned to that particular candidate class increase. Due to

this expectation, one can de�ne a logistic function of the form

�j(rj) =
exp(�j + �j1rj1 + �j2rj2 + � � ��jQrjQ)

1 + exp(�j + �j1rj1 + �j2rj2 + � � ��jQrjQ)
; (II.2)

with an attempt to linearize the parameter optimization problem. By making

use of this logarithmic transformation, a linear function of the rank scores can be

de�ned. Using this function, the terms called as the log-odds are de�ned by

Lj(rj) = log

 
�j(rj)

1� �j(rj)

!
= (�j + �j1rj1 + �j2rj2 + � � � �jQrjQ); (II.3)
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where j = 1; 2; � � � ; P . In this relation, the P terms at the left hand side can

be estimated from the cross-validation data and the parameters �j; �j1; � � � ; �jQ

should be determined so that the estimated terms can be optimally predicted

from the corresponding rank scores.

However, in the original development by Ho, the dependence on the class

index j is dropped without convincing justi�cation and the number of optimal

prediction problems is reduced to one with the number of parameters reducing

to �; �1; � � � ; �Q. Thus, Eq. (II.3) becomes

L(r) = log

 
�(r)

1 � �(r)

!
= (� + �1r1 + �2r2 + � � ��QrQ): (II.4)

By using the cross-validation data, empirical values or estimates for the �(r)

terms are obtained from all sets of classi�er rank scores. This data is then trans-

formed into the form of log-odds and used in association with the corresponding

classi�er rank scores to estimate the classi�er decision combination linear param-

eters f�; �1; �2; :::; �Qg. This rather confusing process of data generation for the

optimal weight determination is illustrated in Figure II.6.

This procedure which is a linear regression analysis is called the logistic regres-

sion method because of the logarithmic transformation involved in order to lin-

earize the optimization problem. Ho claims that the values of the parameters rep-

resent the relative signi�cances of the classi�ers in the combination process. The

optimization criterion is the minimum classi�cation error for the cross-validation

data set.
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Figure II.6: Data generation for determining the optimal linear weights for the
Borda Count method. Each pattern of the cross-validation data (with known

identity class label) is processed with all classi�ers to generate the rank scores. For
each such pattern, P number of (r; Y ) sample pairs are obtained and accumulated

to predict the actual �(r) values.

II.3 Multiple Classi�er Systems in the Speech Literature

Although they are very interesting and challenging task domains of pattern recog-

nition, speech and speaker recognition unfortunately have not been areas where

contributions have been made to the multiple classi�er decision systems litera-

ture. Most of the small number of studies present in the speech literature using

multiple classi�er systems mainly make use of systems developed in the context

of other task domains.

In an early study, Soong and Rosenberg [51] consider combining two classi�ers,

one being based on the cepstrum features and the other based on the delta-

cepstrum features of the speech signal for speaker recognition. They use the

linear opinion pool for the combination.

Farell and Mammone [17] also consider the linear and logarithmic opinion
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pools as tools for classi�er combination for speaker identi�cation. They consider

two classi�ers from two di�erent categories, namely classi�ers using supervised

(neural tree network) and unsupervised(vector quantizer) learning. They also

argue that only heuristic solutions exist to the weight selection problem involved

in these methods.

On the other hand, Bennani and Gallinari [18] consider speaker identi�ca-

tion and veri�cation with neural networks and discuss classi�er combination as

a problem of building hierarchical neural networks. Their so called modular con-

nectionist system uses expert typology detectors, each a lower level feed forward

neural network, which specialize on the discrimination of speakers in a speci�c

typology. The expert decisions are then combined into the overall system decision

by within Bayesian probabilistic framework.

In a recent study, Radova and Psutka [20] consider two group of classi�ers,

one based on dynamic time warping (DTW) and the other based on the cepstral

distance measure. Each individual classi�er in a group makes a class decision

based on a speci�c vowel among 5 vowel sounds considered. The utterances

are segmented to expose the vowel sounds. They consider decision combination

by voting methods and the Borda Count method both for combination within

individual classi�er groups and their full collection and report promising results.
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CHAPTER III

A Unifying Theory of Rank-Based Multiple

Classi�er Systems

III.1 Introduction

When a single classi�er is considered, a �nal class decision (the identi�ed class)

is obviously the only desired output. However, for decision combination with

multiple classi�er outputs, using only a single class label from each classi�er

output may lead to a loss of valuable information. It should be advantageous to

use classi�er output forms carrying more information.

The problems of output incompatibility, incomparability and scaling are of

concern for using classi�er outputs in the measurement form but such problems

do not occur when using classi�er outputs in the form of candidate class rankings.

It is an observed fact that when a pattern is misclassi�ed, the true class of the

pattern is often close to the top of the ranking [49, 54]. The resulting ranking

gives valuable information about classi�er behavior for imperfect classi�ers.
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Despite this fact and that there have been good theoretical attempts to

analyze the properties and behavior of Type 1 and Type 3 decision systems

[9, 25, 31, 30, 12, 23], there have been few attempts to develop an understanding

of the rank-based combination systems [2, 49, 32].

In this chapter, the rank-based multiple classi�er decision combination prob-

lem is considered and a unifying theoretical formulation called Partitioned Obser-

vation Space (POS) Theory is developed. During this development, the multiple

classi�er decision combination is treated as a discrete optimization problem and

a controlled smoothing technique is developed to reduce problem dimensionality.

The thesis shows that a number of rank-based methods discussed in Section II.2

can be analyzed and formulated as special cases within this unifying framework.

Finally, the links with Type 1 systems are established and it is illustrated that in

fact, these can also be shown to be special cases of rank-based systems.

III.2 A Binary Integer Programming Approach

III.2.1 Notation and Problem Formulation

The thesis considers a closed-set pattern classi�cation problem 1 where patterns

may belong to P di�erent classes Sj ; j = 1; 2; � � � ; P which is referred as candidate

classes. It is assumed that there are Q classi�ers Xq; q = 1; 2; � � � ; Q involved in

the classi�cation process. Furthermore, x denotes a pattern, i.e., the smallest

token composed of feature vectors processable inside the classi�ers to generate

candidate class rankings.

1 A closed-set pattern identi�cation problem is the case whenever one does not have an

option to remain undecided . Therefore it is necessary to decide on a unique class label. The

opposite case is the open-set problem where being undecided is allowed.
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Each classi�er ranks all the candidate classes according to some internal mea-

sure and generates a rank score rji for each such candidate. The rank score for a

speci�c candidate class is de�ned as the number of candidate classes placed after

it by the classi�er in the generated ranking. With this de�nition, as the class is

placed close to the top of the classi�ers' rankings of the candidates, it receives

higher rank scores. The source class of an unknown pattern (i.e., the true class

generating the pattern x) is represented as an integer valued random variable

sx
2 taking index values of an ordered set of class labels S = fS1; S2; � � � ; SP g.

Hence the fact that a pattern comes from a generating class Sj is denoted by a

realization of this random variable as (sx = j). The �nal decision at the output

of the decision combiner is denoted by another integer valued random variable d

with the same possible values as sx. When an unknown pattern x arrives, the

pattern is processed by all classi�ers. Each classi�er ranks all P candidate classes

and generates P rank scores, namely one for each candidate class. The set of all

rank scores generated by the classi�ers for all candidate classes form a P � Q

matrix R which is referred as the rank score matrix. Here, each column corre-

sponds to scores by a single classi�er while each row corresponds to scores by

all classi�ers for a single candidate class. By de�nition, for rank-based multiple

classi�er decision systems, the combined decision must be done solely using this

rank score matrix.

Suppose that the ultimate objective in classi�er combination is to achieve the

maximum rate of correct classi�cation. Although other objectives can also be

de�ned, this is a meaningful and usual choice for closed-set pattern classi�ca-

2 Throughout the thesis, underscore notation denotes a random variable.
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tion. If we de�ne a binary valued random variable y, as an indicator of correct

classi�cation,

y =

8>>><
>>>:

1 if (d = j) given (sx = j),

0 otherwise;

(III.1)

then the problem of �nding the optimum rank-based multiple classi�er decision

combination method can be expressed as an optimization problem with an objec-

tive function being the total probability of correct classi�cation as

maxPfy = 1g: (III.2)

III.2.2 The Objective Function

The objective function implied by Eq. (III.2) is not useful in this form. It should

contain free problem parameters and also statistics re
ecting the joint ranking

behavior of the classi�ers. Let the probability of correct classi�cation be expanded

into a sum over the source class and rank score matrix indexes as

Pfy = 1g =
PX
j=1

NX
n=1

Pfd = j; sx = j; r = ng; (III.3)

where we have used the fact that (y = 1) is equivalent to (d = j) once the source

class is realized as (sx = j). By using the Bayes rule, the joint probability inside

the double summation can be decomposed to give

Pfy = 1g =
PX
j=1

NX
n=1

Pfd = jjsx = j; r = ngPfsx = j; r = ng: (III.4)
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By de�nition, the optimal decision method to be found uses only the available

information from individual classi�ers, which is the rank score matrix. Therefore,

the decision is a deterministic function of r, as d = f(r). Using the dependence

on the rank score matrix only, the �rst term of Eq. (III.4) can be simpli�ed as

Pfd = jjsx = j; r = ng = Pfd = jjr = ng: (III.5)

Hence the objective function expansion in Eq. (III.4) takes the �nal form

Pfy = 1g =
PX
j=1

NX
n=1

Pfd = jjr = ngPfsx = j; r = ng: (III.6)

The two set of terms inside this expansion should be investigated. The �rst set

of conditional terms Pfd = jjr = ng is directly linked with our decision method.

When a speci�c multiple classi�er decision method is speci�ed, these terms can

be determined. For the case of a deterministic decision method, they are binary

valued with possible values 0 and 1. The joint probability terms Pfsx = j; r = ng

of the second set on the other hand are independent of the decision method and

model the joint output behavior of the classi�er ensemble. Since they can be ex-

pressed as Pfr = njsx = jgPfsx = jg, these joint probabilities can be estimated

if the trained classi�ers are operated on a su�cient body of cross-validation data

consisting of known source class identities coupled with the resulting rank score

matrices. As discussed in Chapter VI, such a body of cross-validation data can

be obtained by using the leave-one-out method on the training data.

34



III.2.3 The Optimum Solution and The Optimum Decision Method

In order to develop a methodology for �nding the optimum rank-based multiple

classi�er decision method3 based on the observation of the classi�er ensemble

behavior on the cross validation data, we need an unambiguous interpretation of

the results obtained so far with respect to �nding an optimum decision method.

From the expansion in Eq. (III.6), it is seen that the only terms dependent on

the decision method are Pfd = jjr = ng. Any speci�c decision method manifests

itself as a large set of speci�c 0 and 1 values associated with these probabilities.

Conversely, any speci�c assignment to this set of probabilities constitutes a speci�c

decision method. Therefore, if these terms are treated as binary valued free

problem parameters bjn, the objective function in Eq. (III.6) becomes

Pfy = 1g =
PX
j=1

NX
n=1

bjnPfsx = j; r = ng: (III.7)

When this is combined with the optimization criterion, the problem can be ex-

pressed as

max
bjn;j=1;2;���;P ;n=1;2;���;N

8<
:

PX
j=1

NX
n=1

bjnPfsx = j; r = ng

9=
; ; (III.8)

Subject to
PX
j=1

bjn = 1 for n = 1; 2; � � � ; N: (III.9)

where the set of constraints arises from the fact that the �nal output of the

decision method should be a single class label. Since all Pfsx = j; r = ng are

non-negative, the obvious solution to this optimization problem is given by

3 Within this framework, an optimal decision method based on the outputs of multiple

classi�ers is equivalent to an optimal classi�er combination method. Therefore, these two terms

can be used interchangeably.
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b�jn =

8>>>><
>>>>:

1 if j = argmax
k=1;2;���;P

Pfsx = k; r = ng;

0 otherwise,

(III.10)

For j = 1; 2; � � � ; P and n = 1; 2; � � � ; N . However, this global maximum may not

be unique, speci�cally when the maximizing j value in Eq. (III.10) is not unique

for a �xed (r = n). For such cases, more than one set of b�jn values constitute

alternative solutions.

Each optimal solution set fb�jng corresponds to a unique global optimum de-

cision method. To elaborate, consider the case where an unknown pattern x is

processed by an ensemble of classi�ers and a rank score matrix R is generated.

This speci�c rank score matrix is a realization (r = n) where the value of n is

�xed. The optimal solution guarantees that there is a single variable b�jn which

is 1 for �xed (r = n) and the global optimum solution is a decision method with

the decision criteria

d = argmax
j=1;2;���;P

Pfsx = j; r = ng (III.11)

Denoting the global maximum value of the objective function by Pmax, the clas-

si�cation error rate of the optimal decision method is given by PE = (1 � Pmax).

The presence of multiple global optimum solutions signify that the overall system

is unable to discriminate among certain classes when faced with speci�c classi�er

outputs. For closed-set problems, a random choice among these solutions has to

be made.
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III.2.4 The Curse of Dimensionality

In the previous section, it is shown that a globally optimum method of combining

any number of classi�ers, based on their rank scores, can be found if we were able

to obtain in�nite number of observations of all the classi�er rank-level outputs.

However, in practice, only a �nite cross-validation data set is available, from

which the values of Pfsx = j; r = ng are to be estimated. The reliability of these

estimated probabilities are very important for the performance of the optimum

decision method.

The number of such probabilities for P classes and Q classi�ers is P (P !)
Q
,

which is a prohibitive number for most practical applications. Therefore, although

the solution to the problem is simple, it cannot be of practical value if a method

of reducing the number of estimated statistics cannot be found. The next section

attempts to formulate such a method.

III.3 Dimensionality Reduction by Partitioning

Consider the objective function expansion in Eq. (III.7). The problem domain

is composed of two main parts. The �rst one is the space spanned by the free

problem parameters bjn and will be called as the Problem Parameter Space. The

second one is the space spanned by all the statistics about the joint behavior

of the classi�ers, i.e., all estimated probabilities Pfr = n; sx = jg and will be

called as the Classi�er Observation Space. Classi�er Observation Statistics are

the elements of this latter space.

This prohibitive cardinality of the classi�er observation space is the limiting

37



factor for the usefulness of the resulting solution since it determines the number

of statistics to be estimated from the available data. However, well behaving

classi�ers do not span the entire observation space. As the performance of the

classi�ers improve to acceptable levels, the cross-validation samples tend to be

highly clustered. Therefore, enough data is accumulated for estimating certain

statistics while there is no data available to estimate some very small probabilities.

Consider the extreme case of ideal classi�ers. Whenever a pattern is supplied,

the classi�ers will generate very similar rankings with the true source class being

at the top of the ranking. For such an extreme behavior, all cross-validation data

will be accumulated for a small number of statistics. As the classi�ers deviate

from ideal behavior, such clusters tend to spread. The implication is that by

incorporating the expected or observed behavior of the classi�ers for a certain

task, we may introduce some assumptions about the possible distribution of the

cross-validation data and arrive at considerable compressions of the classi�er ob-

servation space by means of forming logical groups of statistics. This compression

can also be interpreted as a smoothing operation on the estimates we are trying

to �nd. Limited cross-validation data necessitates such a smoothing and one may

argue that the available data determines the resolution with which the classi�ers

can be observed. However, one should bear in mind that with such a smoothing,

the system becomes unable to model the observation data violating the assump-

tions made and the optimal solution to this smoothed problem is sub-optimal

with respect to the original one.
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III.3.1 An Observation Event Space

De�ne an event space F where the realizations of the source class label and rank

score matrix indexes are combined into compound events. The most basic events

(event atoms) in this space are de�ned as (sx = j; r = n). Here the event atom

speci�es occurrence of the joint event \The source class for the pattern x was Sj

and the set of classi�ers generated the rank score matrix Rn". This event space

is clearly �nite and its cardinality is P � (P !)
Q
since we have P source classes

and Q classi�ers and hence a total of (P !)
Q
possible rank score matrices [56].

Now assume that a mapping W partitions this event space into disjoint sets

of event atoms. Also assume that the mapping (or partitioning)4 W results in

MW such sets, i.e., MW partitions W1;W2; � � � ;WMW which satisfy the standard

properties,

(a) Wi \Wj = ; 8i; j 2 f1; 2; � � � ;MWg;

(b) W1 [W2 [ � � � [WMW = F :

(III.12)

Such a partitioning de�nes a new event space in which each resulting partition

de�nes a new basic event. Composed of a set of original event atoms, these are

also compound events in the original event space F . If such partitions(or events)

Wi form an ordered set GW = fW1;W2; � � � ;WMWg which is our new event space,

the partitioning W e�ectively de�nes a new random variable,

g
W
: S �R 7�! f1; 2; � � � ;MWg: (III.13)

4 Since each such mapping de�nes a new partitioning of this space, within this context a

mappingW is synonymous with a partitioningW and the terms partitioning and mapping will

be used interchangeably.
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whose values are the index values of the ordered set GW . Here S is the set of

possible source classes and R is the set of possible rank score matrices.

At this point, a new expansion for the objective function in Eq. (III.2), can be

developed. First, the objective function is expanded over the source class labels

and rank score matrices to obtain Eq. (III.3). Following Eq. (III.13), the random

variable g
W

can be expressed as a g
W
=W(j; n). Therefore, the double sum can

also be written by introducing the new random variable g
W

as

Pfy = 1g =
PX
j=1

NX
n=1

Pfd = j; sx = j; r = n; g
W
=W(j; n)g (III.14)

This is possible since the value of g
W

is known once the values of sx and r are

known and no new probabilistic event is introduced. By successively using the

Bayes rule, the joint probability inside the double summation can be put into the

form

Pfd = j; sx = j; r = n; g
W
=W(j; n)g =

Pfd = jjsx = j; r = n; g
W
=W(j; n)gPfsx = j; r = njg

W
=W(j; n)g

�Pfg
W
=W(j; n)g:

(III.15)

Again, using the fact that the decision should, by de�nition, be based on the

rank score matrix alone, and inserting Eq. (III.15) into Eq. (III.14) we obtain

the �nal expression for the objective function as
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Pfy = 1g =

PP
j=1

PN
n=1 Pfd = jjr = ngPfsx = j; r = njg

W
=W(j; n)gPfg

W
=W(j; n)g:

(III.16)

This time there are three sets of terms inside the expansion. The �rst set of

terms is, as before, the one directly associated with the decision method, yet

unknown. The last set of terms on the other hand, is again the statistics about

the behavior of the classi�ers. However, this time, the observation space is the

result of the partitioning W and the observable events for modeling the classi�er

behavior are the resulting partitions Wm;m = 1; 2; � � � ;MW represented by the

possible values of the random variable g
W
. This is a coarser resolution for the

classi�er observation space where the actual rank score matrices are hidden inside

the observable partitions. The middle set of terms, which is new as compared

with the previous expansion, is a set of transition terms de�ning the relation

between the coarser resolution of the partitions and the �ner resolution of the

class label, rank score matrix pairs. Since a deliberate decision is made to set the

observation resolution to the coarser one, by de�nition, there is no cross-validation

data left to estimate these transition terms. In fact, due to this choice, one is

ignorant about this �ner detail. These terms allow us to formally introduce our

ignorance within the Bayesian formalism [35]. as a uniform distribution among

the individual elements of any partition Wm; i.e., we have
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Pfsx = j; r = njg
W
= mg =

8>>><
>>>:

0; if event atom fsx = j; r = ng 62 Wm;

1
jWmj

; if event atom fsx = j; r = ng 2 Wm;

(III.17)

where jWmj is the cardinality of the partition Wm.

The previous discussion makes it clear that the �rst set of terms will again

be labelled as the problem parameters to �nd an optimum decision method. The

last terms, on the other hand, will again be estimated from the classi�er behavior

on the cross-validation data.

With this new expansion, a controlled tool to selectively decrease resolution on

the observation and modeling of the classi�er ensemble behavior is obtained. By

the selection of the partitioning, it is possible to reduce the number of partitions,

hence the number of events in the observation space. Speci�cally, for the above

expansion we have MW statistics to estimate. For limited cross-validation data,

a reduction in the number of statistics to estimate, corresponds to an increase in

the number of observations about each individual statistic, hence to an increase

in the reliability of the estimate. It is well known that the reliability of the

estimates is crucial to the generalization performance, hence to the classi�cation

performance of the system [23, 45].

Although we have mentioned that the number of observable events can be

arbitrarily reduced, the nature of the partitioning is crucial for the usefulness

of the resulting solution. The objective should be to maintain the maximum

observation resolution which is reasonable for the �xed amount of data available,
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and not a �ner one. It is also illogical to use a very coarse resolution while

enough data for a �ner one is available since this over-smoothing, being unable

to properly model the collective behavior of the set of classi�ers, will limit the

usefulness of the approach.

The motivation in compressing the observation space is not only the reduction

in the number of statistics to estimate. For some cases, one may have an intuition

about the pattern recognition task at hand, or prior knowledge about the dynam-

ics of individual classi�ers which may suggest that some higher level of resolution

in the observation space may in fact be irrelevant or unreliable. This leads to

the intuitive formulation of suitable partitionings, for which a clear example is

presented in Section III.3.3.

In the present chapter, we consider three speci�c partitionings to unify three

methods from the literature and one to establish the links with Type 1 systems.

However, a challenging and yet open problem is the selection of a partitioning

in an optimal manner based on the actual distribution of the data. E.g., using

Genetic Algorithms to determine an optimal partitioning rule may be a promising

direction for future research.

III.3.2 A Computational Model to Implement the Optimal Solution

The terms Pfg
W

= W(j; n)g in the new Eq. (III.16) makes it clear that the

number of unique statistics is MW , a number necessarily lower than the original

P�(P !)Q. However, the number of terms inside the double summation is still P�

(P !)Q. Even with this huge number of terms inside the expansion, the optimum

solution presented in Section III.2.3 may be converted into an algorithmic form so
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that only a small number of computations is necessary for making the optimum

decision based on the estimated statistics. Considering the optimum solution

given in Eq. (III.10), this algorithmic form can be summarized as follows: For

each pattern, process the pattern by all classi�ers and obtain the rank score

matrix. For the �xed index (r = n), compute exactly P objective function

coe�cients Pfd = jjr = ngPfsx = j; r = njg
W

= W(j; n)gPfg
W

= W(j; n)g;

i.e., one coe�cient is computed for each candidate class, using the corresponding

estimates and the transition terms determined by the partitioning rule. The �nal

step is to decide on the class with the maximum coe�cient. A total of at most P

multiplications and a search is involved. A �nal random choice is necessary for

the closed-set problem if there is more than one maximum coe�cient for this r

value. Note that the determination of the transition terms is only possible if the

partitioning is based on a rule which can be easily applied when the rank score

matrix is given. For an arbitrary partitioning, a look-up table of the original size

would be required, which is infeasible.

III.3.3 A Sensible Partitioning: First Two Ranks

The implications of a partitioning choice are discussed in Section III.3.1. One

may often have prior insight into the task and classi�ers involved before the

observation statistics are collected. This may be incorporated into the solution

by means of a partitioning of the observation space.

The partitioning we call as the First Two Ranks is based on such a general

observation about the behavior of the classi�ers. Assume that the resolution

below the topmost two ranks (largest two rank scores) is unreliable. This is a
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reasonable assumption, e.g., for distance classi�ers, since the separation between

class models becomes less signi�cant as the models becomemore and more distant

from the pattern being classi�ed in the feature space. Hence, noise on the feature

vectors has a greater chance to disturb the lower ranks. Therefore, we decide

not to discriminate among the ranks lower than the second and group them to

represent the last rank. The resulting new score assignment (hence partitioning)

can be expressed as

r̂jq =

8>>><
>>>:

rjq � P + 3; if rjq > P � 3;

0; if rjq � P � 3:

An illustrative example for P = 4 classes and Q = 2 classi�ers is considered

in Table III.1, where there is a total of MW = 576 partitions instead of the

original 2304 event atoms. A shortcut notation is used as follows: Each row is the

summary of four actual rows which correspond to the source classes S1; S2; S3; S4

summarized as S1;2;3;4 in the table.

III.4 Special Cases by Means of Speci�c Partitionings

In this section, the theory will be used to unify three existing rank-based decision

combination methods discussed in the literature. It will be shown that they indeed

correspond to speci�c partitionings, hence for a given data their optimality can

be analyzed by the introduced theory.
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Table III.1: Illustration of the First Two Ranks partitioning. The �rst column

is the actual partition contents, the second column is a label for the partition

and the last column is the partition random variable. Actual class labels and

rank score matrices are used instead of their corresponding random variables for

clarity.

8
>><
>>:
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III.4.1 The Highest Rank Method

Highest Rank method is discussed in [2] and is a simple technique of rank-based

multiple classi�er decision. Since this technique does not use any model of the

observed classi�er behavior it is not optimum for the general case. In this section,

the conditions under which the Highest Rank solution coincides with the optimum

solution will be established by means of a speci�c partitioning. The Highest Rank

method may be described as follows: \For each source class, select the highest of

the rank scores assigned by all classi�ers for that class as a new score. These new

scores constitute a max score vector. The class with the maximum max score

is selected." The status of this method with respect to our formalism can be

summarized by two facts.

Fact III.1 As a prede�ned decision method, the Highest Rank method coincides

with a speci�c �xed set of values for the problem variables bjn. The cases where
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Table III.2: Illustration of the partitioning establishing the relation with the

Highest Rank method.
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the Highest Rank method is unable to make a decision because of more than one

maximum in the sum score matrix correspond to more than one �xed sets of bjn

values.

Fact III.2 The Highest Rank method does not make use of any observation on

classi�er ensemble behavior and hence is not in general optimum for the combi-

nation of non-ideal classi�ers.

For the Highest Rank method, a partitioning W can be de�ned where each

partition corresponds to a possible max score vector. Consider the illustrative

case of P = 3 source classes and Q = 2 classi�ers. There are a total of MW =

42 partitions, some of which are illustrated in Table III.2 where the summary

notation introduced in Section III.3.3 is used.

The equivalence relation between the optimum solution resulting from the

objective function expansion with respect to the partitioning W and the Highest
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Rank solution can be stated as a theorem.

Theorem III.1 The Highest Rank method and the optimum solution to the clas-

si�er combination problem coincides in the context of maximizing the probability

of correct decision expressed as in Eq. (III.16) only for a set of classi�er obser-

vation statistics Pfg
W
=W(j; n)g which satisfy a �xed set of constraints.

Proof. This theorem will be proved by directly specifying the set of constraints

that should be satis�ed by the statistics estimated from the joint behavior of the

classi�ers. The Highest Rank method inherently speci�es a partitioning on the

event space. For each max-score vector (which correspond to a set of (r = n)

values), Highest Rank method decides on a unique class Sk except for the cases

with a max-score collision. In order for this decision method to be optimal, for

each speci�c (r = n), a condition of the form

Pfr = n; sx = kjg
W
=W(k; n)gPfg

W
=W(k; n)g �

Pfr = n; sx = jjg
W
=W(j; n)gPfg

W
=W(j; n)g; for j = 1; 2; � � � ; P ;

(III.18)

should be satis�ed. If this is the case, then based on its inherent partitioning,

the Highest Rank decision method is optimal in the sense of the POS theory. 2

This theorem can be illustrated by means of a simple example. Consider the

case of P = 2 classes and Q = 2 classi�ers. For this simple case, by the Highest

Rank partitioning, one has exactly M = 6 partitions due to three distinct sum-

score vectors, which are [1 0]T ; [1 1]T ; [0 1]T . For this case the Highest Rank

decisions are illustrated in Table III.3 where assuming a random decision, the
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Table III.3: The Highest Rank decision method (i.e., values of the decision vari-
ables bjn).

X1X2

2
64 1 1

0 0

3
75
2
64 1 0

0 1

3
75
2
64 0 1

1 0

3
75
2
64 0 0

1 1

3
75

S1 1 1 0 0

S2 0 0 1 1

Table III.4: Joint behavior of the classi�ers given in the form of objective function

expansion coe�cients.

X1X2

2
64 1 1

0 0

3
75
2
64 1 0

0 1

3
75

2
64 0 1

1 0

3
75

2
640 0

1 1

3
75

S1 0:12 0:48 � = 0:08 0:32

S2 0:05 0:45 � = 0:05 0:45

score collisions are arbitrarily resolved one in favor of class S1 and the other in

favor of S2. Now assume that the joint behavior of the two classi�ers is such that

one obtains a set of coe�cients of the objective function expansion as given in

Table III.4. In this table, the third column violates the conditions of the theorem

by having � > �. This column necessitates an optimal decision which is di�erent

than the Highest Rank decision. Therefore, for the given classi�er joint behavior,

the Highest Rank decision method is not optimal.

III.4.2 The Borda Count Method

This is yet another popular method of rank-based multiple classi�er decision. It

is a slightly generalized majority voting technique from Group Decision Theory

[2, 50]. Since it is simple to implement, it has been used as a popular rank-based
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Table III.5: Illustration of the partitioning establishing the relation with the

Borda Count method.

8<
:

0
@S1;2;3;

2
4
2 2

1 1

0 0

3
5
1
A
9=
; 7!

0
@S1;2;3;

2
4
4

2

0

3
5
1
A 7! g

W
= 1; 2; 3

8<
:

0
@S1;2;3;

2
4
2 2

1 0

0 1

3
5
1
A ;

0
@S1;2;3;

2
4
2 2

0 1

1 0

3
5
1
A
9=
; 7!

0
@S1;2;3;

2
4
4

1

1

3
5
1
A 7! g

W
= 4; 5; 6

.

.

.

.

.

.

.

.

.8<
:

0
@S1;2;3;

2
4
2 0

1 1

0 2

3
5
1
A ;

0
@S1;2;3;

2
4
2 0

0 2

1 1

3
5
1
A ;

0
@S1;2;3;

2
4
1 1

2 0

0 2

3
5
1
A ;

0
@S1;2;3;

2
4
1 1

0 2

2 0

3
5
1
A ;

0
@S1;2;3;

2
4
0 2

2 0

1 1

3
5
1
A ;

0
@S1;2;3;

2
4
0 2

1 1

2 0

3
5
1
A
9=
; 7!

0
@S1;2;3;

2
4
2

2

2

3
5
1
A 7! g

W
= 16; 17; 18

.

.

.

.

.

.

.

.

.8<
:

0
@S1;2;3;

2
4
0 0

1 1

2 2

3
5
1
A
9=
; 7!

0
@S1;2;3;

2
4
0

2

4

3
5
1
A 7! g

W
= 55; 56; 57

technique. The Borda Count method uses the full rank score matrix R such that

rank scores for each class are summed up across di�erent classi�ers. Therefore

a sum score is obtained for each candidate class and the decision is made by

choosing the candidate class having the maximumsum score. The partitioningW

is again illustrated in Table III.5 for an example case of P = 3 classes and Q = 2

classi�ers. There are a total of MW = 57 partitions instead of the original 108.

The arguments of Fact 1, Fact 2 and Theorem 1 are again valid for this method

which does not use any observation about classi�er behavior. It coincides with

the optimum decision method only for a set of classi�er observation statistics,

satisfying a set of conditions similar to Eq. (III.18).

III.4.3 The Logistic Regression Method

Unlike the previous two approaches, the logistic regression method attempts to

capture and model the joint behavior of the classi�ers and is therefore a much
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more important and interesting rank-based method to investigate. The method

is introduced in [2], where the fundamental motivation is expressed as to obtain

a linearly weighted Borda Count method where the weights re
ect the relative sig-

ni�cance of the classi�ers. This method can be interpreted as follows: While the

system computes the similarity of a pattern to a class model, only rank scores

assigned to that class by all classi�ers are used. Let Sk be the class model consid-

ered. The next step of this method is to �nd the probability of correct decision

if the decision is Sk given the rank scores for Sk. This probability should be

estimated based on the experiments done on the cross-validation data. Finally,

the class leading to the highest probability of correct decision is selected. In [2],

these probabilities are approximated by �rst counting frequencies of the related

events and then further smoothing them by the best hyper-plane approximation.

This hyper-plane approximation is determined by formulating and solving a pre-

diction problem. The parameters of the hyper-plane determine the bias and the

optimum weighting factors for the classi�er outputs, e�ectively resulting in a

linearly-weighted Borda Count method extension.

Before introducing the partitioning and the resulting statistics which coincide

with this speci�c method, a number of observations should be discussed. The

prediction problem in [2] is �rst introduced as a class dependent problem, i.e.,

to predict the probability of correct decision for a class based on the rank scores

generated for that class. Then, the class dependence is dropped for a simplicity

in notation. However, this is not the case. Dropping the class index conveniently

reduces the problem into predicting a single variable instead of P variables, and

at the same time, introduces the important assumption that the joint behavior
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of the classi�ers is independent of the true source class involved. This di�erence

will be illustrated by two corresponding partitionings.

Another point is the use of a hyper-plane �t to the classi�er observation statis-

tics. Such an hyper-plane �t is probably the result of the initial motivation in [2],

namely to obtain a linearly weighted Borda Count. This is a parametric model

which e�ectively smoothes the estimated statistics, with the assumption that

their reliability are uniformly poor. For this discrete case however, the reliability

of each statistic should be considered separately, since the number of data points

leading to such estimates may be di�erent. The hyper-plane �t treats all such

statistics uniformly and may be an over-smoothing for the statistics which are

more reliable than others. In this sense, the partitioning approach presented in

the present study may be considered as a more controlled way of \smoothing" un-

reliable estimates, especially if this partitioning is done by considering structure

of the training data. As discussed in Section III.3.1, such an automatic partition-

ing may be done by means of optimization methods such as Genetic Algorithms

or by some other clustering techniques. One may even use the estimates from a

coarser partitioning to smooth the estimates of a �ner partitioning.

Now we will relate the unifying theory presented to the Logistic Regression

Method by a speci�c partitioning of the event space which leads to the statistics

described and used in [2]. Motivated by the Borda Count method, in [2], for

each source class, only the scores of the classi�ers for that class are considered for

observation. If source class dependence were kept, the resulting partitioning for

an example case of P = 3 classes and Q = 2 classi�ers would have been as given

in Table III.6. The number of partitions for this case is P (Q+1) in general and the
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Table III.6: Illustration of a generalization of the partitioning done in the Logistic

Regression method by means of preserving the class dependence.
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number of elements in each partition is [(P � 1)!]Q. However, since the source

class dependence is dropped in [2], the actual partitioning done corresponds to the

one illustrated in Table III.7. For this case, the number of partitions is reduced

to PQ for the general case and the number of elements inside each partition is

increased to P [(P � 1)!]
Q
.

The logistic regression method, in its original form, does not use the event

counts directly to estimate the statistics resulting from the partitioning illustrated

in Table III.7. It further applies a smoothing by using an hyper-plane �t to

the count estimates, in addition to the partitioning involved. Considering the

promising results discussed in [2] the smoothing used seems to be justi�ed for the

machine printed character recognition task.

Apart from the restrictions imposed by this speci�c partitioning and the addi-
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Table III.7: Illustration of the partitioning done for the Logistic Regression

method.
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tional linear smoothing, the Logistic Regression method is optimal in the sense of

the POS theory introduced in the present paper. However, using the partitioning

interpretation instead of viewing the method as a simple Borda Count generaliza-

tion shows that many other partitionings (hence new methods) are possible some

of which may be better suited for a particular task. The motivation of �nding

better ones opens new direction for future research and the introduced formalism

can be used as a tool to analyze them.

III.5 Links With Type 1 Systems: First Rank Partitioning

The �nal decision based multiple classi�er systems, termed as Type 1 by Xu et.al.

[9], use Q individual �nal decisions in the form (dj = ij) from the classi�ers taking

part in the system and combines them to generate the overall system decision d.
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III.5.1 The Traditional Bayesian Formalism

Under the Bayesian formalism, the combined or overall decision is often per-

formed using the maximum aposteriori (MAP) criterion. Therefore, the com-

bined decision of the system is based on the posterior class probabilities and can

be expressed as

d = argmax
1�j�P

PfSx = jjd1 = i1; d2 = i2; � � � ; dQ = iQg: (III.19)

Let us temporarily denote the posterior probabilities in III.19 by Pj. To

compute the Pj values needed for the maximum aposteriori decision, Bayes rule

is used on Eq. (III.19) to yield

Pj =
PfSx = j; d1 = i1; d2 = i2; � � � ; dQ = iQg

Pfd1 = i1; d2 = i2; � � � ; dQ = iQg
; (III.20)

which is transformed to

Pj =
Pfd1 = i1; d2 = i2; � � � ; dQ = iQjSx = jgPfSx = jg

Pfd1 = i1; d2 = i2; � � � ; dQ = iQg
: (III.21)

At this point, what is generally done is to introduce the statistical independence

assumption about the classi�ers, whose implications are discussed in detail in

Chapter IV. By this assumption, Eq. (III.21) can be reduced to the form

Pj =

QQ
k=1

Pfdk = ikjSx = jgPfSx = jg

QQ
k=1

Pfdk = ikg

: (III.22)
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Therefore, if we also consider the fact that the denominator term is constant

across the possible values of j, the maximum aposteriori decision under the

Bayesian formalism together with the independence assumption becomes

d = argmax
1�j�P

QY
k=1

Pfdk = ikjSx = jgPfSx = jg: (III.23)

If the independence assumption were not introduced, Eq. (III.23) would be

d = argmax
1�j�P

Pfd1 = i1; d2 = i2; � � � ; dQ = iQjSx = jgPfSx = jg: (III.24)

Each decision output behavior of each individual classi�er, i.e., the errors

made by each classi�er Xk can be modeled by its confusion matrix

Ck =

2
66666666666664

n
(k)
11 n

(k)
12 � � � n

(k)

1P

n
(k)
21 n

(k)
22 � � � n

(k)

2P

...
...

. . .
...

n
(k)

P1 n
(k)

P2 � � � n
(k)

PP

3
77777777777775

(III.25)

which is a count table accumulating the cross-validation test patterns with respect

to the source class and the classi�er class decisions. Row j corresponds to the

patterns from class Sx = j while column i corresponds to the patterns for which

the classi�er made a class decision dk = i.

The independence assumption made while going from Eq. (III.21) to Eq.

(III.22) allows one to use the confusion matrices for each individual classi�er to

estimate the posterior probabilities Pj , so that the maximum likelihood com-

bined decision in Eq. (III.19) can be made. The posterior probabilities can be

56



estimated from the counts in the confusion matrices. As an example, consider

the conditional probability Pfdk = ikjSx = jg. Denoting ik by i for simplicity in

notation, it can be estimated as

Pfdk = ijSx = jg =
n
(k)
ji

PP
i=1

n
(k)
ji

: (III.26)

The main problem with this approach is the statistical independence assump-

tion for the decision outputs of the individual classi�ers, which may not always

be a valid one. If this assumption is left out of the derivation, then we have

Eq. (III.21) and we can no longer use the individual confusion matrices of the

classi�ers and statistics about the joint behavior of the classi�ers is needed. Mod-

eling the joint behavior for a reasonable observation resolution is what is being

attempted by our POS theory.

III.5.2 First Rank Partitioning

Now it will be shown that for a speci�c partitioning of the observation space,

namely for one which take into account only the �nal decisions from each classi�er,

the optimum decision method given by the POS theory reduces to the maximum

aposteriori decision given in Eq. (III.19).

The �rst rank partitioning is done by considering only the topmost rank for

each classi�er, i.e., the �nal decision of each classi�er. This corresponds to the

new rank score matrix de�nition based on the elements of the original rank score

matrix, as
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Table III.8: Illustration of the First Rank Partitioning leading to the relations

with the �nal decision based Bayesian classi�er combination.
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r̂ij =

8>>><
>>>:

1; if rij = P � 1;

0; otherwise:

(III.27)

For an illustrative example case of P = 3 classes and Q = 2 classi�ers, the

partitioning is demonstrated in Table III.8. As discussed in Section III.3, for a

partitioned observation space, the optimal decision method is given by

d = argmax
1�j�P

Pfsx = j; r = njg
W
=W(j; n)gPfg

W
=W(j; n)g: (III.28)

But for the speci�c partitioning de�ned as �rst rank partitioning we have the

following two properties:

(1) The observation statistics Pfg
W
=W(j; n)g are in fact given by

Pfg
W
=W(j; n)g = Pfg

W
=W(j; n(i1; i2; � � � ; iQ))g

= Pfd1 = i1; d2 = i2; � � � ; dQ = iQ; Sx = jg:

where di is the decision of classi�er Xi and n(i1; i2; � � � ; iQ) is a function of

these decisions.
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(2) The transition terms Pfsx = j; r = njg
W
=W(j; n)g are constant since the

cardinality of each partition is jWmj = 1=�;8m 2 f1; 2; � � � ;MWg for the

�rst rank partitioning, i.e., we have

Pfsx = j; r = njg
W
=W(j; n)g = �; 8j 2 f1; 2; � � � ; Pg; n 2 f1; 2; � � � ; Ng:

Using the aforementioned two properties of this speci�c partitioning, the optimum

decision resulting from the POS theory as given in Eq. (III.28) can be expressed

as

d = argmax
1�j�P

f� � Pfg
W
=W(j; n)gg (III.29)

= argmax
1�j�P

Pfg
W
=W(j; n)g (III.30)

= argmax
1�j�P

Pfd1 = i1; d2 = i2; � � � ; dQ = iQjSx = jgPfSx = jg (III.31)

The last form given in Eq. (III.31) is clearly equivalent to the Bayesian decision

rule without the independence assumption given in Eq. (III.24), establishing our

claim in this section.

III.6 Discussion

In this chapter, the partitioned observation space theory is introduced as a promis-

ing tool for understanding rank-based multiple classi�er decision systems. During

the discussion in this part, it has been deliberately avoided to introduce a speci�c

rank-based multiple classi�er decision method based on the presented theory but

a clear methodology of obtaining a number of such methods by means of di�er-

ent partitionings of the observation space is provided. Speci�c partitionings are
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introduced only to establish the links with some existing rank-based approaches.

It has been shown that three rank-based multiple classi�er decision methods can

be analyzed using the POS theory. Additionally, it has also been shown that the

�nal decision based (Type 1) systems can also be analyzed under this formalism

and that the Bayesian approach without the independence assumption is a special

case of the developed approach.

Under the developed formalism, speci�c methods result from speci�c par-

titionings and such partitionings should be considered within the context of a

speci�c task domain. The application of the theory in two tasks from the speech

processing domain are considered and the computational model necessary for

these applications are developed in Chapters VI and VII. The common speech

processing concepts and the individual classi�ers are developed in Chapter V. In

the following chapter, the thesis elaborates on the important concepts of inde-

pendence and complementariness among classi�ers and develops an interpretation

based on Information Theory.
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CHAPTER IV

Independence and Complementariness of

Classi�ers

Two closely related concepts arise while using a multiple-classi�er system. These

are the independence and the complementariness of the classi�ers involved within

the system.

While constructing a multiple classi�er decision combination system, one is

faced with several important problems. It is often not clear whether there will

really be an improvement over the performance of the best classi�er by the use

of more than one classi�er. This clearly depends on the individual performances

of the classi�ers involved and their interaction during the classi�cation process.

One is faced with the problem of determining the potential improvement possible

by making collective use of multiple classi�ers.

Another issue of considerable importance is the computational load implied

by the parallel use of multiple classi�ers. Given a large set of potential classi�ers
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(e.g., using di�erent features extraction methods, di�erent modeling/similarity

scoring methods), using all of them in parallel may guarantee performance im-

provement but may not be computationally feasible with the hardware capabili-

ties at hand. Practical considerations often necessitate selecting a suitable subset

of classi�ers which satisfy a certain performance gain/classi�cation speed tradeo�.

Finally, one should be interested in understanding theoretically when and

why a given set of classi�ers, when combined, lead to improved performance,

while others do not. Loosely stated, the aforementioned objectives may only be

achieved if it is possible to quantify the potential of the combiner to improve the

classi�cation performance. The complementariness concept and an associated

measure may be used to quantify such an ability.

Independence and complementariness concepts have been around in the pat-

tern recognition literature for a long time. Unfortunately, the concepts have been

often used loosely, without any attempt for a solid de�nition and the develop-

ment of a quantifying measure. For example, the dependence between the set

of classi�ers is often ignored and a statistical independence assumption is used

in the development [31, 15]. Some other researchers have argued that statistical

independence of the classi�er outputs is not really the useful measure for quanti-

fying improved performance but the independence of the errors made should be

considered instead. This is also left as a verbal argument [12, 13]. There have

also been solid contributions such as by Tumer and Ghosh [29, 29, 47]. They

have shown the relations between classi�er output correlation and the deviation

from the optimal Bayesian decision boundary for classi�ers which are combined

by linear averaging or by order statistics. Unfortunately, their results apply to
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classi�ers with continuous outputs in measurement form and cannot be extended

trivially to rank-based classi�er systems.

The present chapter will attempt to introduce a formal treatment of classi�er

independence and complementariness concepts for rank-based multiple-classi�er

systems 1 studied in Chapter III. For this purpose, some relevant basic concepts

of Information Theory will be used.

IV.1 Relevant Concepts of Information Theory

Information theory gives us a promising tool to explore the complementariness of

multiple classi�ers. To illustrate this, we will �rst summarize some relevant basic

results using the notation of Chapter III [57].

Consider a �nite event space R = fR1;R2; � � � ;RNg and let r be an integer

random variable de�ned such that r = n denotes the realization of the rank score

matrix Rn. This event space can be thought as a source of information. One

can de�ne a measure for the information conveyed by the realization of the event

r = n in terms of its probability as

I(r = n) = log
1

Pfr = ng
: (IV.1)

The expected value of the information acquired by the observation of R is

H(r) = EfI(r = n)g

=
PN

n=1 Pfr = ng log 1
Pfr=ng

;

(IV.2)

1 In Chapter III, rank-based systems have been shown to include also the systems where

the classi�er outputs are �nal class decisions (i.e., Type 1 systems). Therefore, the results of

this chapter will be readily applicable for both group of systems.
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which is also known as the entropy of this information source. This quantity can

be interpreted as a number of properties of the event space R or the associated

random variable r [57]. These are the amount of average \information" conveyed

by an observation of r, our uncertainty about r or the randomness of r. The units

of these information measures depend on the base of the log(:) operator. For a

base 2 logarithm, the unit of information is bit. The well known Theorem IV.1

establishes the minimum and maximum values for the entropy function and its

proof can be found in [57].

Theorem IV.1 Let r 2 f1; 2; � � � ; Ng; then one has 0 � H(rg � logN . Further-

more H(r) = 0 i� 9j 2 f1; 2; � � � ; Ng such that Pfr = jg = 1 and H(r = logN)

i� 8j 2 f1; 2; � � � ; Ng we have Pfr = jg = 1=N .

Consider now that there are two random variables r1 and r2 with probability

mass functions Pfr1 = n1g and Pfr2 = n2g, representing two related event

spaces R1 and R2. The relation between these two probability distributions is

given by the the conditional probability Pfr1 = n1jr2 = n2g. Now if we de�ne

the information conveyed by observing the realization (r1 = n1) given that we

have already observed (r2 = n2) as

I(r1 = n1jr2 = n2) = log
1

Pfr1 = n1jr2 = n2g
; (IV.3)

then the entropy of r1 after observing r2 can be found [57] as

H(r1jr2) =
X
n1 ;n2

Pfr1 = n1; r2 = n2g log
1

Pfr1 = n1jr2 = n2g
: (IV.4)
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This conditional entropy may be interpreted as a number of properties of

r1 and r2: The amount of average \information" conveyed by an observation of

r1 given that we have already observed r2, our uncertainty remaining about r1

given that we have resolved our uncertainty about r2 or the randomness of r1

after observing r2. Since we know our uncertainty about r1 both before and after

observing r2, we can derive the amount of average information we have acquired

about the former by observing the latter. This symmetric quantity is known as

the mutual information between r1 and r2 and is given by

I(r1; r2) = H(r1)�H(r1jr2): (IV.5)

which can be expressed in explicit form as

I(r1; r2) =
X
n1;n2

Pfr1 = n1; r2 = n2g log
Pfr1 = n1; r2 = n2g

Pfr1 = n1gPfr2 = n2g
: (IV.6)

Theorem IV.2 We have I(r1; r2) � 0;8r1; r2 and I(r1; r2) = 0 if and only if

the two random variables are statistically independent.

Theorem IV.2 whose proof can be found in [57] asserts that the mutual infor-

mation as de�ned in Eq. (IV.5) is a well suited measure of statistical dependence

between the random variables r1 and r2 hence between the underlying events

[57]. These concepts can be applied in the context of multiple classi�er systems

as discussed in the following sections.
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IV.2 An Information Theoretic Interpretation of Classi-

�ers

Information theory de�nes a discrete memoryless communication channel (DMC)

as an object that accepts, every unit of time, one of P input symbols and outputs

one of N output symbols. The output can be thought of as a noisy version of the

input [57]. A classi�er on the other hand, is an object which accepts patterns,

whose class labels are known to a supervisor, and outputs its best estimates of

these class labels.

A classi�er can be interpreted as analogous to a DMC if we argue that the

true realization of the class label is transformed by the classi�er into a noisy

output form. The source of the noise is not important for this interpretation

but it may be the result of the feature extraction and/or the similarity scoring

algorithm. The actual source of information we are interested in (the input to

the DMC interpretation of the classi�er) is the true label of the class emitting

the patterns. However, what we have access to is only the noisy output of this

DMC as illustrated by Figure IV.1.

When more than one classi�ers are involved, we may consider them as mul-

tiple DMCs transmitting the same information source whose outputs are to be

considered to acquire information about this source.

IV.3 Output Independence of Classi�ers

A multiple classi�er decision combination system with observation space parti-

tioning can be visualized as a set of interrelated random variables as illustrated
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Figure IV.1: The discrete memoryless channel interpretation of a classi�er. The

input to the DMC is the true label of the pattern while the output of the DMC

is the classi�er output. The exact number of outputs depends on the level of

information supplied by the classi�er.

in Figure IV.2. With the random variable de�nitions given in Figure IV.2, we are

at a point to introduce a formal de�nition of independence among the outputs

of classi�ers both before and after observation space partitioning as described in

Chapter III. Consider two classi�ers whose rank-based outputs represented by

the random variables r1; r2. In view of Theorem IV.2 we can make the following

de�nition which can easily be extended to more than two classi�ers.

Definition IV.1 Classi�ers X1;X2 are said to be output independent in the

rank-based sense if and only if we have I(r1; r2) = 0 with I(r1; r2) de�ned by

I(r1; r2) =

P
n1;n2;j

Pfr1 = n1; r2 = n2jsx = jg log
Pfr

1
=n1 ;r2=n2jsx=jg

Pfr
1
=n1jsx=jgPfr2=n2 jsx=jg

:

(IV.7)

Otherwise, the two classi�ers are output dependent with I(r1; r2) being a measure

of dependence between them.

If one uses the random variables r1; r2; � � � ; rQ in this de�nition, then the

output dependence of the original classi�ers is computed. However, it is also pos-

sible to compute the output dependence, after a partitioning of the observation
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Figure IV.2: Random variable representation of the multiple classi�er decision

combination system. The events within the system can be represented by a num-

ber of interrelated random variables. The random variables are transformed from

one to another either by means of the classi�ers, or by means of the partition-
ing and the optimal decision process. r01; r

0
2; � � � ; r

0
Q are the marginal random

variables re
ecting the individual classi�er outputs after the observation space
partitioning is applied.

space as described in Chapter III. For this, the marginal output random vari-

ables r01; r
0
2; � � � ; r

0
Q, derived after the partitioning W, should be used instead of

r1; r2; � � � ; rQ. Note that the numericalmeasure of dependence among the outputs

of the classi�ers will be di�erent depending on whether this is computed for the

original outputs or after each speci�c partitioning

Output independence of classi�ers is an important parameter in itself. How-

ever, as is shown by the following example, it is not necessarily a measure of

complementariness.

Example IV.1 Suppose we consider two rank-based classi�ers X1 and X2 oper-

ating on a simple two class problem where the class labels are S1 and S2. Assume

that these classi�ers are operated in parallel on patterns from these two classes
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Table IV.1: True joint probability distribution of the classi�er observation space.

Columns denote the rank score matrices while rows denote pattern classes. Each

cell represent the estimate of the probability that patterns from a class lead to a

speci�c rank score matrix at the outputs of the classi�ers.

X1X2

2
64 1 1

0 0

3
75
2
64 1 0

0 1

3
75
2
64 0 1

1 0

3
75
2
64 0 0

1 1

3
75

S1 0:45 0:35 0:15 0:05

S2 0:15 0:05 0:05 0:75

and the joint probabilities in Table IV.1 are obtained. These will be called as

the true joint distribution of the classi�er behavior. The marginal probabilities

for the individual classi�ers can be obtained from this joint distribution and are

given in Table IV.2 (a) and (b).

Probability of the errors made by the individual classi�ers may be analyzed

from these two marginal tables. Considering Table IV.2 (a), the jointly optimum

decision 2 selects class S1 if the rank score matrix (1 0)T occurs and S2 if (0 1)
T

occurs at the classi�er outputs. Denoting the decision by d and using the random

variable notations of Chapter III, the total probability of error for classi�er X1 is

P e
X1

= Pfd = 1jsx = 2gPfsx = 2g+ Pfd = 2jsx = 1gPfsx = 1g

= 0:2� 0:5 + 0:2� 0:5

= 0:2

By a similar computation for classi�er X2, we have P
e
X2

= 0:3. Therefore, it can

be argued that X1 is the best of the two classi�ers.

2 The jointly optimum decision is in the sense of Chapter III. In this sense, the jointly

optimum decision and the optimum combination is synonymous. For this example, the class

label with the largest probability for a given column is selected.
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Table IV.2: Marginal probabilities for individual classi�ers (a) X1 and (b) X2.

Columns denote the rank score vectors at classi�er outputs while rows denote

pattern classes. These tables are rank-based generalized forms of the matrices

known as classi�er confusion matrices.

(a) (b)

X1 (1 0)
T

(0 1)
T

S1 0:8 0:2

S2 0:2 0:8

X2 (1 0)
T

(0 1)
T

S1 0:6 0:4

S2 0:2 0:8

Table IV.3: Joint probability distribution of the classi�er observation space com-
puted from the marginal distributions in Table IV.2, under the independence

assumption.

X1X2

2
64 1 1

0 0

3
75
2
64 1 0

0 1

3
75
2
64 0 1

1 0

3
75
2
64 0 0

1 1

3
75

S1 0:48 0:32 0:12 0:08

S2 0:04 0:16 0:16 0:64
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Let the true joint distribution in Table IV.1 be used for jointly optimal de-

cision. From this table, it can be seen that one has d = 1 if r 2 f1; 2; 3g and

d = 2 if r = 4, where r denotes the realization of the rank score matrix. The

total probability of error for the jointly optimal decision is

P e
X1X2

= (0:15 + 0:05 + 0:05) � 0:5 + 0:75 � 0:5

= 0:15

which is lower than the probability of error P e
X1

= 0:2 for the best individual

classi�er. Therefore, an improvement in performance over the best individual

classi�er is achieved by the jointly optimal decision. Now suppose we assume

that the classi�ers are independent. Then, we can construct a joint probability

distribution by making use of this assumption. This derived distribution is given

in Table IV.3.

When this derived joint distribution is considered for optimal decision, one

has now d = 1 if r 2 f1; 2g and d = 2 if r 2 f3; 4g. In this case, the total

probability of error would clearly be

P̂ e
X1X2

= (0:04 + 0:16) � 0:5 + (0:12 + 0:08) � 0:5

= 0:20;

which shows no improvement over the performance of the best classi�er X1.

This simple example shows that the independence assumption may hide a

potential for improvement for classi�ers which are in fact dependent. It also

shows that independence of classi�ers is not a necessary condition for such an
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Table IV.4: Joint probability distribution of the classi�er observation space for

the two classi�ers of Example IV.2.

X1X2

2
64 1 1

0 0

3
75
2
64 1 0

0 1

3
75
2
64 0 1

1 0

3
75
2
64 0 0

1 1

3
75

S1 0:12 0:48 0:08 0:32

S2 0:05 0:45 0:05 0:45

Table IV.5: Marginal probabilities for individual classi�ers (a) X1 and (b) X2 in

Example IV.2.

(a) (b)

X1 (1 0)T (0 1)T

S1 0:6 0:4

S2 0:5 0:5

X2 (1 0)T (0 1)T

S1 0:2 0:8

S2 0:1 0:9

improvement. For dependent classi�ers, the jointly optimal decision process in the

sense of the theory developed in Chapter III may achieve an improvement over the

best individual classi�er while methods based on the independence assumption

will fail to do so. An interesting question at this point is whether or not an

improvement is still possible for the case of classi�ers which are truly output

independent. The following example gives a positive answer.

Example IV.2 Again consider a simple problem with two classi�ers X1 and X2,

operating on patterns from two classes S1 and S2. The joint distribution of the

classi�er observation space is given in Table IV.4 while the marginal distributions

for the individual classi�ers are given in Table IV.5 (a) and (b).

For this example, we have I(r1; r2)) = 0 and therefore, the classi�ers are

output independent. The total probability of error for both individual classi�ers
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Table IV.6: Class dependent error probabilities for classi�ers in Example IV.2.

Classi�er X1 X2

Pfy = 0jsx = 1g 0:4 0:8

Pfy = 0jsx = 2g 0:5 0:1

are P e
X1

= P e
X2

= 0:45. However, when the joint distribution is considered for

optimal decision, the decisions are d = 1 when r 2 f1; 2; 3g and d = 2 when

r = 4 e�ectively leading to a total probability of error of P e
Comb = 0:435. This

is smaller than the probability of error for both of the classi�ers denoting an

improved performance for the case of output independent classi�ers.

An interesting observation can be made about these classi�ers if one inspects

the class dependent error probabilities Pfy = 0jsx = 1g and Pfy = 0jsx = 2g

where y is the indicator of correct decision (see Section III.2.1). These are given

in Table IV.6. From these probabilities, it can be concluded that classi�er X1

cannot successfully classify patterns from class S2 while classi�er X2 cannot clas-

sify patterns from class S1. The fact that the errors of the two classi�ers are

concentrated on di�erent classi�ers support the ideas in [12, 13].

IV.4 A Condition for Complementariness

The joint distribution in Table IV.3 is obtained under the assumption of inde-

pendence from the marginal distributions. However, this could as well have been

the true joint distribution of the classi�er observation space. Given the true joint

distribution and the marginal distributions, one important task is to �nd the con-

ditions on these distributions so that there will be an improvement by using the
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jointly optimal decision. Such a general condition is introduced by the following

De�nition and Theorem.

Definition IV.2 In a multiple classi�er system, a classi�er is called as the

dominating classi�er if the jointly optimal decision is a function of only the rank

score vector of that classi�er.

Theorem IV.3 If one classi�er dominates the others, then the jointly optimal

performance of the multiple classi�er system becomes exactly equal to the perfor-

mance of the dominating classi�er.

Proof. Consider the �rst classi�er and let the classi�er decide on class Sk for

a speci�c rank score vector r1 = n1, where r1 denotes the rank-based output of

classi�er X1. Using y again as the indicator of correct decision, the probability

of the error made by this decision is given by

Pfy = 0; r1 = n1g =
PX
j=1

j 6=k

Pfr1 = n1jsx = jgPfsx = jg: (IV.8)

De�ning RX1

1 ;RX1

2 ; � � �RX1

P as the rank score vector sets for which the classi�er

decides on class labels S1; S2; � � � ; SP respectively, the total probability of error

for the �rst classi�er is given by

P e
X1

=
P

n12R
X1

1

Pfy = 0; r1 = n1g+
P

n12R
X1

2

Pfy = 0; r1 = n1g

+ � � � +
P

n12R
X1

P

Pfy = 0; r1 = n1g:

(IV.9)

By using Eq. (IV.8) in Eq. (IV.9), and assuming uniform class distribution

Pfsx = jg = 1=P we obtain
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P e
X1

= 1
P

8>>><
>>>:

P
n12R

X1

1

PP
j=2

Pfr1 = n1jsx = jg+
P

n12R
X1

2

PP
j=1

j 6=2

Pfr1 = n1jsx = jg

+ � � � +
P

n12R
X1

P

P�1P
j=1

Pfr1 = n1jsx = jg

9>>=
>>;

(IV.10)

The same error probability analysis may be done for the remaining classi�ers.

Now consider the multiple classi�er system instead of the individual classi�ers.

Assume without loss of generality that classi�er X1 is the dominating classi�er.

Let a random vector r = [n1 n2 � � � nQ]
T represent the rank score output of the

classi�er set. Here each entry represents the index of some rank score vector of a

speci�c classi�er among Q classi�ers. Also let 
 be the set of all allowable rank

score vectors for a single classi�er. Finally, de�ne RC
p for p = 1; 2; � � � ; P as

R
C
p =

n
n = [n1 n2 � � � nQ] j n1 2 R

X1

p ; nk 2 
 ; k = 2; � � � ; P
o

(IV.11)

With these de�nitions, the total probability of error for the combined system can

be expressed as

P e
Comb = 1

P

8>>><
>>>:
P

n2RC
1

PP
j=2

Pfr = njsx = jg+
P

n2RC
2

PP
j=1

j 6=2

Pfr = njsx = jg

+ � � �+
P

n2RC
P

P�1P
j=1

Pfr = njsx = jg

9=
;

(IV.12)
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P e
Comb = 1

P

8>><
>>:

P
n12R

X1

1

PP
j=2

P
nk2


k=2;3;���;P

Pfr = [n1 n2 � � � nP ]jsx = jg

+
P

n12R
X1

2

PP
j=1

j 6=2

P
nk2


k=2;3;���;P

Pfr = [n1 n2 � � � nP ]jsx = jg

+ � � �+
P

n12R
X1

P

P�1P
j=1

P
nk2


k=2;3;���;P

Pfr = [n1 n2 � � � nP ]jsx = jg

9>>=
>>;
(IV.13)

The inner summations being over all the rank score vectors of the remaining

classi�ers, they are equal to the probability Pfr1 = n1jsx = jg. Therefore Eq.

(IV.13) becomes equal to Eq. (IV.10) and this establishes P e
Comb = P e

X1
, proving

the Theorem. 2

Theorem IV.3 shows for the general case that if one classi�er dominates the

others, no improvement can be expected from the combination of the classi�ers.

In other words, for improvement by combination, no classi�er should dominate,

i.e., the jointly optimal decision should favor each classi�er's decision in turn, for

some rank score matrices. This is expressed by Theorem IV.4 which makes use

of Lemma IV.1.

Lemma IV.1 Due to the joint optimality of the combined decision, the combined

performance cannot be lower than the performance of the best classi�er within a

multiple classi�er system.

Proof. To show this, let X1 be the best individual classi�er and let RC
1 be the

set of all rank score matrices for which X1 decides on class label S1 as given by

R
C
1 =

n
n = [n1 n2 � � � nQ] j n1 2 R

X1

1 ; nk 2 
 ; k = 2; � � � ; P
o
: (IV.14)

76



p
1L

p
1211

p

p
k1

S1

Sk

Figure IV.3: Part of the joint distribution of the observation space used for

Lemma IV.1.

Without loss of generality, the rank score matrices can be ordered such that these

L = jR
C
1 j rank score matrices correspond to r = 1; 2; � � � ; L. The corresponding

part of the joint distribution of the observation space is illustrated in Figure IV.3.

If the conditions p1n > pjn for j = 2; 3; � � � ; P and n = 1; 2; � � � ; L are satis�ed,

then the jointly optimal decision is equivalent to the decision of X1 for this set

of r values.

Suppose we try to disturb this condition by letting pk1 > p11 for the r = 1.

This largest probability term will contribute to the probability of error made

by X1. However, it will not contribute to the probability of error made by the

optimal decision since the optimal decision will select Sk for r = 1. Therefore,

the error for the optimum decision will necessarily be lower than the error for the

best classi�er X1. 2

Theorem IV.4 If none of the classi�ers in a Q classi�er ensemble dominate the

ensemble, then we necessarily have P e
Comb < minfP e

X1
; P e

X2
; � � � ; P e

XQ
g.

Proof. Without loss of generality, assume that classi�er X1 is the best perform-

ing individual classi�er. However, it is not a dominating classi�er since there is
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none. De�ne Dq(rlq) to represent the decision of classi�er Xq for the speci�c rank

score vector rlq while D
C(Rl) denotes the jointly optimal decision for the speci�c

rank score matrix Rl = [rl1 r
l
2 � � � r

l
Q].

The fact that X1 is not a dominating classi�er means that there exist at least

one or more rank score matrices Rl such that DC (Rl) 6= D
1(rl1). For each such

rank score matrix, an intermediate, partially optimal decision process D̂l can be

designed which satis�es D̂l(Rl) = D
C (Rl) while for all other rank score matrices

its decisions coincide with the decision of classi�er X1, i.e., D̂
l(Rk) = D

1(rk1),

8Rk 2 R, k 6= l. By Lemma IV.1, the partially optimized decision process

cannot yield a performance lower than the performance of the best individual

classi�er. Therefore, such a decision process which is di�erent than the best

individual classi�er should necessarily yield to an improved performance. 2

Another result of this section about dominance is given by Corollary IV.1.

Corollary IV.1 If there is a dominating classi�er within a multiple classi�er

system, then this is necessarily the best performing individual classi�er.

Proof. By Theorem IV.3, the performance of the dominating classi�er equals

the performance of the combination. However, by Lemma IV.1, the performance

of the combination cannot be lower than the best individual performance. There-

fore, the performance of the dominating classi�er equals the performance of the

best classi�er, proving the Corollary. 2

The above discussion suggests that output independence plays no exclusive

role in assessing the potential for improvement by the combination of classi�ers.

However, a di�erent concept the thesis de�nes as the dominance of a classi�er
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gives a condition on classi�er complementariness. Namely, one should have no

dominating classi�er in a given classi�er ensemble in order to have performance

improvement by optimal combination in the sense of Chapter III.

IV.5 Complementariness of Classi�ers

The previous section de�ned a condition for achieving complementary behavior

among classi�ers and hence, to obtain an improvement from classi�er combina-

tion. However, the fact that none of the classi�ers are dominating, does not give

one, a measure on the potential improvement possible by the combination of a

set of classi�ers. In the present section, an attempt is made to introduce such a

measure.

Consider again Figure IV.2. Apart from the probability of correct classi�ca-

tion, another measure on the performance of an individual classi�er Xk may be

given by means of the mutual information I(rk; sx) between the classi�er output

rk and the source class sx. I.e., it may be argued that the amount of information

acquired about the true class label by observing the outputs of classi�er Xk is a

reasonable measure on that classi�er's performance.

Now consider that while using Xk individually, one asks the question: How

much does classi�er Xl has a potential to complement the present classi�er Xk?.

This depends on the ability of Xl to provide additional information about the

source class label. I.e., one should be interested in the amount of new information

provided by the output of Xl which was not present in the output of Xk. This

quantity can be expressed as a di�erence
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�IXkXl

:
= I(rk; rl; sx)� I(rk; sx); (IV.15)

where the �rst term represents the amount of information acquired about the

source class label sx by observing both classi�er outputs rk and rl while the last

term represents the amount of information acquired about the source class label

by observing the output of classi�erXk alone. Replacing both mutual information

terms by their entropy de�nitions as given in Eq. (IV.5) one gets

�IXkXl
= H(sxjrk)�H(sxjrk; rl): (IV.16)

which can be expressed in expanded form as

�IXkXl
=

X
j;n1 ;n2

Pfsx = j; r1 = n1; r2 = n2g log
Pfsx = jjr1 = n1; r2 = n2g

Pfsx = jjr1 = n1g
:

(IV.17)

The quantity we have de�ned in Eq. (IV.15) is not symmetric, namely, we

have �IXkXl
6= �IXlXk

. This is a reasonable behavior since for classi�ers with

di�erent performances, the amount of information contributed byXl toXk cannot

be the same as the amount contributed byXk toXl. One expects the contribution

of the better performing classi�er to be larger.

The quantity de�ned by �IXkXl
can be proposed as a measure of the com-

plementariness of classi�er Xl with respect to classi�er Xk. This proposal is sup-

ported by investigating the behavior of the aforementioned measures on several

simulated examples with two classi�ers and two classes. The joint distributions

and the derived marginal distributions for these �ve examples are illustrated in
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Table IV.7. Three of these distributions can be recognized from Examples IV.1

and IV.2. The given simulated cases are selected such that the performance and

the marginal classi�er observation space distribution for classi�er X1 is always

the same, while they vary for the second classi�er X2.

Consider the following scenario while investigating Tables IV.7 and IV.8. One

is restricted to use only two classi�ers in parallel for this two class illustrative

problem. Five di�erent classi�ers are available and the best classi�er is labeled

X1. The task is to select the second classi�er X2 among the available ones which

is the most complementary with respect to the best classi�er X1. I.e., the largest

performance improvement over the performance of the best classi�er is sought.

For this purpose, each alternative classi�er is operated in parallel with the best

one and the distributions in Table IV.7 are obtained. From these distributions, the

measures in Table IV.8 are obtained where all logarithms are Base 2 logarithms.

This gives a measurement unit of Bits. One can make the following discussions.

For this two class problem with uniform class distribution, the entropy of the

source random variable sx is 1 bit, which is hence the maximum value for all

measures in Table IV.8 based on Information Theory. For Case 1, the best clas-

si�er is dominating the pair since the optimal decision on the joint distribution

is the same as the decision of the best classi�er X1 for all cases. Therefore, the

candidate classi�er cannot contribute to the best classi�er and so here is no per-

formance improvement. However, it is interesting to note that the �IX1X2
column

still reports a positive value. It can be argued that the dominance condition may

not be re
ected in �IX1X2
.

For the remaining cases which are ordered with respect to the actual perfor-
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Table IV.7: Five simulated example cases. Joint and individual classi�er obser-

vation space distributions are illustrated as three columns. Measures computed

from these distributions are given in Table IV.8.

Joint X1 X2

Case 1
0.48 0.32 0.12 0.08

0.04 0.16 0.16 0.64

0.80 0.20

0.20 0.80

0.60 0.40

0.20 0.80

Case 2
0.51 0.29 0.09 0.11

0.12 0.08 0.08 0.72

0.80 0.20

0.20 0.80

0.60 0.40

0.20 0.80

Case 3
0.70 0.10 0.07 0.13

0.08 0.12 0.11 0.69

0.80 0.20

0.20 0.80

0.77 0.23

0.19 0.81

Case 4
0.66 0.14 0.14 0.06

0.09 0.11 0.11 0.69

0.80 0.20

0.20 0.80

0.80 0.20

0.20 0.80

Case 5
0.45 0.35 0.15 0.05

0.15 0.05 0.05 0.75

0.80 0.20

0.20 0.80

0.60 0.40

0.20 0.80

Table IV.8: Intermediate measures of interest for the examples with two classes
and two classi�ers, given in Table IV.7. The complementariness of classi�er X2

with respect to classi�er X1 is given in the column labeled as �IX1X2
and is the

primary measure of interest.

Ind. Perf. Indiv. Infor. Independence Joint Infor. Complementariness Improv.

Case P e

X1
P e

X2
I(r

1
; s
x
) I(r

2
; s
x
) I(r

1
; r

2
) I(r

1
; r

2
; s
x
) �IX1X2

�IX2X1
�P e

Comb

Case 1 0.2 0.3 0.2781 0.1245 0.0000 0.3888 0.0807 0.2343 0.000

Case 2 0.2 0.3 0.2781 0.1245 0.0846 0.3204 0.0423 0.1959 0.005

Case 2 0.2 0.21 0.2781 0.2591 0.1008 0.3592 0.0811 0.1001 0.010

Case 4 0.2 0.2 0.2781 0.2781 0.0359 0.4033 0.1252 0.1252 0.015

Case 5 0.2 0.3 0.2781 0.1245 0.1538 0.4319 0.1538 0.3073 0.050
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mance improvement over the best, the best classi�er is not dominating. Also, the

�IX1X2
column seems to re
ect the potential improvement achievable by com-

bination. Investigating the output independence column I(r1; r2) supports that

output independence is not necessarily a desired condition for complementari-

ness. Case 5 shows that the maximum improvement given in the Table is for the

candidate classi�er which has the maximum dependence with the best classi�er.

Again a considerable improvement is possible for Case 4, where the output de-

pendence between classi�ers is quite low. A last observation on IV.8 is that the

complementing classi�er performance need not necessarily be very close to the

performance of the best classi�er for improvement to be possible. Again the max-

imum improvement is achieved by a complementing classi�er with pe = 0:3 while

a much smaller improvement could be achieved with a much better performing

classi�er with pe = 0:21.

IV.6 Discussion

In the present chapter, the thesis attempted to clarify the concepts of output inde-

pendence and complementariness and their relations with the actual performance

improvement achievable by optimal combination. The following have been the

main contributions. Firstly, an Information Theoretic interpretation of a multiple

classi�er system is introduced and this enabled the use of measures from informa-

tion theory to quantify relations between random variables representing events

within such a system. A measure for classi�er output dependence is developed

under this framework and it is shown that output independence plays no exclu-

sive role in determining how much a classi�er can complement another. A new

83



concept called as dominance of classi�er is introduced to give a critical condition

for performance improvement. Finally, another Information Theoretic measure

is introduced to quantify the potential for improvement in such a system which

have been supported by empirical justi�cation. However, not all the questions

raised within the scope of this Chapter could be answered and there exist several

issues open for further research. For example, the concept of error independence

and its relation with performance improvement through combination remains an

open issue. Also, the theoretical relation between the complementariness measure

�IX1X2
and the actual improvement remains to be established. These points are

viable directions for future research.
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CHAPTER V

Speech Feature Extraction and Individual

Classi�ers for Speech Pattern Recognition

Part of any classi�er is a feature extraction stage which is followed by a similarity

scoring stage. During feature extraction, the pattern is transformed into a set

of descriptive features for that pattern while during similarity scoring, this set of

features is compared with a set of class models to determine the similarity between

the pattern and the pattern classes whose models are known to the classi�er.

This basic operating model which is illustrated in Figure V.1 is also valid

for classi�ers operating on speech patterns, both for speaker identi�cation and

for speech recognition. In this chapter, the thesis discusses these two building

blocks of a classi�er for speech pattern recognition, which form the common

computational basis for the experiments in both speaker identi�cation and speech

recognition. The speci�c considerations for each task and the experimental results

will be discussed in detail in Chapters VI and VII.
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Ordering and
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Figure V.1: The typical classi�er operation model. In most classi�ers, the pattern
is �rst transformed into a set of descriptive features, then a similarity scoring
method is used to compare these features against a set of stored models of pattern
classes. The class with the highest similarity score is identi�ed by the classi�er.

V.1 Feature Extraction for Speech Signals

The speech pattern is basically the speech signal itself, sampled at a suitable

sampling rate and quantized to a suitable bit-length so that the intelligibility of

the human speech is preserved. The speech signal is not exactly band-limited.

However, its exponentially decaying average spectrum [58] allows an assumption

of band-limitedness. The so called telephone-quality speech is assumed to be

band-limited to 3:4kHz and hence most telephone lines low-pass �lter the speech

signal with a cut-o� frequency of 3:4kHz. Also a quantization of 8 bits=sample

with A-law encoding, is often used for telephone-quality speech.

Since the telephone quality speech preserves both the message and the per-

sonality as perceived by a human listener, both automatic speaker identi�cation

and speech recognition should be theoretically possible by using a speech signal
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sampled at the Nyquist rate of 8000 samples=second and at a quantization of

8 bits=sample. Therefore, for this study, these parameters are chosen for the

digitization of the speech signal.

Followed by this digitization procedure, the sampled and quantized speech

waveform is processed to extract a set of descriptive features. These are often in

vector form for this pattern. Since human speech is an information bearing signal,

its behavior and descriptive features change over time, i.e., it is not stationary

[59]. Therefore, to capture the behavior of the speech signal over time, speech

features are often selected as a time sequence of feature vectors where each vector

is extracted through necessary processing, from successive short segments of the

speech signal. These uniform length segments of speech are called as frames. The

framed speech can be de�ned for all time as

sm[n] = s[n+m]w[n]; (V.1)

where w[n] is a windowing function and s[n] is the speech signal which is shifted

by m samples so that segment being analyzed overlaps with the non-zero window.

This de�nition generates a new signal which is de�ned for �1 < n < +1 and

which is formally suitable for analysis methods which inherently assume that the

signal is de�ned for all n. A formal treatment of this topic can be found in [59].

The windowing function w[n] determines the frame length N and is often chosen

such that it tapers the speech signal corresponding to the frame towards the frame

end-points. The rationale behind the tapering shape of most windowing functions

is to minimize the adverse e�ects of cutting-out a segment of the signal from
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its surroundings on the frequency resolution of spectral estimates, which form

the basis of most speech signal features. A discussion of windowing function

selection and its consequences on the spectral estimates can be found in [60].

This framing process is illustrated in Figure V.2 on an actual speech signal with

a Hamming windowing function. In this study, we use a frame length of N = 512

samples where successive frames overlap by 128 samples which are determined by

preliminary experiments in speaker identi�cation discussed in Chapter VI.

By this framing process, the entire speech signal is transformed into a set of

speech frames which often overlap by the selection of successive m values satisfy-

ing m < N . Each speech frame is transformed into a feature vector whose number

of elements are much smaller than the number of nonzero samples in the speech

frame. This transformation is a data reduction process which tries to preserve

information in the speech frame relevant for the problem and task considered,

while irrelevant information (including the e�ects of noise) is tried to be elimi-

nated [1]. In this thesis, three such feature extraction methods are considered to

form the basis of the three classi�ers used for the experimental evaluations. They

will be discussed in the following three sections.

V.1.1 FFT Derived Cepstral Coe�cients (FFTCep)

The cepstral coe�cients rely on a signal processing concept known as homo-

morphic signal processing [60]. Homomorphic systems form a class of nonlinear

systems where a generalized superposition is satis�ed with di�erent input and

output operators. Namely, we have
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Figure V.2: Framing process for feature extraction. (a) The speech signal together
with a shifted multiplying windowing function of a suitable shape. (b) The new

signal obtained by windowing the original signal. A short-time feature can be
obtained by various transformations on this new signal.
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Hfx1[n] � x2[n]g = Hfx1[n]g �Hfx2[n]g (V.2)

Consider the convolution of two signals x1[n] � x2[n]. Using a homomorphic

transformation with an appropriate choice of the characteristic system H[:], it is

possible to transform this convolution to a simple addition between two trans-

formed signals. In this transformed domain, the two transformed signals appear

to be linearly combined, which is much easier to separate.

The speech signal is often considered to be the result of a glottal excitation

signal driving a linear all-pole �lter which is a simpli�ed and linearized model of

the human vocal tract. This model of speech production is illustrated in Figure

V.4. If we consider the discrete-time Fourier transform operator Ff:g, we have

the property

Ffg[n] � v[n]g = Ffg[n]g � Ffv[n]g; (V.3)

while the log j:j operator has the property

log(jG(e�jw) � V (e�jw)j) = log(jG(e�jw)j) + log(jV (e�jw)j): (V.4)

Using properties V.3 and V.4, the convolution operation between two signals in

the time-domain, can be transformed into a simple addition in a new domain as

log(jFfg[n] � v[n]gj) = log(jFfg[n]gj) + log(jFfv[n]gj): (V.5)

This new domain is called the cepstral domain and the transformed signal c[n]

the real cepstrum. The normalized time index n in the cepstral domain is denoted
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as Quefrency a term coined-up to describe \frequencies" in this new \frequency

domain" [59]. Consider the assumption that the speech signal s[n] is produced as

the convolution of the glottal excitation with the vocal tract �lter, as illustrated in

Figure V.4. One important motivation behind the use of the cepstrum sequence

as feature vector is to transform the speech signal so that the e�ects of the glottal

excitation and vocal tract shape are more easily separated.

Since theDiscrete-Fourier Transform for �nite length sequences also has prop-

erty V.3, the practical computation of the cepstrum of the speech frame is done

by means of the Fast Fourier Transform algorithm. This results in a cepstrum

sequence of length N samples where N is the length of the original frame. How-

ever, this sequence is often truncated to a much smaller length and the �rst term

c[0], which re
ects the signal energy, is often dropped from the feature vector

based on empirical observations of its unreliable behavior [1]. The cepstral fea-

tures obtained by means of the FFT algorithm are called as the FFT Derived

Cepstral Coe�cients. In the present study, 12 cepstral coe�cients c[1] to c[13]

are used to form the �rst set of feature vectors. The extraction of this feature

set is illustrated in Figure V.3 where all N = 128 samples of the real cepstrum is

illustrated.

V.1.2 LPC Derived Cepstral Coe�cients (LPCCep)

This set of features is based on the linear model of human speech production

illustrated in Figure V.4. The all-pole linear �lter V (z�1) in this model is esti-

mated through a process which is often called as the Linear Prediction Analy-

sis. This estimation problem can be interpreted in a number of ways as argued
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Figure V.3: FFT Derived Cepstral feature extraction. (a) A voiced speech frame
with the corresponding windowing function. (b) The frame DFT spectrum which

is an intermediate step in cepstrum extraction. (c) The FFT derived real cep-
strum sequence of frame, illustrated for all N = 128 samples of the cepstrum.

Only the coe�cients c[1]; � � � ; c[13] are used as the feature vector. Note that both
low and high quefrency components are present in the c[n] sequence and the peak

around n = 58 denotes the pitch period of the voiced frame, hence the excitation

component in the speech.
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Figure V.4: The linearized speech production model. A glottal excitation signal

drives a linear all-pole �lter model of the human vocal tract. The speech signal

is considered to be the output of this system, which is the convolution of the
excitation signal with the �lter impulse response.

by Deller et.al. [59], all leading to the same solution for the model parame-

ters G and ai; i = 1; 2; � � � ; P where P is known as the LP �lter order. One

such interpretation is the prediction interpretation where the idea is to �nd the

best linear predictor of the current speech sample s[n] from its P past samples

s[n � 1]; s[n � 2]; � � � ; s[n � P ]. A short-time average square prediction error is

de�ned as

Em =
X
n

e2m[n] =
X
n

"
sm[n]�

PX
i=1

aksm[n� i]

#2
: (V.6)

where the analysis frame is de�ned as in Eq. (V.1). Assuming summation limits

are �1 < n < +1 and using Eq. (V.1) in Eq. (V.6) we obtain the error

Em =
+1X

n=�1

e2m[n] =
+1X

n=�1

"
s[n+m]w[n]�

PX
i=1

ais[n+m� i]w[n� i]

#2
: (V.7)

The optimum ai values minimizing the prediction error function in Eq. (V.7) can

be found by solving the set of optimality equations �Em=�aj = 0; j = 1; 2; � � � ; P

which are given by
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+1P
n=�1

s[n+m]w[n]s[n+m� j]w[n� j] =

PP
i=1

ai
+1P

n=�1
s[n+m� i]w[n� i]s[n+m� j]w[n� j]:

(V.8)

for j = 1; 2; � � � ; P . This set of equations can be expressed in a more compact

form by the de�nition of the Autocorrelation function estimate

Rm(j) =
+1X
�1

s[n+m]w[n]s[n+m� j]w[n� j]: (V.9)

Using also the fact that R(:) is an even function, the optimality equations take

the form

PX
i=1

aiRm(ji� jj) = Rm(j); for j = 1; 2; � � � ; P : (V.10)

which can be expressed in matrix form as

2
666666664

Rm(0) Rm(1) � � � Rm(P � 1)

Rm(1) Rm(0) � � � Rm(P )
...

...
. . .

...

Rm(P � 1) Rm(P � 2) � � � Rm(0)

3
777777775

2
666666664

a1

a2
...

aP

3
777777775
=

2
666666664

Rm(1)

Rm(2)
...

Rm(P )

3
777777775
: (V.11)

Since the autocorrelation matrix on the left hand side of Eq. (V.11) is Toeplitz,

the optimality equations can be very e�ciently solved using the Levinson-Durbin

recursion [58], hence giving the model parameters ai; i = 1; 2; � � � ; P which are

called as the Linear Prediction Coe�cients (LPC). The computation of the gain

is done by considering the energy of the frame and is discussed in [58]. Since it

will not be used as an element of the feature vector, the procedure is not detailed

here.
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The frequency response of the LP �lter gives us the envelope of the short-time

Fourier spectrum of the speech frame and represents the vocal tract part of the

speech production model. Our second set of features called as the LPC derived

cepstral coe�cients considers only these parameters to compute a set of cepstral

coe�cients. Since the LP �lter derived from the autocorrelation analysis is stable,

these cepstral coe�cients can be obtained directly from the LP coe�cients by a

recursive procedure [1],

1. Initialize cLP [1] = a1;

2. For 2 � i � Nc Compute

cLP [i] = ai +
i�1X
j=1

(1 �
j

i
)ajcLP [i� j]:

Note that by this recursion, it is possible to compute an in�nite number of

cepstral coe�cients. However, since these are derived from a limited number of

LPC coe�cients, it is only meaningful to keep a number of coe�cients comparable

to the LPC �lter order. The extraction of the LPC Derived Cepstral features is

illustrated in Figure V.5 .

V.1.3 LPC Residual Derived Cepstral Coe�cients (LPCResCep)

The all-pole LPC �lter is a linearized model of speech production. When the

actual speech signal is passed through the inverse of the LPC �lter, a residual

(or error) signal is obtained. If the LPC model were able to capture all the

information about the vocal tract, this residual would re
ect the excitation signal

at the vocal folds. However, LPC �lter is only a linearized model. Therefore the

95



(a)

−1200 −1000 −800 −600 −400 −200 0 200 400 600 800
−1

−0.5

0

0.5

1
Sampled Speech Waveform s[n+m] and Window w[n]

Discrete−Time n

W
av

ef
or

m
 A

m
pl

itu
de

 s
[n

+
m

]

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

DFT Spectrum and LPC Model(12) of Frame

Normalized Frequency, w (π−radians)M
ag

ni
tu

de
 S

pe
ct

ru
m

 |F
(e

−
jw

)|
 a

nd
 |V

(e
−

jw
)|

(c)

20 40 60 80 100 120
−1.5

−1

−0.5

0

0.5

1
LPC−Derived Real Cepstrum of Frame

Quefrency − n

R
ea

l C
ep

st
ru

m
 M

ag
ni

tu
de

 c
[n

]

Figure V.5: LPC Derived Cepstral feature extraction. (a) The same voiced frame

as in Figure V.3. (b) The LPC all-pole �lter magnitude response for a �lter order
of P = 12 together with the frame DFT spectrum. (c) The LPC derived real

cepstrum sequence of frame, illustrated for all N = 128 samples of the cepstrum.

Only the coe�cients c[1]; � � � ; c[13] are used as the feature vector. Note that high
quefrency components (excitation) are removed by the use of the LPC model

while low quefrency components (vocal tract) are preserved.
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residual signal bears important information about the excitation and the vocal

tract, which was not modeled by the LPC �lter. In this sense, the residual

signal can be thought to carry information which is complementary to the LPC

model. A feature set can be constructed from the residual signal to represent this

complementary information.

Following these arguments, we propose a feature set called as the Residual

Derived Cepstral Coe�cients. These are FFT Derived Cepstral Coe�cients, ex-

tracted from the LPC residual signal. The feature extraction process is as follows:

The speech frame is subjected to an LPC analysis and the LPC coe�cients of a

speci�ed order are obtained. During this estimation process, the frame prediction

error signal is obtained. This is equivalent to the signal which would be obtained

by passing the speech frame from the inverse LPC �lter, except for a scaling factor

G. It is used to extract the FFT Derived Cepstral Coe�cients, as described in

Section V.1.1. Since FFT Derived Cepstrum does not involve any linearization of

the underlying process, it is suitable to capture the nonlinear information present

in the residual signal. This process is illustrated in Figure V.6.

V.2 Modeling and Similarity Scoring Methods

Once a time-sequence of feature vectors are obtained for all the training patterns

of a class by a speci�c feature extraction procedure, this information is often

transformed into a representative compact model for that class. This is called as

the modeling phase. There exist a variety of modeling methods for speech pattern

classes. These include Vector Quantization, Hidden Markov Models and a rich

set of Neural Network architectures. Some of these methods can model the time
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Figure V.6: LPC Residual Derived Cepstral feature extraction. The same voiced
frame as in Figure V.3 is considered. (a) The LPC residual signal. (b) The FFT

magnitude spectrum of the residual signal. (c) The FFT derived real cepstrum se-
quence of the frame residual, illustrated for all N = 128 samples of the cepstrum.

Only the coe�cients c[1]; � � � ; c[13] are used as the feature vector.
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evolution of the speech patterns while some of them cannot. In the present thesis,

the Vector Quantization, which does not model the time-evolution, is considered.

1

V.2.1 Vector Quantization Class Models

A Vector Quantizer is a mappingQ which assigns each input vector r = fr1; r2; � � � ; rNg,

a reproduction vector y = Q(r) drawn from a �nite reproduction alphabet

Â = fy1;y2; � � � ;yMg [61]. The reproduction alphabet Â is also known as the

vector quantizer codebook. The quantizer Q partitions the input vector space

into disjoint sets of vectors Vi = fr : Q(r) = yig making up a partitioning

V = fV1; V2; � � � ; VMg. The mapping Q is constructed by an optimal procedure

such that the codebook vectors form a representative set for all the input vectors.

In a multi-dimensional feature space where we have speech feature vectors, the

codewords are often centroids of the clusters of the feature distribution.

In the present work, all the feature vectors from all patterns for a speci�c

class are used to train a VQ codebook. For a P class problem, a VQ codebook

model is trained for each pattern class Sj known to the system. When a pattern

is given, the set of vectors extracted by the feature extraction algorithm are

matched against these models by the similarity scoring procedure described in

Section V.2.3.

1 The choice of Vector Quantization leads to competitive performance for text-independent

speaker identi�cation task since the time evolution of the speech patterns are not very important

due to independence from textual content. However, the performance for the BDEV task is

below the �gures reported in the literature since speech recognition is inherently tied to the

time evolution of the speech signal. Nevertheless, this does not degrade the signi�cance of the

example since our focus is not on individual classi�er performance but on the improvement over

the best performing classi�er by making use of classi�er combination.
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Figure V.7: Flow diagram for vector quantizer codebook training by the Binary-
Splitting LBG algorithm. The algorithm operates by splitting the codebook into
two at each iteration and computing the codebook distortion. A maximum code-

book size can be speci�ed to stop the training process. The codebook size is
always a power of two.

V.2.2 Codebook Training (Modeling) Method

The construction of a VQ codebook which is optimal with respect to some dis-

tortion measure is studied in the literature. A study by Linde et.al., presents an

algorithm which is a Binary-Splitting variant of the LBG algorithm well known in

the speech processing literature [61]. The general 
ow diagram of the algorithm

is illustrated in Figure V.7.

The algorithm is initialized by letting the reproduction alphabet size toM = 1
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and �nding the centroid or center of gravity of all the training vectors as the initial

alphabet Â0. Then an outer iterative process is started where the alphabet size

is doubled at each iteration. This is done by splitting each vector ri into two close

vectors ri + � and ri � � by introducing a small perturbation vector �. This is

repeated until a �nal alphabet size is reached. For each cycle of the iteration where

the codebook size is m centroids, the following inner procedure, summarized in

Figure V.7 as three inner blocks, is applied:

1. Given the reproduction alphabet Âm = fy1;y2; � � � ;ymg, �nd the minimum

distortion partition P(Âm) = fY1; Y2; � � � ; Ymg of the training vectors so as

to have rj 2 Yi if d(rj ;yi) � d(rj;yl);8l, where d(:) is a suitable distance

measure.

2. Find the optimum reproduction alphabet for this partitioning P(Âm) by com-

puting a center of gravity, hence a centroid for each partition Yj , j = 1; 2; � � � ;m.

3. Compute the average distortion for the partitioning P(Âm) with respect to

the new reproduction alphabet Âm as

D =
1

N

NX
j=1

min
y2Âm

d(rj ;y):

4. Compute the reduction in the distortion. Finish inner loop if D �D0
� �.

Otherwise, goto Step 1

Note that the training algorithm necessitates a distance measure de�ned between

two feature space vectors r; r̂ as d(r; r̂). The procedure is independent of the

distance measure de�nition and the use of di�erent measures is discussed in [61].
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For the present thesis, the Euclidean distance, i.e., the l2-norm is used and is

given by

d(r; r̂) =
pX
i=1

jri � r̂ij
2
: (V.12)

V.2.3 Similarity Scoring Method

Once a VQ codebook is obtained for each pattern class, one needs to compute

the similarity of a given set of feature vectors to each of the stored models. Let

the class models (hence the VQ codebooks) be denoted by S1; S2; � � � ; SP . The

distance of a single vector ri to the class model Sj can be measured by the distance

to the nearest codebook vector of that model,

d(ri; Sj) = min
y2Sj

d(ri;y) (V.13)

For a set of unknown vectors, one has to consider a cumulative distance to the

class models. For an unknown pattern x consisting of N feature vectors, the

averaged cumulative distance to class model Sj will be given by the expression

D(x; Sj) =
1

N

NX
n=1

min
y2Sj

d(rn;y): (V.14)

The similarity of a set of feature vectors representing a pattern to a class

model can be computed as the inverse of the distance given in Eq. (V.14). The

class models can be ordered according to these similarity scores to provide a

ranking of the candidate classes with respect to the unknown pattern x.
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Figure V.8: The three individual classi�ers based on three feature extraction
methods. The training (modeling) and testing (similarity scoring) stages of the
classi�ers are illustrated.

V.3 Three Classi�ers for Speech Pattern Recognition

The use of di�erent feature extraction methods to generate meaningfully com-

plementary behaving (i.e., in the sense of Chapter IV) classi�ers is proposed by

many researchers in the literature [46, 10, 14, 15].

Considering the three di�erent speech feature extraction methods and the

modeling and similarity scoring procedure just described, the three classi�ers used

in the present study can be de�ned. All three classi�ers use the same modeling

and similarity scoring procedure but di�er in the feature extraction phase. They

are illustrated in Figure V.8 for both the training phase and the testing phase.
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The following two chapters presents the application of these three classi�ers

and their combination for two di�erent pattern classi�cation tasks from speech

processing.
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CHAPTER VI

Experiments on Closed-Set Text-Independent

Speaker Identi�cation Task

Two tasks from speech processing are considered as a test bed for the rank-based

multiple classi�er decision combination methods discussed in this thesis. The

�rst of these is automatic speaker identi�cation. This is the task of determining

the identity of a person from his/her speech signal and is the topic of the present

chapter.

VI.1 Task Description

Human speech sound, if appropriately sampled and digitized, contains a large

amount of information. The most dominant information is clearly the spoken

message. However, this is not the only information present in the signal. The

identity of the speaking person, the language spoken, speaking disorders and emo-

tional state of the speaker are all contained in this complex signal[5]. Speci�cally,
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Speaker Identi�cation is the process of using a machine to process a person's

speech signal with the aim of automatically extracting his/her identity. The

correlation between the identity of a person and his/her speech signal can be at-

tributed to the physiological properties of the person as well as his/her behavioral

properties[5].

One can try either to identify or to verify a speaker's identity. Identi�cation

is the task of determining the unknown identity while veri�cation is task of de-

termining whether or not a speech signal is uttered by a speci�c person. Also,

these tasks can be attempted with unconstrained speech or with speech of known

textual content, leading to tasks known as text-independent and text-dependent

respectively. The present thesis considers the speaker identi�cation task with

text-independent system operation. Also, closed-set mode of operation is used,

i.e., the system must make a decision on one of the known speaker classes and re-

maining undecided is not allowed. The speaker identi�cation process is illustrated

in Figure VI.1.

Here, the speech collected from known speakers are used to build models

characterizing each of these speakers. For this purpose, properly sampled speech

signal from each speaker is passed from a preprocessing or feature extraction stage

where the speech pattern is compressed into a sequence of descriptive feature

vectors. These feature vectors are then used by a modeling method to build

the speaker models which are stored by the classi�er. During operation, speech

sample from an unknown identity speaker is passed from the same preprocessing

stage and the feature vectors are matched against each of the speaker models by

a similarity scoring procedure inside the classi�er. The label of the model which
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Figure VI.1: The speaker identi�cation process. The speech from labelled speak-

ers is used to build models for each speaker after they have been transformed
into descriptive feature vectors. The models are then used in a similarity scoring
procedure where feature vectors from an unknown speaker are matched against

these models. The label of the best matching model identi�es the speaker.

is the most similar to the given feature vectors identi�es the speaker.

Speaker identi�cation is a well studied problem in pattern recognition, espe-

cially within the speech processing community [4, 3, 62, 63, 64]. Many feature

extraction and modeling/similarity scoring methods have been proposed in the

literature, including vector quantization [5, 65], hidden Markov models [63, 66, 67],

Gaussian mixture models [68, 69, 70, 71] and various methods based on arti�cial

neural networks [72, 18, 73]. As described in Chapter V, three di�erent speech

feature extraction methods combined with vector quantization are used for the

experiments in the present thesis.
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VI.2 Database Description

A database tailored speci�cally for speaker identi�cation and veri�cation is used

for the experiments of the present chapter. This is the POLYCOST Database

which is the result of the joint e�orts of the European COST-250 Action. 1

The database is described in detail in [74]. Its properties can be summarized as

follows. The database consist of speech recordings over long distance international

telephone lines. Speakers from the COST-250 member countries participated in

the recording process. Approximately 10 speaker per country form a set of 74

male and 59 female speakers which called the recording system 1285 times. Each

person has approximately 10 recording sessions. Each session for each speaker is

composed of di�erent types of recordings which are given in Table VI.1. The 10

recording sessions for each speaker is spread over the period of February-April

1996 with a minimum spacing of three days. All recordings are done with 8 kHz

sampling rate with 8 bits/sample quantization. Several interesting variabilities

are present in the database. Most of the speakers are non-native speakers of

English and the MOT recordings are entirely in the mother tongue. International

telephone lines introduce di�cult variabilities between sessions. Also, the classical

variabilities such as in frequential, temporal, intra and inter-speaker variabilities

are present.

Speaker sets of 30 male speakers are used for the individual and multiple

classi�er experiments. These 30 male speaker subsets are selected among the

69 male speakers consisting the �rst CD-ROM of the database. An experiment

1 Speech Processing Laboratory of the Department of Electrical and Electronics Engineering

is a member of the European COST-250 Action titled \Speaker Recognition in Telephony" and

has contributed to the POLYCOST Database.
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Table VI.1: Recording items in the POLYCOST Database

Type Items# Description

CLI 4 7-digit client code

DIG 5 Sequence of 10 digits

SEN 2 Sentence

PHO 1 International phone number

MOT 2 Mother tongue utterance

series consist of 7 experiments where 10 new speakers are introduced into the set

while 10 old speakers are removed. By adding and removing di�erent speakers

to the 30 speaker test set, the best and worst cases of performance are tried to

be observed.

VI.3 Training, Testing and Cross-Validation Data

The longer mother tongue free speech recording mot02.alw �les from the �rst

4 sessions of each speaker are used to train the individual classi�ers within the

system. The testing data is composed of the shorter mot01.alw�les which contain

constrained mother tongue speech recordings. Each recording session is used as

a single token of speech data for which individual classi�ers generate outputs.

Apart from the training data from which the individual classi�ers are trained,

the theory necessitates a set of data on which the trained classi�ers are operated

during a set of cross-validation experiments to give classi�er ensemble observation

data. This information is then used to build a model of the classi�er behavior in

the form of classi�er observation statistics as described in Chapter III.

In a typical speaker identi�cation task, as is the case for the POLYCOST

database, there is a limited amount of training data available for each speaker
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model. Therefore, dividing the training data to obtain a cross validation data

set is not feasible. However, the cross-validation data should be such that for

each identi�cation experiment, the unknown identity data given to the classi�ers

should never be seen by the classi�ers during the training. Since during actual

test sessions, all tokens are previously unseen, this is an important principle to

be able to observe a realistic behavior of the classi�ers.

One method of generating such a cross-validation data set is described in [23]

and will be called as the leave-one-out method. In this scheme, the training data

is used to generate a cross-validation data set as follows: There are 4 session

data for each speaker model. Let each cross-validation token to be supplied to

the system be an entire session data. Then for each such cross-validation test, a

session data is left out of the training data for that speaker model. The speaker

model is trained on the remaining sessions data. Then the data left out of model

training is used as a cross-validation token and given to the system. The classi�er

outputs for this unseen token make one cross-validation test result. All training

sessions for all speakers are processed by this scheme. Each time, the session

left out of model training is used as a test token. Note that although the same

training set is used, this scheme guarantees that the system is tested always with

previously unseen tokens.

VI.4 Individual Classi�ers

A speech pattern is often the sampled speech waveform of an utterance as de-

scribed in Chapter V. For speaker identi�cation, this is an entire recording from a

single person. Each of the three classi�ers described in Chapter V are used for the
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experiments of the present chapter. They consist of individual feature extraction

methods used in combination with a commonmodeling/similarity scoring method

based on Vector Quantization(VQ) and the Binary-Splitting LBG VQ-codebook

training algorithm. The three resulting classi�ers are denoted by FFTCep, LPC-

Cep and LPCResCep and have been illustrated in Figure V.8.

VI.5 Combination based on the POS Theory Formalism

In order to apply the POS Theory described in Chapter III to the present task,

the following computational model is proposed. This is also illustrated in Figure

VI.2.

1. First, an appropriate partitioning W is chosen for the classi�er observation

space. This determines the transition termsPfsx = j; r = njg
W
=W(j; n)g.

2. The labelled training data used to train the individual classi�ers is trans-

formed into a cross-validation data set by the leave-one-out method. Each

pattern is left out of the training set during classi�er training and used as

a test pattern to test the trained classi�ers. Hence, L cross-validation tests

outputs are obtained using the classi�ers (where L is the number of pat-

terns in the database) with each test pattern being previously unseen by

the classi�ers.

3. The results of these cross-validation tests are used to determine the distribu-

tion of the source classes and rank scores among the partitions by means of

partition accumulators. Hence, partition occurrence statistics Pfg
W

= mg
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are estimated for m = 1; 2; � � � ;M . This is the statistical combination

model.

4. Given an unknown test pattern, the classi�ers are operated on the pattern

and the rank score matrix R is obtained. The computational model of

the optimum solution (Section III.3.2) is applied for the given R and the

statistical coe�cients Pfsx = j; r = njg
W

= W(j; n)gPfg
W

= W(j; n)g

for all candidate classes j = 1; 2; � � � ; P are computed. The candidate class

with the maximum coe�cient is selected by the rule

d = argmax
j=1;2;���;P

Pfsx = j; r = njg
W
=W(j; n)gPfg

W
=W(j; n)g

Three methods are proposed under the POS Theory formalism. Each of these

methods are based on a speci�c partitioning of the classi�er observation space.

These are described in the following sections.

VI.5.1 Method 1: First Rank

This method basically relies on the �rst rank based partitioning rule discussed

in Chapter III with a modi�cation for the consensus decision case. Firstly, only

the highest ranking class label is considered from each classi�er. This e�ectively

discards the intermediate rank information from the lower ranking classes and

degenerates into a Type 1 system. However, such a method may be justi�ed

when lower ranks are highly unreliable or cross-validation data is very limited

for estimating partition statistics for a �ner partitioning. Secondly, when the

two classi�ers are in consensus(i.e., their top ranking class labels are the same)

it is reasonable to trust this consensus decision. In addition to considering the
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Figure VI.2: Training and operation block diagram of the Multiple Classi�er
Decision Combiner. Combiner system training consist of the determination of

the observation space partitioning and the estimation of the resulting statistical

combination parameters. The estimation is done by running the set of classi�ers
on a generated cross-validation data. During operation, the set of classi�ers are

run in parallel on unknown data and the statistical combination model is used to
apply the optimal decision process.

top rank from each classi�er, the partitioning is modi�ed to accommodate this

observation.

The partitioning described is independent of the actual data observed on a

speci�c task but re
ect a general understanding of the task. It constrains a pos-

sible solution within a certain region of the solution space by e�ectively achieving

a partitioning of the observation space in the sense of the theory developed in

Chapter III. A considerable compression of the classi�er observation space is

achieved. One can expect unacceptable performance if the actual behavior of the

classi�ers violate the assumptions.
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VI.5.2 Method 2: First Two Ranks

This method relies on the �rst two ranks based partitioning described in Chapter

III again with a modi�cation for consensus. The highest ranking two class labels

are considered from each classi�er. Again, the consensus decision is accepted

whenever there is one.

VI.5.3 Method 3: First Two Ranks with Variable Ordering

This method is a variation on Method 2, where the ordering of the class labels

within the �rst two ranks is considered unimportant. This attempt is in response

to the fact that possible rank score matrices increase with the rank depth and

the limited cross-validation data may be insu�cient to estimate observation The

possible observation partitions are further reduced by suppressing the ordering

detail within the �rst two ranks but keeping the resolution at a membership level

instead.

VI.6 Experimental Results

In this section, the performance of the individual classi�ers and their combination

using existing and proposed techniques are presented. The 7 speaker sets are

considered for these experiments.

VI.6.1 Performance of Individual Classi�ers

Tables VI.2 and VI.3 illustrate the performance of the three individual classi�ers

on the speaker sets considered. As expected, there is a general performance drop

from cross-validation to actual test since the test data is further separated in time
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Table VI.2: Cross-validation test results for the three individual classi�ers, FFT-

Cep, LPCCep and LPCResCep. The identi�cation experiments are performed

for 7 di�erent speaker sets, each composed of L = 30 speakers. The �gures in the

table are percent classi�cation rates.

Classi�er FFTCep LPCCep LPCResCep

Set 1 88.4 90.2 82.7

2 88.3 89.2 73.3
3 91.7 93.3 82.5

4 93.3 91.7 80.8

5 92.5 94.2 82.5

6 93.3 95.0 80.8
7 93.3 95.0 78.3

Average 91.6 92.6 80.1

Table VI.3: Actual test results for the three individual classi�ers FFTCep, LPC-
Cep and LPCResCep.

Classi�er FFTCep LPCCep LPCResCep

Set 1 88.4 90.2 82.7
2 90.2 89.0 77.5

3 91.8 86.8 82.4

4 85.4 81.5 79.8
5 85.1 83.4 77.1

6 81.3 79.5 75.3
7 89.7 89.7 82.8

Average 87.4 85.7 79.6

from the data used for training and cross-validation. Therefore, a performance

drop occurs due to the temporal variations in the individual's speech signal.

Another interesting observation is that the best performing classi�er is changed

from cross-validation to actual test. The FFTCep classi�er which is the second

best classi�er with an average identi�cation rate of 91:6% during cross-validation

becomes the best classi�er with 87:4% identi�cation rate during actual test. The

highest performance achieved by this classi�er during test is 89:7% which occurs

for speaker set 7.
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VI.6.2 Combined Performances using Existing Methods

The performances of the two-classi�er rank-based decision combination systems

using the three combination methods from the literature are illustrated in Tables

VI.4, VI.5 and VI.6. The results of a statistical signi�cance test, under the

assumption of Gaussian distribution, are given as the last three rows of these

Figures and will be discussed at the end of this Section.

The performances of the Highest Rank and the Borda Count methods are

not acceptable for this task. The Borda Count method have rarely exhibited

an improvement over the best classi�er performance and the average over the

speaker sets shows a consistent loss of performance for all combined classi�er

pairs. The Borda Count method performed slightly better but still well below

acceptable. Occasional improvements over the best classi�er are seen for some

speaker sets but on the average, there is still a loss of performance. The Logistic

Regression method performed better for the combination of classi�er pairs FFT-

Cep/LPCResCep and LPCCep/LPCResCep with a positive average improvement

over the best classi�er. However, the combination model estimation method of

Logistic Regression described in Chapter II led to defective models for 3 speaker

set while combining the classi�er pair FFTCep/LPCCep. These cases are marked

on the table with dashes. The logistic regression model combines the rank scores

from individual classi�ers by a linear regression model of the form y = a+br1+cr2

where r1 and r2 are rank scores from the two classi�ers and a; b and c are the

regression parameters [2]. The logic behind the model assumes that the two pa-

rameters b and c be positive for all cases. The de�cient models have one of these
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Table VI.4: Test results for combination using the Highest Rank Method for

pairwise combination of available classi�ers. The experiments are performed for

7 di�erent speaker sets, each composed of L = 30 speakers. The last three rows

of the table illustrate the results of a statistical signi�cance test for the data

of columns representing the improvement over the best performing individual
classi�er. The 95% and 90% values indicate the desired con�dence level on the

truth of hypothesis H1 and a yes/no value indicate whether or not the truth can

be guaranteed with the speci�ed con�dence.

Combined FFTCep and � from FFTCep and � from LPCCep and � from

Classi�ers LPCCep Best LPCResCep Best LPCResCep Best

Set 1 89.6 -0.57 85.0 -3.47 85.0 -5.20

2 90.7 0.58 85.5 -4.62 86.1 -2.89

3 87.9 -3.85 84.6 -7.14 83.0 -3.84

4 83.7 -1.68 84.8 -0.56 83.7 2.25

5 83.4 -1.71 80.0 -5.14 78.9 -4.57

6 81.3 0.00 75.3 -6.03 77.1 -2.41

7 89.7 0.00 83.3 -6.33 85.6 -4.03

Average 86.6 -1.03 82.7 -4.76 82.8 -2.96

PfdatajH1g - 0.06 - 0.00 - 0.01

H1? (95%) - no - no - no

H1? (90%) - no - no - no

parameters as negative upon performing an approximation to the cross-validation

data hence deteriorating the performance. The scores for these cases are left out

of the averaging process. However, the average performance for this classi�er pair

is still poor.

To establish the signi�cance of the given results, a statistical signi�cance test

is performed. Assume that the actual distribution of the performance di�erence

�gures is Gaussian. Let the averages of the \� from Best" columns be indicators

of whether or not there is an improvement over the best individual classi�er. An

hypothesis test can be performed to determine this. De�ne the default or Null

Hypothesis (H0) as \The improvement mean is zero." while the Alternative Hy-
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Table VI.5: Test results for combination using the Borda Count Method for

pairwise combination of classi�ers.

Combined FFTCep and � from FFTCep and � from LPCCep and � from

Classi�ers LPCCep Best LPCResCep Best LPCResCep Best

Set 1 89.6 -0.57 90.2 1.73 89.6 -0.57

2 90.2 0.00 86.1 -4.04 87.3 -1.74

3 87.9 -3.85 86.3 -5.50 85.2 -1.65

4 83.2 -2.22 84.8 -0.56 81.5 0.00

5 82.9 -2.28 86.3 1.15 83.4 0.00

6 78.9 -2.41 81.3 0.00 81.7 2.21

7 87.9 -1.73 89.7 0.00 90.8 1.14

Average 85.8 -1.87 86.4 -1.03 85.6 -0.09

PfdatajH1g - 0.00 - 0.18 - 0.44

H1? (95%) - no - no - no

H1? (90%) - no - no - no

Table VI.6: Test results for combination using the Logistic Regression Method

for pairwise combination of classi�ers.

Combined FFTCep and � from FFTCep and � from LPCCep and � from

Classi�ers LPCCep Best LPCResCep Best LPCResCep Best

Set 1 88.4 -1.73 88.4 0.00 90.7 0.58

2 - - 90.2 0.00 89.0 0.00

3 86.8 -4.95 90.7 -1.10 86.8 0.00

4 82.6 -2.81 86.0 0.57 83.1 1.69

5 - - 86.7 2.29 82.3 -1.14

6 79.5 -1.81 83.1 1.80 79.5 0.00

7 - - 90.8 1.14 89.7 0.00

Average 84.3 -2.83 88.0 0.57 85.9 0.16

PfdatajH1g - 0.02 - 0.90 - 0.68

H1? (95%) - no - no - no

H1? (90%) - no - no - no
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Table VI.7: Test results for combination using Method 1: First Rank.

Combined FFTCep and � from FFTCep and � from LPCCep and � from

Classi�ers LPCCep Best LPCResCep Best LPCResCep Best

Set 1 90.7 0.58 89.0 0.58 91.3 1.16

2 90.7 0.58 89.6 -0.57 88.4 -0.58

3 92.3 0.55 91.8 0.00 86.8 0.00

4 85.4 0.00 86.5 1.13 81.5 0.00

5 85.7 0.57 85.1 0.00 82.7 -0.77

6 81.3 0.00 80.1 -1.21 79.5 0.00

7 91.9 2.29 89.7 0.00 90.8 1.14

Average 88.3 0.65 87.4 -0.01 85.9 0.14

PfdatajH1g - 0.97 - 0.49 - 0.86

H1? (95%) - yes - no - no

H1? (90%) - yes - no - no

pothesis (H1) as \The improvement mean is positive," or equivalently \There is

an improvement." Denote the probability of observing the column data, given

that the Alternative Hypothesis is true as PfdatajH1g. The value of PfdatajH1g

as well as the truth of the Alternative Hypothesis (hypothesis test result) for two

di�erent reference con�dence levels are given for all three tables. From these

results, it can be concluded that for all three existing methods, one cannot es-

tablish, even with 90% con�dence, that there will be an an actual improvement

in performance.

VI.6.3 Combined Performances using Proposed Methods

The performances of the two-classi�er rank-based decision combination systems

using the three new combination methods are illustrated in Tables VI.7, VI.8 and

VI.9.

Method 1 based on the First Ranks only achieves good performance for the
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Table VI.8: Test results for combination using Method 2: First Two Ranks.

Combined FFTCep and � from FFTCep and � from LPCCep and � from

Classi�ers LPCCep Best LPCResCep Best LPCResCep Best

Set 1 90.7 0.58 89.0 0.58 91.3 1.16

2 90.2 0.00 90.2 0.00 89.0 0.00

3 91.8 0.00 91.8 0.00 86.8 0.00

4 85.4 0.00 85.4 0.00 82.0 0.56

5 85.7 0.57 85.1 0.00 83.4 0.00

6 81.3 0.00 81.3 0.00 79.5 0.00

7 92.0 2.29 89.7 0.00 89.7 0.00

Average 88.2 0.49 87.5 0.08 86.0 0.25

PfdatajH1g - 0.91 - 0.82 - 0.75

H1? (95%) - no - no - no

H1? (90%) - yes - no - no

Table VI.9: Test results for combination using Method 3: First Two Ranks with

Variable Ordering.

Combined FFTCep and � from FFTCep and � from LPCCep and � from

Classi�ers LPCCep Best LPCResCep Best LPCResCep Best

Set 1 91.3 1.16 91.9 3.47 91.3 1.16

2 90.8 0.58 89.0 -1.15 86.7 -2.31

3 91.8 0.00 91.8 0.00 86.8 0.00

4 85.4 0.00 85.4 0.00 82.0 0.56

5 85.7 0.57 85.1 0.00 83.4 0.00

6 81.3 0.00 80.7 -0.61 79.5 0.00

7 92.5 2.87 92.5 2.87 90.2 0.57

Average 88.4 0.74 88.1 0.65 85.7 0.00

PfdatajH1g - 0.95 - 0.82 - 0.50

H1? (95%) - no - no - no

H1? (90%) - yes - no - no
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combination of the classi�er pair FFTCep/LPCCep with a maximum improve-

ment of 2:29% over the best individual classi�er. The average improvement is

0:65% for all speaker sets. This is the only case where an improvement can

be guaranteed with a 95% con�dence. The performance improvement remains

marginal for the combination of the two other classi�er pairs.

Considering the �rst two ranks by Method 2 introduces a slight improve-

ment for the combination of the latter two classi�er pairs. However, this is

not signi�cant. Although the maximum performance improvement for the FFT-

Cep/LPCCep pair is still 2:29% over the best individual classi�er, the average

improvement drops to 0:49%. Also, one's con�dence that there is an actual

improvement is dropped and can no longer meet a 95% con�dence level. Im-

provement can not be guaranteed for the other two classi�er pairs even with a

90% con�dence level.

The major factor behind this performance loss by considering �rst two ranks

can be given as follows. The speaker identi�cation is inherently a task with sparse

cross-validation data. The amount of speech data required for a classi�er to reach

a speaker identity decision is large. A speech segment of acceptable length for a

classi�er is called a speech token. As the duration of the token becomes shorter,

the number of cross-validation test samples becomes larger but the classi�cation

performance of individual classi�ers deteriorate. Therefore one is not able to

observe the actual behavior of the classi�er ensemble. When the duration is kept

longer for acceptable individual performance, the total number of cross-validation

tests that can be performed gets limited and this critically e�ects the reliability

of the classi�er observation statistics. For the present experiments, the token
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length is selected as the recording session length. With the available database,

this leads to 4 sessions per speaker, i.e., 4 cross-validation tests per speaker. The

cross-validation data is clearly very sparse.

By considering the �rst two ranks partitioning instead of the �rst rank par-

titioning considerably increases the problem dimensionality and the number of

classi�er observation statistics to be estimated. Therefore the estimations of these

statistics becomes poor. Therefore, the expected gain from Method 2 using the

�rst two ranks partitioning cannot be achieved for this task.

The performance �gures for Method 3, which uses a modi�ed version of the

�rst two ranks partitioning are given in Table VI.9. This modi�cation speci�cally

addresses the limited cross-validation data and reduces the number of partitions

by discarding the ordering within the �rst two ranks and preserving only the

membership information. The results obtained for this method show a maximum

improvement of 2:87% over the best individual classi�er for the FFTCep/LPCCep

and FFTCep/LPCResCep classi�er pairs. The average improvement for all the

speaker sets for these two classi�er pairs are increased to 0:74% and 0:65% re-

spectively. However, the signi�cance test results show that although the FFT-

Cep/LPCCep classi�er pair con�dence for an improvement is increased, one still

cannot guarantee an improvement with 95% con�dence.

Although the cross-validation data is sparse, it is interesting to note that

methods based on classi�er observation statistics perform better than the simple

methods Highest Rank and Borda Count which does not use any classi�er obser-

vation statistics. This shows that the inherent assumptions by these two methods

cannot be justi�ed for the speaker identi�cation task. It is also noted that the
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smoothing model imposed by the Logistic Regression method is not suitable for

this case. The only case one is 95% con�dent that there is an improvement over

the best individual classi�er is classi�er pair FFTCep/LPCCep using Method 1.

VI.7 Discussion

The experimental results in this chapter have shown that simple application of

the POS Theory is capable of generating useful methods for pattern classi�cation.

These simple methods making use of classi�er observation statistics are shown to

outperform three existing rank-based decision combination methods. However,

the performance gain achieved over the best performing individual classi�er is

often not very signi�cant. A 95% con�dence level hypothesis test can guaran-

tee improved performance for only a single case, namely the FFTCep/LPCCep

classi�er pair using Method 1. All statistical rank-based methods analyzed and

uni�ed by the present thesis necessitate reliable estimation of classi�er observa-

tion statistics from cross-validation test data. Speaker identi�cation task on the

other hand is inherently sparse in this respect. Note that this is not a problem

associated with the database used for the experiments but a general characteristic

of the task, since the database re
ects realistic operating conditions. Therefore,

it can be argued that speaker identi�cation does not seem to be a task which

is best suited for the application of statistical rank-based methods. The next

Chapter discusses an interesting task yet having a constrained size.
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CHAPTER VII

Experiments on Turkish BDEV Discrimination

Task

In this chapter, the application of the theory presented in Chapter III in another

real-life problem from speech pattern classi�cation is considered. This is the

discrimination of the highly confusable four letter-words: The Turkish names of

the letters b,d,e and v.

VII.1 Task Description and Database

The task of discriminating the BDEV letter-words for English has been �rst

discussed by Lang to introduce the time-delayed neural networks [6]. The dis-

crimination of the Turkish version letter-words is a similar task with the same

di�culties. It is an interesting and di�cult real-life task having constrained size

(only 4 pattern classes) and hence much more cross-validation data per class can

be available than the task of speaker identi�cation. This enables more reliable
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estimates for the classi�er observation statistics for the decision combiner. Also,

the manageable size of the problem enables the visualization and examination of

the classi�er observation statistics within the context of the developed theory.

The aim of this task is to classify an unknown speech signal to be an utterance

of one of the 4 letter-words with the highest rate of correctness. This is a closed-set

classi�cation task similar to closed-set speaker identi�cation discussed in Chapter

VI. Therefore, the individual classi�er operation for this task is similar to the

one illustrated in Figure VI.1.

A multi-speaker database of 5 speakers is collected in common o�ce environ-

ment for the experiments. One training and one testing session are recorded with

a 2 to 3 days time separation between them. The speakers are asked to read a ran-

dom sequence of isolated letter-words with approximately 60 utterances/letter-

word, building up a total of 1200 training and 1200 test utterances. The record-

ings are made in telephone quality with 8 kHz sampling rate and 8 bits/sample

quantization in a common o�ce environment with computer cooling fans as the

dominant background noise. The boundaries between the utterance of each letter-

word is then determined by hand. However, the no speech/silence detection is

performed and hence, silence sections of the utterances are not eliminated. Ac-

tual recordings from this database are illustrated in Figure VII.1 with their cor-

responding spectrograms.

The main di�culty of the task is that the discriminating consonant sounds at

the beginning of the letter-words are of very short duration and are followed by

high energy vowel 'e' sounds which are common to all 4 classes. Therefore the

high energy parts of the signal are non-discriminative. Also, the SNR is low due
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to the slow sampling rate and coarse quantization. The presence of the silence

sections within the utterances increases the di�culty of the task.

VII.2 Generation of the Cross-Validation Data

The cross-validation data is again generated from the data collected for the train-

ing of the individual classi�ers by the leave-one-out method detailed in Section

VI.3. Namely, for all classi�ers, each letter-word utterance is left out of the train-

ing of the classi�er and the classi�er is trained by all the remaining utterances.

Then the left-out utterance is used as a test token for the system. This is repeated

for all training tokens to generate the cross-validation test results.

VII.3 Individual Classi�ers

A speech pattern is often the sampled speech waveform of an utterance as de-

scribed in Chapter V. For the BDEV discrimination task, such a pattern is an

utterance of a speci�c letter-word.

Each of the three classi�ers described in Chapter V are used for the exper-

iments of the present chapter. They consist of three individual feature extrac-

tion algorithms used in combination with a common modeling/similarity scor-

ing procedure based on Vector Quantization(VQ) and the Binary-Splitting LBG

VQ-codebook training algorithm. The three resulting classi�ers are denoted by

FFTCep, LPCCep and LPCResCep.
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Figure VII.1: Examples for the 4 letter-word classes. (a) The time waveform

of the letter-word. (b) The corresponding spectrogram of the letter-word. The

spectrogram illustrate the time-frequency behavior of the signal. One can note
that the dominant high energy formant frequencies corresponding to the vowel
sound (near black lines close to the bottom) are very similar for each letter-word

while the di�erences arise mainly in the low energy (near white) parts.
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VII.4 Combination Based on the POS Theory Formalism

Two simple rank-based decision combination strategies are proposed based on

the POS Theory formalism. The �rst one is based on the First Two Ranks

Partitioning described in Section III.3.3. Here the classi�er behavior observation

space is partitioned to discriminate only among the top two positions of the

candidate class ranking from each classi�er. We call this method as Rank2. This

intuitive partitioning is based on an expectation that the lower ranks in a classi�er

output may be unreliable due to noisy estimates and is done in a data-independent

manner.

The second method is based on First Rank Based Partitioning described in

Section III.5. It is a degenerate version of a rank-based system by a partition-

ing which discriminates only the top position of the candidate class rankings.

Therefore, it can be called as a Type 1 system. We call this method as Rank1.

These two methods are used by the computational model previously described

in Section VI.5 and illustrated in Figure VI.2.

VII.5 Experimental Results

VII.5.1 Performance of Individual Classi�ers

The classi�cation performances of the three individual classi�ers are given in Ta-

ble VII.1 both for the cross-validation tests and for the actual tests. The best

performing classi�er for both cross-validation and test data is the FFTCep classi-

�er. One can also observe that the LPCResCep classi�er individual performance

is very low for this task.
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Table VII.1: Classi�cation performances of individual classi�ers on the BDEV

task.

Classi�er FFTCep LPCCep LPCResCep

Cross-Validation Data 62.2 63.8 37.7

Test Data 65.8 61.8 35.0

VII.5.2 Combined Performances

The comparative results of pairwise and collective combination of these individual

classi�ers by all the rank-based decision combination methods discussed are given

in Table VII.2 and Table VII.3.

A serious problem for the Highest Rank method was the excessive score col-

lisions (more than one class with the same max-score) when small number of

classes are involved. Highest Rank and Borda Count methods are aided by re-

solving score collisions with the decision of the best performing classi�er instead

of a random decision between colliding classi�ers.

The last three combination methods show classi�cation improvement over

the individual classi�ers. The highest performance improvement is achieved by

the Rank2 method for all pairwise combinations. The most consistent improve-

ment by rank-based methods seems to be achieved for the classi�er pair FFT-

Cep/LPCCep. Also there is a signi�cant performance improvement for the com-

bination of all three classi�ers by Rank1 and Rank2 methods. However, the

performance when all three classi�ers are combined by Rank2 method is a drop

over the improvement by Rank1, contrasting with the expectation for higher im-

provement. For this case, the Rank1 method achieves the highest improvement.
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Table VII.2: Classi�cation performance of existing and proposed combination

methods on the BDEV task: Pairwise combination of classi�ers.

FFTCep � from FFTCep � from LPCCep � from

Combined Classi�ers LPCCep Best LPCResCep Best LPCResCep Best

Highest Rank 65.8 0.00 65.8 0.00 61.8 0.00

Borda Count 67.6 1.75 58.2 -7.66 55.6 -6.25

Logistic Regression 67.5 1.67 65.8 0.00 61.8 0.00

Rank 1 68.8 3.00 65.8 0.00 61.8 0.00

Rank 2 69.2 3.39 66.8 0.92 62.3 0.45

Table VII.3: Classi�cation performance of existing and proposed combination
methods on the BDEV task: All three classi�ers combined.

FFTCep, LPCCep � from

Combined Classi�ers and LPCResCep Best

Highest Rank 35.0 -30.8

Borda Count 64.7 -1.16

Logistic Regression 66.3 0.42

Rank 1 69.2 3.37

Rank 2 68.8 3.00

It can be argued that the reason for this drop is the increasing number of statis-

tics to estimate for the Rank2 partitioning with three classi�ers. This increase

in problem dimensionality degrades the reliability of the classi�er observation

statistics estimated from the �xed amount of cross-validation data and hence

may degrade the combination performance.

For the methods Logistic Regression, Rank 1 and Rank 2, the classi�er obser-

vation statistics are extracted from the cross-validation tests. The maximum gain

from these methods can be achieved when these statistics are reliably estimated

and exactly re
ect the behavior on the actual test data. To observe such an
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Table VII.4: Classi�cation performance of rank-based statistical combination

methods on the BDEV task based on statistics derived from the test data in-

stead of the cross-validation data: Pairwise combination of the three classi�ers.

These performance �gures show the upper bounds in performance possible for an

exact statistical match between cross-validation and test.

FFTCep � from FFTCep � from LPCCep � from

Combined Classi�ers LPCCep Best LPCResCep Best LPCResCep Best

Logistic Regression 67.5 1.67 65.8 0.00 61.8 0.00

Rank 1 69.0 3.17 65.8 0.00 61.8 0.00

Rank 2 73.9 8.09 70.3 4.42 66.9 5.09

Table VII.5: Classi�cation performance of rank-based statistical combination
methods on the BDEV task based on statistics derived from the test data in-

stead of the generated cross-validation data: All three classi�ers combined.

FFTCep, LPCCep � from
Combined Classi�ers and LPCResCep Best

Logistic Regression 66.8 0.92

Rank 1 70.9 5.09

Rank 2 85.8 20.0

upper bound on performance, the behavior statistics are also extracted from the

actual test data and the combination results are given in Tables VII.4 and VII.5.

It can be observed that the potential improvement in combined results is much

larger than the actual improvement. This suggests that there is a mismatch in

the classi�er behavior from cross-validation to testing and this plays a signi�cant

role in limiting the improvement achievable by combination.

This is an expected behavior but shows that there is still a margin for improve-

ment if the behavior statistics can be more reliably estimated. The distribution

of the cross-validation test and actual test result samples in the original event
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Figure VII.2: The distribution of the cross-validation test patterns among the

observation space partitions for 2 classi�ers case: No partitioning, Rank1 and
Rank2. The nonlinear gray color scale is illustrated at the bottom of the Figure.

space and in the partitions resulting from Rank1 and Rank2 methods is illus-

trated in Figures VII.2 and VII.3. Color white signi�es the lack of any samples to

estimate a statistic while black signi�es maximum amount of samples. The dis-

tribution of the cross-validation samples in Figure VII.2 for the no-partitioning

(full-ranks) case clearly illustrate how such data is sparsely distributed across the

uncompressed classi�er observation space. From the two �gures, the mismatch in

the behavior statistics from cross-validation to test can also be clearly observed.

Note that the mismatch is more apparent when there is no partitioning at all.

With the introduction of the Rank1 and Rank2 partitionings, the available data

becomes su�cient for the estimation of the resulting observation statistics. Also,

the mismatch from cross-validation to test is partially smoothed-out.
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Test Data Distribution − Full Ranks
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Figure VII.3: The distribution of the actual test patterns among the observation
space partitions for 2 classi�ers case: No partitioning, Rank1 and Rank2.

Table VII.6: Classi�er independence and complementariness measures for the
pairwise combination of the three classi�ers using Rank1 partitioning. Column

�IXbXw denotes the extend to which the worse classi�er Xw complements the best

classi�er Xb. Column I(r1; r2) denotes the output independence of the classi�er
pair.

Classi�er Pair �IXbXw I(r1; r2)

FFTCep/LPCCep 0.18 0.16

FFTCep/LPCResCep 0.025 0.023

LPCCep/LPCResCep 0.032 0.033

VII.5.3 Evaluation of Independence and Complementariness

For the pairwise combination of the three classi�ers by the Rank1 and Rank2

methods, the measures discussed in Chapter IV are applied. The cross-validation

statistics are used to compute the output independence between the two classi-

�ers subject to combination and the complementariness of the worse individual

classi�er with respect to the best classi�er.

The results for the Rank1 method are illustrated in Table VII.6. From this
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table, it can be observed that the best performing classi�er pair FFTCep/LPCCep

have shown the largest complementariness while considerably lower values are

obtained for the other two classi�er pairs. Another interesting observation is that

the classi�er pair which is the most complementary is at the same the pair which

shows the most output dependence. This supports our conclusion in Chapter IV

that output independence does not re
ect classi�er complementariness.

Unfortunately, numerical di�culties are encountered while computing the

same measures for the Rank2 method case. These di�culties mainly arise from

the fact that the measures make use of all joint probabilities for the partitioned

classi�er observation space. It can be observed from Figure VII.2 that for the

Rank2 partitioning, there is still a considerable number of cells of the classi�er

observation space with no data to estimate the corresponding partition probabil-

ities. These probabilities which are estimated as zero valued in fact correspond

to very small probabilities corresponding to rare events in the observation space.

Unfortunately, such zero values cause numerical di�culties with the computation

of the proposed measures. Note that such zero probabilities are rare in the case

of Rank1 partitioning.

An interesting question which arise is, why this measure becomes unstable

while the optimal decision still achieves good performance. For the optimal deci-

sion to achieve a reliable decision, one must have the following. For each speci�c

rank score matrix (i.e., a column of the observation space), if there is a large

di�erence between the largest and the second largest partition probability, then

reliable estimation of the largest probability is su�cient for a reliable decision for

that rank score matrix. If there is a small di�erence, then it is su�cient that both
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of these two largest probabilities are reliably estimated. For reliable decision, it

is not necessary that all probabilities of the column are reliably estimated. Inves-

tigation of Figure VII.2 and VII.3 shows that despite the empty partitions, this

condition is mostly satis�ed for Rank2 partitioning. However, the proposed com-

plementariness measure su�ers from this lack of data for certain partitions more

severely than the optimal decision process since it uses all partition probabilities.

These experimental results suggest that the proposed complementarinessmea-

sure is open to improvement. Future research may involve developing this measure

so that it further takes into account the behavior of the optimal decision process,

also making it at least as robust as the optimum decision process, against esti-

mation errors.

VII.6 A Statistical Signi�cance Test for Improvement

Promising improvements are suggested by Tables VII.2 and VII.3 for this task

where there is considerable cross-validation samples to estimate the classi�er ob-

servation statistics for reasonable partitionings of the observation space. However,

based on the observed performance, it is important to gain an idea about how

much one is con�dent of improvement by means of combination. In this section

such an analysis is presented.

Assume that N independent classi�cation tests are performed to obtain the

performance �gures about the individual classi�ers and their combinations. Let

xi; i = 1; 2; � � � ; N be the indicator of correct classi�cation by the best individual

classi�er for the i'th test with
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xi =

8>>><
>>>:

1; if the i'th classi�cation is correct;

0; otherwise:

(VII.1)

Also assume that Pfxi = 1g = p is the true probability of correct classi�cation

by the best individual classi�er. The sum of all N indicator random variables,

given by x =
PN

i=1 xi, is another random variable which takes all integer values

between 0 and N . This new random variable has Binomial distribution with

Pfx = ng =

 
N

n

!
pn(1� p)N�n: (VII.2)

for n = 0; 1; � � � ; N . The expected value of x is given by

Efxg = N � p: (VII.3)

Therefore, 1
N
Efxg is an unbiased estimate of the true probability p of correct

classi�cation [75].

Now consider the multiple classi�er system decision. Let the indicator of

correct combined classi�cation for N test tokens as y
i
; i = 1; 2; � � � ; N , de�ned

as in Eq. (VII.1). Once more, y is de�ned as y =
PN

i=1 yi having binomial

distribution. The true probability of correct classi�cation for the combined system

is assumed as Pfy
i
= 1g = q. One has 1

N
Efyg as an unbiased estimate of this

true probability q.

Now one can try to answer the question of how much can one be con�dent that

there is truly an improvement by combination when the individual and combined

performances are observed over N tests. This can be answered by computing

136



Table VII.7: Statistical con�dence levels (percent probabilities) to obtain an ac-
tual improvement over the best individual classi�er in the combination.

FFTCep

FFTCep FFTCep LPCCep LPCCep
Combined Classi�ers LPCCep LPCResCep LPCResCep LPCResCep

Highest Rank 49.1 49.1 49.1 0.0

Borda Count 79.7 00.0 0.8 29.5

Logistic Regression 78.3 49.1 49.1 58.4

Rank 1 92.3 49.1 49.1 94.5

Rank 2 94.5 67.4 58.2 92.0

the con�dence of the Hypothesis: fy > xg. This is equivalent to �nding the

probability Pfy > xg. This probability can be computed as

Pfy > xg =
NX
i=1

Pfy = i; x < ig: (VII.4)

Now, assuming statistical independence between the individual classi�er tests and

the combined system tests, Eq. (VII.4) becomes

Pfy > xg =
PN

i=1 pfy = igPfx < ig

=
PN

i=1 Pfy = ig
Pi�1

j=0 Pfx = jg;

(VII.5)

where Pfx = jg and Pfy = ig are given by the two Binomial distributions

B(n;N; p) and B(n;N; q) respectively.

When this computation is applied for the individual classi�er performance

�gures given in Table VII.1 and the combined performance �gures in Tables

VII.2 and VII.3, the improvement con�dence values in Table VII.7 are obtained.

The con�dence values in Table VII.7 show that an improvement over the

best performing individual classi�er have a strong likelihood for several cases.

For example, for the combination of the classi�er pair FFTCep/LPCCep by the
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Rank2 method, one can be 94:5% con�dent that there is an actual improvement

over the best individual performance of 65:8% correct classi�cation.

VII.7 Discussion

In this chapter, the Turkish BDEV letter-word classi�cation task has been con-

sidered. It has been shown that statistically signi�cant improvements over the

best performing classi�er can be obtained for this task by the application of the

theory developed in the present thesis. The BDEV task is such that there are

limited number of pattern classes and hence the problem dimensionality is small

as compared with the speaker identi�cation task considered in Chapter VI. Due

to the comparatively small problem dimensionality and the use of a partitioning,

the cross-validation data becomes su�cient for the estimation of the classi�er

observation statistics. As a result, a reliable rank-based statistical combination

model can be obtained for the Logistic Regression, Rank1 and Rank2 methods.

However, it can be said that the Logistic Regression method cannot perform as

well as the Rank1 and Rank2 methods due to the over-smoothing done by an

hyper-plane �t to the data, supporting our discussion in Section III.4.3. The

computation of the independence and complementariness measures developed in

Chapter IV for Rank1 partitioning led to meaningful results in support of the dis-

cussions of Chapter IV. However, for Rank2 partitioning, numerical di�culties

revealed their sensitivity to estimation errors in the observation space.

The results of Chapter VI and the present chapter establishes the fact that

the availability of enough cross-validation data to estimate the classi�er observa-

tion statistics is very important for the performance improvement by statistical
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rank-based decision combination methods. These include the family of optimal

combination methods which are the focus of the present thesis. The present

task exempli�es pattern recognition tasks with comparatively few pattern classes

and relatively large training and testing data per class. One can conclude that

pattern recognition tasks exempli�ed by the present chapter are more suited for

rank-based combination methods.
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CHAPTER VIII

Conclusions

VIII.1 Summary

A statistical uni�ed theory to analyze and extend rank-based multiple classi-

�er systems has been proposed. The theory has been used to analyze existing

rank-based decision combination methods with respect to the global optimum

solution. Then the theory has been extended to investigate independence and

complementariness among classi�ers and their e�ect in combined performance.

The decision combination problem in rank-based multiple classi�er systems

can be formulated as a discrete optimization problem which possess a simple

global optimum solution. The formulation used a set of statistics about the joint

output behavior of the involved classi�ers. However, the prohibitive dimension-

ality of the resulting problem space and the need to integrate prior knowledge

and assumptions into the problem necessitated manipulation and compression of

this problem space. A partitioning approach has been proposed and elaborated
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in this thesis to achieve this end. Under this framework, it has been shown that a

number of di�erent partitionings lead to three existing methods, namely Highest

Rank, Borda Count and Logistic Regression. The optimality of these methods

have been analyzed under the developed framework and their non-optimality have

been established. Another important result of this part is that once a partition-

ing rule is chosen and the associated observation statistics are estimated, the

optimal solution can be implemented by an e�cient computational model. This

model allowed the solution to be computed on-the-
y as the unknown patterns

are processed for classi�cation.

Despite the clear distinction between Type 2 (rank-based) and Type 1 systems

proposed in [9], the thesis have shown that the theory developed for rank-based

systems can be applied to analyze Type 1 systems. In fact, Type 1 systems do

result from a simple �rst rank based partitioning.

It is a common practice to make the assumption of statistical independence

between the outputs of classi�ers in multiple classi�er systems, to facilitate the

analysis. However, the e�ects of this assumption on the combined performance

has not been well understood. The actual improvement achievable by combi-

nation is another issue which can be called as the complementariness between

classi�ers. The thesis attempted to use the developed theory in combination

with related concepts from Information Theory to present an Information The-

oretic interpretation of rank-based multiple classi�er systems. Afterwards the

interpretation has been used to develop measures for output independence and

complementariness. It has been established that output independence plays no

direct role in determining the potential improvement by combination. However,
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the thesis has also shown that may not bene�t from the available potential for im-

provement, if the analysis is made under the independence assumption. Whether

there would be an actual improvement by combination has been shown to be

linked to a condition termed as dominance of a classi�er. An Information Theo-

retic measure is proposed for complementariness and justi�ed by several simulated

experimental results.

Finally the theory developed by the thesis is applied to two pattern recognition

tasks from speech processing. These two tasks had di�erent characteristics and

exempli�ed di�erent classes of pattern recognition problems. The behavior of

existing rank-based multiple classi�er systems are investigated on these two tasks.

Although the proposal of new methods have not been a primary goal of the present

thesis, simple application of the developed theory proved to perform better than

the existing methods on these two tasks.

The speaker identi�cation task had large number of pattern classes (speak-

ers) and therefore a small amount of training and testing data per class. This

led to limited cross-validation data which was required for the estimation of the

observation space statistics for combination using the proposed theory. Sparse

cross-validation data limited the usefulness of the statistical rank-based methods

including those proposed under the proposed theory and led to marginal improve-

ments by combination. This resulted from unreliable estimates for the classi�er

observation statistics.

One the other hand, problems having relatively few pattern classes, exempli-

�ed by the BDEV letter-word recognition task proved to be more suitable for the

application of statistical rank-based systems. Application of the developed the-
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ory in this task provided statistically signi�cant improvements by combination,

over the performance of the best individual classi�er. For this case, compara-

tively large amount of cross-validation data could be generated and the classi�er

observation statistics could be reliably estimated for the partitionings considered.

VIII.2 Directions for Future Research

The theoretical framework proposed in this thesis relies on the partitioning of the

joint classi�er observation space as controlled tool of proposing di�erent combi-

nation methods for rank-based decision combination. Several partitioning rules

are discussed, speci�cally to analyze existing methods. Also, a number of them

are used for the application tasks. However, it is yet not clear how to generate

such useful partitionings in an automatic, preferably optimal manner.

It is clear that the availability of the cross-validation data and its distribution

among the partitions resulting from a speci�c partitioning rule is crucially impor-

tant to provide reliable estimates for the resulting classi�er observation statistics.

Therefore, a partitioning should ideally take into account the distribution of the

cross-validation data over the original unpartitioned observation space. How-

ever, such a partitioning should also be able to incorporate one's assumptions

and prior knowledge about the task at hand. An interesting research direction

is to investigate the use of optimization methods such as Genetic Algorithms to

achieve an automatic partitioning. For example, a possible optimization criterion

for automatic partitioning can be based on minimizing the variability between

observation statistics estimates based on di�erent cross-validation samplings of

the training data or on di�erent sub-divisions of the cross-validation data.
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Another research direction related with automatic partitioning idea is the

investigation of the optimal smoothing of the classi�er observation statistics with

the aim of improving their reliability. The relation between optimally smoothing

the statistics for a �xed partitioning and optimally generating a partitioning is

very interesting to establish. These methods will be very useful to automatically

generate new rank-based combination methods suitable for a certain task, once

the training and testing results are obtained.

The independence and complementariness treatment in this thesis raises many

interesting questions as well as answering some others. The dominance condi-

tion is developed as an indicator of improvement by combination. However, its

relations with the Information Theoretic independence and complementariness

measures are yet to be established. These measures, which are based on the joint

output behavior of the set of classi�ers, can take into account the partitioning of

the observation space. However, as is the case for the complementarinessmeasure,

the e�ect of the optimal decision method are not involved. Therefore, improve-

ment potential reported by the proposed complementariness measure may not be

realized. Yet another issue open for analysis is the concept of error independence

and its relations with complementariness and consist an interesting and promising

direction for future research.

A last point arises when considering the cases where there still exist empty par-

titions for which partition statistics cannot be reliably estimated. It is observed

that even for such cases, the jointly optimal decision process can achieve sig-

ni�cant performance improvements. However, the proposed complementariness

measure may fail to report improvements since it uses all partition statistics and
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may become numerically unstable due to zero partition statistics. This suggest

two interesting directions for future research. One is to investigate the optimality

of the decision under unreliable partition statistic estimates, which may lead to

the design of some hierarchical classi�er systems. The other one is the extension

of the proposed complementariness measure so that it takes into account the dy-

namics of the optimal decision process and hence becomes numerically as stable

as the optimal decision process against unreliable partition statistic estimates.
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